Chapter 1

An Introduction to
Mathematica

1.1 The Very Basics

Mathematica is an extremely powerful inathematical software package {or com-
puter algebra system) that incorporates text editing, mathematical computa-
tion, and programming as well as 2D and 3D graphics capabilities. You can
literally write a complete mathematics texthook using only Mathematica where
your book includes all of the text and graphics in one smoothly flowing docu-
ment. If you have never or only slightly used Mathematica before, then it will
take some effort to learn how it works—believe me that it is well worth the
time expended for the ability to do mathematically almost anything you can
dream of that a computer might be able to do for you. In this introduction
to Mathematica, you will see only a fraction of its capabilities, but hopefully
enough to get you well on your way in doing 2D and 3D graphics, solving of
equations, defining and using functions, lists and matrices, along with some
basic mathematical programming.

This chapter discusses the fundamentals of using Mathematica for the novice
user. If you are already familiar with Mathematica, you may wish to skip this
chapter, although we warn you that to do so would be at your own risk. The
new user of Mathematica will find it quite difficult in the beginning, but with
practice and patience, you will master all of the basics and in time come to
enjoy using Mathematica.

Mathematica files are called notebooks, and in a notebook you can place text
along with input commands and their associated outputs which can be literally
anything such as graphics, tables or lists, and functions. You can group the
material in a notebook into different types of cells that are indicated on the
right side of the notebook by brackets. At the top of the notebook you will see

Principles of Linear Algebra with Mathema:ic:a@, First Edition. 1
Kenneth Shiskowski and Karl Frinkle.
© John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

2 Chapter }. An Introduction to Mathematica

the tab Palettes and under it is the Writing Assistant, which will allow you to
create new cells and/or modify cells. You can use Writing Assistant to change
the font, color, and size of the text in your cells and you can also do this using
the Format tab at the top of the notebook. The word processing capabilities
of Mathematica are very similar to those of Microsoft Word with [Ctrl]+[C] as
copy and [Ctrl4{V] as paste, as delete and copy, which can be pasted
elsewhere.

The commands {Alt4[9] and will create Input and Text cells, re-
spectively, after a horizontal line break between cells. Almost all Mathematica
cells are Input or Text cells, or Cuiput cells that are created when you activate
an Input cell. Input and Qutput cells are normally in pairs with Qutput second
directly following its fnput. You can also create a new cell after a line break
by typing in some text where you can control the type of cell you are writing
in by using the menu which is open at the upper left of the screen next to the
Save (or disk) icon.

Each section or chapter of a notebook file in Mathematica should be created
as a section where the first cell of the section is a Subtitle cell that can be created
by placing a horizontal bar between or just after a cell and then choosing
Subtitle from the pulldown menu at the very top left of the lower ruler at the
top of your screen. In order to create a subsection of this section (or chapter),
do the same as just described but choose the Subsection from this menu. If you
have not already used the Window tab to insert the Toolbar in your notebook,
then please do so now. With the Toolbar in place, you can now change the
type of cell you are in by using the pulldown menu at its far left. The Ruler
can also be inserted into your notebook if you want it from the Window tab.
Note that for those of us who like our text in a larger style, Window also has
a Magnification feature that is quite handy.

If you wish to delete a cell {use +) or modify its entire contents in
some way, then click on the cell tag or bracket on the right and then carry
out the desired operation using Writing Assistant or the tabs at the top of the
sereen or simply [CtrlH[X] for a complete deletion. In text, in order to create
a new paragraph in a cell, use [Enter] To do the same in an Input cell where
commands are placed, use [Enter| as well. If you wish to split & cell, then use
with the cursor at the location of the split. In using Writing
Assistant or any pulldown tab, if you click on the triangles on the lefi. you will
open or close one of the sections inside this tab. Note that text paragraphs
are not necessarily indented automatically, so you mmst indent them yourself
manually if you want this to happen.

If you wish to close a group of cells and see only the first cell of the group
(which should be the title cell of the group), then double-click on the far-right
bracket for the group. You will then see a cell bracket with an arrow to the
right of the cell bracket of the title or first cell of the group. If you double-click
on this arrow, then you can open all the cells of this group. The copy [Ctrll+HC]
and paste [CtrIH[V] features of Mathematica are the same as those of Microsoft

1.1 The Very Basics 3

Word and other software. If you wish to change the size, font, or other feature
of a collection of cells, select one of them by clicking on its bracket and then
hold the key down while you select the rest of the cells—now go to the
Format tab or other location and carry out your change.

It is strongly recommended that you save {use) your work con-
stantly since, like all software, Mathematica can glitch, which could cause you
to loose some or all of your material. You should have backup copies of all of
your work on a separate computer or flash drive since from our own personal
experience, we know that unfortunate problems can occur.

If you are using Mathematica to do homework problems, it is strongly sug-
gested that you place each problem in a single group of cells with the first cell
as the title of the problem. This will make it much easier to organize your work
both for vourself and the instructor who may read your material. After you
have finished working in a particular Mathematica notebook, it is also recom-
mended that you delete all of your output from the file unless it will take too
long to recompute it. Most, if not all, of the size of a Mathematica file will be
due to graphics, especially 3D graphics, and such files can become very large
and consequently take Mathematice quite a while to open or save, and at such
times an error can occur. Under the tab Cell, you have the command Delete
All Output, which removes all output from the entire file—you might use this
periodically while working in a notebook in order to shorten the file. When
you reopen a hotebook where all output has been deleted, you can reconstruct
it all by going to the tab Ewaluation and using the command Ewaluate Cells;
the Input cells will then be evaluated from the first one of the notebook to the
last one.

If a Mathematica calculation is taking too long and/or you notice that there
is an error in the input, then, in order to terminate the calculation, you should
go to the Fuvaluation tab at the top of the screen and select Abort Fuvaluation.
This should immediately halt the calculation in its tracks unless Mathematica
is stuck in some enormous loop and cannot find its way out—then your only
alternative might be to use [CtriH{Alt|+HDelete] and /or turn your computer off,
that is, gently pull the plug on the machine, while apologizing to it.

Beware of using capital letters to define a quantity in Mathematice as it
might already be a built-in command name that you cannot override with
something else. You should also avoid using the capital letters C, D and N
for any kind of variable or name in Mathematica as they are also command
names. The commands Clear and ClearAll will undefine a quantity that you
have named. If you use the command Exit[}, it should clear everything from
memory that you have defined and Mathematica has produced as output by
quitting the Mathematica kernel, which is the core of Mathematica.

In order to define or name a quantity in Mathematica, you must first decide
on an appropriate name that cannot be a previously used name or Mathematica
command name, nor should it be a common variable name like =, ¥, and =z,
which you might use in equations or functions/expressions as a variable symbol.

4 Chapter 1. An Introduction $o Mathematica

You can never use the same symbol or name in Mathematica for more than one
thing. Once you decide on a name such as TrialName, then in an Input cell
say TrialName = (or :=) where, after the equal sign, you must give the
expression that is the definition of TrialName. In Mathematica, an equal sign
= is used for definitions, while a double equal sign == is used in equations.
You can use !'= for not equals. The := is often used for defining functions
since it suppresses output and evaluation of the named quantity.

If you are using a Mathematica command, but have forgotten how to use it,
then place the cursor in the middle of the command name and hit the key
to have Mathematica bring up the Help file for this command name. You can
also go directly to Help and type in the command name yourself, especially if
you have forgotten its correct spelling. Don’t forget that every command name
in Mathematica has its first letter capitalized.

If you place a semicolon {3} at the end of a named input, then Mathematico
will not give any associated output even though it internally carried cut vour
command and stored it to the name given it. This feature can be useful when
the output would be very long and you do not need to see it all displayed, only
have it computed and/or stored.

Mathematica can use standard mathematical notation for powers k2 and
fractions § where +@ after the base k is typed will give a power location
and [Ctrl+]/] after a numerator is typed will create a fraction and placement
for the denominator—both keys must be used simultaneously. If you use these
keys after a space, then Mathematica creates blank shells OY and E for the
appropriate quantities to be inserted.

Finally, if you are a novice or beginner at using Mathematica, then besides
this introductory material there are many videos on YouTube that explain
most of the basic features of Mathematica. It is strongly suggested that you
seek these out and hopefully will find a few useful ones for doing what you are
interested in. Mathematice itself has tutorials that you should consider using
if vou find them useful.

1.2 Basic Arithmetic

In this section, we will start to use Mathematica to do some basic arithmetic
and algebra computations. In the arithmetic, which is done first, we will add
and multiply, factor positive integers into products of powers of primes, find
the greatest common divisor (GCD) and the least common muitiple (LCM) of
two positive integers, and more. In the algebra, we will factor polynomials,
divide one polynomial into another to get their quotient and remainder, solve
for the roots of a polynomial and also sclve equations for their unknowns, and
perform other algebraic operations.

In order to create an Input cell where you can do your caleulations, go to
the tab Paleftes and bring up Classroom Assistant. Now click on the tab Create

1.2 Basic Arithmetic 3

Input Cell with the cursor at the end of our prior work. Now you will have a
new Input cell as part of your current group of cells. Both palettes, Classroom
Assistant and Basic Math Assistant, have symbols such as 7 in them as well
as the natural number e.

In the first input cell below, you will find the command 1 4+ 1. If you
hit [Shift|+{Enter] with the cursor on this line, then Mathematica will carry
out your command and produce 2 as an output. After you get the output,
Muathematica automatically assumes that vou want another Input cell, and so
typing right after an output will be in a new fnput cell. You can also go back
and insert a new fnput cell by creating a horizontal bar between two fnput
cells by clicking on the region between the two cells, and then using [Alt]+[9]
while [Alt]+[7] creates a text cell. You can insert a Text cell between Input cells
by creating the horizontal line divider between cells by clicking on the space
between the cells and then using Text Cell out of the tab Text Cells in Writing
Assistant. In addition, if you type in a Mathematica command name such as
FactorInteger, but now you have forgotten precisely how it works and need
its help file, then put the cursor in the command name and hit ‘

Note that Mathematice will also recognize a space in a product as multipli-
cation, although for safety sake you might want to put in all of your multipli-
cations directly. Mathematica gives exact answers in a calculation if the inputs
are all also exact values, but any value with a decimal point in it is treated by
Mathematica as an approximation and it gives an approximate answer back.
The command N[V, m] will give the approximate value of the quantity V to
m digits of accuracy. Mathematice can answer most computational questions
to an arbitrary number of digits of precision—look up the command Work-
ingPrecision to see how it can be done as an alternative to the use of the
command N. In the last example of this arithmetic section we also multiply
three complex numbers using Product—a complex number in Mathematica is
expressed as ¢ + bi for @ and b real numbers.

In order to get a power of something in Mathematica that is placing a su-
perseript, use [Ctrl+[6] together to get an exponent location after you have
already typed in the base. If you want a fraction in the same standard way,
then type the numerator followed by [CtrlH/] and then the denominator in the
location created:

1+1

2

Sum|k2, {k, 1, 10}]
385

Sum[:rrk, {k, 1, 3}]

a+ritnd

6 Chapter 1. An Introduction to Mathematica

N[Sum[nk, {k, 1, 3}], 10]
44.01747373
Sum{3.14159265%, {k, 1, 3}]

44,0175
Product [%, {k, 1, 5}]

R
120

FactorInteger[90]
{{2,1}, (3,2}, {5,1}}
213251

90

GCD[210, 90]

30

LCM][210, 90]

630
QuotientRemainder[83, 5]
{16,3}

5x164+3

83

Now we switch from arithmetic to algebra. Our algebra will be mainly
polynomial and similar to what we did in the arithmetic part above, although
we will find the roots of polynomials as well. After the first two computations
of multiplying out two polynomials and then dividing the one of larger degree
by the smaller-degree one, we will name or define the two polynomials as Polyl
and Poly2, and then repeat the process to see that Mathematica understands
what we want. Also, we define the list called QR below which is the quotient
first and remainder second in our division of Poly2 by Polyf—a list is an
ordered collection of objects that Mathematica places { } around its elements,
with commas between the elements. Then QR[[1]] is the quotient and QR{[2}]

1.2 Basic Arithmetic 7

is the remainder in the division. We will discuss lists and matrices in the next
chapter.

Mathematica expresses its equations with a double equal sign == while it
uses a single equal sign to make a definition or assignment of a quantity te a
name such as in the use of Poly! and Poly2 below. Hence, 5 x + 3 y ==
is an equation in Mathematica, while Eqnl = 5 x + 3 y == 9 assigns the
name E¢nl to this equation for the time you are using this notebook unless you
decide to change it. In Mathematica, you do not need to insert a multiplication
sign, as Mathematica usually places a space between objects, which indicates
multiplication.

Omne last bit of useful information is that Mathematica uses the percent sign
% to tefer to the last computed output and %% to refer to the next to last
computed output. This can be helpful, as we will see below. We will use the
% below when we want to change the roots of Polyl to a set of rules that can
then be substituted back into Poly! to see that we get 0 (or very close to 0)
back. As well, it is probably better to assign a name to your quantities in order
to be better able to use them later and know what you are specifically talking
about, and we do this for the roots of Poly2:

Expand[(7x%+5x%2 —9x+1)(—4x% — x5+ 3x% — 2x% +xZ — 8x+5)]
5—53x+98x*—16x*—30x*—31 x°+6x°+52x"—27x*—28x°

PolynomialQuotientRemainder[—4 x% —x® + 3x? —2x% + x? —8x+5,
7Tx2+5x2 — 9z + 1, x|

{1179 170x+13x2_4x3 10826_7407x_14841x2}
2401 343 ' 49 77 2401 2401 2401

Polyl = 7x3 4+ 5x2 -9x+1

1-9x+5x2+7x3

Poly2 = —4x% — x5 4+ 3x* —2x3 4+ x?* —8x 45
5-8xt x> —2x343xt x> —4x®

Expand{Polyl Poly2]

5-53x+98x°—16x*—30x* 31 x*+6 x*+52x" —27x* 28 x°

QR = PolynomialQuotientRemainder[Poly2, Polyl, x]

1179 170x 4 13x? _ @ 10826 7407x 14841 x?
2401 343 49 7 24m 2401 2401

Expand[QR][[1]] Polyl + QR[[2]]]
5—8x+x2—2:3+3x—xP -4 x5

8 Chapter 1. An Introduction to Mathematica

NRoots[Polyl == 0, x|
x == —1.58331 || x == 0.120547 || x == 0.74848
{ToRules[%]}

{{x o —1.58331}, {x - 0.120547}, {x N 0‘74848}}
Polyl /. %

{0, 208167x107¢, 0.}

Poly2Roots = N[Roots[Poly2 == 0, x|, 10]

x == —1.532415683 || x == 0.6273496205 |
x == —0.4656006912 ~ 0.9837390675 1
x == —0.4656906912 + 0.98373906751 |
x == 0.7929737223 — 0.6840534163 ||
x == (.7920737223 + 0.6840534163 i

Rules = {ToRules{Poly2Roots|}

{{x — —1.532415683 }, {x - {].6278496205},
{x — ~0.4656906012 — 0.9837390675 1‘1},
{x 4 —0.4656906912 + 0.9837390675 1‘1},

{x 5 0.7929737223 — 0.6840534163 i}
{x 5 0.7920737223 + {].684053416311} }
Poly2 /. Rules
{0. % 1078, 0. x 107, 0. x 10~% 4 0. x 10~%1,
0.x 1078 + 0. x 10~54,0. x 107 + 0. x 10734,0. x 1078 + 0. x 10~8 i}
Rules[[2J([1]]{2]
0.6278496205

Poly2Roots[[2]][[2]]

0.6278496205

1.3 Lists and Matrices 9

Poly = Expand[—4Product[x— Poly2Roots{[k]][[2]], {k, 1, 6}]]

(5.00000000 + 0. x 1077) — (8.0000000 + 0. x 10~% i) x+
(1.0000000 + 0. x 10~%1) x* — (2.0000000 + 0. x 107%1) x*+
(3.00000000 + 0. x 10721} x* — (1.00000000 4 0. x 107%1) x> — 4x°

Sum [Re[Coefficient[Poly, x, k|| x*, {k, 0, 6}]

5.00000000 ~ 8.0000000x + 1.0000000 x> —
2.0000000 x> + 3.00000000 x* — 1.00000000 x* — 4x°

Chop[Poly, 10~ 7]

5.00000000 — 8.0000000 x + 1.0000000x%—
2.0000000 %% + 3.00000000x* — 1.00000000 x°® — 4x°

Product[k — (k + 2) I, {k, 0, 3}]

40+1601

1.3 Lists and Matrices

Now we look more closely at the different ways in which we can organize infor-
mation into lists and matrices (a list of lists), and how these different structures
work and can be manipulated. In Mathematica, there are no sets, since Math-
ematica requires that an ordering be placed on its data, and so it deals with
lists that can be treated as sets if you ignore the order of the elements in the
list. The list L of the elements @, b, and ¢ in this order is given as L = {a,
b, ¢} in Mathematica. Shortly, we will look at taking the union, intersection,
complement, and concatenation (or joining) of lists as well as taking out parts
of a list. The empty list is { }, and L[[k]} is the kth element of list L.

A string 5 is a grouping or ordered collection of characters or symbols with
quotes around them such as 8 = "Mary had a little lamb". The string
assigned to the name 5 is the sentence between the two double quotes. Strings
often show up as the title to Mathematica plots and similar structures.

A sequence or table in Mathematica is a list of objects created from a for-
mula such as {1,4,9} can be created as the output from the input Table [k2,

{k,1,3}].
L1 = {a, b, 1, 3, ¢, 5}

{a, b, 1, 3, c, B}

10 Chapter 1. An Introduction to Mathematica

L2 = {7, 2,5, 25,1, c, b}
(7,2,52,5, 1, ¢, b}

Union[L1, L.2]

{1,2,3,5, 7. a, b, c}
Intersection{L1, L2]

{1,5,b, ¢}

Complement|L1, L2]

{3, a}

Join[L1, L2]
{a,b,1,3,¢,5,7,2,5,2,5,1, ¢, b}
Length[L1)

6

L1{[2]]

b

Squares = Table[k?, {k, 1, 10}]
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Sum[Squares([[k]], {k, 1, 10}]
385

Now we switch to matrices or two dimensional arrays of rows and columns
of entries. Mathematica considers a matrix M to be a list of lists where each
element of M is one of the rows of the matrix M, and the rows must all have
the same length. As sueh, M = {{1,2,3}, {4,5,6}, {7,8,9}} has {1,2,3} as
its first row, {4,5,6} as its second row, and finally {7,8,9} as its third row.
We will look at examples of adding, multiplying, inverting, transposing, and
finding determinants of matrices where multiplication of matrices is indicated
by a period or dot (.) between their names as given in the fifth line of input
below.

In order to define a matrix M and have it displayed in the proper matrix
format as rows and columns, use round parentheses around your definition of
M followed by // MatrixForm. Then if you wish to manipulate A with

1.3 Lists and Matrices 11

other matrices so defined, there will be no problems, but remember to always
use // MatrixForm after your computations or definitions to get the proper
matrix format:

M = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
{{1,2,3}, {4,5,6}, {7,8,9}}
MatrixForm[M]

(£2)

K = {{-5, 7, 1}, {0, —4, 6}, {2, —1, 9}}
{{_5=71 1}: {0, _456}3 {2:_1:9}}
MatrixForm|[K]

-5 7 1
0 -4 6
2 -1 9

(L=M + K) // MatrixForm

-4 9 4
4 1 12
9 7 18

MatrixForm[M.K]

1 -4 40
-8 2 88
-17 8 136

Det[M]

=1 = =
90 N e
o L

0

Det[K]
242
Det[M.K]
0

12 Chapter 1. An Introduction to Mathematica

Inverse[M]

Inversessing : Matrix {{1,2,3}, {4.5,6}, {7,8.9}} is singular. >
Inverse[{{1, 2, 3},{4, 5, 6}, {7, 8, 9}}]

Inverse[K] // MatrixForm

15 32 23

121 121 121
S _4r 13
121 242 121
4 5 10
121 242 121

Transpose[M] // MatrixForm

1 4 7
2 5 8
3 6 9

1.4 Expressions versus Functions

This section will look at the differences in Mathematica between expressions
and functions and how to manipulate and evaluate both. You should think of
an expression as the rule for some function f; that is, if f(z) = 52 + 9, then
5z + 9 is an expression which is the rule of the function f. Mathematica treats
a function very differently than it treats an expression—you should think of an
expression as a string of symbols while a function is a string of symbels (its rule
or expression) with a method of evaluating its expression at different values of
the variable(s) in the expression.

Let’s now look at the difference in Mathematica between the expression
g =5z + 9 and the function f with rule f{z} = 52 + 9, and how each of them
can be evaluated at x = 1. Note that normal function evaluation can be done
so that f evaluated at # = 1 is f[1] while the expression g can be evaluated
at z = 1 by the substitution command g /. x—1. If you want to compose
the function f with the built-in function Sin[x], then f{Sin[x]] will do it—this
composition can also be done using f@Sin[x] or Nest[f, Sin[x], 1}, and its
result is an expression, not a function. If you want f to be composed with itself
k times, then use Nest[f, f[x], k].

g=5x+9
9+5x

g/ x—1

14
fle_.]=5x+9
9+5x

1.4 Expressions versus Functions

13

f[1]

14

g /. x—=8Sin[x]

945 sinlx]

f[Sin[x]]

945 sin[x]

h = fOf([x]

945 (9+5x)

Simplify[h]

54425 x

Nest[f, f[x], 1]

95 (945 x)
Simplify[%]

54425 x

Nest[f, fix], 1] /. x—2
104

Nest[f, f[x], 5]

945 (9+5 (945 (945 (9+5 (9+5x)))))
Simplify|%]
35154415625 x

As the last topic of this section, let's do an example of a piecewise function
and its graph (see Fig. 1.1). A piecewise function is one whose rule is given
in parts or pieces where each part is used only when certain conditions are
satisfied. Happily, Mathematica has a Piecewise command that we can utitize.
Note that in defining the function f{x) below that && is the Mathematica

notation for the logical AND in joining two statements:

flx.] = Piecewise[{{Sin[x], x < -2 }, {Cos[x], x > —2&&x < 3},

{—=x+5, x> 3}}]
Sin[x] =< -2
Cos[x] x> —28&&x <3
5—-x x>3
0 True

14 Chapter 1. An Introduction to Mathematica

Plot[f[x], {x, —=, 27}, PlotStyle—{Red, Thick}]

fx)
2} \
3\
\
\
oo, Y
PEN \
V4 gs“\. \
' 4 LY \Q
f; "1'?. \"Q
S % t‘%
\ vs N C x
\ —24 h 2 3
\‘ ff ‘nk \‘a*
\
A
\
AN . \

Figure 1.1: Plot of the piecewise function f.

1.5 Plotting and Animations

‘We begin our investigation into plotting with the basic 2D plotting of the graphs
of functions y = f(x} and expressions as well as plotting parametric curves x =
f(#), y = g(t). We will plot single functions and parametric curves as well as
several together and in combination in different colors. Besides these two types
of curves, we will implicitly plot equations in the two variables r and y such as
the unit circle with equation x> + 32 = 1 or something more complicated. The
implicit plotting of equations can be done using the ContourPlot command
and ContourStyle option to control color, thickness, ete. of the plot.

Let’s begin with simple function or expression plotting, and then move on
to parametric curve plotting. In the first example, remember to get base e for
the exponential function from the palette Basic Math Assistant. Also, in order
to get a superscript or exponent, use [Ctrl+[6] together after the base is already
in place. In order to create a fraction, first type the numerator and then hit
+ to be able to place the denominator.

The plot option of PlotStyle can control color and thickness for graphics
and control whether the graph lines are solid or dashed except when doing
implicit plotting of equations using ContourPlot when PlotStyle switches
to ContourStyle (see Figs. 1.2-1.7).

flz_] = x Sin[x? @]

x Sin [ex x2]

1.5 Plotting and Animations 15

Plot[f[x], {x, —1, 2}, PlotStyle—Red, PlotRange—{—2, 2}]

fix)
2 .
1 Vo
— — _4_,_,_,_,._ X
-1 1 | ::-2
-1 :
L

Figure 1.2: Output of the Plot command with various options.

g = e—% Sin[3x]

e~ 3 Sinl3x]
Plot[{f[x],g}, {x,—1,2}, PlotStyle— {Directive[Red,Thickness[.005]],
Directive[Blue,Thickness[.01]]}]

fx), g0
2 -

Figure 1.3: Plot of f and g together with separate options for each curve.

16 Chapter 1. An Introduction to Mathematica

ParametricPlot[{Sin[2 t], Sin[3 t]}, {t, 0, 27}, PlotStyle—Directive
[Blue, Thick]]

yi1)

Figure 1.4: Plot of the parametric equation (sin(2t), sin{3f)).

ParametricPlot[{{Sin[2 t], Sin[3 t]}, {Sin[t], Cos[t]}}.{t, 0, 27}, Plot-
Style—{Directive[Blue, Thick], Directive[Red, Thick]}]

y(1)

Figure 1.5: Two parametric curves plotted together.

1.5 Plotting and Animations 17

ContourPlot [{x? + y? == 1, x* + y* == 1}, {x, -1, 1}, {3, —-1, 1},
ContourStyle— {Directive{Red, Thick], Directive[Blue, Thick]}]

Figure 1.6: Example of the ContourPlot command with two implicitly
defined relations.

2 (y—102 (x—35)% (y—10)¢
144 77 49 144
1}, {x,—10,25}, {y,—10,25}, ContourStyle— {Directive[Red, Thick],

Directive(Blue, Thick]}]

ContourPlot H (x ;95

20t 77\

-0 000 i LI
-10 5 20

X

Figure 1.7: Second example of the ContourPlot command with two
implicitly defined relations.

18 Chapter 1. An Introduction to Mathematica

Now we turn our attention to creating a movie or animation in the zy-
plane whose frames consist of plots of the three different types. Let's begin by
plotting the function y = sin(x) from = 0 to 2 = A where the animation
parameter A goes from 0 to 4n {see Figs. 1.8 and 1.9). It is followed by running
two y = sin(xz) animations at once based on the same animation parameter A:

Animate[Plot[Sin[x], {x, 0, A}, PlotRange—{{0,47}, {—1.01,1.01}},
PlotStyle — Directive[Blue, Thick]], {A, 0.0}, 47}, AnimationRun-
ning—False]

Figure 1.8: Animation of the plot of sin{z) for x € [0, A], here A = 2.61x.

Animate[{Plot[Sin[x], {x, 0, A}, PlotRange —{{0, 4=}, {-1, 1}},
PlotStyle— Directive[Blue, Thick]], Plot[Sin[x + A], {x, 0, 47}, Plot-
Style—Directive[Red, Thick]]}, {A, 0.01, 4x}, AnimationRunning—
False]

. WAWA
VARV

Figure 1.9: Animation of sin{z) and sin(z + A}, z € {0, A]. Here A = 2.67.

1.5 Plotting and Animations 19

We next do an animation (see Fig. 1.10) involving implicit plotting of an
ellipse where the center is moving along the circle with center at the origin and
radius 10. Here we make use of the Epilog option to put into each frame of
our movie the circle of the ellipses’ centers:

) (x — 108in[A])? (y — 10 Cos[A])?
ellipses = + == 1:
4. 25.
Animate[ContourPlot{ Evaluate[ellipses /. A—B], {x, —15, 15}, {y,
—15, 15}, ContourStyle—Directive[Blue, Thick|, PlotPoints—100,
Epilog— {Red, Thick, Circle[{0, 0}, 10]}], {B, 0, 2=}, AnimationRate
—+.15, AnimationRunning—False]

. d

Figure 1.10: Animation of the rotation of the ellipse, here B = %ﬂ'.

It is time to move function, parametric, and implicit plotting from the zy-
plane to zyz-space. We begin by plotting functions z = f(x,y), which give
surfaces in zyz-space {see Fig. 1.11). This is followed by parametric curve and
surface plotting:

flz_, y_] = Sin[x + y] Cos[x — y] + 3;
g = Sinfx ¥] + ey,

20 Chapter 1. An Introduction to Methematica

Plot3D[{f[x, ¥], g}, {x, —3, 3}, {y, —2, 2}, PlotStyle—{Red, Blue},
AxesLabel— Automatic)

Figure 1.11: Plot of two surfaces.

Now we examine parametric curve plotting in space. A parametric curve,
or spacecurve (see Figs. 1.12 and 1.13), is of the form z = f(¢), y = ¢(t),
z = h(t} with one independent variable t. For spacecurves, we use the Para-
metricPlot3D command which is nearly identical to the ParamatricPlot
command that was previously introduced.

ParametricPlot3D[{Cos[2 t], Sin[4 t], Cos[6 t]}, {t, 0, 27}, PlotStyle
—Directive[Blue, Thick], PlotPoints— 250, AxesLabel— Automatic]

A

~.\ P

I

Figure 1.12: Plot of a spacecurve.

1.5 Plotting and Animations 21

ParametricPlot3D [{«'213_0 Cos[t], @ Sin[t], 1—':)}, {t, 0, 48n}, Plot-
Style— Directive[Blue, Thick], PlotPoints—>250]

Figure 1.13: Plot of a helical spacecurve.

A parametric surface is given by x = f{u,v), ¥ = ¢(u,v), 2 = h{u,v) with
two independent variables u and v. We first plot a torus (Fig. 1.14) followed
by three interlocking mutually perpendicular tori (Fig. 1.15}.

ParametricPlot3D[{(7 + 3 Sinf[u]) Sin[v], (7 + 8 Sin[u]) Cos[v], 2
Cos[u]}, {u, 0, 27}, {v, 0, 2}, PlotStyle—+Blue]

Figure 1.14: Plot of the torus, a parametric surface.

22 Chapter 1. An Introduction to Mathematica

ParametricPlot3D[{{(7 + 3 Sin[u]) Sin[v], (7 4+ 3 Sin[u]} Cos[v], 2
Cos[u]}, {2 Cos[u], (7 4+ 3 Sin[u]) Sin[v], (7 4+ 3 Sin[u]) Cos[v]}, {(7
+ 3 Sin[u)) Sin[v], 2 Cos[u], (7 + 3 Sin[u}) Cos{v]}}, {u, 0, 2=}, {v,
0, 2r}, PlotStyle— {Blue, Red, Green}]

10

10

Figure 1.15: Three intersecting tori.

Next, we do implicit plotting of equations in the three variables z, y, and
z, whose resutting plot gives a surface. We will start with a cylindrical surface,
which is a surface whose equation has only two of the three space variables in
it. This equation is really a curve in the plane, with certain radially symmet-
ric properties, of its two variables, while adding the third variable (direction)
results in a surface (see Figs. 1.16-1.18).

CentourPlot3D [x? + 2% == 9, {x,—3,3}, {y,—3,3}, {2,—5,5}, Con-
tourStyle— Blue, BoxRatios— Automatic, AxesLabelﬁAutomatic]

Figure 1.16: A cylinder defined implicitly.

1.5 Plotting and Animations

23

ContourPlot3D[{x? + y? + 2% == 16, x* + y? == 9}, {x, -5, 5}, {y,

-5, 5}, {z, —7, 7}, ContourStyle-+{Blue, Red}, BoxRatios— Auto-
matic, AxesLabel-+Automatic, MeshﬁNone]

X
¥y '2/,/' _12 2
//f /.'
-
5'!,..
II
|
- II
Zol
III
—5|| A

Figure 1.17: A cylinder intersecting a sphere.

Animate[ParametricPlot3D[{{C + A Sin[u]) Sin[v], (C + A Sin|[u])
Cos[v], B Cos[u]}, {u, 0, 27}, {v, 0, 2n}, PlotStyle—Blue, Axes-
Label —{x, y, z}, PlotRange—{{—11, 11}, {-11, 11}, {-5, 5}},
PlotPoints—100, Mesh—None], {A, 1, 3}, {B, 1, 4}, {C, 5, 8},

AnimationRunning—False, ControlType— Slider, ControlPlacement
—Right)]

) — B
- .) A u
o g A .' m
A e -
0, 7 /At
-4l e/

Figure 1.18: Animation of parameters in the graph of a torus. The parameter
values for this frame are A = 1.5, B =2, and ' = 6.5.

24 Chapter 1. An Introduction to Mathematica

A word of warning in doing 3D animations. This type of animation can use a
great deal of memory, so we highly recommmend that you delete the cutput from
memory before closing the file unless it took a great deal of time to produce
the animation and yon do not want to have to do it again. We animated the
torns with three animation parameters. Play around with each slider, corre-
sponding to the three parameters, to see how they affect the shape of the torus.

1.6 Solving Systems of Equations

Mathematica can solve single equations as well as simultaneous systems of
equations, both linear and nonlinear. It can also find approximaie or exact
solutions, although for exact solutions the equation or system must be capable
of being solved for exact solutions by some known method. Also, Mathematica
can find both real and complex solutions. The solution given by the command
Solve will give a list of replacements for the variables solved for in your solution.
In order to get the actual values of the solutions as a list and only for a specific
variable solved for like z, you must use the input z /. soln, where soln is the
result of Solve and z is one of the variables solved for in Solve. The command
Solve seeks exact solutions while NSolve always gives approximate solutions.

We begin by solving some single polynomial equations for real and complex
solutions, both approximate and exact. Solve will give all real and complex
solutions to a single polynomial equation, that is, it will find all of the real and
complex roots of any complex coefficient polynomial:

PolyN = 35x® + 4;
soln = Sclve[PolyN == 0, x]

1/3 _
o (-5) 27} o -G} oo -2m))

approxsolns = N[soln, 25]

{{x — 0.2426427503202586581123865 + 0.4202695716429374683285407 1},
{x — 0.2426427503202586581123865 — 0.42026957164293746832854071},
{x — —0.4852855006405173162247729} }

PolyN /. %

{o‘x 1072410 x10724, 0.x1072440.x 107§, 0.x 10~ }

1.6 Solving Systems of Equations

xsolns = x /. approxsolns

{0.2426427503202586581123865 4 0.4202695716429374683285407 1,
0.2426427503202586581123365 — 0.4202695716429374683285407 1,
— 0.4852855006405173162247729}

Q=5x3-7x2+1Ix—4I
~4 i+ x—7x*+5x3
soln = Solve[Q == 0, x]

PR
{{X S35 i st
15 (1 ((686 + 23851) + 15v/—24693 + 164041))

1 1/3
= (((686 + 23851} + 15v/—24693 + 1640411)) }

{X_}i_ (&5 —1) (1 —iv3) _
15 92/3 ((686 + 2385i) + 15v/—24603 + 164041)

310 (((686 -+ 23851) + 15v/~24693 + 1640411))1?{3 (1+1v3) },

701 /1 AP
{x L= (((686 + 2385i) + 15v/~24693 + 1640411)) (1 - u/i) -

15 30
(8~ 1) (1+1v3) }}
22/3 ((686 + 2385i) + 15,/—24603 + 164041) 1/3

approxsolns = N[soln, 15]

{{x - 1.48095933119864 + 0.210926756587401},
{x — 0.430101246109932 — 0.658941196856415},
{x = ~0.511060577308570 + 0.448014440269016 i} }

Q /. approxsolns
{0-41071240.x107141, 0.410714+0.x107141, 0.x1074+0.x 1014 }
xsolns = x /. approxsolns

{1.48095933119864 + 0.210926756587401,
0.430101246109932 — 0.658941196856415 i,
— 0.5110606577308570 + 0.448014440269016 i}

26 Chapter 1. An Introduction to Mathematica

Chop[Expand[5 (x — xsolns[[1]]) (x — xsolns[[2]]) (x — xsolns[{3]])]]
~4.0000000000000 i+1.0000000000000 i x—7.0000000000000 x> +5 x>

Now we look at some examples of solving systems of equations that are
both linear and nonlinear. We begin by finding the intersection point of two
lines in the xy-plane (Fig. 1.19) followed by finding the intersection points of
two circles (Fig. 1.20):

Eqnl =5x+4+3y==—-4; Eqn2 = —7Tx 4+ 2y == 6;
Soln = Solve[{Eqnl, Eqn2}, {x, y}]

(o al)
{Eqnl, Eqn2} /. Soln
{{True, True}}

approxsolns = N[Soln, 10]

{{x — —0.8387006774, y — 0.06451612903}}

{xsolns, ysolns} = {x, y} /. Flatten[approxsolns]

{—0.8387096774, 006451612903}
ContourPlot [{5 x+3y == —4, ~Tx+2y == 6, (x —xsolns)? 4 (y —

1
ysolns)? == E}, {x, -5, 5}, {y, —8, 5}, ContourStyle— {Directive[
Red, Thick], Directive{Blue, Thick], Directive[Black, Thick] }]

-4

Figure 1.19: Solution to the system of two lines is a point.

1.6 Solving Systems of Equations 27

{Eqnl, Eqn2} = {(x—7)*4+(y—2)® == 25, (x—1)’+(y—5)* == 16};
Soln = Solve[{Eqnl, Eqn2}, {x, y}]

{{x—)» % (17—2\/ﬁ) Ly = é (19—4\/ﬁ) }

{x—> % (17+2\/ﬁ) Y % (19+4\/ﬁ) }}
approxsolns = N[Soln]
{{x 5 2.07335, y — 1‘1467}, {x — 4.72665, y — 6.4533}}
solns = {x, y} /. approxsolns
{{2.07335, 1.1467}, {4.72665, 6.4533}}

{IntersPt1, IntersPt2} = {solns|[1]], solns[[2]]};

ContourPlot|{ (x—7)2+(y—2)% == 25, (x~1)*+(y—5)* == 16, (x—
IntersPt1[[1]])2 + (y — IntersPt1][[2]])? == %, (x — IntersPt2[[1]])% +
(y — IntersPt2[[2]])? == }, {x,~5,15}, {y,—5,15}, ContourStyle—{

Directive[Red,Thick], Directive[Blue,Thick], Directive[Black,Thick],
Directive[Black, Thick] }]

15 F

Figure 1.20: Intersection of two circles is a pair of points.

28 Chapter 1. An Introduction to Mathematica

Eqns = {(x — 7)* + (y — 2)? == 25, (x + 2)? + (y — 5)% == 16};
Soln = Solve[Eqns, {x, y}]

{{x%%(éﬂ—ﬁ\/&i—g),y%516(73—-31'1\/@)},

{x—:» % (41+iv8s), y - 2—10 (73+3ﬁs/@) }}
N[Soln]

{{x — 2.05 — 0.471699, y — 3.65 — 14151},
{x — 2.05 + 0.4716991, y — 3.65 + 1.41511}}

1.7 Basic Programming

In this final section of Chapter 1, we will discuss some basic mathematical
programming concepts such as the For loop command, the use of cotnmands
such as While and Do, and the general concept of a procedure in Mathematica
that consists a series of commands with semicolons following each step of the
procedure. A procedure’s steps will be executed in order from left to right if
they appear all on the same line or from first to last if they are on successive
lines in the same cell. In general, by design, the output of a procedure is the
result of its final step.

Let’s begin by doing a few examples involving For loops such as printing
values, doing sums and products, and using the commands Do and If. The
first For loop will print z* + z starting with z = x2 as k goes from 1 to 4,
where at each step it takes the previous value of z and plugs it into z* + z for
the next value of k. The semicolons in the For loop separate the main parts of
the procedure inside the For command, which are first the initialization of the
loop variable k, the instructions to be carried out successively as k increases
in implementing the loop, and finally the output that you desire at each step
{value of k) of the loop.

For[k =hs=xk<4, k++,z2=25+2 Print[z]]
27

2x° 4+ 4x*

2x% +4x + (2x° —|—4x4)3

2x% +4x! + (2%° +4x4)3 + (2:{2 +4x* + (2x° —|—4x4)3)4

The second For loop will compute and display the sums of the reciprocals
of the factorial function. The results get closer and closer to the number e
which is approximately 2.71828.

1.7 Basic Programming 29

For[k =1, k<10, k ++4,
1
Print [NSum [—', {n, 0, k}, WorkingPrecisionﬁlO} H
n!

2.000000000
2.500000000
2.666666667
2.708333333
2.716666667
2.718055556
2.718253968
2.718278770
2.718281526
2.718281801

The next two procedures will do an addition of the first 10 positive integers
and then a multiplication of the same integers using the Do loop command:

sum = {;
Do[sum = sum + k, {k, 1, 10}]; sum

55
Suml[k, {k, 1, 10}]
55

prod = 1;
Do[prod = k prod, {k, 1, 10}]; prod

3628800
10!
3628800

prod = 1;
Do[prod = prod k, {k, 1, 10}]; prod

3628 800

Sometimes the most convenient way to create a somewhat complicated func-
tion is to use a procedure for its rule. We will first look at two simple examples

30 Chapter 1. An Introduction to Mathematica

that create the factorial function and the add function using the procedures of
the previous section to do it. Remember to place parentheses around ali of the
steps in your procedure. The output of the function will be the result of the
last step of your procedure, which is the function’s rule. The variable n in both
the factorial and add functions below takes on only a positive integer value:

factorial[n_] := (prod = 1; Do[prod = k prod, {k, 1, n}|; prod)
factorial[10]

3628800

add[n_)] := (sum = 0; Do[sum = sum + k, {k, 1, n}]; sum)
add[10]

55

Now we turn to a more sophisticated example involving piecewise functions
and the use of the nested If command. Mathematica has a Piecewise com-
mand to build piecewise functions, but it is not always suflicient or convenient
for all purposes. Let's create a function called quadrant that takes a point in
the plane and tells us which quadrant it is in or if it is on an axis and thus
is not in any quadrant. Note that && is the Mathematica logical AND for
joining two conditions so that both must be true for them together to be true.
The logical OR is || with no space between the two vertical bars. The Return
command nsed below will return an output as well as terminate the If, While,
For or Do loop that you might be in. There is also a command Break which
terminates loops.

Be very careful in Mathematica to avoid using the letters C, I}, and N as
variables in vour functions or anywhere else as they are Mathematice command
names. It is better to stick to using lowercase letters as your variable names
and cuiput for any function or procedure:

quadrant[pt_] := If[pt[{l]] > 0 && pt[[2]] > O, Return[quadrantl],
If[pt[[1]] < 0 && pi[[2]] > 0, Return[quadrant2],
Iffpt[[1]] < 0 && pt[[2]] < 0, Return[quadrant3],
If[pt{[1]] > 0 && pt{[2]] < 0, Return{quadrantd], axis]]]]

quadrant[{—3, 9}]
quadrant2
quadrant[{0, 9}]

axis

