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  1 
INTERFACING BIOLOGY AND 
CIRCUITS: QUANTIFICATION 

AND PERFORMANCE METRICS  
  Alexander J.     Casson    and    Esther     Rodriguez - Villegas  

     

    1.1    INTRODUCTION 

 A key aim of bioelectronics is to provide an interface between the biological 
world (blood pressure, electrocardiogram [ECG], and the like) and the electron-
ics world (analog and digital hardware, software, and the like). This interface 
allows the characterization and quantifi cation of the biological world, which can 
be used to gain further understanding of the fundamental biological processes 
being monitored. Alternatively, long - term monitoring of physiological parame-
ters can lead to new and more effective diagnostic and treatment methods for 
particular medical conditions. 

 A typical interface between the biological and electronic worlds is shown in 
Figure  1.1 . Here a suitable sensor or electrode is used to detect a biological 
parameter, and the resulting signal is then amplifi ed and converted into the 
digital domain. Once this has been done, the signal can be transferred to a com-
puter for long - term storage and processing. Depending on the application 
requirements, the data may be transfered over cables or via a wireless link.   

 The biological world interface system thus includes everything from the 
sensor to the wired or wireless link. In many applications this system must be as 
physically small as possible, and capable of operating autonomously over long 
periods of time. This may be because data is being collected from a lab animal 
that is physically small, or because a human is being monitored, and they are 
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INTRODUCTION 5

expected to be going about their normal daily life. For this to be possible, the 
interface device must be unobtrusive, comfortable, socially acceptable, and long 
lasting. 

 Miniaturized, unobtrusive devices imply that only physically small batteries, 
which have limited energy storage and current sourcing capabilities, are 
available for use. Simultaneously, long - term monitoring implies that the limited 
energy capacity of the batteries has to exploited to the maximum by using very 
low - power electronics. Key for realizing these miniaturized interface systems 
is thus the optimization of the electronic design. For example, a system using 
only a 12 - bit analog - to - digital converter (ADC) produces much less data to 
transmit and leads to much lower overall power consumptions than systems 
using a 24 - bit ADC. However, performing such optimizations inevitably 
requires detailed knowledge of the biological requirements for the given applica-
tion, and obtaining these requirements is by no means trivial. As an example, 
consider the electroencephalogram (EEG), which records electrical potentials 
from the scalp. 

 Recommendations from the International Federation of Clinical Neuro-
physiology call for a 12 - bit (72   dB) sampling resolution once the direct current 
(DC) component of the signal has been removed  [1] . Most commercial EEG 
units use 16 or more bits, exceeding this recommendation. Typical analysis of the 
EEG produced, however, is performed by a human using 16 EEG traces dis-
played on a screen with 1024 vertical pixels. This gives just 6 bits of resolution 
 [2] . For comparison, traditional paper - based EEG systems had a dynamic range 
of around 7 bits  [2] . Potential room for optimization is thus present, especially if 
only automated analyses of the EEG are to be performed. 

 Of course, such uncertainties in the performance requirements are not con-
fi ned to the biological world alone. For low - power, low - dynamic - range signal 
processing, analog circuit implementations can potentially signifi cantly outper-
form their digital counterparts  [3] . However, it is then necessary to contend 
with an amount of  mismatch : for example, when implemented on a microchip 
capacitor values may be no more than 20% accurate, and no two transistors 
will be exactly the same. This leads to a variance in the performance of the 
analog circuit, and the range of this must be quantifi ed to ensure that such a 
variance is acceptable. Accurate quantifi cation of both the biological and elec-
tronic worlds is thus essential for optimizing the electronic design for device 
miniaturization. 

 One further method used to enable device miniaturization is online signal 
processing, as shown in Figure  1.1 . As an example, if the EEG is being monitored, 
rather than transmitting the entire EEG recording it is possible to detect poten-
tial  interesting  sections of data online, and transmit only these sections. This sig-
nifi cantly reduces the amount of EEG data to be sent, mitigating the use of 
high - power transmitters. However, accurate quantifi cation is again necessary. It 
is essential that the accuracy of this data reduction method is known and accept-
able. How many of the interesting sections are missed and how many false detec-
tions are made? 
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6 INTERFACING BIOLOGY AND CIRCUITS

 Unfortunately, in general bioelectronics applications, the quantifi cation of 
online signal processing aiming to reduce the system power consumption, and 
hence the system size, is a problem subject to many constraints that make the 
algorithm design, implementation, and performance testing far from trivial. On 
the one hand, the algorithm must achieve acceptable performance accuracy for 
the given application. On the other hand, this must be done while developing an 
algorithm that can be implemented in very low - power circuits. There is no benefi t 
in designing an algorithm that, when implemented, requires more power to 
operate than any potential power savings it provides. In addition to this, the 
potential for nonidealities in the end implementation, for example, from analog 
mismatch, must be accounted for. 

 The procedure for tackling this kind of problem is thus not to optimize any 
one aspect of it in isolation, but rather to look for a global solution that meets 
the constraints imposed by both the engineering design (such as the power con-
sumption) and the biological application (such as a clinically acceptable detection 
accuracy) simultaneously. The overall interface design problem is thus an inter-
disciplinary one in which the bioelectronics designers must know the aspects of 
the biology that are going to condition the specifi cations of the electronic blocks; 
identify the best metrics to quantify performance for the given application; and 
devise a rigorous and representative test methodology that characterizes the 
performance within a certain confi dence level. 

 Accurate characterization of the online signal processing algorithm is an 
essential part of this. For optimal power performance, these algorithms are best 
implemented as dedicated circuits, as opposed to in software. The circuit design, 
however, likely requires man - years of effort. For this not to be wasted on unprom-
ising algorithms, accurate and reliable performance characterization is necessary 
at the algorithm design stage. 

 The aim of this chapter is to present the reader with examples of how to 
design a rigorous test methodology to characterize the performance of online 
signal processing systems designed to reduce the system - level power consump-
tion. For example, what test factors need to be known and what performance 
metrics are best used in order to elucidate the most information possible about 
the performance? What is the impact of using different performance metrics, 
and how is it possible to ensure that the results are accurate and reliable? To 
illustrate the results on an actual algorithm, an EEG data reduction algorithm is 
considered. Nevertheless, although this algorithm is application specifi c, the 
methods and characterization routine are similar across many bioelectronics 
situations. 

 Section  1.2  thus presents the fi rst part of the problem: the biological applica-
tion and algorithm aim, in this case data reduction during monitoring of electrical 
brain activity (EEG). This motivates the need for an online signal processing 
stage and sets its engineering requirements. Section  1.3  then considers the factors 
that make representative performance testing nontrivial for this kind of applica-
tion. Section  1.4  derives different performance metrics that could be used to 
characterize performance, discussing the advantages and disadvantages of each. 
Finally, Section  1.5  discusses the statistical testing of the results.  
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THE SIGNAL PROCESSING AIM 7

   1.2    THE SIGNAL PROCESSING AIM 

   1.2.1    Introduction 

 The fi rst step in the design of a rigorous test methodology for an online signal 
processing algorithm is the precise defi nition of the algorithm objective. This sets 
the required specifi cations for the algorithm, and also sets the objectives of the 
required test methodology. This Section quantifi es the use of online data reduc-
tion in bioelectronics interface systems to decrease the system power consump-
tion, and in turn the device size. The analysis allows the required level of data 
reduction to be found, motivating the algorithm design. The form of the analysis 
here applies to any general bioelectronics application, although as an illustrative 
case, the specifi c numbers here are taken from EEG monitoring.  

   1.2.2    The Need for Online Data Reduction 

 EEG recording, where electrodes are placed on the scalp and detect the microvolt -
 sized signals that result outside the head due to the accumulated neuronal action 
within the brain  [4] , is a characteristic bioelectronics problem requiring long -
 term, miniaturized interface systems connecting the biological and electronic 
worlds. This is because, although long - term inpatient EEG recordings are ideal 
for applications such as epilepsy diagnosis  [5] , they are resource intensive and 
not universally available  [6] . Instead, ambulatory EEG (AEEG) recordings are 
available, during which the patient has their EEG recorded on a portable unit 
while undertaking their normal daily life. Such recordings cost approximately 
50% of their inpatient counterparts  [6]  and so are highly desirable, provided the 
AEEG recording unit is miniaturized. 

 In general, this miniaturization is limited by the size of the battery required. 
If the overall device is assumed to have a volume of 1   cm 3  (a common aim for 
long - term ubiquitous recording applications) and half of this space is reserved 
for a custom - made battery with an energy density of 200   Wh/L, 100   mWh of 
energy is stored. For operation over 30 days, the average power consumption 
must be less than 140    μ W  [7] . 

 An input amplifi er and ADC system with a measured 25    μ W power consump-
tion per EEG input channel is presented in Yazicioglu et al.  [8] , representing the 
current state - of - the - art performance. Assuming 200   Hz and 12 - bit sampling, 300 
bytes per second per EEG input channel of data are produced. For a good trans-
mitter that consumes 50   nJ/bit transmitted, including all of the overheads of data 
buffering, channel selection, and the like, transmitting each channel consumes 
approximately 120    μ W. With these fi gures, only EEG systems with one input 
channel are feasible. To overcome this, online data reduction must be used.  

   1.2.3    Optimizing the Power – Device Size Trade - Off 

 The aim of the online signal processing indicated in Figure  1.1  should thus be to 
reduce the amount of data that is passed through the transmitter stage. From the 
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8 INTERFACING BIOLOGY AND CIRCUITS

example above, this transmission consumed 120    μ W per channel, compared with 
only 25    μ W for the front - end systems. Transmission thus dominates the system 
power consumption, and reducing the amount of data to transmit can signifi cantly 
reduce the overall system power consumption even though the online data reduc-
tion will itself require some power. This trade - off is considered here using the 
framework from Yates and Rodriguez - Villegas  [9] . 

 To begin, consider the simplifi ed interface system model in Figure  1.2 . This 
basic architecture contains an input amplifi er, an ADC, a data reduction block, 
and a transmitter. In principle, this architecture could be used to record many 
different physiological parameters; the form of analysis here is not unique to 
EEG acquisition.   

 As a fi rst approximation, the power consumption of the entire system is 
given by

    P P CPsys amp ADC c tNP NP= + + + ,     (1.1)  

where  n  is the number of input channels,  C  is the percentage of data transmitted 
giving the ratio of the number of bits that are actually transmitted to the total 
number of bits if no compression was present,  P  t  is the power consumption of 
the transmitter, and the other three terms are the power consumptions of the 
amplifi er, ADC and compression, respectively. 

 If the transmitter has a net power consumption, including overheads, of  J  
joules per bit,  P  t  is given by

    P Jf RNt s= ,     (1.2)  

where  f  s  is the sampling frequency and  R  is the resolution in bits of the ADC. 
 If the system is operated with no compression stage present,  P  c     =    0 and  C     =    1. 

Thus, if the inequality

    P JNf R Cc s< −( )1     (1.3)   

     Figure 1.2.     A simplifi ed model of a two - input channel wireless interface system based on 

Yates and Rodriguez - Villegas  [9] . The data reduction block can be in either the analog or 

digital domain.  
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THE SIGNAL PROCESSING AIM 9

 is satisfi ed, the online data reduction can be used to decrease the total system 
power consumption. 

 Simultaneously, of course, the total system power consumption  P  sys  is gov-
erned by the size and capacity of the battery used. For a cell of volume  V  and 
energy density  D  operating over a device lifetime between battery changes  T ,

    P
V D

T
sys = ×

.     (1.4)   

 For independence from any particular battery technology, the normalized opera-
tional lifetime can be defi ned as

    T
T

V D
n =

×
,     (1.5)  

and there is thus a direct three - way trade - off between the amount of data reduc-
tion achieved, the power budget available to implement this data reduction, and 
the normalized operational lifetime that is then possible. This trade - off is illus-
trated in Figure  1.3  using the EEG system fi gures from Section  1.2.2  and  n     =    2 
for the two - channel system as illustrated in Figure  1.2 .   

 A more comprehensive discussion of this idea can be found in Yates and 
Rodriguez - Villegas  [9] , but in brief, Figure  1.3  can be used to quantify the required 
engineering objectives of the online signal processing algorithm. For example, 
if from any given algorithm a data reduction of 25% is achieved, using the 

     Figure 1.3.     The three - way trade - off between the amount of data reduction, the normal-

ized operational lifetime, and the available power budget to implement the compression 

algorithm.  
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10 INTERFACING BIOLOGY AND CIRCUITS

hypothetical battery from Section  1.2.2 , which stores 100   mWh of energy, for 
operation over 30 days, the online data reduction algorithm must operate using 
no more than 30    μ W of power. Such power consumptions are challenging, but 
achievable. To avoid wasted effort on the required electronic design, however, 
the importance of fully verifying that the algorithm operates satisfactorily before 
attempting the design is clear.   

   1.3    REPRESENTATIVE TESTING 

   1.3.1    Introduction 

 The algorithm aim has now been defi ned, and it is assumed that a suitable algo-
rithm has been developed. The next step is the design of the test methodology. 
The performance of any bioelectronics online signal processing algorithm is most 
suitably assessed prior to hardware implementation by carrying out a range of 
simulations using a software model of the algorithm. A set of input biological 
data is passed through the algorithm, and its operation observed. In general, the 
performance would then be compared with that of a human expert, and perfor-
mance metrics comparing the two derived. Before considering the necessary 
performance metrics in detail, it must be ensured, however, that the simulation 
test methodology is rigorous, representative, repeatable, and accurate. 
Unfortunately, in real bioelectronics applications, there are a large number of 
factors that complicate the situation, and need to be identifi ed and controlled if 
possible. These facts are discussed here for the special case of EEG recording to 
illustrate the typical factors that must be accounted for.  

   1.3.2    Data Recording Factors 

 For the software verifi cation of the algorithm, an amount of biological test data 
must fi rst be recorded from a subject in order to then be passed through the 
algorithm. However, one section of data is not necessarily representative of 
another data section, and is not necessarily representative of the type of data 
produced in the targeted application population. The data collection recording 
settings must thus be tightly controlled as they can affect the data traces pro-
duced, and hence the algorithm performance. Controlling these factors will also 
allow the situation under which the algorithm is characterized to be clearly stated. 

 For example, in the case of EEG collection, different EEG equipment can 
have different sampling rates, bandwidths, and electrode types, all of which should 
be specifi ed. Also, the EEG typically records from multiple electrodes placed on 
the scalp and different  montages  are possible depending on how the channels are 
interconnected, and these affect the shape of the signals produced. The type of 
recording must also be controlled. Routine (20 – 30 minutes), long - term (1 – 3 
days), or AEEG recordings are possible and may use different equipment, set-
tings, channels, and montages. In the case of clinical applications, inpatient and 
outpatient tests may have very different artifacts present in the EEG recording 
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REPRESENTATIVE TESTING 11

and such artefacts can be affected by the testing procedure used, for example, 
whether the eyes are open or closed. In addition, different subject states during 
testing, such as being awake or drowsy, can affect the EEG traces. 

 Overall, it is essential that the algorithm is tested using subjects who refl ect 
the anticipated end user population. Examples of this include whether the subject 
is on medication, and the potential presence of multiple diseases (comorbidity). 
Factors such as the age of the subject can also be signifi cant in determining the 
signal conditions, such as the amplitude and the amount of activity. For clinical 
uses, factors such as the sex, handedness, and many others are also be taken into 
account and recorded.  

   1.3.3    The Amount of Data to Test 

 Once the setup of the data recording has been controlled, a suitable amount of 
test data must then be collected. For example, to test an EEG spike detection 
algorithm, Wilson and Emerson  [10]  recommend that for comprehensive testing 
100 subjects, 10,000 spikes and 800 hours of EEG should be used. This seems to 
be a very high level, especially given the effort required by an expert to mark 
the events in an EEG trace (see Section  1.3.4 ). The level, however, is perhaps 
correct if all of the above recording factors are to be made insignifi cant purely 
by the amount of testing done. To our knowledge at this date, only Persyst  [11] , 
which uses 18,503 events in 266 hours of data, and Liu et al.  [12] , who use 145,230 
events from 81 patients in 800 hours of data, test anywhere near this amount. 

 When determining the amount of data to use, note should be made that it is 
often easy to get good algorithm performance when testing very short (where a 
human interpreter is essentially perfect) or artifact - free data. Generally, however, 
neither of these refl ect situations where online signal processing algorithms 
would actually be of use. Long - term data, which is not preselected for the inclu-
sion or exclusion of artifacts, should be used. Of course, to get long - duration 
recordings, it is often necessary to include multiple recording periods from prob-
ably multiple subjects. Due to variations between subjects, testing in multiple 
different subjects is potentially much more comprehensive than testing the same 
amount of data in just one subject. 

 Unfortunately, in most testing situations, it is unlikely that such large data 
sets are available for use. Even if they are, unless the algorithm being developed 
operates substantially quicker than real time, it may be impractical to experiment 
with very many different algorithm setups. To overcome this, it is possible to 
mathematically gain an insight into how much data should be tested through the 
idea of confi dence intervals. These are considered in Section  1.5.3 , once the neces-
sary performance metrics have been defi ned.  

   1.3.4    Marker Reliability 

 Having collected the test data, an expert marker would generally then be used 
to identify the features of interest. Again, considering the example of an EEG 
spike detection algorithm, the time locations of the spikes are marked. This then 
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12 INTERFACING BIOLOGY AND CIRCUITS

sets the baseline against which the algorithm will be compared. This process can 
represent a major limitation of the testing procedure as different markers do not 
always mark the same events, and one marker will sometimes mark differently 
when reviewing a record for the second time  [13] . Marker agreement can be 
anywhere between 0 and 90%. Any results produced can thus be at most as 
accurate as this marking procedure. Also, the time markings themselves may only 
be accurate to the nearest second, minute, or hour, depending on the timescale 
of the signal being analyzed. This fact should be taken into account when deter-
mining how close an expert - marked event and an algorithm - detected event need 
to be for the detection to be successful. 

 Ideally, more than one expert marker should be used, and the method for 
combining the markings of each expert should also be clearly stated. Unfortunately, 
of course, this signifi cantly increases the amount of time and resources required 
to prepare the algorithm testing.  

   1.3.5    Practicability and Ethics 

 Having collected and marked the biological data accounting for the above issues, 
suitable testing simulations can now be carried out. In practice, however, it is 
unlikely that all of the factors identifi ed here will be known, or controllable. This 
is especially the case when the data is historical, rather than especially collected 
for the current study, or when the algorithm is developed by engineers, but the 
data are collected by clinicians, potentially working quite separately. This does 
not mean that it is impossible to perform good and informative studies without 
ideal test data. However, the potential limitations of such studies should be 
appreciated. 

 It may be ideal if algorithms were tested on a standardized database, and this 
would allow much more direct comparison between studies. Often, however, 
ethical approval is not in place to allow individual researchers to share their 
databases, and this is understandable. Nevertheless, standardized online data-
bases are becoming ever more available. 

 The very large number of factors, and the potential diffi culties in controlling 
them, can thus be seen. This makes it clear why the generation of accurate per-
formance metrics for a given situation is a nontrivial task and deserves signifi cant 
attention. Ideally, all of the factors above should be controlled and reported in 
any algorithm - testing publications. Again, however, there are some ethical con-
siderations that may prevent this from being done. When working with a high -
 incidence disorder such as epilepsy, reporting that subject 1 has epilepsy and was 
29 at the time of the EEG recording (which could have been several years before 
the fi rst publication based on that test) does not devolve any signifi cant informa-
tion about subject 1. 

 It may be, however, that when working with rare diseases, or specifi c subsets 
of more prevalent ones, there may only be tens or hundreds of sufferers world-
wide. In this case, reporting that subject 2 is male, 29 at the time of test, and is 
left - handed could provide signifi cant clues to the subject ’ s identity, which could 
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PERFORMANCE METRICS 13

be compromised by a dedicated and resourceful person. Thus, although such 
information may be relevant, it should not be reported.   

   1.4    PERFORMANCE METRICS 

   1.4.1    Introduction 

 With suitable test data collected, having controlled for factors impacting the test 
methodology, it is thus now possible to consider which performance metrics 
should be used, and how these affect the algorithm performance that is reported. 
Again, a specifi c EEG data reduction algorithm is considered here as an illustra-
tive case for the similar analysis that should be carried out for each bioelectronics 
algorithm prior to testing.  

   1.4.2    Illustration Data Reduction Algorithm 

 The data reduction strategy investigated here is concisely illustrated in Figure 
 1.4 . Rather than continuously recording the EEG signal, an attempt is made to 
detect the features of interest, in this case spikes that occur between seizures in 
epilepsy patients, 1  and to record only a window of data around these automated 
detections. It can be seen how this can lead to a signifi cant data reduction, even 
with a number of false detections present  [14] . The algorithm aim should be to 
record all possible events for later interpretation by a human, while still cutting 
out some background data. Having a relatively high number of false detections 
does not necessarily compromise this process.   

 The core performance quantifi cation problem is thus essentially one of signal 
detection: How many of the spike events are correctly recorded and how many 
false detections are made? The better the detection performance, the fewer false 
detections, and therefore more data reduction should be achieved. Reviews of 
similar EEG spike detection algorithms, although not necessarily for low - power 
implementation in bioelectronics interface systems, have been given by Frost  [15]  
and Gotman  [16]  in 1985, and more recently by Wilson and Emerson  [10]  in 2002. 
Despite the level of interest illustrated by these, however, a defi nitive spike detec-
tion solution has not been found. It is clear that the task of fi nding a clinically 
acceptable trade - off between the number of events correctly detected and the 
number of false detections is nontrivial, highlighting the importance of accurate 
performance metrics. 

 The particular algorithm considered here is a developed version of the one 
proposed in Casson et al.  [17]  and is shown at a high level in Figure  1.5 . The core 
of the processing is the extraction of frequency content in two bands by wavelet -
 based, band - pass fi ltering (see Casson et al.  [18]  for details on the fi lters). The  C  5  

  1      Here all between - seizure (interictal) events such as spikes, sharp waves, and spike - and - waves are 
considered under the umbrella term spikes. 
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PERFORMANCE METRICS 15

information produced is then compared with a threshold value of  z  β .  z  is an 
automatically generated normalizing parameter to correct for broad level ampli-
tude differences in different EEG traces given approximately by the root mean 
square (RMS) of the EEG signal.  β  is a user - set detection threshold. The user is 
free to sweep  β  to obtain a range of performances from the algorithm. If all of 
the comparisons are satisfi ed, a detection is made, causing a section of EEG data 
from before (stored in a buffer) and after the detection point to be recorded.    

   1.4.3    Metrics 

 In principle, two metrics are required to illustrate the operation of any algorithm. 
One is the  performance  indicating how well the method operates, and the other 
is the  cost , which indicates what undesirable factors are also present. Inevitably, 
there is some form of trade - off between the two. For event detection algorithms 
such as the EEG interictal spike case considered here, there are four common 
measures associated with characterizing the performance compared with that of 
an expert marker. These all use the following terminology:

    •      True positives (TP): the number of correct detections of a spike as a spike  
   •      False positives (FP): the number of incorrect detections of a nonspike 

event as a spike  

     Figure 1.5.     A high - level overview of the algorithm to be investigated. Detections in any mon-

itored EEG input channel cause the algorithm to start recording. In the recording process (not 

shown), a memory buffer must be present to allow sections of EEG data immediately preced-

ing a detection to also be recorded.  
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16 INTERFACING BIOLOGY AND CIRCUITS

   •      True negatives (TN):the number of correct detections of a nonspike as a 
nonspike  

   •      False negatives (FN): the number of incorrect detections of a spike as a 
nonspike    

 and the metrics are given in the following list:

   1.      Sensitivity : the fraction of spikes that are correctly detected:  

    Sensitivity
TP

TP FN
=

+
×100%     (1.6)    

  2.      Specifi city : the fraction of nonspikes that are correctly rejected:  

    Specificity
TN

TN FP
=

+
×100%     (1.7)    

  3.      Selectivity : the fraction of correct detections:  

    Selectivity
TP

TP FP
=

+
×100%     (1.8)    

  4.      FP rate : the average number of FP per minute or hour.    

 Not all papers generate any of these measures explicitly, but it is essentially 
universal to have some quantifi cation of the  performance  and the  cost , allowing 
such measures to be derived if wanted. For example, some articles, such as that 
by Indiradevi et al.  [19] , use an  accuracy  metric, although what is meant by this 
is not always defi ned, and it is unlikely to be used consistently. Similarly, for the 
algorithm considered here and, in general, for any algorithm intended to be 
mapped into hardware, where the aim is data reduction rather than correctly 
counting the number of spike events, the FP rate is not a suitable metric for use. 
Instead the percentage of data transmitted ( C ) introduced in Section  1.2.3 , indi-
cating what fraction of the full EEG recording is selected to be transmitted, is a 
more suitable  cost  metric. However, this is somewhat related to the false detec-
tion rate, as the more false detections occur, the larger the amount of data to be 
transmitted will be. 

 The sensitivity is the core  performance  metric, and it illustrates how many of 
the wanted features are correctly found — a high sensitivity is always wanted 
(although not all papers give a measure of this performance, classically Gotman 
and Gloor  [20] ). As noted previously, it is usually calculated by comparing the 
algorithm detections with those made by an expert marker. When doing this, it 
is important to specify the detection window, indicating how closely the two must 
match for a TP to have been found. 
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PERFORMANCE METRICS 17

 The specifi city, selectivity, and FP rate provide measures of the  cost . The 
specifi city and selectivity should be high, or the FP rate low, for good results. In 
the context of spike detection, although the specifi city is a well - defi ned concept, 
it is not clear what a true negative (TN) EEG event is. It is presumably a measure 
of how much background activity is present, but it is not easily reduced to an 
integer as the TP, FP, and FN measures are, and so the specifi city is perhaps not 
an optimal measure to use, although again some articles, such as that by Exarchos 
et al.  [21] , attempt it. One method of calculating it is to use a time domain 
approach. Say for review by a human, 10 seconds is recorded in response to each 
false detection. A false detection rate of one per hour, which is quite poor if 
accurate counting of the number of events is wanted, results in a specifi city of 
99.7%. A specifi city value over 99% thus does not necessarily correspond to a 
particularly good performance, and again other metrics such as the FP rate may 
be more illustrative. 

 Given these metrics, it is generally found that there is a trade - off between 
the sensitivity of an algorithm and the number of false detections that it makes. 
It is possible to achieve a high sensitivity (correctly detecting lots of events) if 
lots of false detections are tolerated. Most algorithms take this aim, although 
some, such as Ramabhadran et al.  [22] , aim for no false detections at the cost of 
a reduced sensitivity. 

 To display the results, as Wilson and Emerson  [10]  note, if an algorithm 
detection parameter, called say  β , can be easily varied, the most natural way 
to display this trade - off is on a graph, as illustrated in Figure  1.6 . For each value 
of  β , a particular  performance  (sensitivity) is obtained at a certain  cost  (e.g., 
number of false detections). As  β  is varied, this pair of points defi nes a curve, 
which is essentially a receiver – operator curve (ROC) and the area to the top left 
of the line can be used as a high - level, dimensionless measure of the algorithm 
performance.    

     Figure 1.6.     A schematic example illustrating how algorithm detection performance can be 

shown on a trade - off graph.  
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18 INTERFACING BIOLOGY AND CIRCUITS

   1.4.4    Illustrating the Average Performance 

 When using large numbers of subjects or tests to characterize the algorithm 
performance, it is not feasible to present the above metrics for each individual 
test, and it is desirable to have an overall headline performance fi gure. Methods 
for displaying the average performance of the algorithm over different tests are 
thus required. Different methods for calculating the average are possible, for 
example, by weighting the sensitivity values found to correct for nonideal test 
cases, and these are investigated below. 

 One example of a nonideal test case is that some data records may contain 
hundreds of expert - marked events, while others will contain only one. Thus, in 
different records, the detection or nondetection of one event can have a very 
different effect on the sensitivity found for the record, and this affects the average 
sensitivity found. A quantitative treatment showing the effect of the averaging 
method is very insightful for showing how results can be inadvertently weighted. 

 Here, four different methods of calculating the average sensitivity between 
different records are investigated, although other methods are undoubtedly pos-
sible, and will likely provide different properties to the methods considered here. 
The calculation procedures are detailed below using the terminology that there 
are  M  records and the  i th record has a duration  T i  , with  N i   marked events and 
 D i   correctly detected events. The sensitivity for any one record is given by 
100%    ×     D i  / N i  . Sensitivities for different records can then be combined in the 
following ways:

   1.     Arithmetic mean:  

    Sensitivity = ×
=

∑1
100

1M

D

Ni

M
i

i

%     (1.9)    

  2.     Time - weighted average:  

    Sensitivity = ×

=

=∑
∑1

100

1

1T

D

N
T

i

i

M

i

i
i

i

M

%     (1.10)    

  3.     Total sensitivity average:  

    Sensitivity = ×

=

=∑
∑1

100

1

1N

D

i

i

M i

i

M

%     (1.11)    

  4.     Time/event - weighted average:  

    
Sensitivity = ×

=

=∑
∑1

100

1

1T N

D

N

T

N
i i

i

M

i

i

i

ii

M

/

%
    (1.12)      
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PERFORMANCE METRICS 19

 The arithmetic mean method treats all of the different test cases equally, and 
so any one record that has, say a low sensitivity, can signifi cantly affect the overall 
value found. As a result, it is potentially weighted by records that are very short 
or contain very few events. In contrast, the total sensitivity measure treats all of 
the records as if they were one long record concatenated together. It is, thus, 
potentially weighted by records with large numbers of spikes or ones where the 
detection rate is particularly good. The time - weighted average and time/event -
 weighted average weight the individual sensitivities to make longer records more 
signifi cant and long records with few events signifi cant, respectively, in an attempt 
to overcome the limitations noted above. 

 The effect of the different averaging methods is illustrated, using purely 
numerical arguments, in Tables  1.1  and  1.2 . Table  1.1  illustrates a typical set of 10 
data records available for algorithm testing, with variable test lengths and 
numbers of events present in each recording. In addition, an assumed example 
level of algorithm performance is shown, with the number of correct detections 
made being arbitrarily chosen to illustrate a range of performance cases. For each 
data set, given the number of detections and the number of events, the sensitivity 
within each record is calculated and shown.   

  TABLE 1.1.    A Synthetic Algorithm Results Set with Tests of Variable Lengths and Differing 
Numbers of Events and Correct Detections 

   Data Set ( i )     Duration ( T i  ) 
(minutes)  

   Events 
( N i  )  

   Detections 
( D i  )  

   Duration/
Events ( T i  / N i  )  

   Record Sensitivity 
( D i  / N i  ) (%)  

  1    20    2    1    10    50.0  
  2    20    400    385    0.05    96.3  
  3    30    6    6    5    100  
  4    30    25    15    1.2    60.0  
  5    60    28    28    2.1    100  
  6    60    500    463    0.12    92.6  
  7    60    5    4    12    80.0  
  8    1440    40    19    36    47.5  
  9    1440    16    15    90    93.8  
  10 a     60    3    1    20    33.3  
  10 b     60    3    2    20    66.7  

  TABLE 1.2.    Results of the Different Calculation Methods on 
Data Sets  a  and  b  

         Sensitivity (%)  

  Averaging method    1 – 9 and 10 a     1 – 9 and 10 b   
  Arithmetic mean    75.3    78.7  
  Time weighted    71.3    71.9  
  Total sensitivity    91.4    91.5  
  Time/event weighted    74.1    77.9  
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20 INTERFACING BIOLOGY AND CIRCUITS

 For record 10, however, two different cases,  a  and  b , are considered. In case 
 a , only one of the three events in the recording is correctly detected, while in case 
 b , two events are correctly detected. The effect of this slight change is illustrated 
in Table  1.2 . In this table, the sensitivity is calculated using  M    =     10, the four dif-
ferent sensitivity methods discussed previously, and the fi gures for  N i   and  D i   from 
Table  1.1 . In case  a  (the middle column in Table  1.2 ), data sets 1 – 9 and 10 a  are 
analyzed, while in case  b  (the right - hand column), data sets 1 – 9 and 10 b  are 
analyzed. 

 It can be seen how the detection or nondetection of just one event from over 
1000 events in 32 hours of data appreciably affects the averages found. 
Furthermore, the different averages change by noticeably different amounts. For 
example, the total sensitivity hardly changes (one event in 1033 is a very small 
percentage), while the arithmetic mean changes noticeably (one event in the 
three in record 10 is a large percentage). It is also interesting to note the spread 
of average values that are present in Table  1.2 : more than 20% in case  a . When 
devising an algorithm testing methodology, it is essential to take these potential 
weightings into account. 

 To illustrate how the ROC - like curves proposed in Section  1.4.3  are affected, 
an example testing situation using the algorithm from Section  1.4.2  is considered. 
For testing, three different data sets are analyzed:  A ,  B , and  C , detailed in Table 
 1.3 . Data set  A  contains nine tests ( M     =    9), each of which is approximately an 
hour or more in length, with a total duration of 16 hours. There are 120 expert -
 marked events present. Data set  B  is the same as  A , but with an extra 37 - minute 
data set, making little difference to the total time analyzed ( M     =    10). This record, 
however, contains 644 events. Data set  C  is again the same as  A , but with an extra 
5 - minute record, which contains seven events ( M     =    10). The algorithm is run on 
these three data sets, and the results produced using the four different metrics 
are shown in Figure  1.7 . Results for both axes are weighted according to the 
averaging method used.     

 For the analysis, 19 values for the threshold  β  between 1 and 0.32 are used 
to produce the trade - off curve, and 5 seconds of EEG are recorded in response 
to each detection. (A typical spike has a duration of 140   msec  [23] .) For a detec-
tion to be considered correct, it must occur no more than 2 seconds away from 
the expert - marked position. In addition to the calculated result points, the  known  
end points that if no data is sent the sensitivity must be 0% and, similarly, that if 
all of the data is sent the sensitivity must be 100% are also included. Finally, the 
 chance performance  line is also drawn. If, as a fi rst approximation, spike events 
are assumed to occur at random times, randomly transmitting 10% of the raw 
EEG trace should result in a 10% sensitivity. The  y     =     x  line thus corresponds to 
the performance of a chance detection scheme, and any algorithm performance 
should always be above this. 

 Considering Figure  1.7 , data set  A  illustrates the baseline level of perfor-
mance. Although the performance of the algorithm will always depend on the 
data analyzed to some extent, in principle the sensitivity is a property of the 
algorithm and should not be weighted by less representative test cases. This is 
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PERFORMANCE METRICS 21

     Figure 1.7.     Performance results for the data reduction algorithm when different data sets are 

analyzed using the four different averaging methods.  
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  TABLE 1.3.    Data Available for Analysis with the Algorithm 
Detailed in Section  1.4.2  

   Record ( i )     Data Set     Duration ( T i  ) 
(HH   :   MM   :   SS)  

   Events ( N i  )  

  1     A ,  B , and  C     00:59:08    4  
  2     A ,  B , and  C     00:58:56    4  
  3     A ,  B , and  C     02:00:11    41  
  4     A ,  B , and  C     02:00:11    7  
  5     A ,  B , and  C     02:00:11    3  
  6     A ,  B  and  C     02:00:11    21  
  7     A ,  B  and  C     02:00:11    28  
  8     A ,  B  and  C     02:00:11    9  
  9     A ,  B  and  C     02:00:11    3  
  10     B     00:36:55    644  
  11     C     00:05:00    7  
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22 INTERFACING BIOLOGY AND CIRCUITS

clearly not the case, however, for the arithmetic mean or total sensitivity averag-
ing methods where the results are visually different depending on which data is 
analyzed. The time - weighted average and time/event - weighted average have less 
sensitivity to the data analyzed, although less skew is present in the time/event 
averaging case, particularly when the high event count record is analyzed (data 
set  B ). 

 Given these results, it is thus essential to appreciate how the testing proce-
dure can potentially be weighted. Assuming that the same test setup is used in 
all cases (see Section  1.3 ), the two core parameters that can vary between tests 
from a signal processing point of view are the test duration and the number of 
events present. The test duration can be controlled to a certain extent, although 
longer tests require more resources to carry out. The number of events present 
cannot be controlled. (Although only a set number can be considered if all 
records contain this minimum number.) 

 Thus, it does not seem unreasonable to normalize for both these parameters, 
giving the time/event - weighting method. At the same time, however, weighting 
the results can distort the sensitivity fi gure that is seen. For example, for the data 
set  B  case from Figure  1.7 , at one threshold level 611 of the 764 events are cor-
rectly detected, giving a total sensitivity of 80%, but the time/event - weighted 
sensitivity is only 72%. In some cases, the time/event - weighted fi gure thus does 
not well represent the number of correct detections made. It is thus likely that 
reporting both the total sensitivity and time/event - weighted sensitivity is advis-
able when attempting to draw as much information from the algorithm perfor-
mance as possible. 

 Finally, when interpreting the average performance lines, consideration must 
be given to the fact that although an algorithm may achieve a certain average 
performance level, there is not necessarily an equal probability of different events 
being detected. Wilson et al.  [13]  puts it as

  a particular spike has a probability of detection, which may be high or low 
depending on its size, morphology, background activity and other attributes.   

 As a result, the average performance is not necessarily easily related back to 
the performance of any one test: It can be used only as a general guideline of 
overall performance.  

   1.4.5    Illustrating the Variance in Performance 

 Methods for presenting the algorithm ’ s average performance have been dis-
cussed in detail above. It is equally important, however, to illustrate how the 
performance results obtained vary from test to test, and person to person. Given 
the differences between people, it is not necessarily unexpected if an algorithm 
performs very well on one person, but only moderately well on another person. 
This would indicate the some subject - dependent tuning is required. It may even 
be found that different recordings in the same person produce noticeably differ-
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PERFORMANCE METRICS 23

ent performances, for example, due to different equipment setups or awareness 
states during the data recording. Some variance in the performance is thus 
entirely reasonable, but for a successful algorithm it must be at an acceptable 
level, and so needs quantifying. 

 Of course, for any arbitrary algorithm, it is unlikely that the variance follows 
a normal distribution about the average. Simply plotting the mean result and the 
standard deviation is thus not a viable option. Instead, one potential method is 
illustrated in Figure  1.8  and discussed here, although as with the averaging 
methods considered above, other methods are undoubtedly possible.   

 First, on the same fundamental ROC - like curve, the  individual results  are 
shown. If the data set  i  is being analyzed and contains one or more marked events, 
each time the algorithm is run at a particular threshold  β , individual values for 
the sensitivity ( S i      =    100%    ×     D i  / N i  ) and percentage of data transmitted ( C i  ) are 
found. This pair of values ( C i  ,  S i  ) can then be plotted, giving a large number of 
data points if multiple tests and thresholds are used. 

 Then, the convex hull joining the outer most individual results can be drawn. 
This thus illustrates the max - min performance limit of the algorithm. Given the 
test data used, the algorithm performance can always be expected to lie in this 
region, and ideally, this region should also lie above the chance performance line. 
The generation of this line though does assume that only  sensible  values for the 
threshold  β  are used. Otherwise, the region can be artifi cially expanded by using 
thresholds that would never be considered in practice. 

 Finally, a constant threshold line is drawn. This is a line connecting all of the 
individual results that are calculated at the same  β  value. This refl ects the system 
performance when used in practice where  β  would be set in advance and the 
performance will vary along this line. In the graphs here, this is drawn from the 
highest sensitivity point to the lowest sensitivity point, and so cannot  double back  
in this direction. 

     Figure 1.8.     An example method for illustrating the performance variance by showing the 

max - min performance limit and the performance at the same threshold  β  in each record.  
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24 INTERFACING BIOLOGY AND CIRCUITS

 Figure  1.9  thus shows such a variance graph using the data set  A  detailed in 
Table  1.3 . The value of  β  for the contour line is arbitrarily chosen to show a par-
ticular operating point. In addition to the lines identifi ed above, the graph has 
also been split into four regions. These come from the assumed specifi cations that 
90% sensitivity with more than 50% data reduction lead to acceptable perfor-
mance. These are arbitrarily selected in this case, and in reality, must be carefully 
chosen based on the particular application requirements.   

 It can thus be seen that for four tests (44%), the sensitivity is over 90% and 
less than 50% of the raw data is transmitted. The algorithm is thus operating well 
for these cases. For two cases (22%), high sensitivities are achieved, but a lot of 
data has to be transmitted. This could correspond either to tests that have a 
very large number of events relative to their length or simply to poor algorithm 
performance. It is straightforward to investigate how much data would be sent 
by an ideal algorithm for these tests to differentiate between these two 
possibilities. 

 For the other three cases present (33%), the sensitivity is too low and it is 
likely that further algorithm development is necessary. For the two cases where 
the amount of data transmitted is below 50%, the performance is not necessarily 
disastrous. From the system - level point of view (Section  1.2 ), provided that the 
algorithm implementation consumes very little power, turning off the high - power 
transmitter stage can lead to signifi cant overall power reductions. This will 
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     Figure 1.9.     Results showing the variance in performance for the algorithm from Section  1.4.2  

using data set  A  and a 5 - second recording window.  
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increase the operational lifetime and it may be possible to  recover  some of the 
lost sensitivity by recording potentially more events in this longer lifetime. 

 The single point in the lower right - hand quadrant, however, clearly repre-
sents poor algorithm performance: the performance is below that of the chance 
line. Events that should be recorded are missed, and still large amounts of data 
are selected for transmitting. Whether such a situation is tolerable at all, and for 
what fraction of cases if it is, is an open question. 

 The presented method thus clearly demonstrates all aspects of the algorithm 
variance in one graph. It is still up to the user, however, to determine whether 
the level of variance is acceptable, and whether there is any pattern between the 
observed results. For example, subject 3 may always obtain a low sensitivity, 
indicating that some subject - specifi c modifi cations may be necessary, or the algo-
rithm may perform much better in young subjects, but not old ones. Overall, it 
can be seen how the illustration of the algorithm variance is nontrivial, and leads 
to the generation of very complicated plots.   

   1.5    STATISTICAL VALIDATION 

   1.5.1    Introduction 

 Ideally, the results for the average and variance in the performance of an algo-
rithm need to answer the following question: Is the algorithm performance sta-
tistically  good enough ? Unfortunately, this is not easily done. It depends on the 
overall aim of the algorithm and the performance necessary for acceptable opera-
tion. For example, in EEG spike detection, Gotman  [16]  suggests that it is unlikely 
that all spikes in the EEG record need to be correctly recorded and identifi ed in 
order to allow accurate diagnosis by a human. The aim of diagnosis is to pool all 
of the available information to enable a decision based on the balance of prob-
abilities to be made. The presence or absence of a small number of spikes should 
not be a critical factor in this decision process. Thus, sensitivities of 90% or 80% 
may be readily acceptable. The true performance can only be made in terms of 
the  aid to diagnosis  that miniaturized and long - lasting systems offer. Of course, 
however, this can only be measured once systems are in place, and it does not 
help in determining whether a particular algorithm is of use, and suitable for 
detailed investigation, optimization, and hardware implementation. In reality, 
such work may take several years, so we do not want to waste effort on unpromis-
ing algorithms.  

   1.5.2    Statistical Signifi cance Testing 

 Instead, for most algorithms, it is likely that the closest possible test is showing 
that the average algorithm performance is statistically better than chance perfor-
mance. This would illustrate that the algorithm does have some skill and acts as 
a basis point for further improvement. To do this for the ROC - like result curves 
such as the ones considered here, the Mann – Whitney  U  - test can be used. This is 
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a nonparametric test and is frequently used for testing the areas under ROC 
curves  [24] . 

 The test works as follows. For each ROC - like average performance curve, 
 y  - axis points corresponding to sensitivity values are used to form the set  s , and 
 x  - axis points corresponding to percentage of data transmitted values are used to 
form the set  c . The following null hypothesis is then considered  [25] :

    “  There is no tendency for members of set  s  to exceed members of set  c. ”     

 That is, if the sensitivity values tend to be the same as the data transmited values, 
the algorithm performance would be along the chance line ( y     =     x ). If they are sta-
tistically different, and the ROC curve is seen to lie above the chance performance 
line, the performance must be statistically better than chance. Note that the 
Mann – Whitney  U  - test assumes that samples in  s  and  c  are independent. For the 
specifi c situation illustrated here, this seems reasonable provided that spikes are 
rare, short events: With any level of transmission, it is possible to get any sensitivity; 
it is not necessary to send large amounts of data to get a large sensitivity value. 

 As an example, the statistics for the 12 result lines (four different averages 
with three data sets) in Figure  1.7  are calculated. To do this, the  x  and  y  values 
from each result curve are extracted to form sets  s  and  c , with the known end 
points at 0 and 100% excluded. Each set thus has 19 entries ( n  1     =     n  2     =    19) cor-
responding to the 19 thresholds used in the algorithm.  U  - values are then calcu-
lated using the formula  [25] 

    U r
n n

i

i

n

= − +

=
∑

1

1
1 1 1

2

( )
,     (1.13)  

where  r i   is the  rank . The rank is calculated by concatenating sets  s  and  c  and 
then sorting into numerical order. The rank is then the end positions of the 
members of set  s . Note that this formulation assumes that each value in  s  and  c  
are unique. If repetitions are present, a slightly modifi ed procedure should be 
used  [24, 25] . 

 The  U  - value is calculated for each result line and is shown in Table  1.4 . To 
perform the statistical test, each value is then compared with the critical  U  - value, 
tabulated in Bland  [25] . For a  p     =    0.05 two - tailed test,  U  crit     =    113. All of the  U  -
 values in Table  1.4  are below the critical  U  - value, and so the null hypothesis is 
rejected ( p     =    0.05 two - tailed test,  n  1     =     n  2     =    19,  U  crit     =    113,  U  max     =    61). It is thus 
concluded that the average performance of the algorithm is statistically superior 
to that of a chance classifi er. Again, this does not provide any insight into whether 
the algorithm performance is acceptable, but it is undoubtedly a good result.    

   1.5.3    Confi dence Intervals to Determine Test Sample Size 

 Once the performance metrics of interest for the algorithm have been defi ned 
and investigated, it is then possible to go back and use them to help guide the 
design of the algorithm testing methodology. This can be done, as suggested in 
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  TABLE 1.4.     U  - Values from the Mann – Whitney  U  - Test Applied to the 12 Result Curves 
from Figure  1.7  

   Data Set     Arithmetic Mean     Time - Weighted 
Average  

   Total Sensitivity     Time/Event -
 Weighted Average  

   A     48    48    50    61  
   B     55    50    59    61  
   C     49    48    51    61  

Section  1.3 , by using statistical information to guide the amount of data that 
should be tested. This procedure is based on statistical confi dence intervals. Note 
that it has to be fi rst assumed that the biological test data is representative, con-
taining the features of interest in all of their likely morphologies from all of the 
potential test setups and user populations. Confi dence intervals only illustrate 
how much of this representative data should be analyzed. Beyond this, the results 
below depend only on the performance metrics and amount of data used, not on 
the particular algorithm being investigated. 

 The method is based on the idea that at a particular operating point, the 
algorithm has a certain  true  performance. The algorithm testing attempts to fi nd 
this by analyzing a set of data and obtaining an estimate, or  reported  per formance. 
The aim, of course, is that the true and reported performances should match. 
Confi dence intervals calculate the range of values that, given the reported result 
and amount of data tested, the true result could actually lie in and reasonably 
produce the reported result by chance alone. This is clarifi ed in an illustration 
here. As in Sackellares et al.  [26] , confi dence intervals for the  performance  (sen-
sitivity) and  cost  (percentage of data transmitted) are calculated separately. In 
principle, these values could be plotted on the ROC - like result curves to show 
the uncertainties at each trade - off point, but it is likely that this will lead to 
overcomplicated graphs. Instead they are plotted in isolation in Figure  1.10 .   

 The starting point for confi dence interval generation is the assumption of a 
suitable probability distribution that describes the underlying performance metric. 
For the sensitivity metric, a binomial distribution, which quantifi es the probability 
of detecting a certain fraction of events from a total number, is suitable  [26] . If 
there are a total of  n  events and the reported sensitivity is  S , a distribution  B ( n , 
 S /100) is used. The 95% two - tailed confi dence intervals can then be either simply 
read from tables  [27]  or generated using the MATLAB binofi t function. 

 The intervals are illustrated in Figure  1.10 a for any algorithm with a reported 
sensitivity of 80%  [26] . Given a reported sensitivity  S , these intervals show the 
range in which the true value of  S  could reasonably occur. Note that the binomial 
distribution assumes that the detection of any one event is independent from the 
detection of any other. This seems reasonable when testing a large amount of 
data from multiple people. In general, without detailed modeling of the probabil-
ity distribution of the algorithm detections, it is not possible to avoid such assump-
tions entirely. Instead, however, rough values can be generated, which, while 
approximate, are very informative. 
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     Figure 1.10.     Estimated 95% two - tailed confi dence intervals showing the range that, given 

the observed result, the true value could reasonably lie within. There is a 95% chance that 

the true sensitivity is within the interval shown. (a) Sensitivity intervals for 80% performance; 

(b) percentage of data reduction intervals for 20% performance. (a) Based on Reference 26.  
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 The graph from Figure  1.10 a can be replicated for different reported sensitiv-
ity values if so desired. The largest confi dence intervals are found when the 
reported sensitivity is 50%. When testing 120 events as in data set  A , it is found 
that the reported sensitivity may be overestimating the true sensitivity by up to 
9.26%. Insuffi cient data is being analyzed to produce statistically confi dent results. 
For most sensitivity values, however, the confi dence intervals will be smaller than 
this. Also, if 10,000 events, as recommended by Wilson and Emerson  [10] , are 
analyzed, the sensitivity should not be overestimated by more than 0.98% in the 
worst case. 

 If confi dence intervals are wanted for the percentage of data transmitted, 
they can be calculated similarly. In this case, however, a binomial distribution is 
less suitable for use as there is no analog of the value  n . Instead, in lack of a 
better probability distribution suitable for use, a procedure based on the false 
detection rate can be used to approximate the confi dence intervals. 

 False detection rate confi dence intervals are found from a Poisson distribu-
tion  [26] . This distribution arises from a binomial distribution when the number 
of tests is very large, and the events (false detections) are rare and occur at a 
fi xed average rate. It is thus equivalent to testing at each instantaneous time point 
to observe whether a false detection has occurred, and 95% two - tailed confi dence 
intervals can thus be generated for an assumed false detection rate based on 
confi dence interval tables  [27] . For the EEG data reduction algorithm considered 
previously, assuming that false detections are rare, when recording the signal 
around one false detection, it will not  overlap  with the signal recorded from 
another false detection. There is thus a fi xed ratio between the false detection 
rate and the amount of data transmitted, allowing the wanted confi dence inter-
vals to be calculated. 

 Results for a percentage of data transmitted value of 20% are shown in 
Figure  1.10 b. For the approximately 16 hours of data in data set  A , the confi dence 
intervals indicate that the percentage of data transmitted should not be under-
estimated by more than 1%. For 800 hours, as suggested by Wilson and Emerson 
 [10] , the value should not be overestimated by more than 0.12%. 

 It is thus possible to use confi dence interval fi gures to show that suffi cient data 
is being tested in order to have reasonable confi dence that the results produced 
are representative of the algorithm performance, and are unlikely to have occured 
by chance. Given the form of the intervals seen in Figure  1.10 , large amounts of 
data must be tested in order to get signifi cant improvements in the confi dence 
intervals, but a guide to a reasonable amount of data to test can be made.   

   1.6    CONCLUSIONS 

 In order to optimize the interface between the biological world and the electronic 
world, it is essential that the performance of the interface system is accurately 
quantifi ed. This will allow sensible design decisions to be taken so that effort is 
not wasted on the implementation of algorithmic methods that will not result in 
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satisfactory performance. Methodological and rigorous testing, however, is not a 
trivial task. It is often diffi cult to collect suffi cient data for comprehensive testing 
of such algorithms, and when such data is available, it is often not completely 
controlled and all of the recording parameters known. It is still possible, and often 
necessary, to perform insightful and useful testing using such data, but the limita-
tions should be taken into account. 

 Using a data reduction algorithm for EEG monitoring as an example, this 
chapter has shown how the algorithm results can potentially be weighted to 
compensate for nonideal test cases. When selecting a method to present the 
average performance of an algorithm, care must be taken to select the appropri-
ate averaging scheme, given the overall application aims. Otherwise, it is possible 
to inadvertently weight the results produced, which could lead to incorrect con-
clusions and design decisions being made. A potential method for quantifying the 
variance in the performance has also been outlined. 

 Furthermore, given the limitations of algorithm testing, is it essential that 
appropriate statistical validation be used where possible. For ROC - like result 
cases, as illustrated here, the Mann – Whitney  U  - test can be used to determine 
whether the algorithm performance is statistically better than that of a chance 
classifi er. Such algorithms can then act as a starting point for algorithm improve-
ments, although they do not help answer the question of whether a particular 
performance is good enough. Confi dence intervals can also be used to help deter-
mine how much data should be tested, and the benefi t of spending large amounts 
of time in collecting more data for testing. The performance metrics considered 
here are inevitably application specifi c to some extent, but it is likely that similar 
metrics and weightings are suitable for many different applications. 

 Finally, for future low - power online signal processing algorithms imple-
mented in the analog domain, the mismatch associated with analog circuits will 
lead to an amount of uncertainty about the exact performance of any one chip 
before it is explicitly tested. For statistical algorithm testing, there is also an 
amount of uncertainty as the performance will never be known in advance, and 
will depend on how representative the test data is. Thus, it may be possible to 
 couple  these uncertainties in order to get improved performance. For example, 
the mismatch of a fi lter may lead to slight differences in the performance of an 
algorithm. If this has a large effect on the performance, mismatch robust fi lter 
topologies must be used, and this may come at the cost of other factors, such as 
power consumption, linearity, and noise performance. Alternatively, if the fi lter 
mismatch makes no statistically signifi cant change to the algorithm performance, 
alternative topologies can be sought, potentially easing the design constraints 
elsewhere. The investigation of such trade - offs is essential for future interface 
system research.       
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