
1
NerdDinner

The best way to learn a new framework is to build an application with it. This fi rst chapter
walks you through how to build a small, but complete, application using ASP.NET MVC 2
and introduces some of the core concepts behind it.

The application we are going to build is called NerdDinner. NerdDinner provides an easy way
for people to fi nd and organize dinners online (Figure 1-1).

FIGURE 1-1

643181c01.indd 1643181c01.indd 1 5/20/10 10:23:22 AM5/20/10 10:23:22 AM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 NERDDINNER

NerdDinner enables registered users to create, edit, and delete dinners. It enforces a consistent set of
validation and business rules across the application (Figure 1-2).

FIGURE 1-2

Chapter 1 is licensed under the terms of Creative Commons Attribution No
Derivatives 3.0 license and may be redistributed according to those terms with
the following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET
MVC 1.0 written by Rob Conery, Scott Hanselman, Phil Haack, Scott Guthrie
published by Wrox (ISBN: 978-0-470-38461-9) may be redistributed under the
terms of Creative Commons Attribution No Derivatives 3.0 license. The original
electronic copy is available at http://tinyurl.com/aspnetmvc. The complete
book Professional ASP.NET MVC 2 is copyright 2010 by Wiley Publishing Inc
and may not redistributed without permission.”

Visitors to the site can search to fi nd upcoming dinners being held near them (Figure 1-3).

Clicking a dinner will take them to a details page, where they can learn more about it (Figure 1-4).

643181c01.indd 2643181c01.indd 2 5/20/10 10:23:22 AM5/20/10 10:23:22 AM

NERDDINNER ❘ 3

FIGURE 1-3

FIGURE 1-4

643181c01.indd 3643181c01.indd 3 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

4 ❘ CHAPTER 1 NERDDINNER

If they are interested in attending the dinner, they can log in or register on the site (Figure 1-5).

They can then easily RSVP to attend the event (Figures 1-6 and 1-7).

FIGURE 1-5

FIGURE 1-6

643181c01.indd 4643181c01.indd 4 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

NERDDINNER ❘ 5

FIGURE 1-7

To implement the NerdDinner application, we’ll start by using the File ➪ New Project command
within Visual Studio to create a brand new ASP.NET MVC 2 project. We’ll then incrementally
add functionality and features. Along the way, we’ll cover how to create a database, build a model
with business rule validations, implement the data listing/details user interface (UI), provide CRUD
(Create, Read, Update, Delete) form entry support, implement effi cient data paging, create reusable
and shared the UI using master pages and partials, secure the application using authentication and
authorization, use AJAX to deliver dynamic updates and interactive map support, and implement
automated unit testing.

You can build your own copy of NerdDinner from scratch by completing each step we walk through
in this chapter. Alternatively, you can download a completed version of the source code here:
http://tinyurl.com/aspnetmvc.

You can use either Visual Studio 2010 or the free Visual Web Developer 2010 Express to build the
application. ASP.NET MVC 2 is included as part of these development environments. You can use
either SQL Server or the free SQL Server Express to host the database.

You can install ASP.NET MVC 2, Visual Web Developer 2010, and SQL Server Express using the
Microsoft Web Platform Installer available at www.microsoft.com/web/downloads.

While this book focuses on using ASP.NET MVC 2 with Visual Studio 2010,
most of what is shown in this book can also be done with Visual Studio 2008
by installing ASP.NET MVC 2 for Visual Studio 2008 via the Microsoft Web
Platform Installer.

643181c01.indd 5643181c01.indd 5 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

6 ❘ CHAPTER 1 NERDDINNER

FILE ➪ NEW PROJECT

We’ll begin our NerdDinner application by selecting the File ➪ New Project menu item within
Visual Studio 2010 or the free Visual Web Developer 2010 Express.

This brings up the “New Project” dialog. To create a new ASP.NET MVC 2 application, expand the
Visual C# node, then select the Web node on the left side of the dialog and choose the “ASP.NET
MVC 2 Web Application” project template on the right (Figure 1-8).

FIGURE 1-8

Name the new project NerdDinner and then click the OK button to create it.

Clicking OK causes Visual Studio to bring up an additional dialog that prompts us to optionally cre-
ate a unit test project for the new application as well (Figure 1-9). This unit test project enables us to
create automated tests that verify the functionality and behavior of our application (something we’ll
cover later in this tutorial).

The Test framework dropdown in Figure 1-9 is populated with all available ASP.NET MVC 2 unit
test project templates installed on the machine. Versions can be downloaded for NUnit, MbUnit,
and XUnit. The built-in Visual Studio Unit Test Framework is also supported.

643181c01.indd 6643181c01.indd 6 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

File ➪ New Project ❘ 7

FIGURE 1-9

The Visual Studio Unit Test Framework is only available with Visual Studio
2010 Professional and higher versions. If you are using VS 2010 Standard
Edition or Visual Web Developer 2010 Express, you will need to download
and install the NUnit, MbUnit, or XUnit extensions for ASP.NET MVC in
order for this dialog to be shown. The dialog will not display if there aren’t
any test frameworks installed.

We’ll use the default NerdDinner.Tests name for the test project we create, and use the “Visual
Studio Unit Test Framework” option. When we click the OK button, Visual Studio will create a
solution for us with two projects in it — one for our web application and one for our unit tests
(Figure 1-10).

FIGURE 1-10

643181c01.indd 7643181c01.indd 7 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

8 ❘ CHAPTER 1 NERDDINNER

Examining the NerdDinner Directory Structure

When you create a new ASP.NET MVC application with Visual Studio, it automatically adds several
fi les and directories to the project, as shown in Figure 1-11.

ASP.NET MVC projects by default have six top-level directories, shown in Table 1-1.

TABLE 1-1: Default Top-Level Directories

DIRECTORY PURPOSE

/Controllers Where you put Controller classes that handle URL requests

/Models Where you put classes that represent and manipulate data and business

objects

/Views Where you put UI template fi les that are responsible for rendering output,

such as HTML

/Scripts Where you put JavaScript library fi les and scripts (.js)

/Content Where you put CSS and image fi les, and other non-dynamic/non-

JavaScript content

/App_Data Where you store data fi les you want to read/write

ASP.NET MVC does not require this structure. In fact, developers working on large applications
will typically partition the application up across multiple projects to make it more manageable (e.g.,
data model classes often go in a separate class library project from the web application). The default
project structure, however, does provide a nice default directory convention that we can use to keep
our application concerns clean.

When we expand the /Controllers directory, we’ll fi nd that Visual Studio added two Controller
classes (Figure 1-12) — HomeController and AccountController — by default to the project:

FIGURE 1-11 FIGURE 1-12

643181c01.indd 8643181c01.indd 8 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

File ➪ New Project ❘ 9

When we expand the /Views directory, we’ll fi nd that three subdirectories — /Home, /Account, and
/Shared — as well as several template fi les within them, were also added to the project by default
(Figure 1-13).

When we expand the /Content and /Scripts directories, we’ll fi nd a Site.css fi le that is used to style
all HTML on the site, as well as JavaScript libraries that can enable ASP.NET AJAX and jQuery
support within the application (Figure 1-14).

When we expand the NerdDinner.Tests project, we’ll fi nd two classes that contain unit tests for our
Controller classes (see Figure 1-15).

These default fi les, added by Visual Studio, provide us with a basic structure for a working appli-
cation — complete with home page, about page, account login/logout/registration pages, and an
unhandled error page (all wired-up and working out-of-the-box).

Running the NerdDinner Application

We can run the project by choosing either the Debug ➪ Start Debugging or Debug ➪ Start Without
Debugging menu items (see Figure 1-16).

This will launch the built-in ASP.NET web server that comes with Visual Studio, and run our appli-
cation (Figure 1-17).

FIgure 1-18 is the home page for our new project (URL: /) when it runs.

FIGURE 1-13 FIGURE 1-14 FIGURE 1-15

643181c01.indd 9643181c01.indd 9 5/20/10 10:23:23 AM5/20/10 10:23:23 AM

10 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-16

FIGURE 1-17

FIGURE 1-18

643181c01.indd 10643181c01.indd 10 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

File ➪ New Project ❘ 11

Clicking the About tab displays an About page (URL: /Home/About, as shown in Figure 1-19).

Clicking the Log On link on the top right takes us to a Login page, as shown in Figure 1-20
(URL: /Account/LogOn).

FIGURE 1-19

FIGURE 1-20

643181c01.indd 11643181c01.indd 11 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

12 ❘ CHAPTER 1 NERDDINNER

If we don’t have a login account, we can click the Register link (URL: /Account/Register) to cre-
ate one (see Figure 1-21).

FIGURE 1-21

The code to implement the above home, about, and login/register functionality was added by default
when we created our new project. We’ll use it as the starting point of our application.

Testing the NerdDinner Application

If we are using the Professional Edition or higher version of Visual Studio 2008, we can use the
built-in unit-testing IDE support within Visual Studio to test the project.

To run our unit tests, select the Test ➪ Run menu and choose one of the three options as shown in
Figure 1-22. This will open the Test Results pane within the IDE (Figure 1-23) and provide us with
pass/fail status on the 17 unit tests included in our new project that cover the built-in functionality.

643181c01.indd 12643181c01.indd 12 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

File ➪ New Project ❘ 13

FIGURE 1-22

FIGURE 1-23

643181c01.indd 13643181c01.indd 13 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

14 ❘ CHAPTER 1 NERDDINNER

CREATING THE DATABASE

We’ll be using a database to store all of the Dinner and RSVP data for our NerdDinner application.

The steps below show creating the database using the free SQL Server Express Edition. All of the
code we’ll write works with both SQL Server Express and the full SQL Server.

Creating a New SQL Server Express Database

We’ll begin by right-clicking on our web project, and then selecting the Add ➪ New Item menu com-
mand (Figure 1-24).

FIGURE 1-24

This will bring up the Add New Item dialog (Figure 1-25). We’ll fi lter by the Data category and
select the SQL Server Database item template.

We’ll name the SQL Server Express database we want to create NerdDinner.mdf and hit OK. Visual
Studio will then ask us if we want to add this fi le to our \App_Data directory (Figure 1-26), which is
a directory already set up with both read and write security permissions.

We’ll click Yes, and our new database will be created and added to our Solution Explorer
(Figure 1-27).

643181c01.indd 14643181c01.indd 14 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

Creating the Database ❘ 15

FIGURE 1-25

Creating Tables within Our Database

We now have a new empty database. Let’s add some tables to it.

To do this, we’ll navigate to the Server Explorer tab window within Visual Studio, which enables us
to manage databases and servers. SQL Server Express databases stored in the \App_Data folder of
our application will automatically show up within the Server Explorer. We can optionally use the

FIGURE 1-26 FIGURE 1-27

643181c01.indd 15643181c01.indd 15 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

16 ❘ CHAPTER 1 NERDDINNER

Connect to Database icon on the top of the Server Explorer window to add additional SQL Server
databases (both local and remote) to the list as well (Figure 1-28).

We will add two tables to our NerdDinner database — one to store our Dinners and the other to
track RSVP acceptances to them. We can create new tables by right-clicking on the Tables folder
within our database and choosing the Add New Table menu command (Figure 1-29).

This will open up a Table Designer that allows us to confi gure the schema of our table. For our
Dinners table, we will add 10 columns of data (Figure 1-30).

We want the DinnerID column to be a unique primary key for the table. We can confi gure this by
right-clicking on the DinnerID column and choosing the Set Primary Key menu item (Figure 1-31).

FIGURE 1-28 FIGURE 1-29

FIGURE 1-30 FIGURE 1-31

643181c01.indd 16643181c01.indd 16 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

Creating the Database ❘ 17

In addition to making DinnerID a pri-
mary key, we also want to confi gure it as
an identity column whose value is auto-
matically incremented as new rows of data
are added to the table (meaning the fi rst
inserted Dinner row will have an automatic
DinnerID of 1, the second inserted row will
have a DinnerID of 2, etc.).

We can do this by selecting the DinnerID
column and then using the Column
Properties editor to set the “(Is
Identity)” property on the column to Yes
(Figure 1-32). We will use the standard iden-
tity defaults (start at 1 and increment 1 on
each new Dinner row).

We’ll then save our table by pressing Ctrl+S
or by clicking the File ➪ Save menu com-
mand. This will prompt us to name the
table. We’ll name it Dinners (Figure 1-33).

Our new Dinners table will then show up
in our database in the Server Explorer.

Next, we’ll repeat the above steps and cre-
ate an RSVP table. This table will have
three columns. We will set up the RsvpID
column as the primary key, and also make it
an identity column (Figure 1-34).

We’ll save it and give it the name RSVP.

Setting Up a Foreign Key Relationship between Tables

We now have two tables within our database. Our last schema design step will be to set up a “one-
to-many” relationship between these two tables — so that we can associate each Dinner row with
zero or more RSVP rows that apply to it. We will do this by confi guring the RSVP table’s DinnerID
column to have a foreign-key relationship to the DinnerID column in the Dinners table.

FIGURE 1-34

FIGURE 1-32

FIGURE 1-33

643181c01.indd 17643181c01.indd 17 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

18 ❘ CHAPTER 1 NERDDINNER

To do this, we’ll open up the RSVP table within the table designer by double-clicking it in the Server
Explorer. We’ll then select the DinnerID column within it, right-click, and choose the Relationships
context menu command (see Figure 1-35).

FIGURE 1-35

This will bring up a dialog that we can use to set up relationships between tables (Figure 1-36).

FIGURE 1-36

We’ll click the Add button to add a new relationship to the dialog. Once a relationship has been
added, we’ll expand the Tables and Column Specifi cation tree-view node within the property grid to
the right of the dialog, and then click the “…” button to the right of it (Figure 1-37).

643181c01.indd 18643181c01.indd 18 5/20/10 10:23:24 AM5/20/10 10:23:24 AM

Creating the Database ❘ 19

FIGURE 1-37

Clicking the “…” button will bring up another dialog that allows us to specify which tables and col-
umns are involved in the relationship, as well as allow us to name the relationship.

We will change the Primary Key Table to be Dinners, and select the DinnerID column within
the Dinners table as the primary key. Our RSVP table will be the foreign-key table, and the
RSVP.DinnerID column will be associated as the foreign key (Figure 1-38).

FIGURE 1-38

Now each row in the RSVP table will be associated with a row in the Dinner table. SQL Server will
maintain referential integrity for us — and prevent us from adding a new RSVP row if it does not
point to a valid Dinner row. It will also prevent us from deleting a Dinner row if there are still RSVP
rows referring to it.

643181c01.indd 19643181c01.indd 19 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

20 ❘ CHAPTER 1 NERDDINNER

Adding Data to Our Tables

Let’s fi nish by adding some sample data to our Dinners table. We can add data to a table by right-
clicking it in the Server Explorer and choosing the Show Table Data command (see Figure 1-39).

Let’s add a few rows of Dinner data that we can use later as we start implementing the application
(Figure 1-40).

FIGURE 1-39

FIGURE 1-40

643181c01.indd 20643181c01.indd 20 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

Building the Model ❘ 21

BUILDING THE MODEL

In a Model-View-Controller framework, the term Model refers to the objects that represent the data
of the application, as well as the corresponding domain logic that integrates validation and business
rules with it. The Model is in many ways the heart of an MVC-based application, and as we’ll see
later, it fundamentally drives the behavior of the application.

The ASP.NET MVC Framework supports using any data access technology. Developers can choose
from a variety of rich .NET data options to implement their models, including: Entity Framework,
LINQ to SQL, NHibernate, LLBLGen Pro, SubSonic, WilsonORM, or just raw ADO.NET
DataReaders or DataSets.

For our NerdDinner application, we are going to use Entity Framework to create a simple domain
model that corresponds fairly closely to our database design, and add some custom validation logic
and business rules. We will then implement a repository class that helps abstract away the data per-
sistence implementation from the rest of the application, and enables us to easily unit test it.

Entity Framework

Entity Framework is an ORM (object relational mapper) that ships as part of .NET 4.

Entity Framework provides an easy way to map database tables to .NET classes we can code
against. For our NerdDinner application, we’ll use it to map the Dinners and RSVP tables within
our database to Dinner and RSVP model classes. The columns of the Dinners and RSVP tables will
correspond to properties on the Dinner and RSVP classes. Each Dinner and RSVP object will repre-
sent a separate row within the Dinners or RSVP tables in the database.

Entity Framework allows us to avoid having to manually construct SQL statements to retrieve and
update Dinner and RSVP objects with database data. Instead, we’ll defi ne the Dinner and RSVP
classes, how they map to/from the database, and the relationships between them. Entity Framework
will then take care of generating the appropriate SQL execution logic to use at run time when we
interact and use them.

We can use the LINQ language support within VB and C# to write expressive queries that retrieve
Dinner and RSVP objects. This minimizes the amount of data code we need to write and allows us
to build really clean applications.

Adding Entity Framework Classes to Our Project

We’ll begin by right-clicking the Models folder in our project and selecting the Add ➪ New Item
menu command (Figure 1-41).

This will bring up the “Add New Item” dialog (Figure 1-42). We’ll fi lter by the Data category and
select the ADO.NET Entity Data Model template within it.

We’ll name the item NerdDinner.edmx and click the Add button. This takes us to the Entity Data
Model Wizard (see Figure 1-43), which allows us to choose between two options. We can generate
the model from the database, or we can choose an empty model.

643181c01.indd 21643181c01.indd 21 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

22 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-41

FIGURE 1-42

643181c01.indd 22643181c01.indd 22 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

Building the Model ❘ 23

Because we already have a database prepared, we’ll choose “Generate from database” to generate
our model classes based on our database tables. Clicking Next takes us to a screen that prompts us
to choose connection information for connecting to our database (see Figure 1-44).

FIGURE 1-43

FIGURE 1-44

643181c01.indd 23643181c01.indd 23 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

24 ❘ CHAPTER 1 NERDDINNER

We can click Next here to choose the default, which takes us to a screen allowing us to choose
which tables, views, and stored procedures we want to include in our model (see Figure 1-45).

Make sure to check Tables, Views, and Stored Procedures. Also, make sure that the options to
“Pluralize or singularize generated object names” and “Include foreign key columns in the model”
are also both checked (see Figure 1-46). We’ll talk about what these do in the next section.

FIGURE 1-45

FIGURE 1-46

643181c01.indd 24643181c01.indd 24 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

Building the Model ❘ 25

At that point, Visual Studio will add a NerdDinner.edmx fi le under our \Models directory and then
open the Entity Framework Object Relational Designer (Figure 1-47).

FIGURE 1-47

Creating Data Model Classes with Entity Framework

The Entity Data Model Wizard we just walked through enables us to quickly create data model
classes from an existing database schema.

In the previous section, we checked the option to “Pluralize or singularize generated object names.”
By checking this, Entity Framework pluralizes table and column names when it creates classes based
on a database schema. For example: the Dinners table in our example above resulted in a Dinner
class. This class naming helps make our models consistent with .NET naming conventions, and hav-
ing the Designer fi x this up is convenient (especially when adding lots of tables).

If you don’t like the name of a class or property that the Designer generates, though, you can always
override it and change it to any name you want. You can do this either by editing the entity/prop-
erty name inline within the Designer or by modifying it via the property grid. Figure 1-48 shows an
example of changing the entity name from Dinner to Supper.

We also checked the option “Include foreign key columns in the model.” This causes the Entity
Framework Wizard to inspect the primary key/foreign key relationships of the tables, and based on
them automatically creates default relationship associations between the different model classes it
creates. For example, when we selected the Dinners and RSVP tables in the Wizard by choosing all
tables, a one-to-many relationship association between the two was inferred based on the fact that

643181c01.indd 25643181c01.indd 25 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

26 ❘ CHAPTER 1 NERDDINNER

the RSVP table had a foreign key to the Dinners table (this is indicated by the circled area in the
Designer in Figure 1-49).

FIGURE 1-48

FIGURE 1-49

643181c01.indd 26643181c01.indd 26 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

Building the Model ❘ 27

The association in Figure 1-49 will cause Entity Framework to add a strongly typed Dinner prop-
erty to the RSVP class that developers can use to access the Dinner entity associated with a given
RSVP. It will also cause the Dinner class to have a strongly typed RSVPs collection property that
enables developers to retrieve and update RSVP objects associated with that Dinner.

In Figure 1-50, you can see an example of IntelliSense within Visual Studio when we create a new
RSVP object and add it to a Dinner’s RSVPs collection.

FIGURE 1-50

Notice how Entity Framework created an
“RSVPs” collection on the Dinner object. We
can use this to associate a foreign-key relation-
ship between a Dinner and an RSVP row in our
database (see Figure 1-51).

If you don’t like how the Designer has modeled
or named a table association, you can override
it. Just click on the association arrow within the designer and access its properties via the property
grid to rename, delete, or modify it. For our NerdDinner application, though, the default association
rules work well for the data model classes we are building, and we can just use the default behavior.

NerdDinnerEntities Class

Visual Studio automatically generates .NET classes that represent the models and database
relationships defi ned using the Entity Framework Designer. An ObjectContext class is also
generated for each Entity Framework Designer fi le added to the solution. Because we named
our Entity Framework class item NerdDinner, the ObjectContext class created will be called
NerdDinnerEntities. This NerdDinnerEntities class is the primary way we will interact
with the database.

Our NerdDinnerEntities class exposes two properties — Dinners and RSVP — that represent the
two tables we modeled within the database. We can use C# to write LINQ queries against those
properties to query and retrieve Dinner and RSVP objects from the database.

FIGURE 1-51

643181c01.indd 27643181c01.indd 27 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

28 ❘ CHAPTER 1 NERDDINNER

The following code (see Figure 1-52) demonstrates
how to instantiate a NerdDinnerDataContext
object and perform a LINQ query against it to
obtain a sequence of Dinners that occur in the
future.

A NerdDinnerEntities object tracks any
changes made to Dinner and RSVP objects
retrieved using it and enables us to easily save the
changes back to the database. The code that fol-
lows demonstrates how we can use a LINQ query
to retrieve a single Dinner object from the data-
base, update two of its properties, and then save
the changes back to the database:

NerdDinnerEntities entities = new NerdDinnerEntities();

// Retrieve Dinner object that reprents a row with DinnerID of 1
Dinner dinner = entities.Dinners.Single(d => d.DinnerID == 1);

// Update two properties on Dinner
dinner.Title = “Changed Title”;
dinner.Description = “This dinner will be fun”;

// Persist changes to database
db.SaveChanges();

Code snippet 1-1.txt

The NerdDinnerEntities object in the code automatically tracked the property changes made to
the Dinner object we retrieved from it. When we called the SaveChanges method, it executed an
appropriate SQL “UPDATE” statement to the database to persist the updated values back.

Creating a DinnerRepository Class

For small applications, it is sometimes fi ne to have Controllers work directly against an Entity
Framework ObjectContext class and embed LINQ queries within the Controllers. As applications
get larger, though, this approach becomes cumbersome to maintain and test. It can also lead to us
duplicating the same LINQ queries in multiple places.

One approach that can make applications easier to maintain and test is to use a repository pattern. A
repository class helps encapsulate data querying and persistence logic and abstracts away the imple-
mentation details of the data persistence from the application. In addition to making application code
cleaner, using a repository pattern can make it easier to change data storage implementations in the
future, and it can help facilitate unit testing an application without requiring a real database.

For our NerdDinner application, we’ll defi ne a DinnerRepository class with the following
signature:

public class DinnerRepository {

 // Query Methods

FIGURE 1-52

643181c01.indd 28643181c01.indd 28 5/20/10 10:23:25 AM5/20/10 10:23:25 AM

Building the Model ❘ 29

 public IQueryable<Dinner> FindAllDinners();
 public IQueryable<Dinner> FindUpcomingDinners();
 public Dinner GetDinner(int id);

 // Insert/Delete
 public void Add(Dinner dinner);
 public void Delete(Dinner dinner);

 // Persistence
 public void Save();
}

Code snippet 1-2.txt

Later in this chapter, we’ll extract an IDinnerRepository interface from this
class and enable dependency injection with it on our Controllers. To begin
with, though, we are going to start simple and just work directly with the
DinnerRepository class.

To implement this class, we’ll right-click our Models folder and choose the Add ➪ New Item menu
command (Figure 1-53). Within the Add New Item dialog, we’ll select the Class template and name
the fi le DinnerRepository.cs.

FIGURE 1-53

643181c01.indd 29643181c01.indd 29 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

30 ❘ CHAPTER 1 NERDDINNER

We can then implement our DinnerRespository class using the code that follows:

public class DinnerRepository {

 private NerdDinnerEntities entities = new NerdDinnerEntities();

 //
 // Query Methods

 public IQueryable<Dinner> FindAllDinners() {
 return entities.Dinners;
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in entities.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

 public Dinner GetDinner(int id) {
 return entities.Dinners.FirstOrDefault(d => d.DinnerID == id);
 }

 //
 // Insert/Delete Methods

 public void Add(Dinner dinner) {
 entities.Dinners.AddObject(dinner);
 }

 public void Delete(Dinner dinner) {
 foreach(var rsvp in dinner.RSVPs) {
 entities.RSVPs.DeleteObject(dinner.RSVPs);
 }
 entities.Dinners.DeleteObject(dinner);
 }

 //
 // Persistence

 public void Save() {
 entities.SaveChanges();
 }
}

Code snippet 1-3.txt

643181c01.indd 30643181c01.indd 30 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

Building the Model ❘ 31

Retrieving, Updating, Inserting, and Deleting Using the

DinnerRepository Class

Now that we’ve created our DinnerRepository class, let’s look at a few code examples that demon-
strate common tasks we can do with it.

Querying Examples

The code that follows retrieves a single Dinner using the DinnerID value:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

Code snippet 1-4.txt

The code that follows retrieves all upcoming dinners and loops over them:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve all upcoming Dinners
var upcomingDinners = dinnerRepository.FindUpcomingDinners();

// Loop over each upcoming Dinner
foreach (Dinner dinner in upcomingDinners) {

}

Code snippet 1-5.txt

Insert and Update Examples

The code that follows demonstrates adding two new Dinners. Additions/modifi cations to the reposi-
tory aren’t committed to the database until the Save method is called upon it. Entity Framework
automatically wraps all changes in a database transaction — so either all changes happen or none of
them does when our repository saves:

DinnerRepository dinnerRepository = new DinnerRepository();

// Create First Dinner
Dinner newDinner1 = new Dinner();
newDinner1.Title = “Dinner with Scott”;
newDinner1.HostedBy = “ScottGu”;
newDinner1.ContactPhone = “425-703-8072”;

// Create Second Dinner
Dinner newDinner2 = new Dinner();

643181c01.indd 31643181c01.indd 31 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

32 ❘ CHAPTER 1 NERDDINNER

newDinner2.Title = “Dinner with Bill”;
newDinner2.HostedBy = “BillG”;
newDinner2.ContactPhone = “425-555-5151”;

// Add Dinners to Repository
dinnerRepository.Add(newDinner1);
dinnerRepository.Add(newDinner2);

// Persist Changes
dinnerRepository.Save();

Code snippet 1-6.txt

The code that follows retrieves an existing Dinner object and modifi es two properties on it. The
changes are committed back to the database when the Save method is called on our repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Update Dinner properties
dinner.Title = “Update Title”;
dinner.HostedBy = “New Owner”;

// Persist changes
dinnerRepository.Save();

Code snippet 1-7.txt

The code that follows retrieves a Dinner and then adds an RSVP to it. It does this using the RSVPs
collection on the Dinner object that Entity Framework created for us (because there is a primary-
key/foreign-key relationship between the two in the database). This change is persisted back to the
database as a new RSVP table row when the Save method is called on the repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Create a new RSVP object
RSVP myRSVP = new RSVP();
myRSVP.AttendeeName = “ScottGu”;

// Add RSVP to Dinner’s RSVP Collection
dinner.RSVPs.Add(myRSVP);

// Persist changes
dinnerRepository.Save();

Code snippet 1-8.txt

643181c01.indd 32643181c01.indd 32 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

Building the Model ❘ 33

Delete Example

The code that follows retrieves an existing Dinner object and then marks it to be deleted. When the
Save method is called on the repository, it will commit the delete back to the database:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Mark dinner to be deleted
dinnerRepository.Delete(dinner);

// Persist changes
dinnerRepository.Save();

Code snippet 1-9.txt

Integrating Validation and Business Rule Logic

with Model Classes

Integrating validation and business rule logic is a key part of any application that works with data.

Schema Validation

When Model classes are defi ned using the Entity Framework Designer, the data types of the proper-
ties in the data Model classes will correspond to the data types of the database table. For example:
If the EventDate column in the Dinners table is a date/time, the data Model class created by Entity
Framework will be of type DateTime (which is a built-in .NET data type). This means you will get
compile errors if you attempt to assign an integer or Boolean to it from code, and it will raise an
error automatically if you attempt to implicitly convert a non-valid string type to it at run time.

Entity Framework will also automatically handle escaping SQL values for you when you use
strings — so you don’t need to worry about SQL injection attacks when using it.

Validation and Business Rule Logic

Data-type validation is useful as a fi rst step but is rarely suffi cient. Most real-world scenarios
require the ability to specify richer validation logic that can span multiple properties, execute code,
and often have awareness of a Model’s state (e.g., is it being created/updated/deleted, or within a
domain-specifi c state like archived).

ASP.NET MVC 2 introduces support for Data Annotations validation attributes. These are a set of
attributes that live in the System.ComponentModel.DataAnnotations namespace and were intro-
duced as part of the Dynamic Data feature of ASP.NET 3.5 Service Pack 1. To use these attributes,
make sure to reference the System.ComponentModel.DataAnnotations.dll assembly from the
.NET tab of the Add Reference dialog. Note that this assembly is referenced by default when creat-
ing new ASP.NET MVC 2 projects in Visual Studio.

643181c01.indd 33643181c01.indd 33 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

34 ❘ CHAPTER 1 NERDDINNER

The .NET Framework includes the four validation attributes presented in Table 1-2.

TABLE 1-2: DataAnnotations Validation Attributes

ATTRIBUTE DESCRIPTION

RangeAttribute Specifi es the numeric range constraints for the value of a

property.

RegularExpressionAttribute Specifi es that the property value must match the specifi ed

regular expression.

StringLengthAttribute Specifi es the maximum length of characters that are allowed in

the property.

RequiredAttribute Specifi es that a value for the property is required.

We can apply these attributes directly to properties of our model for validation. For example, to
indicate that the title of a dinner is required, we could apply the RequiredAttribute like so:

public class Dinner {
 [Required(ErrorMessage = “Title is required”)]
 public string Title {
 get;
 set;
 }
}

Code snippet 1-10.txt

However, taking this approach can mean that you run into problems with classes maintained by a
Visual Studio Designer (like the Dinner class generated by the Entity Framework Designer). When
changes are made to the Designer, the Designer will use code generation to re-create the class that
will overwrite the changes we’ve made. Fortunately, we can apply these attributes by specifying a
buddy class that will hold the validation attributes instead of the main class.

To add this buddy class, we’ll need to add a partial class to our project. Partial classes can be used
to add methods/properties/events to classes maintained by a VS Designer (like the Dinner class gen-
erated by the Entity Framework Designer) to avoid having the tool mess with our code.

We can add a new partial class to our project by right-clicking the \Models folder, and then selecting
the “Add New Item” menu command. We can then choose the Class template within the “Add New
Item” dialog (Figure 1-54) and name it Dinner.cs.

Clicking the Add button will add a Dinner.cs fi le to our project and open it within the IDE. We
then apply the partial keyword to the class. Now we can add the MetadataTypeAttribute to the
Dinner class by applying it to the partial class. This attribute is used to specify the buddy class, in
this case Dinner_Validation:

 [MetadataType(typeof(Dinner_Validation))]
public partial class Dinner {
 //…

643181c01.indd 34643181c01.indd 34 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

Building the Model ❘ 35

}
public class Dinner_Validation
{
 [Required(ErrorMessage = “Title is required”)]
 [StringLength(50, ErrorMessage = “Title may not be longer than 50 characters”)]
 public string Title { get; set; }

 [Required(ErrorMessage = “Description is required”)]
 [StringLength(265, ErrorMessage =
 “Description must be 256 characters or less”)]
 public string Description { get; set; }

 [Required(ErrorMessage = “Address is required”)]
 public string Address { get; set; }

 [Required(ErrorMessage = “Country is required”)]
 public string Country { get; set; }

 [Required(ErrorMessage = “Phone# is required”)]
 public string ContactPhone { get; set; }
}

Code snippet 1-11.txt

FIGURE 1-54

643181c01.indd 35643181c01.indd 35 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

36 ❘ CHAPTER 1 NERDDINNER

A couple of notes about this code:

The ➤ Dinner class is prefaced with a partial keyword — which means the code contained
within it will be combined with the class generated/maintained by the Entity Framework
Designer and compiled into a single class.

The property names of the ➤ Dinner_Validate class match the property names of the Dinner
class. Thus, when we validate a property of a Dinner, we’ll look at the attributes applied to
the corresponding property of Dinner_Validation.

With these validation attributes in place, our model is validated any time we post it to an action
method or call UpdateModel against it. Within an action method, we can check the ModelState
.IsValid property to see if our model is valid as seen in the following Create method:

public class DinnerController : Controller {

 [HttpPost]
 public ActionResult Create(Dinner dinner) {
 if(ModelState.IsValid) {
 // Dinner is valid, save it.
 }
 else {
 return View();
 }
 }

Code snippet 1-12.txt

Notice that when the Model state is not valid, we simply show the create form again. When post-
ing the Dinner to the action method, each of the validation attributes is run for each property. If an
attribute fails, for example, if the Title fi eld was left blank, an error is added to the ModelState
dictionary with the key Title. This enables the helper methods used to build up the form to auto-
matically display error messages and highlight fi elds that are in error.

Because our validation and business rules are implemented within our domain Model layer, and not
within the UI layer, they will be applied and used across all scenarios within our application. We
can later change or add business rules and have all code that works with our Dinner objects honor
them. Having the fl exibility to change business rules in one place, without having these changes
ripple throughout the application and UI logic, is a sign of a well-written application, and a benefi t
that an MVC Framework helps encourage.

In Chapter 13, we’ll cover validation and data annotations in more depth.

643181c01.indd 36643181c01.indd 36 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

Controllers and Views ❘ 37

CONTROLLERS AND VIEWS

With traditional web frameworks (classic ASP, PHP, ASP.NET Web Forms, etc.), incoming URLs
are typically mapped to fi les on disk. For example: a request for a URL like /Products.aspx or
/Products.php might be processed by a Products.aspx or Products.php fi le.

Web-based MVC Frameworks map URLs to server code in a slightly different way. Instead of map-
ping incoming URLs to fi les, they instead map URLs to methods on classes. These classes are called
Controllers, and they are responsible for processing incoming HTTP requests, handling user input,
retrieving and saving data, and determining the response to send back to the client (display HTML,
download a fi le, redirect to a different URL, etc.).

Now that we have built up a basic model for our NerdDinner application, our next step will be to
add a Controller to the application that takes advantage of it to provide users with a data listing/
details navigation experience for Dinners on our site.

Adding a DinnersController Controller

We’ll begin by right-clicking the Controllers folder within our Web Project and then selecting the
Add ➪ Controller menu command (see Figure 1-55).

You can also execute this command by typing Ctrl+M, Ctrl+C.

FIGURE 1-55

643181c01.indd 37643181c01.indd 37 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

38 ❘ CHAPTER 1 NERDDINNER

This will bring up the Add Controller dialog (Figure 1-56).

We’ll name the new Controller DinnersController and click the Add button. Visual Studio will then
add a DinnersController.cs fi le under our \Controllers directory (Figure 1-57).

It will also open up the new DinnersController class within the code-editor.

Adding Index and Details Action Methods to the

DinnersController Class

We want to enable visitors using our application to browse the list of upcoming Dinners and enable
them to click on any Dinner in the list to see specifi c details about it. We’ll do this by publishing the
URLs, presented in Table 1-3, from our application.

TABLE 1-3: Application URLs to Publish

URL PURPOSE

/Dinners/ Display an HTML list of upcoming Dinners.

/Dinners/

Details/[id]

Display details about a specifi c Dinner indicated by an id parameter embed-

ded within the URL — which will match the DinnerID of the Dinner in the data-

base. For example: /Dinners/Details/2 would display an HTML page with

details about the Dinner whose DinnerID value is 2.

We can publish initial implementations of these URLs by adding two public “action methods” to
our DinnersController class:

public class DinnersController : Controller {

 //
 // GET: /Dinners/

 public void Index() {

FIGURE 1-56
FIGURE 1-57

643181c01.indd 38643181c01.indd 38 5/20/10 10:23:26 AM5/20/10 10:23:26 AM

Controllers and Views ❘ 39

 Response.Write(“<h1>Coming Soon: Dinners</h1>”);
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Response.Write(“<h1>Details DinnerID: “ + id + “</h1>”);
 }
}

Code snippet 1-13.txt

We can then run the application and use our browser to invoke the action methods. Typing in the
/Dinners/ URL will cause our Index method to run, and it will send back the response shown in
Figure 1-58.

Typing in the /Dinners/Details/2 URL will cause our Details method to run, and send back the
response shown in Figure 1-59.

FIGURE 1-58

FIGURE 1-59

643181c01.indd 39643181c01.indd 39 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

40 ❘ CHAPTER 1 NERDDINNER

You might be wondering — how did ASP.NET MVC know to create our DinnersController class
and invoke those methods? To understand that, let’s take a quick look at how routing works.

Understanding ASP.NET MVC Routing

ASP.NET MVC includes a powerful URL routing engine that provides a lot of fl exibility in controlling
how URLs are mapped to Controller classes. It allows us to completely customize how
ASP.NET MVC chooses which Controller class to create and
which method to invoke on it, as well as confi gure different ways
that variables can be automatically parsed from the URL/query
string and passed to the method as parameter arguments. It deliv-
ers the fl exibility to totally optimize a site for SEO (Search Engine
Optimization) as well as publish any URL structure we want from
an application.

By default, new ASP.NET MVC projects come with a preconfi g-
ured set of URL routing rules already registered. This enables us
to easily get started on an application without having to explicitly
confi gure anything. The default routing rule registrations can be
found within the Application class of our projects — which we
can open by double-clicking the Global.asax fi le in the root of
our project (Figure 1-60).

The default ASP.NET MVC routing rules are registered within the RegisterRoutes method of this
class:

public void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL w/ params
 new { controller=”Home”, action=”Index”,
 id=UrlParameter.Optional } // Param defaults
);
}

Code snippet 1-14.txt

The routes.MapRoute method call in the previous code registers a default routing rule that maps
incoming URLs to Controller classes using the URL format: /{controller}/{action}/{id},
where controller is the name of the Controller class to instantiate, action is the name of a pub-
lic method to invoke on it, and id is an optional parameter embedded within the URL that can be
passed as an argument to the method. The third parameter passed to the MapRoute method call is a
set of default values to use for the controller/action/id values in the event that they are not pres-
ent in the URL (controller = “Home”, action=”Index”, id=UrlParameter.Optional).

FIGURE 1-60

643181c01.indd 40643181c01.indd 40 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

Controllers and Views ❘ 41

Table 1-4 demonstrates how a variety of URLs are mapped using the default /{controllers}/
{action}/{id} route rule.

TABLE 1-4: Example URLs Mapped to the Default Route

URL CONTROLLER CLASS ACTION METHOD PARAMETERS PASSED

/Dinners/Details/2 DinnersController Details(id) id=2

/Dinners/Edit/5 DinnersController Edit(id) id=5

/Dinners/Create DinnersController Create() N/A

/Dinners DinnersController Index() N/A

/Home HomeController Index() N/A

/ HomeController Index() N/A

The last three rows show the default values (Controller = Home, Action = Index, IdUrlParameter
.Optional ““) being used. Because the Index method is registered as the default action name if one
isn’t specifi ed, the /Dinners and /Home URLs cause the Index action method to be invoked on their
Controller classes. Because the Home controller is registered as the default controller if one isn’t speci-
fi ed, the / URL causes the HomeController to be created, and the Index action method on it to be
invoked.

If you don’t like these default URL routing rules, the good news is that they are easy to change —
just edit them within the RegisterRoutes method in the previous code. For our NerdDinner appli-
cation, though, we aren’t going to change any of the default URL routing rules — instead, we’ll just
use them as is.

Using the DinnerRepository from Our DinnersController

Let’s now replace the current implementation of our Index and Details action methods with imple-
mentations that use our Model.

We’ll use the DinnerRepository class we built earlier to implement the behavior. We’ll begin by
adding a using statement that references the NerdDinner.Models namespace, and then declare an
instance of our DinnerRepository as a fi eld on our DinnerController class.

Later in this chapter, we’ll introduce the concept of Dependency Injection and show another way for
our Controllers to obtain a reference to a DinnerRepository that enables better unit testing — but for
right now, we’ll just create an instance of our DinnerRepository inline like the code that follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

643181c01.indd 41643181c01.indd 41 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

42 ❘ CHAPTER 1 NERDDINNER

using NerdDinner.Models;

namespace NerdDinner.Controllers {

 public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public void Index() {
 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 }
 }
}

Code snippet 1-15.txt

Now we are ready to generate an HTML response back using our retrieved data Model objects.

Using Views with Our Controller

Although it is possible to write code within our action methods to assemble HTML and then use
the Response.Write helper method to send it back to the client, that approach becomes fairly
unwieldy quickly. A much better approach is for us to only perform application and data logic inside
our DinnersController action methods, and to then pass the data needed to render an HTML
response to a separate View template that is responsible for outputting the HTML representation of
it. As we’ll see in a moment, a View template is a text fi le that typically contains a combination of
HTML markup and embedded rendering code.

Separating our Controller logic from our View rendering brings several big benefi ts. In particular, it
helps enforce a clear separation of concerns between the application code and UI formatting/render-
ing code. This makes it much easier to unit test application logic in isolation from UI rendering logic.
It makes it easier to later modify the UI rendering templates without having to make application code
changes. And it can make it easier for developers and designers to collaborate together on projects.

We can update our DinnersController class to indicate that we want to use a View template to
send back an HTML UI response by changing the method signatures of our two action methods
from having a return type of void to instead have a return type of ActionResult. We can then call
the View helper method on the Controller base class to return back a ViewResult object:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //

643181c01.indd 42643181c01.indd 42 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

Controllers and Views ❘ 43

 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(“Index”, dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(“Details”, dinner);
 }
}

Code snippet 1-16.txt

The signature of the View helper method we are using in the previous code looks like Figure 1-61.

FIGURE 1-61

The fi rst parameter to the View helper method is the name of the View template fi le we want to use
to render the HTML response. The second parameter is a Model object that contains the data that
the View template needs in order to render the HTML response.

Within our Index action method, we are calling the View helper method and indicating that we
want to render an HTML listing of dinners using an “Index” View template. We are passing the
View template a sequence of Dinner objects to generate the list from:

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(“Index”, dinners);
 }

Code snippet 1-17.txt

Within our Details action method, we attempt to retrieve a Dinner object using the id provided
within the URL. If a valid Dinner is found, we call the View helper method, indicating that we

643181c01.indd 43643181c01.indd 43 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

44 ❘ CHAPTER 1 NERDDINNER

want to use a “Details” View template to render the retrieved Dinner object. If an invalid Dinner
is requested, we render a helpful error message that indicates that the Dinner doesn’t exist, using a
“NotFound” View template (and an overloaded version of the View helper method that just takes the
template name):

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(“Details”, dinner);
 }

Code snippet 1-18.txt

Let’s now implement the “NotFound”, “Details”, and “Index” View templates.

Implementing the “NotFound” View Template

We’ll begin by implementing the “NotFound” View template — which displays a friendly error mes-
sage indicating that the requested Dinner can’t be found.

We’ll create a new View template by positioning our text cursor within a Controller action method,
and then by right-clicking and choosing the Add View menu command (see Figure 1-62; we can also
execute this command by pressing Ctrl+M, Ctrl+V).

FIGURE 1-62

This will bring up the “Add View” dialog shown in Figure 1-63. By default, the dialog will
pre-populate the name of the View to create to match the name of the action method the cursor
was in when the dialog was launched (in this case, Details). Because we want to fi rst implement
the “NotFound” template, we’ll override this View name and set it instead to be NotFound.

643181c01.indd 44643181c01.indd 44 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

Controllers and Views ❘ 45

When we click the Add button, Visual Studio will create a new NotFound.aspx (see Figure 1-64)
View template for us within the \Views\Dinners directory (which it will also create if the directory
doesn’t already exist).

It will also open up our new NotFound.aspx View template within the code-editor (see Figure 1-65).

FIGURE 1-65

View templates by default have two content regions where we can add content and code. The fi rst
allows us to customize the title of the HTML page sent back. The second allows us to customize the
main content of the HTML page sent back.

FIGURE 1-63
FIGURE 1-64

643181c01.indd 45643181c01.indd 45 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

46 ❘ CHAPTER 1 NERDDINNER

To implement our “NotFound” View template, we’ll add some basic content:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Dinner Not Found
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Dinner Not Found</h2>

 <p>Sorry - but the dinner you requested doesn’t exist or was deleted.</p>

</asp:Content>

Code snippet 1-19.txt

We can then try it out within the browser. To do this, let’s request the /Dinners/Details/9999
URL. This will refer to a Dinner that doesn’t currently exist in the database and will cause our
DinnersController.Details action method to render our “NotFound” View template (see
Figure 1-66).

FIGURE 1-66

One thing you’ll notice in Figure 1-66 is that our basic View template has inherited a bunch of
HTML that surrounds the main content on the screen. This is because our View template is using a
Master Page template that enables us to apply a consistent layout across all views on the site. We’ll
discuss how Master Pages work more in a later part of this chapter.

Implementing the “Details” View Template

Let’s now implement the “Details” View template — which will generate HTML for a single
Dinner model.

We’ll do this by positioning our text cursor within the Details action method, and then right-clicking
and choosing the Add View menu command (Figure 1-67) or pressing Ctrl+M, Ctrl+V.

643181c01.indd 46643181c01.indd 46 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

Controllers and Views ❘ 47

FIGURE 1-67

This will bring up the “Add View” dialog. We’ll keep the default View name (Details). We’ll also
select the “Create a strongly-typed view” checkbox in the dialog and select (using the combobox
dropdown) the name of the model type we are passing from the Controller to the View. For this
View, we are passing a Dinner object (the fully qualifi ed name for this type is: NerdDinner
.Models.Dinner) as shown in Figure 1-68.

Unlike the previous template, where we chose to create an “Empty View,” this time we will choose
to automatically scaffold the view using a “Details” template. We can indicate this by changing the
View content dropdown in the dialog above.

Scaffolding will generate an initial implementation of our Details View template based on the
Dinner model we are passing to it. This provides an easy way for us to quickly get started on our
View template implementation.

When we click the Add button, Visual Studio will create a new Details.aspx View template fi le for
us within our \Views\Dinners directory (see Figure 1-69).

FIGURE 1-68
FIGURE 1-69

643181c01.indd 47643181c01.indd 47 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

48 ❘ CHAPTER 1 NERDDINNER

It will also open up our new Details.aspx View template within the code-editor. It will contain an
initial scaffold implementation of a Details View based on a Dinner model. The scaffolding engine
uses .NET refl ection to look at the public properties exposed on the class passed to it and will add
appropriate content based on each type it fi nds:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Details
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Details</h2>

 <fieldset>
 <legend>Fields</legend>

 <div class=”display-label”>DinnerID</div>
 <div class=”display-field”><%: Model.DinnerID %></div>

 <div class=”display-label”>Title</div>
 <div class=”display-field”><%: Model.Title %></div>

 <div class=”display-label”>EventDate</div>
 <div class=”display-field”>
 <%: String.Format(“{0:g}”, Model.EventDate) %>
 </div>

 <div class=”display-label”>Description</div>
 <div class=”display-field”><%: Model.Description %></div>

 <div class=”display-label”>HostedBy</div>
 <div class=”display-field”><%: Model.HostedBy %></div>

 <div class=”display-label”>ContactPhone</div>
 <div class=”display-field”><%: Model.ContactPhone %></div>

 <div class=”display-label”>Address</div>
 <div class=”display-field”><%: Model.Address %></div>

 <div class=”display-label”>Country</div>
 <div class=”display-field”><%: Model.Country %></div>

 <div class=”display-label”>Latitude</div>
 <div class=”display-field”>
 <%: String.Format(“{0:F}”, Model.Latitude) %>
 </div>

 <div class=”display-label”>Longitude</div>
 <div class=”display-field”>
 <%: String.Format(“{0:F}”, Model.Longitude) %>
 </div>

 </fieldset>

643181c01.indd 48643181c01.indd 48 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

Controllers and Views ❘ 49

 <p>

 <%: Html.ActionLink(“Edit”, “Edit”, new { id=Model.DinnerID }) %> |
 <%: Html.ActionLink(“Back to List”, “Index”) %>
 </p>

</asp:Content>

Code snippet 1-20.txt

We can request the /Dinners/Details/1 URL to see what this “details” scaffold implementation
looks like in the browser. Using this URL will display one of the Dinners we manually added to our
database when we fi rst created it (see Figure 1-70).

FIGURE 1-70

This gets us up and running quickly and provides us with an initial implementation of our Details
.aspx View. We can then tweak it to customize the UI to our satisfaction.

When we look at the Details.aspx template more closely, we’ll fi nd that it contains static HTML as
well as embedded rendering code. <% %> code nuggets execute code when the View template renders,
and <%: %> code nuggets execute the code contained within them and then render the result to the
output stream of the template.

643181c01.indd 49643181c01.indd 49 5/20/10 10:23:27 AM5/20/10 10:23:27 AM

50 ❘ CHAPTER 1 NERDDINNER

We can write code within our View that accesses the Dinner Model object that was passed from
our Controller using a strongly typed Model property. Visual Studio provides us with full code-
IntelliSense when accessing this Model property within the Editor (Figure 1-71).

FIGURE 1-71

Let’s make some tweaks so that the source for our fi nal Details View template looks like that below:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Dinner: <%: Model.Title %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2><%: Model.Title %></h2>
 <p>
 When:
 <%: Model.EventDate.ToShortDateString() %>

 @
 <%: Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%: Model.Address %>,
 <%: Model.Country %>
 </p>
 <p>
 Description:
 <%: Model.Description %>
 </p>
 <p>
 Organizer:
 <%: Model.HostedBy %>
 (<%: Model.ContactPhone %>)
 </p>

 <%: Html.ActionLink(“Edit Dinner”, “Edit”, new { id=Model.DinnerID })%> |
 <%: Html.ActionLink(“Delete Dinner”,”Delete”, new { id=Model.DinnerID})%>

</asp:Content>

Code snippet 1-21.txt

643181c01.indd 50643181c01.indd 50 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Controllers and Views ❘ 51

When we access the /Dinners/Details/1 URL again, it will render as shown in Figure 1-72.

FIGURE 1-72

Implementing the “Index” View Template

Let’s now implement the “Index” View tem-
plate — which will generate a listing of upcoming
Dinners. To do this, we’ll position our text cursor
within the Index action method and then right-
click and choose the “Add View” menu command
(or press Ctrl+M, Ctrl+V).

Within the “Add View” dialog (Figure 1-73),
we’ll keep the View template named Index
and select the “Create a strongly-typed view”
checkbox. This time we will choose to automati-
cally generate a List View template and select
NerdDinner.Models.Dinner as the Model type
passed to the View (which, because we have indi-
cated that we are creating a List scaffold, will
cause the “Add View” dialog to assume that we
are passing a sequence of Dinner objects from
our Controller to the View). FIGURE 1-73

643181c01.indd 51643181c01.indd 51 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

52 ❘ CHAPTER 1 NERDDINNER

When we click the Add button, Visual Studio will create a new Index.aspx View template fi le for us
within our \Views\Dinners directory. It will scaffold an initial implementation within it that pro-
vides an HTML table listing of the Dinners we pass to the View.

When we run the application and access the /Dinners/ URL, it will render our list of Dinners as
shown in Figure 1-74.

FIGURE 1-74

The table solution in Figure 1-74 gives us a grid-like layout of our Dinner data — which isn’t quite
what we want for our consumer-facing Dinner listing. We can update the Index.aspx View template
and modify it to list fewer columns of data, and use a element to render them instead of a table
using the code that follows:

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Upcoming Dinners</h2>

 <% foreach (var dinner in Model) { %>

 <%: dinner.Title %>
 on
 <%: dinner.EventDate.ToShortDateString()%>
 @
 <%: dinner.EventDate.ToShortTimeString()%>

643181c01.indd 52643181c01.indd 52 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Controllers and Views ❘ 53

 <% } %>

</asp:Content>

Code snippet 1-22.txt

We are using the var keyword within the foreach statement as we loop over each Dinner in our
Model. Those unfamiliar with C# 3.0 might think that using var means that the Dinner object is
late-bound. It, instead, means that the compiler is using type-inference against the strongly typed
Model property (which is of type IEnumerable<Dinner>) and compiling the local dinner vari-
able as a Dinner type — which means that we get full IntelliSense and compile-time checking for it
within code blocks (Figure 1-75).

When we press the Refresh button on the /Dinners URL in our browser, our updated View now
looks like Figure 1-76.

FIGURE 1-75

FIGURE 1-76

643181c01.indd 53643181c01.indd 53 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

54 ❘ CHAPTER 1 NERDDINNER

This is looking better — but isn’t entirely there yet. Our last step is to enable end users to click
individual Dinners in the list and see details about them. We’ll implement this by rendering HTML
hyperlink elements that link to the Details action method on our DinnersController.

We can generate these hyperlinks within our Index
view in one of two ways. The fi rst is to manually create
HTML <a> elements as shown in Figure 1-77, where
we embed <% %> blocks within the <a> HTML element.

An alternative approach we can use is to take advan-
tage of the built-in Html.ActionLink helper method
within ASP.NET MVC that supports programmati-
cally creating an HTML <a> element that links to
another action method on a Controller:

<%: Html.ActionLink(dinner.Title, “Details”, new { id=dinner.DinnerID }) %>

The fi rst parameter to the Html.ActionLink helper method is the link-text to display (in this case,
the title of the Dinner); the second parameter is the Controller action name we want to generate the
link to (in this case, the “Details” method); and the third parameter is a set of parameters to send
to the action (implemented as an anonymous type with property name/values). In this case, we are
specifying the id parameter of the Dinner we want to link to, and because the default URL routing
rule in ASP.NET MVC is {Controller}/{Action}/{id}, the Html.ActionLink helper method
will generate the following output:

.NET Futures

For our Index.aspx View, we’ll use the Html.ActionLink helper method approach and have each
dinner in the list link to the appropriate details URL:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Upcoming Dinners
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Upcoming Dinners</h2>

 <% foreach (var dinner in Model) { %>

 <%: Html.ActionLink(dinner.Title, “Details”,
 new { id=dinner.DinnerID }) %>
 on
 <%: dinner.EventDate.ToShortDateString()%>
 @
 <%: dinner.EventDate.ToShortTimeString()%>

 <% } %>

</asp:Content>

Code snippet 1-23.txt

FIGURE 1-77

643181c01.indd 54643181c01.indd 54 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Controllers and Views ❘ 55

And now when we hit the /Dinners URL, our Dinner List looks like Figure 1-78.

When we click any of the Dinners in the list, we’ll navigate to see details about it (Figure 1-79).

FIGURE 1-78

FIGURE 1-79

643181c01.indd 55643181c01.indd 55 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

56 ❘ CHAPTER 1 NERDDINNER

Convention-Based Naming and the \Views Directory Structure

ASP.NET MVC applications, by default, use a convention-based directory-naming structure when
resolving View templates. This allows developers to avoid having to fully qualify a location path
when referencing Views from within a Controller class. By default, ASP.NET MVC will look for the
View template fi le within the \Views\[ControllerName]\ directory underneath the application.

For example, we’ve been working on the DinnersController
class — which explicitly references three View templates: “Index”,
“Details”, and “NotFound”. ASP.NET MVC will, by default, look
for these Views within the \Views\Dinners directory underneath
our application root directory (see Figure 1-80).

Notice in Figure 1-80 how there are currently three Controller
classes within the project (DinnersController, HomeController,
and AccountController — the last two were added by default
when we created the project), and there are three subdirectories
(one for each Controller) within the \Views directory.

Views referenced from the Home and Accounts Controllers will
automatically resolve their View templates from the respective
\Views\Home and \Views\Account directories. The \Views\Shared
subdirectory provides a way to store View templates that are
reused across multiple Controllers within the application. When
ASP.NET MVC attempts to resolve a View template, it will fi rst
check within the \Views\[Controller]-specifi c directory, and if it
can’t fi nd the View template there, it will look within the \Views
\Shared directory.

When it comes to naming individual View templates, the recommended guidance is to have the View
template share the same name as the action method that caused it to render. For example, our Index
action method above is using the “Index” View to render the View result, and the Details action
method is using the “Details” View to render its results. This makes it easy to quickly see which
template is associated with each action.

Developers do not need to explicitly specify the View template name when the View template has
the same name as the action method being invoked on the Controller. We can, instead, just pass the
Model object to the View helper method (without specifying the View name), and ASP.NET MVC
will automatically infer that we want to use the \Views\[ControllerName]\[ActionName] View tem-
plate on disk to render it.

This allows us to clean up our Controller code a little, and avoid duplicating the name twice in
our code:

public class DinnersController : Controller {
 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

FIGURE 1-80

643181c01.indd 56643181c01.indd 56 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Create, Update, Delete Form Scenarios ❘ 57

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }
}

Code snippet 1-24.txt

The previous code is all that is needed to implement a nice Dinner listing/details experience for the site.

CREATE, UPDATE, DELETE FORM SCENARIOS

We’ve introduced Controllers and Views, and covered how to use them to implement a listing/details
experience for dinners on the site. Our next step will be to take our DinnersController class fur-
ther and enable support for editing, creating, and deleting Dinners with it as well.

URLs Handled by DinnersController

We previously added action methods to DinnersController that implemented support for two
URLs (shown in Table 1-5): /Dinners and /Dinners/Details/[id].

TABLE 1-5: URLs Handled by DinnersController

URL VERB PURPOSE

/Dinners/ GET Displays an HTML list of upcoming Dinners.

/Dinners/Details/[id] GET Displays details about a specifi c Dinner.

We will now add action methods to implement three additional URLs: /Dinners/Edit/[id], /
Dinners/Create and /Dinners/Delete/[id]. These URLs will enable support for editing existing
Dinners, creating new Dinners, and deleting Dinners.

643181c01.indd 57643181c01.indd 57 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

58 ❘ CHAPTER 1 NERDDINNER

We will support both HTTP-GET and HTTP-POST verb interactions with these new URLs. HTTP
GET requests to these URLs will display the initial HTML View of the data (a form populated with
the Dinner data in the case of “edit,” a blank form in the case of “create,” and a delete confi rma-
tion screen in the case of “delete”). HTTP-POST requests to these URLs will save/update/delete the
Dinner data in our DinnerRepository (and from there to the database), as shown in Table 1-6.

TABLE 1-6: URLs Combined with HTTP Verbs

URL VERB PURPOSE

/Dinners/

Edit/[id]

GET Displays an editable HTML form populated with Dinner data.

POST Saves the form changes for a particular Dinner to the database.

/Dinners/

Create

GET Displays an empty HTML form that allows users to defi ne new Dinners.

POST Creates a new Dinner and saves it in the database.

/Dinners/

Delete/[id]

GET Displays a confi rmation screen that asks the user whether they want

to delete the specifi ed Dinner.

POST Deletes the specifi ed Dinner from the database.

Let’s begin by implementing the “edit” scenario.

Implementing the HTTP-GET Edit Action Method

We’ll start by implementing the HTTP GET behavior of our Edit action method. This method
will be invoked when the /Dinners/Edit/[id] URL is requested. Our implementation will look
like this:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(dinner);
}

Code snippet 1-25.txt

The code above uses the DinnerRepository to retrieve a Dinner object. It then renders a View
template using the Dinner object. Because we haven’t explicitly passed a template name to the View
helper method, it will use the convention-based default path to resolve the View template: /Views/
Dinners/Edit.aspx.

643181c01.indd 58643181c01.indd 58 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Create, Update, Delete Form Scenarios ❘ 59

Let’s now create this View template. We will do this by right-clicking within the Edit method and
selecting the Add View context menu command (see Figure 1-81).

Within the Add View dialog, we’ll indicate that we are passing a Dinner object to our View tem-
plate as its model, and choose to auto-scaffold an Edit template (see Figure 1-82).

When we click the Add button, Visual Studio
will add a new Edit.aspx View template fi le for
us within the \Views\Dinners directory. It will
also open up the new Edit.aspx View template
within the code-editor — populated with an initial
“Edit” scaffold implementation like that shown in
Figure 1-83.

FIGURE 1-83

FIGURE 1-81
FIGURE 1-82

643181c01.indd 59643181c01.indd 59 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

60 ❘ CHAPTER 1 NERDDINNER

Let’s make a few changes to the default “Edit” scaffold generated, and update the Edit View tem-
plate to have the content below (which removes a few of the properties we don’t want to expose):

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Edit: <%: Model.Title %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Edit Dinner</h2>
 <% using (Html.BeginForm()) { %>
 <%: Html.ValidationSummary(“Please correct the errors and try again.”) %>
 <fieldset>
 <legend>Fields</legend>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.Title) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.Title) %>
 <%: Html.ValidationMessageFor(m => m.Title, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.EventDate) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.EventDate) %>
 <%: Html.ValidationMessageFor(m => m.EventDate, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.Description) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextAreaFor(m => m.Description) %>
 <%: Html.ValidationMessageFor(m => m.Description, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.Address) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.Address) %>
 <%: Html.ValidationMessageFor(m => m.Address, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.Country) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.Country) %>
 <%: Html.ValidationMessageFor(m => m.Country, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.ContactPhone) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.ContactPhone) %>
 <%: Html.ValidationMessageFor(m => m.ContactPhone, “*”) %>
 </div>
 <div class=”editor-label”>

643181c01.indd 60643181c01.indd 60 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

Create, Update, Delete Form Scenarios ❘ 61

 <%: Html.LabelFor(m => m.Latitude) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.Latitude) %>
 <%: Html.ValidationMessageFor(m => m.Latitude, “*”) %>
 </div>
 <div class=”editor-label”>
 <%: Html.LabelFor(m => m.Longitude) %>
 </div>
 <div class=”editor-field”>
 <%: Html.TextBoxFor(m => m.Longitude) %>
 <%: Html.ValidationMessageFor(m => m.Longitude, “*”) %>
 </div>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

Code snippet 1-26.txt

When we run the application and request the /Dinners/Edit/1 URL, we will see the page shown in
Figure 1-84.

FIGURE 1-84

643181c01.indd 61643181c01.indd 61 5/20/10 10:23:28 AM5/20/10 10:23:28 AM

62 ❘ CHAPTER 1 NERDDINNER

The HTML markup generated by our View looks like that below. It is standard HTML — with a
<form> element that performs an HTTP POST to the /Dinners/Edit/1 URL when the Save <input
type=”submit”/> button is pushed. An HTML <input type=”text”/> element has been output
for each editable property (see Figure 1-85). One property is rendered as a <textarea /> element.

FIGURE 1-85

Html.BeginForm and Html.TextBoxFor Html Helper Methods

Our Edit.aspx View template is using several HTML Helper methods: Html.ValidationSummary,
Html.BeginForm, Html.TextBoxFor, Html.TextAreaFor, and Html.ValidationMessageFor. In
addition to generating HTML markup for us, these helper methods provide built-in support for dis-
playing validation errors.

Html.BeginForm Helper Method

The Html.BeginForm helper method is what output the HTML <form> element in our markup. In
our Edit.aspx View template, you’ll notice that we are applying a C# using statement when using
this method. The open curly brace indicates the beginning of the <form> content, and the closing
curly brace is what indicates the end of the </form> element:

<% using (Html.BeginForm()) { %>

 <fieldset>

 <! — Fields Omitted for Brevity — >

 <p>
 <input type=”submit” value=”Save” />
 </p>

643181c01.indd 62643181c01.indd 62 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 63

 </fieldset>

<% } %>

Code snippet 1-27.txt

Alternatively, if you fi nd the using statement approach unnatural for a scenario like this, you can
use a Html.BeginForm and Html.EndForm combination (which does the same thing):

<% Html.BeginForm(); %>

 <fieldset>
 <! — Fields Omitted for Brevity — >

 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

<% Html.EndForm(); %>

Code snippet 1-28.txt

Calling Html.BeginForm without any parameters will cause it to output a form element that
does an HTTP-POST to the current request’s URL. That is why our Edit View generates a <form
action=”/Dinners/Edit/1” method=”post”> element. We could have alternatively passed explicit
parameters to Html.BeginForm if we wanted to post to a different URL.

Html.TextBoxFor Helper Method

Our Edit.aspx View uses the Html.TextBoxFor helper method to output <input type=”text”/>
elements:

<%: Html.TextBoxFor(model => model.Title) %>

The Html.TextBoxFor method takes a single parameter — which is being used to specify both the
ID/name attributes of the <input type=”text”/> element to output, as well as the Model property
to populate the textbox value from. For example, the Dinner object we passed to the Edit View had
a “Title” property value of .NET Futures, and so our Html.TextBoxFor(model => model.Title)
method call output is <input id=”Title” name=”Title” type=”text” value=”.NET Futures”
/>.

A second parameter to Html.TextBoxFor can optionally be used to output additional HTML attri-
butes. The code snippet below demonstrates how to render an additional size=”30” attribute and a
class=”myclass” attribute on the <input type=”text”/> element. Note how we are escaping the
name of the class attribute using a @ character because class is a reserved keyword in C#:

<%: Html.TextBoxFor(model => model.Title, new {size=30, @class=”myclass”})%>

643181c01.indd 63643181c01.indd 63 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

64 ❘ CHAPTER 1 NERDDINNER

Implementing the HTTP-POST Edit Action Method

We now have the HTTP-GET version of our Edit action method implemented. When a user
requests the /Dinners/Edit/1 URL, they receive an HTML page like the one shown in Figure 1-86.

FIGURE 1-86

Pressing the Save button causes a form post to the /Dinners/Edit/1 URL, and submits the HTML
<input> form values using the HTTP-POST verb. Let’s now implement the HTTP-POST behavior
of our Edit action method — which will handle saving the Dinner.

We’ll begin by adding an overloaded Edit action method to our DinnersController that has an
HttpPost attribute on it that indicates it handles HTTP-POST scenarios:

//
// POST: /Dinners/Edit/2

[HttpPost]

643181c01.indd 64643181c01.indd 64 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 65

public ActionResult Edit(int id, FormCollection formValues) {
 ...
}

Code snippet 1-29.txt

When the [HttpPost] attribute is applied to overloaded action methods, ASP.NET MVC auto-
matically handles dispatching requests to the appropriate action method depending on the incom-
ing HTTP verb. HTTP-POST requests to /Dinners/Edit/[id] URLs will go to the above Edit
method, while all other HTTP verb requests to /Dinners/Edit/[id] URLs will go to the fi rst Edit
method we implemented (which did not have an [HttpPost] attribute).

WHY DIFFERENTIATE VIA HTTP VERBS?

You might ask — why are we using a single URL and differentiating its behavior
via the HTTP verb? Why not just have two separate URLs to handle loading and
saving edit changes? For example: /Dinners/Edit/[id] to display the initial form
and /Dinners/Save/[id] to handle the form post to save it?

The downside with publishing two separate URLs is that in cases in which we
post to /Dinners/Save/2 and then need to redisplay the HTML form because of
an input error, end users will end up having the /Dinners/Save/2 URL in their
browser’s address bar (since that was the URL the form posted to). If the end users
bookmark this redisplayed page to their browser favorites list or copy/paste the
URL and e-mail it to friends, they will end up saving a URL that won’t work in the
future (since that URL depends on post values).

By exposing a single URL (like /Dinners/Edit/[id]) and differentiating the pro-
cessing of it by HTTP verb, it is safe for end users to bookmark the edit page and/
or send the URL to others.

Retrieving Form Post Values

There are a variety of ways we can access posted form parameters within our HTTP-POST Edit
method. One simple approach is to just use the Request property on the Controller base class to
access the form collection and retrieve the posted values directly:

//
// POST: /Dinners/Edit/2

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues) {

 // Retrieve existing dinner
 Dinner dinner = dinnerRepository.GetDinner(id);

 // Update dinner with form posted values

643181c01.indd 65643181c01.indd 65 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

66 ❘ CHAPTER 1 NERDDINNER

 dinner.Title = Request.Form[“Title”];
 dinner.Description = Request.Form[“Description”];
 dinner.EventDate = DateTime.Parse(Request.Form[“EventDate”]);
 dinner.Address = Request.Form[“Address”];
 dinner.Country = Request.Form[“Country”];
 dinner.ContactPhone = Request.Form[“ContactPhone”];

 // Persist changes back to database
 dinnerRepository.Save();

 // Perform HTTP redirect to details page for the saved Dinner
 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
}

Code snippet 1-30.txt

The approach in the previous code is a little verbose, though, especially once we add error handling
logic.

A better approach for this scenario is to leverage the built-in UpdateModel helper method on the
Controller base class. It supports updating the properties of an object we pass it using the incom-
ing form parameters. It uses refl ection to determine the property names on the object and then auto-
matically converts and assigns values to them based on the input values submitted by the client.

We could use the UpdateModel method to implement our HTTP-POST Edit action using this code:

//
// POST: /Dinners/Edit/2

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
}

Code snippet 1-31.txt

We can now visit the /Dinners/Edit/1 URL and change
the title of our Dinner (see Figure 1-87).

When we click the Save button, we’ll perform a form post
to our Edit action, and the updated values will be per-
sisted in the database. We will then be redirected to the
Details URL for the Dinner (which will display the newly
saved values like those in Figure 1-88).

FIGURE 1-87

643181c01.indd 66643181c01.indd 66 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 67

FIGURE 1-88

Handling Edit Errors

Our current HTTP-POST implementation works fi ne — except when there are errors.

When a user makes a mistake editing a form, we need to make sure that the form is redisplayed with
an informative error message that guides them to fi x it. This includes cases in which an end user
posts incorrect input (e.g., a malformed date string), as well as cases in which the input format is
valid, but there is a business rule violation. When errors occur, the form should preserve the input
data the user originally entered so that they don’t have to refi ll their changes manually. This process
should repeat as many times as necessary until the form successfully completes.

ASP.NET MVC includes some nice built-in features that make error handling and form redisplay
easy. To see these features in action, let’s update our Edit action method with the following code:

//
// POST: /Dinners/Edit/2

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();
 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 return View(dinner);
}

Code snippet 1-32.txt

643181c01.indd 67643181c01.indd 67 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

68 ❘ CHAPTER 1 NERDDINNER

To see this working, let’s re-run the application, edit a Dinner, and change it to have an empty
Title and an Event Date of BOGUS. When we press the Save button, our HTTP-POST Edit
method will not be able to save the Dinner (because there are errors) and will redisplay the form
shown in Figure 1-89.

FIGURE 1-89

Our application has a decent error experience. The text elements with the invalid input are
highlighted in red, and validation error messages are displayed to the end user about them. The
form is also preserving the input data the user originally entered — so that they don’t have to
refi ll anything.

How, you might ask, did this occur? How did the Title and Event Date textboxes highlight them-
selves in red and know to output the originally entered user values? And how did error messages get
displayed in the list at the top? The good news is that this didn’t occur by magic — rather, it was
because we used some of the built-in ASP.NET MVC features that make input validation and error
handling scenarios easy.

643181c01.indd 68643181c01.indd 68 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 69

Understanding ModelState and the Validation

HTML Helper Methods

Controller classes have a ModelState property collection that provides a way to indicate that errors
exist with a Model object being passed to a View. Error entries within the ModelState collection
identify the name of the Model property with the issue (e.g., Title, EventDate, or ContactPhone),
and allow a human-friendly error message to be specifi ed (e.g., “Title is required”).

The TryUpdateModel helper method automatically populates the ModelState collection when it
encounters errors while trying to assign form values to properties on the Model object. For example,
our Dinner object’s EventDate property is of type DateTime. When the UpdateModel method was
unable to assign the string value BOGUS to it in the previous scenario, the UpdateModel method
added an entry to the ModelState collection indicating that an assignment error had occurred with
that property.

HTML Helper Integration with ModelState

HTML helper methods (like Html.TextBoxFor) check the ModelState collection when rendering
output. If an error for the item exists, they render the user-entered value and a CSS error class.

For example, in our “Edit” View, we are using the Html.TextBoxFor helper method to render the
EventDate of our Dinner object:

<%: Html.TextBoxFor(model => model.EventDate) %>

When the View was rendered in the error scenario, the Html.TextBoxFor method checked the
ModelState collection to see if there were any errors associated with the “EventDate” property of
our Dinner object. When it determined that there was an error, it rendered the submitted user input
(“BOGUS”) as the value and added a CSS error class to the <input type=”textbox”/> markup it
generated:

<input class=”input-validation-error” id=”EventDate”
name=”EventDate” type=”text” value=”BOGUS” />

You can customize the appearance of the CSS error class to look however you want. The default
CSS error class — input-validation-error — is defi ned in the \content\site.css style sheet and
looks like the code below:

.input-validation-error
{
 border: 1px solid #ff0000;
 background-color: #ffeeee;
}

Code snippet 1-33.txt

This CSS rule is what caused our invalid input elements to be
highlighted, as in Figure 1-90.

FIGURE 1-90

643181c01.indd 69643181c01.indd 69 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

70 ❘ CHAPTER 1 NERDDINNER

Html .ValidationMessageFor Helper Method

The Html.ValidationMessageFor helper method can be used to output the ModelState error mes-
sage associated with a particular model property:

<%: Html.ValidationMessageFor(model => model.EventDate) %>

The previous code outputs:

 The value ‘BOGUS’ is invalid

The Html.ValidationMessageFor helper method also supports a second parameter that allows
developers to override the error text message that is displayed:

<%: Html.ValidationMessageFor(model => model.EventDate, “*”) %>

The previous code outputs:

*

instead of the default error text when an error is present for the EventDate property.

Html.ValidationSummary Helper Method

The Html.ValidationSummary helper method can be used to render a summary error message,
accompanied by a list of all detailed error messages in the ModelState collection as
shown in Figure 1-91.

FIGURE 1-91

The Html.ValidationSummary helper method takes an optional string parameter — which defi nes
a summary error message to display above the list of detailed errors:

<%: Html.ValidationSummary(“Please correct the errors and try again.”) %>

643181c01.indd 70643181c01.indd 70 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 71

You can optionally use CSS to override what the error list looks like.

Complete Edit Action Method Implementations

The following code implements all of the Controller logic necessary for our Edit scenario:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);
 return View(dinner);
}
//
// POST: /Dinners/Edit/2

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 return View(dinner);
}

Code snippet 1-34.txt

The nice thing about our Edit implementation is that neither our Controller class nor our View tem-
plate has to know anything about the specifi c validation rules being enforced by our Dinner model.
We can add additional rules to our model in the future and do not have to make any code changes
to our Controller or View in order for them to be supported. This provides us with the fl exibility to
easily evolve our application requirements in the future with a minimum of code changes.

Implementing the HTTP-GET Create Action Method

We’ve fi nished implementing the Edit behavior of our DinnersController class. Let’s now move
on to implement the Create support on it — which will enable users to add new Dinners.

We’ll begin by implementing the HTTP-GET behavior of our Create action method. This method
will be called when someone visits the /Dinners/Create URL. Our implementation looks like this:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)

643181c01.indd 71643181c01.indd 71 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

72 ❘ CHAPTER 1 NERDDINNER

 };

 return View(dinner);
}

Code snippet 1-35.txt

The previous code creates a new Dinner object
and assigns its EventDate property to be one
week in the future. It then renders a View that
is based on the new Dinner object. Because we
haven’t explicitly passed a name to the View
helper method, it will use the convention-based
default path to resolve the View template:
/Views/Dinners/Create.aspx.

Let’s now create this View template. We can do
this by right-clicking within the Create action
method and selecting the “Add View” context
menu command. Within the “Add View” dialog
we’ll indicate that we are passing a Dinner object
to the View template and choose to auto-scaffold
a Create template (see Figure 1-92).

When we click the Add button, Visual Studio
will save a new scaffold-based Create.aspx View
to the \Views\Dinners directory and open it up
within the integrated development environment
(IDE) (see Figure 1-93).

FIGURE 1-93

FIGURE 1-92

643181c01.indd 72643181c01.indd 72 5/20/10 10:23:29 AM5/20/10 10:23:29 AM

Create, Update, Delete Form Scenarios ❘ 73

Let’s make a few changes to the default “create” scaffold fi le that was generated for us, and modify
it up to look like the code below:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Host a Dinner
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Host a Dinner</h2>

 <%: Html.ValidationSummary(“Please correct the errors and try again.”) %>

 <% using (Html.BeginForm()) {%>

 <fieldset>
 <p>
 <%: Html.LabelFor(m => m.Title) %>
 <%: Html.TextBoxFor(m => m.Title) %>
 <%: Html.ValidationMessageFor(m => m.Title, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.EventDate) %>
 <%: Html.TextBoxFor(m => m.EventDate) %>
 <%: Html.ValidationMessageFor(m => m.EventDate, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Description) %>
 <%: Html.TextAreaFor(m => m.Description) %>
 <%: Html.ValidationMessageFor(m => m.Description, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Address) %>
 <%: Html.TextBoxFor(m => m.Address) %>
 <%: Html.ValidationMessageFor(m => m.Address, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Country) %>
 <%: Html.TextBoxFor(m => m.Country) %>
 <%: Html.ValidationMessageFor(m => m.Country, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.ContactPhone) %>
 <%: Html.TextBoxFor(m => m.ContactPhone) %>
 <%: Html.ValidationMessageFor(m => m.ContactPhone, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Latitude) %>
 <%: Html.TextBoxFor(m => m.Latitude) %>
 <%: Html.ValidationMessageFor(m => m.Latitude, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Longitude) %>
 <%: Html.TextBoxFor(m => m.Longitude) %>
 <%: Html.ValidationMessageFor(m => m.Longitude, “*”) %>

643181c01.indd 73643181c01.indd 73 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

74 ❘ CHAPTER 1 NERDDINNER

 </p>
 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

Code snippet 1-36.txt

And now when we run our application and access the /Dinners/Create URL within the browser, it
will render the UI as in Figure 1-94 from our Create action implementation.

FIGURE 1-94

Implementing the HTTP-POST Create Action Method

We have the HTTP-GET version of our Create action method implemented. When a user clicks
the Save button, it performs a form post to the /Dinners/Create URL and submits the HTML
<input> form values using the HTTP-POST verb.

643181c01.indd 74643181c01.indd 74 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

Create, Update, Delete Form Scenarios ❘ 75

Let’s now implement the HTTP-POST behavior of our Create action method. We’ll begin by add-
ing an overloaded Create action method to our DinnersController that has an HttpPost attribute
on it that indicates it handles HTTP-POST scenarios:

//
// POST: /Dinners/Create

[HttpPost]
public ActionResult Create(FormCollection formValues) {
 ...
}

Code snippet 1-37.txt

There are a variety of ways in which we can access the posted form parameters within our HTTP-
POST-enabled Create method.

One approach is to create a new Dinner object and then use the UpdateModel helper method (as
we did with the Edit action) to populate it with the posted form values. We can then add it to our
DinnerRepository, persist it to the database, and redirect the user to our Details action to show
the newly created Dinner, using the following code:

//
// POST: /Dinners/Create

[HttpPost]
public ActionResult Create(FormCollection formValues) {
 Dinner dinner = new Dinner();

 if(TryUpdateModel(dinner)) {
 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id=dinner.DinnerID});
 }
 return View(dinner);
}

Code snippet 1-38.txt

Alternatively, we can use an approach in which we have our Create action method take a Dinner
object as a method parameter. ASP.NET MVC will then automatically instantiate a new Dinner
object for us, populate its properties using the form inputs, and pass it to our action method:

//
// POST: /Dinners/Create

[HttpPost]
public ActionResult Create(Dinner dinner) {
 if (ModelState.IsValid) {
 dinner.HostedBy = “SomeUser”;

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id = dinner.DinnerID });

643181c01.indd 75643181c01.indd 75 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

76 ❘ CHAPTER 1 NERDDINNER

 }
 return View(dinner);
}

Code snippet 1-39.txt

Our action method in the previous code verifi es that the Dinner object has been successfully popu-
lated with the form post values by checking the ModelState.IsValid property. This will return
false if there are input conversion issues (e.g., a string of “BOGUS” for the EventDate property), and
if there are any issues, our action method redisplays the form.

If the input values are valid, then the action method attempts to add and save the new Dinner to the
DinnerRepository.

To see this error handling behavior in action, we can request the /Dinners/Create URL and fi ll out
details about a new Dinner. Incorrect input or values will cause the Create form to be redisplayed
with the errors highlighted as in Figure 1-95.

FIGURE 1-95

Notice how our Create form is honoring the exact same validation and business rules as our Edit
form. This is because our validation and business rules were defi ned in the model and were not
embedded within the UI or Controller of the application. This means we can later change/evolve our
validation or business rules in a single place and have them apply throughout our application. We

643181c01.indd 76643181c01.indd 76 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

Create, Update, Delete Form Scenarios ❘ 77

will not have to change any code within either our Edit or Create action method to automatically
honor any new rules or modifi cations to existing ones.

When we fi x the input values and click the Save button again, our addition to the DinnerRepository
will succeed, and a new Dinner will be added to the database. We will then be redirected to the
/Dinners/Details/[id] URL — where we will be presented with details about the newly created
Dinner (see Figure 1-96).

FIGURE 1-96

Implementing the HTTP-GET Delete Action Method

Let’s now add “Delete” support to our DinnersController.

We’ll begin by implementing the HTTP-GET behavior of our Delete action method. This method
will get called when someone visits the /Dinners/Delete/[id] URL. Below is the implementation:

//
// HTTP GET: /Dinners/Delete/1

public ActionResult Delete(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
}

Code snippet 1-40.txt

643181c01.indd 77643181c01.indd 77 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

78 ❘ CHAPTER 1 NERDDINNER

The action method attempts to retrieve the
Dinner to be deleted. If the dinner exists, it ren-
ders a View based on the Dinner object. If the
object doesn’t exist (or has already been deleted),
it returns a View that renders the “NotFound”
View template we created earlier for our Details
action method.

We can create the “Delete” View template by
right-clicking within the Delete action method
and selecting the “Add View” context menu com-
mand. Within the “Add View” dialog, we’ll indi-
cate that we are passing a Dinner object to our
View template as its Model, and choose to create
a delete template as shown in Figure 1-97.

When we click the Add button, Visual Studio will
add a new Delete.aspx View template fi le for us
within our \Views\Dinners directory. We’ll add
some HTML and code to the template to imple-
ment a Delete Confi rmation screen, as shown below:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Delete Confirmation: <%: Model.Title %>
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>
 Delete Confirmation
 </h2>

 <div>
 <p>Please confirm you want to cancel the dinner titled:
 <i> <%: Model.Title %>? </i> </p>
 </div>

 <% using (Html.BeginForm()) { %>

 <input name=”confirmButton” type=”submit” value=”Delete” />

 <% } %>

</asp:Content>

Code snippet 1-41.txt

The code above displays the title of the Dinner to be deleted and outputs a <form> element that does
a POST to the /Dinners/Delete/[id] URL if the end user clicks the Delete button within it.

FIGURE 1-97

643181c01.indd 78643181c01.indd 78 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

Create, Update, Delete Form Scenarios ❘ 79

When we run our application and access the /Dinners/Delete/[id] URL for a valid Dinner
object, it renders the UI as shown in Figure 1-98.

FIGURE 1-98

PRODUCT TEAM ASIDE

Why Are We Doing a POST?

You might ask — why did we go through the effort of creating a <form> within our
Delete Confi rmation screen? Why not just use a standard hyperlink to link to an
action method that does the actual delete operation?

The reason is because we want to be careful to guard against Web-crawlers and
search engines discovering our URLs and inadvertently causing data to be deleted
when they follow the links. HTTP-GET-based URLs are considered safe for them
to access/crawl, and they are supposed to not follow HTTP-POST ones.

A good rule is to make sure that you always put destructive or data-modifying
operations behind HTTP-POST requests.

Implementing the HTTP-POST Delete Action Method

We now have the HTTP-GET version of our Delete action method implemented that displays a
Delete Confi rmation screen. When an end user clicks the Delete button, it will perform a form post
to the /Dinners/Dinner/[id] URL.

643181c01.indd 79643181c01.indd 79 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

80 ❘ CHAPTER 1 NERDDINNER

Let’s now implement the HTTP-POST behavior of the Delete action method using the code that
follows:

//
// HTTP POST: /Dinners/Delete/1

[HttpPost]
public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View(“Deleted”);
}

Code snippet 1-42.txt

The HTTP-POST version of our Delete action method attempts to retrieve the Dinner object to
delete. If it can’t fi nd it (because it has already been deleted), it renders our “NotFound” template. If
it fi nds the Dinner, it deletes it from the DinnerRepository. It then renders a “Deleted” template.

To implement the “Deleted” template, we’ll right-click in the action method and choose the “Add
View” context menu. We’ll name our view Deleted and have it be an empty template (and not take a
strongly typed Model object). We’ll then add some HTML content to it:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Dinner Deleted
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Dinner Deleted</h2>

 <div>
 <p>Your dinner was successfully deleted.</p>
 </div>
 <div>
 <p>Click for Upcoming Dinners</p>
 </div>
</asp:Content>

Code snippet 1-43.txt

And now when we run our application and access the /Dinners/Delete/[id] URL for a valid
Dinner object, it will render our Dinner Delete Confi rmation screen as shown in Figure 1-99.

When we click the Delete button, it will perform an HTTP POST to the /Dinners/Delete/[id]
URL, which will delete the Dinner from our database, and display our “Deleted” View template
(see Figure 1-100).

643181c01.indd 80643181c01.indd 80 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

Create, Update, Delete Form Scenarios ❘ 81

FIGURE 1-99

FIGURE 1-100

Model Binding Security

We’ve discussed two different ways to use the built-in model-binding features of ASP.NET MVC.
The fi rst using the UpdateModel method to update properties on an existing Model object, and the
second using ASP.NET MVC’s support for passing Model objects in as action method parameters.
Both of these techniques are very powerful and extremely useful.

This power also brings with it responsibility. It is important to always be paranoid about security
when accepting any user input, and this is also true when binding objects to form input. You should
be careful to always HTML-encode any user-entered values to avoid HTML and JavaScript injec-
tion attacks, and be careful of SQL injection attacks.

643181c01.indd 81643181c01.indd 81 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

82 ❘ CHAPTER 1 NERDDINNER

We are using Entity Framework for our application, which automatically
encodes parameters to prevent SQL Injection attacks.

You should never rely on client-side validation alone, and always use server-side validation to guard
against hackers attempting to send you bogus values.

One additional security item to make sure you think about when using the binding features of
ASP.NET MVC is the scope of the objects you are binding. Specifi cally, you want to make sure
you understand the security implications of the properties you are allowing to be bound, and make
sure you only allow those properties that really should be updatable by an end user to be updated.

By default, the UpdateModel method will attempt to update all properties on the Model object that
match incoming form parameter values. Likewise, objects passed as action method parameters also,
by default, can have all of their properties set via form parameters.

Locking Down Binding on a Per-Usage Basis

You can lock down the binding policy on a per-usage basis by providing an explicit include list of
properties that can be updated. This can be done by passing an extra string array parameter to the
UpdateModel method like the following code:

string[] allowedProperties = new[]{“Title”, “Description”,
 “ContactPhone”, “Address”,
 “EventDate”, “Latitude”,
 “Longitude”};

UpdateModel(dinner, allowedProperties);

Code snippet 1-44.txt

Objects passed as action method parameters also support a [Bind] attribute that enables an include
list of allowed properties to be specifi ed like the code that follows:

//
// POST: /Dinners/Create

[HttpPost]
public ActionResult Create([Bind(Include=”Title,Address”)] Dinner dinner) {
 ...
}

Code snippet 1-45.txt

Locking Down Binding on a Type Basis

You can also lock down the binding rules on a per-type basis. This allows you to specify the bind-
ing rules once and then have them apply in all scenarios (including both UpdateModel and action
method parameter scenarios) across all Controllers and action methods.

643181c01.indd 82643181c01.indd 82 5/20/10 10:23:30 AM5/20/10 10:23:30 AM

Create, Update, Delete Form Scenarios ❘ 83

You can customize the per-type binding rules by adding a [Bind] attribute onto a type. You can
then use the Bind attribute’s Include and Exclude properties to control which properties are bind-
able for the particular class or interface.

We’ll use this technique for the Dinner class in our NerdDinner application and add a [Bind] attri-
bute to it that restricts the list of bindable properties to the following:

[Bind(Include=”Title,Description,EventDate,Address,Country,ContactPhone,Latitude,
 Longitude”)]
public partial class Dinner {
}

Code snippet 1-46.txt

Notice we are not allowing the RSVPs collection to be manipulated via binding, nor are we allowing
the DinnerID or HostedBy properties to be set via binding. For security reasons, we’ll instead only
manipulate these particular properties using explicit code within our action methods.

CRUD Wrap-Up

ASP.NET MVC includes several built-in features that help with implementing form posting scenar-
ios. We used a variety of these features to provide CRUD (Create Read Update Delete) UI support
on top of our DinnerRepository.

We are using a Model-focused approach to implement our application. This means that all our vali-
dation and business rule logic is defi ned within our Model layer — and not within our Controllers
or Views. Neither our Controller class nor our View templates know anything about the specifi c
business rules being enforced by our Dinner Model class.

This will keep our application architecture clean and make it easier to test. We can add additional
business rules to our Model layer in the future and not have to make any code changes to our
Controller or View in order for them to be supported. This is going to provide us with a great deal
of agility to evolve and change our application in the future.

Our DinnersController now enables Dinner listings/details, as well as create, edit, and delete sup-
port. The complete code for the class can be found below:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {
 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 return View(dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

643181c01.indd 83643181c01.indd 83 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

84 ❘ CHAPTER 1 NERDDINNER

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }

 //
 // GET: /Dinners/Edit/2

 public ActionResult Edit(int id) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 return View(dinner);
 }

 //
 // POST: /Dinners/Edit/2

 [HttpPost]
 public ActionResult Edit(int id, FormCollection formValues) {
 Dinner dinner = dinnerRepository.GetDinner(id);

 if (TryUpdateModel(dinner)){

 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id = dinner.DinnerID });
 }
 return View(dinner);
 }

 //
 // GET: /Dinners/Create

 public ActionResult Create() {
 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };
 return View(dinner);
 }

 //
 // POST: /Dinners/Create

 [HttpPost]
 public ActionResult Create(Dinner dinner) {
 if (ModelState.IsValid) {
 dinner.HostedBy = “SomeUser”;
 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new{id=dinner.DinnerID});
 }

643181c01.indd 84643181c01.indd 84 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

ViewData and ViewModel ❘ 85

 return View(dinner);
 }

 //
 // HTTP GET: /Dinners/Delete/1

 public ActionResult Delete(int id) {
 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
 }
 //
 // HTTP POST: /Dinners/Delete/1

 [HttpPost]
 public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View(“Deleted”);
 }
}

Code snippet 1-47.txt

VIEWDATA AND VIEWMODEL

We’ve covered several form post scenarios and discussed how to implement create, read, update, and
delete (CRUD) support. We’ll now take our DinnersController implementation further and enable
support for richer form editing scenarios. While doing this, we’ll discuss two approaches that can be
used to pass data from Controllers to Views: ViewData and ViewModel.

Passing Data from Controllers to View Templates

One of the defi ning characteristics of the MVC pattern is the strict separation of concerns it helps
enforce between the different components of an application. Models, Controllers, and Views each
have well-defi ned roles and responsibilities, and they communicate with each other in well-defi ned
ways. This helps promote testability and code reuse.

When a Controller class decides to render an HTML response back to a client, it is responsible for
explicitly passing to the View template all of the data needed to render the response. View templates
should never perform any data retrieval or application logic — and should instead limit themselves
to only having rendering code that is driven off of the Model data passed to it by the Controller.

643181c01.indd 85643181c01.indd 85 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

86 ❘ CHAPTER 1 NERDDINNER

Right now the Model data being passed by our DinnersController class to our View templates
is simple and straightforward — a list of Dinner objects in the case of Index, and a single Dinner
object in the case of Details, Edit, Create, and Delete. As we add more UI capabilities to our
application, we are often going to need to pass more than just this data to render HTML responses
within our View templates. For example, we might want to change the Country fi eld within our Edit
and Create views from being an HTML textbox to being a dropdown list. Rather than hard-code
the dropdown list of country names in the View template, we might want to generate it from a list
of supported countries that we populate dynamically. We will need a way to pass both the Dinner
object and the list of supported countries from our Controller to our View templates.

Let’s look at two ways we can accomplish this.

Using the ViewData Dictionary

The Controller base class exposes a ViewDataDictionary property that can be used to pass addi-
tional data items from Controllers to Views.

For example, to support the scenario in which we want to change the Country textbox within our
Edit view from being an HTML textbox to a dropdown list, we can update our Edit action method
to pass (in addition to a Dinner object) a SelectList object that can be used as the Model of a
Countries dropdown list:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);
 var countries = new[] {
 “USA”,
 “Afghanistan”,
 “Akrotiri”,
 “Albania”,
 //… omitted for brevity
 “Zimbabwe”
 };

 ViewData[“Countries”] = new SelectList(countries, dinner.Country);

 return View(dinner);
}

Code snippet 1-48.txt

For now, we defi ne the list of countries within this controller action. That’s
something we’ll need to fi x later as we’ll need to reuse that list in other places.

643181c01.indd 86643181c01.indd 86 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

ViewData and ViewModel ❘ 87

The constructor of the SelectList from the previous code is accepting a list of countries to popu-
late the dropdown list with, as well as the currently selected value.

We can then update our Edit.aspx View template to use the Html.DropDownListFor helper method
instead of the Html.TextBoxFor helper method we used previously:

<%: Html.DropDownListFor(model => model.Country,
ViewData[“Countries”] as SelectList) %>

The Html.DropDownListFor helper method in the previous line of code takes two parameters.
The fi rst is an expression that specifi es the name of the HTML form element to output. The sec-
ond is the SelectList model we passed via the
ViewDataDictionary. We are using the C# as
keyword to cast the type within the dictionary as a
SelectList.

And now when we run our application and access
the /Dinners/Edit/1 URL within our browser,
we’ll see that our Edit UI has been updated to display
a dropdown list of countries instead of a textbox
(Figure 1-101).

Because we also render the Edit View template from the
HTTP-POST Edit method (in scenarios when errors
occur), we’ll want to make sure that we also update
this method to add the SelectList to ViewData when
the View template is rendered in error scenarios:

//
// POST: /Dinners/Edit/5

[HttpPost]
public ActionResult Edit(int id, FormCollection collection) {
 Dinner dinner = dinnerRepository.GetDinner(id);

 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }

 var countries = new[] {
 “USA”,
 “Afghanistan”,
 “Akrotiri”,
 “Albania”,
 //… omitted for brevity
 “Zimbabwe”
 };

 ViewData[“countries”] = new SelectList(countries, dinner.Country);
 return View(dinner)
}

Code snippet 1-49.txt

FIGURE 1-101

643181c01.indd 87643181c01.indd 87 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

88 ❘ CHAPTER 1 NERDDINNER

And now our DinnersController Edit scenario supports a dropdown list.

Using a ViewModel Pattern

The ViewDataDictionary approach has the benefi t of being fairly fast and easy to implement. Some
developers don’t like using string-based dictionaries, though, since typos can lead to errors that will
not be caught at compile-time. The untyped ViewDataDictionary also requires using the as opera-
tor or casting when using a strongly typed language like C# in a View template.

An alternative approach that we could use is one often referred to as the ViewModel pattern. When
using this pattern, we create strongly typed classes that are optimized for our specifi c View scenar-
ios and that expose properties for the dynamic values/content needed by our View templates. Our
Controller classes can then populate and pass these View-optimized classes to our View template to
use. This enables type safety, compile-time checking, and editor IntelliSense within View templates.

For example, to enable Dinner form editing scenarios, we can create a DinnerFormViewModel
class like the following code that exposes two strongly typed properties: a Dinner object and the
SelectList model needed to populate the Countries dropdown list:

public class DinnerFormViewModel {

 private static string[] _countries = new[] {
 “USA”,
 “Afghanistan”,
 “Akrotiri”,
 “Albania”,
 //… omitted for brevity
 “Zimbabwe”
 };

 // Properties
 public Dinner Dinner { get; private set; }
 public SelectList Countries { get; private set; }

 // Constructor
 public DinnerFormViewModel(Dinner dinner) {
 Dinner = dinner;

 Countries = new SelectList(_countries, dinner.Country);
 }
}

Code snippet 1-50.txt

We can then update our Edit action method to create the DinnerFormViewModel using the Dinner
object we retrieve from our repository, and then pass it to our View template:

//
// GET: /Dinners/Edit/5

[Authorize]

643181c01.indd 88643181c01.indd 88 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

ViewData and ViewModel ❘ 89

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-51.txt

We’ll then update our View template so that it expects a DinnerFormViewModel instead of a Dinner
object by changing the Inherits attribute at the top of the edit.aspx page like so:

Inherits=”System.Web.Mvc.ViewPage<NerdDinner.Controllers.DinnerFormViewModel>

Once we do this, the IntelliSense of the Model property within our View template will be
updated to refl ect the object model of the DinnerFormViewModel type we are passing it (see
Figure 1-102 and Figure 1-103).

FIGURE 1-102

FIGURE 1-103

We can then update our View code to work off of it. Notice in the following code how we are not
changing the names of the input elements we are creating (the form elements will still be named
“Title”, “Country”) — but we are updating the HTML Helper methods to retrieve the values
using the DinnerFormViewModel class:

<p>
 <%: Html.LabelFor(m => m.Title) %>
 <%: Html.TextBoxFor(m => m.Title) %>
 <%: Html.ValidationMessageFor(m => m.Title, “*”) %>
</p>
<p>
 <%: Html.LabelFor(m => m.Country) %>

643181c01.indd 89643181c01.indd 89 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

90 ❘ CHAPTER 1 NERDDINNER

 <%: Html.DropDownListFor(m => m.Country, Model.Countries) %>
 <%: Html.ValidationMessageFor(m => m.Country, “*”) %>
</p>

Code snippet 1-52.txt

We’ll also update our Edit post method to use the DinnerFormViewModel class when rendering errors:

//
// POST: /Dinners/Edit/5

[HttpPost]
public ActionResult Edit(int id, FormCollection collection) {
 Dinner dinner = dinnerRepository.GetDinner(id);

 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }

 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-53.txt

We can also update our Create action methods to reuse the exact same DinnerFormViewModel class
to enable the Countries dropdown list within those as well. The following code is the HTTP-GET
implementation:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };

 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-54.txt

The following code is the implementation of the HTTP-POST Create method:

//
// POST: /Dinners/Create

[HttpPost]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

643181c01.indd 90643181c01.indd 90 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

Partials and Master Pages ❘ 91

 dinner.HostedBy = “SomeUser”;

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }

 return View(new DinnerFormViewModel(dinnerToCreate));
}

Code snippet 1-55.txt

And now both our Edit and Create screens support dropdown lists for picking the country.

Custom-Shaped ViewModel Classes

In the scenario above, our DinnerFormViewModel class directly exposes the Dinner model object
as a property, along with a supporting SelectList model property. This approach works fi ne for
scenarios in which the HTML UI we want to create within our View template corresponds relatively
closely to our domain model objects.

For scenarios where this isn’t the case, one option that you can use is to create a custom-shaped
ViewModel class whose object model is more optimized for consumption by the View — and that
might look completely different from the underlying domain model object. For example, it could
potentially expose different property names and/or aggregate properties collected from multiple
model objects.

Custom-shaped ViewModel classes can be used both to pass data from Controllers to Views to ren-
der and to help handle form data posted back to a Controller’s action method. For this later sce-
nario, you might have the action method update a ViewModel object with the form-posted data, and
then use the ViewModel instance to map or retrieve an actual domain model object.

Custom-shaped ViewModel classes can provide a great deal of fl exibility and are something to inves-
tigate any time you fi nd the rendering code within your View templates or the form-posting code
inside your action methods starting to get too complicated. This is often a sign that your domain
models don’t cleanly correspond to the UI you are generating and that an intermediate custom-
shaped ViewModel class can help.

PARTIALS AND MASTER PAGES

One of the design philosophies that ASP.NET MVC embraces is the Don’t Repeat Yourself principle
(commonly referred to as DRY). A DRY design helps eliminate the duplication of code and logic,
which ultimately makes applications faster to build and easier to maintain.

We’ve already seen the DRY principle applied in several of our NerdDinner scenarios. A few exam-
ples: Our validation logic is implemented within our Model layer, which enables it to be enforced

643181c01.indd 91643181c01.indd 91 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

92 ❘ CHAPTER 1 NERDDINNER

across both Edit and Create scenarios in our Controller; we are reusing the “NotFound” View tem-
plate across the Edit, Details, and Delete action methods; we are using a convention-naming
pattern with our View templates, which eliminates the need to explicitly specify the name when we
call the View helper method; and we are reusing the DinnerFormViewModel class for both Edit and
Create action scenarios.

Let’s now look at ways we can apply the DRY principle within our View templates to eliminate code
duplication there as well.

Revisiting Our Edit and Create View Templates

Currently we are using two different View templates — Edit.aspx and Create.aspx — to display our
Dinner form UI. A quick visual comparison of them highlights how similar they are. Figure 1-104
shows what the Create form looks like.

FIGURE 1-104

And Figure 1-105 is what our “Edit” form looks like.

Not much of a difference, is there? Other than the title and header text, the form layout and input
controls are identical.

643181c01.indd 92643181c01.indd 92 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

Partials and Master Pages ❘ 93

FIGURE 1-105

If we open up the Edit.aspx and Create.aspx View templates, we’ll fi nd that they contain identical
form layout and input control code. This duplication means that we end up having to make changes
twice whenever we introduce or change a new Dinner property — which is not good.

Using Partial View Templates

ASP.NET MVC supports the ability to defi ne Partial View templates that can be used to encapsulate
View rendering logic for a subportion of a page. Partials provide a useful way to defi ne View render-
ing logic once and then reuse it in multiple places across an application.

To help “DRY-up” our Edit.aspx and Create.aspx View template duplication, we can create a
Partial View template named DinnerForm.ascx that encapsulates the form layout and input elements
common to both. We’ll do this by right-clicking our \Views\Dinners directory and choosing the
Add ➪ View menu command shown in Figure 1-106.

643181c01.indd 93643181c01.indd 93 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

94 ❘ CHAPTER 1 NERDDINNER

This will display the “Add View” dialog. We’ll name the new View we want to create DinnerForm,
select the “Create a partial view” checkbox on the dialog, and indicate that we will pass it a
DinnerFormViewModel class (see Figure 1-107).

When we click the Add button, Visual Studio will create a new DinnerForm.ascx View template for
us within the \Views\Dinners directory.

We can then copy/paste the duplicate form layout/input control code from our Edit.aspx/ Create.aspx
View templates into our new DinnerForm.ascx Partial View template:

<%: Html.ValidationSummary(“Please correct the errors and try again.”) %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <p>
 <%: Html.LabelFor(m => m.Title) %>
 <%: Html.TextBoxFor(m => m.Title) %>
 <%: Html.ValidationMessageFor(m => m.Title, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.EventDate) %>
 <%: Html.TextBoxFor(m => m.EventDate) %>
 <%: Html.ValidationMessageFor(m => m.EventDate, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Description) %>
 <%: Html.TextAreaFor(m => m.Description) %>
 <%: Html.ValidationMessageFor(m => m.Description, “*”)%>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Address) %>
 <%: Html.TextBoxFor(m => m.Address) %>

FIGURE 1-107
FIGURE 1-106

643181c01.indd 94643181c01.indd 94 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

Partials and Master Pages ❘ 95

 <%: Html.ValidationMessageFor(model => model.Address, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.Country) %>
 <%: Html.DropDownListFor(m => m.Country, Model.Countries) %>
 <%: Html.ValidationMessageFor(m => m.Country, “*”) %>
 </p>
 <p>
 <%: Html.LabelFor(m => m.ContactPhone) %>
 <%: Html.TextBoxFor(m => m.ContactPhone) %>
 <%: Html.ValidationMessageFor(m => m.ContactPhone, “*”) %>
 </p>

 <p>
 <input type=”submit” value=”Save” />
 </p>
 </fieldset>

<% } %>

Code snippet 1-56.txt

We can then update our Edit and Create View templates to call the DinnerForm Partial template and
eliminate the form duplication. We can do this by calling Html.RenderPartial(“DinnerForm”)
within our View templates:

CREATE.ASPX

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Host a Dinner
</asp:Content>

<asp:Content ID=”Create” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Host a Dinner</h2>

 <% Html.RenderPartial(“DinnerForm”); %>

</asp:Content>

EDIT.ASPX

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Edit: <%: Model.Dinner.Title %>
</asp:Content>

<asp:Content ID=”Edit” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Edit Dinner</h2>

 <% Html.RenderPartial(“DinnerForm”); %>

</asp:Content>

Code snippet 1-57.txt

643181c01.indd 95643181c01.indd 95 5/20/10 10:23:31 AM5/20/10 10:23:31 AM

96 ❘ CHAPTER 1 NERDDINNER

You can explicitly qualify the path of the Partial template you want when calling Html.RenderPartial
(e.g., ~/Views/Dinners/DinnerForm.ascx). In our previous code, though, we were taking advantage of
the convention-based naming pattern within ASP.NET MVC and just specifying DinnerForm as the
name of the Partial to render. When we do this, ASP.NET MVC will look fi rst in the convention-based
views directory (for DinnersController this would be /Views/Dinners). If it doesn’t fi nd the Partial
template there, it will then look for it in the /Views/Shared directory.

When Html.RenderPartial is called with just the name of the Partial View, ASP.NET MVC will
pass to the Partial View the same Model and ViewData dictionary objects used by the calling View
template. Alternatively, there are overloaded versions of Html.RenderPartial that enable you to
pass an alternate Model object and/or ViewData dictionary for the partial view to use. This is useful
for scenarios in which you only want to pass a subset of the full Model/ViewModel.

PRODUCT TEAM ASIDE

Why <% %> instead of <%: %>?

One of the subtle things you might have noticed with the previous code is that we are
using a <% %> block instead of a <%: %> block when calling Html.RenderPartial.

<%: %> blocks in ASP.NET indicate that a developer wants to render a specifi ed
value (e.g., <%: “Hello” %> would render “Hello”). <% %> blocks instead indicate
that the developer wants to execute code and that any rendered output within them
must be done explicitly (e.g., <% Response.Write(“Hello”); %>).

The reason we are using a <% %> block with our previous Html.RenderPartial
code is because the Html.RenderPartial method doesn’t return a string and
instead outputs the content directly to the calling View template’s output stream.
It does this for performance effi ciency reasons, and by doing so, it avoids the need
to create a (potentially very large) temporary string object. This reduces memory
usage and improves overall application throughput.

One common mistake when using Html.RenderPartial is to forget to add a semi-
colon at the end of the call when it is within a <% %> block. For example, this code
will cause a compiler error:

 <% Html.RenderPartial(“DinnerForm”) %>

You instead need to write:

 <% Html.RenderPartial(“DinnerForm”); %>

This is because <% %> blocks are self-contained code statements and, when using C#
code statements, need to be terminated with a semicolon.

Using Partial View Templates to Clarify Code

We created the DinnerForm Partial View template to avoid duplicating View rendering logic in mul-
tiple places. This is the most common reason to create Partial View templates.

643181c01.indd 96643181c01.indd 96 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

Partials and Master Pages ❘ 97

Sometimes it still makes sense to create Partial Views even when they are only being called in a sin-
gle place. Very complicated View templates can often become much easier to read when their View
rendering logic is extracted and partitioned into one or more well-named Partial templates.

For example, consider the following code snippet from the e fi le in our project (which we will be look-
ing at shortly). The code is relatively straightforward to read — partly because the logic to display a
login/logout link at the top right of the screen is encapsulated within the LogOnUserControl Partial:

<div id=”header”>
 <div id=”title”>
 <h1>My MVC Application</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LogOnUserControl”); %>
 </div>

 <div id=”menucontainer”>

 <ul id=”menu”>
 <%: Html.ActionLink(“Home”, “Index”, “Home”)%>
 <%: Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
</div>

Code snippet 1-58.txt

Whenever you fi nd yourself getting confused trying to understand the HTML/code markup within
a View template, consider whether it wouldn’t be clearer if some of it was extracted and refactored
into well-named Partial Views.

Master Pages

In addition to supporting Partial Views, ASP.NET MVC also
supports the ability to create Master Page templates that can be
used to defi ne the common layout and top-level HTML of a site.
Content placeholder controls can then be added to the Master
Page to identify replaceable regions that can be overridden or
fi lled in by Views. This provides a very effective (and DRY) way to
apply a common layout across an application.

By default, new ASP.NET MVC projects have a Master Page tem-
plate automatically added to them. This Master Page is named
Site.master and lives within the \Views\Shared\ folder, as shown in
Figure 1-108.

The default Site.master fi le looks like the following code. It
defi nes the outer HTML of the site, along with a menu for naviga-
tion at the top. It contains two replaceable content placeholder FIGURE 1-108

643181c01.indd 97643181c01.indd 97 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

98 ❘ CHAPTER 1 NERDDINNER

controls — one for the title and the other for where the primary content of a Page should be
replaced:

<%@ Master Language=”C#” Inherits=”System.Web.Mvc.ViewMasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>
 <title><asp:ContentPlaceHolder ID=”TitleContent” runat=”server” /></title>
 <link href=”../../Content/Site.css” rel=”stylesheet” type=”text/css” />
</head>

<body>
 <div class=”page”>

 <div id=”header”>
 <div id=”title”>
 <h1>My MVC Application</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LogOnUserControl”); %>
 </div>

 <div id=”menucontainer”>

 <ul id=”menu”>
 <%: Html.ActionLink(“Home”, “Index”, “Home”)%>
 <%: Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
 </div>

 <div id=”main”>
 <asp:ContentPlaceHolder ID=”MainContent” runat=”server” />
 </div>
 </div>
</body>
</html>

Code snippet 1-59.txt

All of the View templates we’ve created for our NerdDinner application (“List”, “Details”,
“Edit”, “Create”, “NotFound”, etc.) have been based on this Site.master template. This is indicated
via the MasterPageFile attribute that was added by default to the top <% @ Page %> directive when
we created our Views using the “Add View” dialog:

<%@ Page Language=”C#”
Inherits=”System.Web.Mvc.ViewPage<NerdDinner.Controllers
.DinnerViewModel>” MasterPageFile=”~/Views/Shared/Site.Master” %>

Code snippet 1-60.txt

643181c01.indd 98643181c01.indd 98 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

Partials and Master Pages ❘ 99

What this means is that we can change the Site.master content and have the changes automatically
be applied and used when we render any of our View templates.

Let’s update our Site.master’s header section so that the header of our application is “NerdDinner”
instead of “My MVC Application.” Let’s also update our navigation menu so that the fi rst tab is
“Find a Dinner” (handled by the HomeController’s Index action method), and let’s add a new tab
called “Host a Dinner” (handled by the DinnersController’s Create action method):

<div id=”header”>
 <div id=”title”>
 <h1>NerdDinner</h1>
 </div>

 <div id=”logindisplay”>
 <% Html.RenderPartial(“LoginStatus”); %>
 </div>

 <div id=”menucontainer”>
 <ul id=”menu”>
 <%: Html.ActionLink(“Find Dinner”, “Index”, “Home”)%>
 <%: Html.ActionLink(“Host Dinner”, “Create”, “Dinners”)%>
 <%: Html.ActionLink(“About”, “About”, “Home”)%>

 </div>
</div>

Code snippet 1-61.txt

When we save the Site.master fi le and refresh our browser, we’ll see our header changes show up
across all Views within our application (e.g., see Figure 1-109) and with the /Dinners/Edit/[id]
URL (see Figure 1-110).

FIGURE 1-109

643181c01.indd 99643181c01.indd 99 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

100 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-110

Partials and Master Pages provide very fl exible options that enable you to cleanly organize views.
You’ll fi nd that they help you avoid duplicating View content/code, and make your View templates
easier to read and maintain.

PAGING SUPPORT

If our site is successful, it will have thousands of upcoming Dinners. We need to make sure that our
UI scales to handle all of these Dinners and allows users to browse them. To enable this, we’ll add
paging support to our /Dinners URL so that instead of displaying thousands of Dinners at once,
we’ll only display 10 upcoming Dinners at a time — and allow end users to page back and forward
through the entire list in an SEO-friendly way.

643181c01.indd 100643181c01.indd 100 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

Paging Support ❘ 101

Index Action Method Recap

The Index action method within our DinnersController class currently looks like the following
code:

//
// GET: /Dinners/

public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
}

Code snippet 1-62.txt

When a request is made to the /Dinners URL, it retrieves a list of all upcoming Dinners and then
renders a listing of all of them (see Figure 1-111).

FIGURE 1-111

Understanding IQueryable<T>

IQueryable<T> is an interface that was introduced with LINQ in .NET 3.5. It enables powerful
deferred execution scenarios that we can take advantage of to implement paging support.

643181c01.indd 101643181c01.indd 101 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

102 ❘ CHAPTER 1 NERDDINNER

In our DinnerRepository in the following code we are returning an IQueryable<Dinner>
sequence from our FindUpcomingDinners method:

public class DinnerRepository {

 private NerdDinnerDataContext db = new NerdDinnerDataContext();

 //
 // Query Methods

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in db.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

Code snippet 1-63.txt

The IQueryable<Dinner> object returned by our FindUpcomingDinners method encapsulates a
query to retrieve Dinner objects from our database using Entity Framework. Importantly, it won’t
execute the query against the database until we attempt to access/iterate over the data in the query,
or until we call the ToList method on it. The code calling our FindUpcomingDinners method can
optionally choose to add additional chained operations/fi lters to the IQueryable<Dinner> object
before executing the query. Entity Framework is then smart enough to execute the combined query
against the database when the data is requested.

To implement paging logic, we can update our Index action method so that it applies additional Skip
and Take operators to the returned IQueryable<Dinner> sequence before calling ToList on it:

//
// GET: /Dinners/

public ActionResult Index() {

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.OrderBy(d => d.EventDate)
 .Skip(10)
 .Take(20).ToList();

 return View(paginatedDinners);
}

Code snippet 1-64.txt

The preceding code skips over the fi rst 10 upcoming Dinners in the database and then returns 20
Dinners. Entity Framework is smart enough to construct an optimized SQL query that performs this
skipping logic in the SQL database — and not in the web server. This means that even if we have
millions of upcoming Dinners in the database, only the 10 we want will be retrieved as part of this
request (making it effi cient and scalable).

Also note that the code makes a call to OrderBy before calling Skip. The Skip method is only sup-
ported for sorted input.

643181c01.indd 102643181c01.indd 102 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

Paging Support ❘ 103

Adding a page Value to the URL

Instead of hard-coding a specifi c page range, we’ll want our URLs to include a page parameter that
indicates which Dinner range a user is requesting.

Using a Querystring Value

The code that follows demonstrates how we can update our Index action method to support a
query-string parameter and enable URLs like /Dinners?page=2:

//
// GET: /Dinners/
// /Dinners?page=2

public ActionResult Index(int page = 0) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.OrderBy(d => d.EventDate)
 .Skip(page * pageSize)
 .Take(pageSize)
 .ToList();

 return View(paginatedDinners);
}

Code snippet 1-65.txt

The Index action method in the previous code has a parameter named page. The parameter is
declared as an integer, but with a default value of 0. This
means that the /Dinners?page=2 URL will cause a value of
2 to be passed as the parameter value. The /Dinners URL
(without a query-string value) will cause the default value of 0
to be passed.

We are multiplying the page value by the page size (in this
case, 10 rows) to determine how many Dinners to skip over.

Using Embedded URL Values

An alternative to using a query-string value would be to
embed the page parameter within the actual URL itself. For
example: /Dinners/Page/2 or /Dinners/2. ASP.NET MVC
includes a powerful URL routing engine that makes it easy to
support scenarios like this.

We can register custom routing rules that map any incom-
ing URL or URL format to any Controller class or action
method we want. All we need to do is to open the Global.asax
fi le within our project (see Figure 1-112) FIGURE 1-112

643181c01.indd 103643181c01.indd 103 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

104 ❘ CHAPTER 1 NERDDINNER

and then register a new mapping rule using the MapRoute helper method as in the fi rst call to
routes.MapRoute that follows:

public void RegisterRoutes(RouteCollection routes) {

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(
 “UpcomingDinners”,
 “Dinners/Page/{page}”,
 new { controller = “Dinners”, action = “Index” }
);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL with params
 new { controller=”Home”, action=”Index”,
 id=UrlParameter.Optional } // Param defaults
);
}

void Application_Start() {
 RegisterRoutes(RouteTable.Routes);
}

Code snippet 1-66.txt

In the previous code, we were registering a new routing rule named UpcomingDinners. We indicate
that it has the URL format Dinners/Page/{page} — where {page} is a parameter value embedded
within the URL. The third parameter to the MapRoute method indicates that we should map URLs
that match this format to the Index action method on the DinnersController class.

We can use the exact same Index code we had before with our Query-string scenario — except now
our page parameter will come from the URL and not the query string:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int page = 0) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.OrderBy(d => d.EventDate)
 .Skip(page * pageSize)
 .Take(pageSize)
 .ToList();

 return View(paginatedDinners);
}

Code snippet 1-67.txt

And now when we run the application and type in /Dinners, we’ll see the fi rst 10 upcoming
Dinners, as shown in Figure 1-113.

643181c01.indd 104643181c01.indd 104 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

Paging Support ❘ 105

And when we type in /Dinners/Page/1, we’ll see the next page of Dinners (see Figure 1-114).

FIGURE 1-113

FIGURE 1-114

Adding Page Navigation UI

The last step to complete our paging scenario will be to implement the “Next” and “Previous” navi-
gation UIs within our View template to enable users to easily skip over the Dinner data.

643181c01.indd 105643181c01.indd 105 5/20/10 10:23:32 AM5/20/10 10:23:32 AM

106 ❘ CHAPTER 1 NERDDINNER

To implement this correctly, we’ll need to know the total number of Dinners in the database, as
well as how many pages of data this translates to. We’ll then need to calculate whether the currently
requested page value is at the beginning or end of the data, and show or hide the Previous and Next
UIs accordingly. We could implement this logic within our Index action method. Alternatively, we
can add a helper class to our project that encapsulates this logic in a more reusable way.

The following code is a simple PaginatedList helper class that derives from the List<T> col-
lection class built into the .NET Framework. It implements a reusable collection class that can
be used to paginate any sequence of IQueryable data. In our NerdDinner application we’ll have
it work over the IQueryable<Dinner> results, but it could just as easily be used against the
IQueryable<Product> or IQueryable<Customer> results in other application scenarios:

public class PaginatedList<T> : List<T> {

 public int PageIndex { get; private set; }
 public int PageSize { get; private set; }
 public int TotalCount { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(IQueryable<T> source, int pageIndex, int pageSize) {
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = source.Count();
 TotalPages = (int) Math.Ceiling(TotalCount / (double)PageSize);

 this.AddRange(source.Skip(PageIndex * PageSize).Take(PageSize));
 }

 public bool HasPreviousPage {
 get {
 return (PageIndex > 0);
 }
 }

 public bool HasNextPage {
 get {
 return (PageIndex+1 < TotalPages);
 }
 }
}

Code snippet 1-68.txt

Notice in the previous code how it calculates and then exposes properties like PageIndex,
PageSize, TotalCount, and TotalPages. It also then exposes two helper properties —
HasPreviousPage and HasNextPage — that indicate whether the page of data in the collection is
at the beginning or end of the original sequence. The above code will cause two SQL queries to be
run — the fi rst to retrieve the count of the total number of Dinner objects (this doesn’t return the
objects; rather, it performs a SELECT COUNT statement that returns an integer), and the second to
retrieve just the rows of data we need from our database for the current page of data.

643181c01.indd 106643181c01.indd 106 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Paging Support ❘ 107

We can then update our DinnersController.Index helper method to create a
PaginatedList<Dinner> from our DinnerRepository.FindUpcomingDinners result and pass it to
our View template:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int page = 0) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = new PaginatedList<Dinner>(upcomingDinners,
 page,
 pageSize);

 return View(paginatedDinners);
}

Code snippet 1-69.txt

We can then update the \Views\Dinners\Index.aspx View template to inherit
from ViewPage<NerdDinner.Helpers.PaginatedList<Dinner>> instead of
ViewPage<IEnumerable<Dinner>>, and then add the following code to the bottom of our View
template to show or hide the Next and Previous navigation UIs:

<% if (Model.HasPreviousPage) { %>

 <%: Html.RouteLink(“<<<”,
 “UpcomingDinners”,
 new { page=(Model.PageIndex-1) }) %>

<% } %>

<% if (Model.HasNextPage) { %>

 <%: Html.RouteLink(“>>>”,
 “UpcomingDinners”,
 new { page = (Model.PageIndex + 1) })%>

<% } %>

Code snippet 1-70.txt

Notice, in the previous code, how we are using the Html.RouteLink helper method to generate our
hyperlinks. This method is similar to the Html.ActionLink helper method we’ve used previously.
The difference is that we are generating the URL using the “UpcomingDinners” routing rule we set
up within our Global.asax fi le. This ensures that we’ll generate URLs to our Index action method
that have the format: /Dinners/Page/{page}, where the {page} value is a variable we are provid-
ing above based on the current PageIndex.

And now when we run our application again, we’ll see 10 Dinners at a time in our browser, as
shown in Figure 1-115.

643181c01.indd 107643181c01.indd 107 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

108 ❘ CHAPTER 1 NERDDINNER

We also have <<< and >>> navigation UIs at the bottom of the page that allow us to skip forward
and backward over our data using search-engine-accessible URLs (see Figure 1-116).

FIGURE 1-115

FIGURE 1-116

643181c01.indd 108643181c01.indd 108 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Authentication and Authorization ❘ 109

PRODUCT TEAM ASIDE

Understanding the Implications of IQueryable<T>

IQueryable<T> is a very powerful feature that enables a variety of interesting deferred
execution scenarios (like paging and composition-based queries). As with all powerful
features, you want to be careful with how you use it and make sure it is not abused.

It is important to recognize that returning an IQueryable<T> result from your reposi-
tory enables calling code to append on chained operator methods to it and thus par-
ticipate in the ultimate query execution. If you do not want to provide this ability to
calling code, then you should return back IList<T>, List<T>, or IEnumerable<T>
results — which contain the results of a query that has already executed.

For pagination scenarios, this would require you to push the actual data pagination
logic into the repository method being called. In this scenario, we might update our
FindUpcomingDinners fi nder method to have a signature that either returned a
PaginatedList:

PaginatedList< Dinner> FindUpcomingDinners(int pageIndex,
 int pageSize){ }

or returned an IList<Dinner>, and use a totalCount out param to return the
total count of Dinners:

IList<Dinner> FindUpcomingDinners(int pageIndex, int pageSize,
 out int totalCount) { }

AUTHENTICATION AND AUTHORIZATION

Right now our NerdDinner application grants anyone visiting the site the ability to create and edit
the details of any Dinner. Let’s change this so that users need to register and log in to the site to cre-
ate new Dinners, and add a restriction so that only the user who is hosting a Dinner can edit it later.

To enable this, we’ll use authentication and authorization to secure our application.

Understanding Authentication and Authorization

Authentication is the process of identifying and validating the identity of a client accessing an appli-
cation. Put more simply, it is about identifying who the end user is when he or she visits a website.

ASP.NET supports multiple ways to authenticate browser users. For Internet web applications, the
most common authentication approach used is called Forms Authentication. Forms Authentication
enables a developer to author an HTML login form within his application and then validate the
username/password an end user submits against a database or other password credential store.
If the username/password combination is correct, the developer can then ask ASP.NET to issue

643181c01.indd 109643181c01.indd 109 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

110 ❘ CHAPTER 1 NERDDINNER

an encrypted HTTP cookie to identify the user across future requests. We’ll be using Forms
Authentication with our NerdDinner application.

Authorization is the process of determining whether an authenticated user has permission to access
a particular URL/resource or to perform some action. For example, within our NerdDinner applica-
tion, we’ll want to authorize only users who are logged in to access the /Dinners/Create URL and
create new Dinners. We’ll also want to add authorization logic so that only the user who is hosting a
dinner can edit it — and deny edit access to all other users.

Forms Authentication and the AccountController

The default Visual Studio project template for ASP.NET MVC automatically enables Forms
Authentication when new ASP.NET MVC applications are created. It also automatically adds a pre-
built account login implementation to the project — which makes it really easy to integrate security
within a site.

The default Site.master Master Page displays a [Log On] link (shown in Figure 1-117) at the top
right of the site when the user accessing it is not authenticated.

FIGURE 1-117

Clicking the [Log On] link takes a user to the /Account/LogOn URL (Figure 1-118).

Visitors who haven’t registered can do so by clicking the Register link, which will take them to the /
Account/Register URL and allow them to enter account details (see Figure 1-119).

643181c01.indd 110643181c01.indd 110 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Authentication and Authorization ❘ 111

FIGURE 1-118

FIGURE 1-119

643181c01.indd 111643181c01.indd 111 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

112 ❘ CHAPTER 1 NERDDINNER

Clicking the Register button will create a new user within the ASP.NET Membership System and
authenticate the user onto the site using Forms Authentication.

When a user is logged in, the Site.master changes the top right of the page to output a “Welcome
[username]!” message and renders a [Log Off] link instead of a [Log On] one. Clicking the [Log
Off] link logs out the user (see Figure 1-120).

The above login, logout, and registration functionality is implemented within the
AccountController class that was added to our project by VS when it created it. The UI for the
AccountController is implemented using View templates within the \Views\Account directory
(shown in Figure 1-121).

The AccountController class uses the ASP.NET Forms Authentication system to issue encrypted
authentication cookies and the ASP.NET Membership API to store and validate usernames/pass-
words. The ASP.NET Membership API is extensible and enables any password credential store to
be used. ASP.NET ships with built-in membership provider implementations that store usernames/
passwords within a SQL database or within the Active Directory.

We can confi gure which membership provider our NerdDinner application should use by opening
the web.confi g fi le at the root of the project and looking for the <membership> section within it. The
default web.confi g, added when the project was created, registers the SQL membership provider and
confi gures it to use a connection-string named ApplicationServices to specify the database location.

FIGURE 1-121FIGURE 1-120

643181c01.indd 112643181c01.indd 112 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Authentication and Authorization ❘ 113

The default ApplicationServices connection string (which
is specifi ed within the <connectionStrings> section of the
web.confi g fi le) is confi gured to use SQL Express. It points to
a SQL Express database named ASPNETDB.MDF under the applica-
tion’s App_Data directory. If this database doesn’t exist the fi rst
time the Membership API is used within the application, ASP.NET
will automatically create the database and provision the appropri-
ate membership database schema within it (Figure 1-122).

If, instead of using SQL Express, we wanted to use a full SQL
Server instance (or connect to a remote database), all we’d need
to do is to update the ApplicationServices connection string
within the web.confi g fi le and make sure that the appropriate membership schema has been added
to the database it points at. You can run the aspnet_regsql.exe utility within the \Windows\
Microsoft.NET\Framework\v4.0.30319\ directory to add the appropriate schema for membership
and the other ASP.NET application services to a database.

Authorizing the /Dinners/Create URL Using the [Authorize] Filter

We didn’t have to write any code to enable a secure authentication and account management imple-
mentation for the NerdDinner application. Users can register new accounts with our application and
log in/log out of the site. And now we can add authorization logic to the application, and use the
authentication status and username of visitors to control what they can and can’t do within the site.

Let’s begin by adding authorization logic to the Create action methods of our DinnersController
class. Specifi cally, we will require that users accessing the /Dinners/Create URL must be logged
in. If they aren’t logged in, we’ll redirect them to the login page so that they can sign in.

Implementing this logic is pretty easy. All we need to do is to add an [Authorize] fi lter attribute to
our Create action methods like so:

//
// GET: /Dinners/Create
[Authorize]
public ActionResult Create() {
 ...
}

//
// POST: /Dinners/Create

[HttpPost, Authorize]
public ActionResult Create(Dinner dinnerToCreate) {
 ...
}

Code snippet 1-71.txt

ASP.NET MVC supports the ability to create action fi lters that can be used to implement reus-
able logic that can be declaratively applied to action methods. The [Authorize] fi lter is one of the

FIGURE 1-122

643181c01.indd 113643181c01.indd 113 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

114 ❘ CHAPTER 1 NERDDINNER

built-in action fi lters provided by ASP.NET MVC, and it enables a developer to declaratively apply
authorization rules to action methods and Controller classes.

When applied without any parameters (as in the previous code), the [Authorize] fi lter enforces that
the user making the action method request must be logged in — and it will automatically redirect the
browser to the login URL if they aren’t. When doing this redirect, the originally requested URL is
passed as a query-string argument (e.g., /Account/LogOn?ReturnUrl=%2fDinners%2fCreate). The
AccountController will then redirect the user back to the originally requested URL once they log in.

The [Authorize] fi lter optionally supports the ability to specify a Users or Roles property that
can be used to require that the user is both logged in and within a list of allowed users or a member
of an allowed security role. For example, the following code only allows two specifi c users, scottgu
and billg, to access the /Dinners/Create URL:

[Authorize(Users=”scottgu,billg”)]
public ActionResult Create() {
 ...
}

Code snippet 1-72.txt

Embedding specifi c usernames within code tends to be pretty unmaintainable, however. A better
approach is to defi ne higher-level roles that the code checks against, and then to map users into the
role using either a database or active directory system (enabling the actual User Mapping List to be
stored externally from the code). ASP.NET includes a built-in Role Management API as well as a
built-in set of role providers (including ones for SQL and Active Directory) that can help perform
this user/role mapping. We could then update the code to only allow users within a specifi c “admin”
role to access the /Dinners/Create URL:

[Authorize(Roles=”admin”)]
public ActionResult Create() {
 ...
}

Code snippet 1-73.txt

Using the User.Identity.Name Property When Creating Dinners

We can retrieve the username of the currently logged-in user of a request using the User.Identity
.Name property exposed on the Controller base class.

Earlier, when we implemented the HTTP-POST version of our Create action method, we had
hard-coded the HostedBy property of the dinner to a static string. We can now update this code to
instead use the User.Identity.Name property, as well as automatically add an RSVP for the host
creating the Dinner:

//
// POST: /Dinners/Create

[HttpPost, Authorize]
public ActionResult Create(Dinner dinner) {
 if (ModelState.IsValid) {

643181c01.indd 114643181c01.indd 114 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Authentication and Authorization ❘ 115

 dinner.HostedBy = User.Identity.Name;

 RSVP rsvp = new RSVP();
 rsvp.AttendeeName = User.Identity.Name;
 dinner.RSVPs.Add(rsvp);

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }

 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-74.txt

Because we have added an [Authorize] attribute to the Create method, ASP.NET MVC ensures
that the action method only executes if the user visiting the /Dinners/Create URL is logged in on
the site. As such, the User.Identity.Name property value will always contain a valid username.

Using the User.Identity.Name Property When Editing Dinners

Let’s now add some authorization logic that restricts users so that they can only edit the properties
of Dinners they themselves are hosting.

To help with this, we’ll fi rst add an IsHostedBy(username) helper method to our Dinner object
(within the Dinner.cs Partial class we built earlier). This helper method returns true or false,
depending on whether a supplied username matches the Dinner HostedBy property, and encapsu-
lates the logic necessary to perform a case-insensitive string comparison of them:

public partial class Dinner {

 public bool IsHostedBy(string userName) {

 return HostedBy.Equals(userName,
 StringComparison.OrdinalIgnoreCase);
 }
}

Code snippet 1-75.txt

We’ll then add an [Authorize] attribute to the Edit action methods within our
DinnersController class. This will ensure that users must be logged in to request a /Dinners/
Edit/[id] URL.

We can then add code to our Edit methods that uses the Dinner.IsHostedBy(username) helper
method to verify that the logged-in user matches the Dinner host. If the user is not the host, we’ll dis-
play an “InvalidOwner” view and terminate the request. The code to do this looks like the following:

//
// GET: /Dinners/Edit/5

[Authorize]

643181c01.indd 115643181c01.indd 115 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

116 ❘ CHAPTER 1 NERDDINNER

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 return View(new DinnerFormViewModel(dinner));
}

//
// POST: /Dinners/Edit/5

[HttpPost, Authorize]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new {id = dinner.DinnerID});
 }
 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-76.txt

We can then right-click the \Views\Dinners directory and choose the Add ➪ View menu command
to create a new “InvalidOwner” view. We’ll populate it with the following error message:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 You Don’t Own This Dinner
</asp:Content>

<asp:Content ID=”Main” ContentPlaceHolderID=”MainContent” runat=”server”>
 <h2>Error Accessing Dinner</h2>

 <p>Sorry - but only the host of a Dinner can edit or delete it.</p>
</asp:Content>

Code snippet 1-77.txt

And now when a user attempts to edit a Dinner she doesn’t own, she’ll get the error message shown
in Figure 1-123.

We can repeat the same steps for the Delete action methods within our Controller to lock down
permission to delete Dinners as well, and ensure that only the host of a Dinner can delete it.

643181c01.indd 116643181c01.indd 116 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

Authentication and Authorization ❘ 117

FIGURE 1-123

Showing/Hiding Edit and Delete Links

We are linking to the Edit and Delete action methods of our DinnersController class from our
/Details URL (see Figure 1-124).

FIGURE 1-124

643181c01.indd 117643181c01.indd 117 5/20/10 10:23:33 AM5/20/10 10:23:33 AM

118 ❘ CHAPTER 1 NERDDINNER

Currently we are showing the Edit and Delete action links regardless of whether the visitor to the
Details URL is the host of the Dinner. Let’s change this so that the links are only displayed if the
visiting user is the owner of the Dinner.

The Details action method within our DinnersController retrieves a Dinner object and then
passes it as the Model object to our View template:

//
// GET: /Dinners/Details/5

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 return View(dinner);
}

Code snippet 1-78.txt

We can update our View template to conditionally show/hide the Edit and Delete links by using the
Dinner.IsHostedBy helper method as in the code that follows:

<% if (Model.IsHostedBy(Context.User.Identity.Name)) { %>

 <%: Html.ActionLink(“Edit Dinner”, “Edit”, new { id=Model.DinnerID })%> |
 <%: Html.ActionLink(“Delete Dinner”, “Delete”, new {id=Model.DinnerID})%>

<% } %>

Code snippet 1-79.txt

AJAX ENABLING RSVPS ACCEPTS

Let’s now add support for logged-in users to RSVP their interest in attending a Dinner. We’ll imple-
ment this using an AJAX-based approach integrated within the Dinner Details page.

Indicating Whether the User Is RSVP’ed

Users can visit the /Dinners/Details/[id] URL to see details about a particular Dinner (see
Figure 1-125).

643181c01.indd 118643181c01.indd 118 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

AJAX Enabling RSVPs Accepts ❘ 119

FIGURE 1-125

The Details action method is implemented like so:

//
// GET: /Dinners/Details/2

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View(“NotFound”);
 else
 return View(dinner);
}

Code snippet 1-80.txt

Our fi rst step to implement RSVP support will be to add an IsUserRegistered(username) helper
method to our Dinner object (within the Dinner.cs Partial class we built earlier). This helper
method returns true or false, depending on whether the user is currently RSVP’ed for the dinner:

public partial class Dinner {

 public bool IsUserRegistered(string userName) {

 return RSVPs.Any(r => r.AttendeeName.Equals(userName,

643181c01.indd 119643181c01.indd 119 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

120 ❘ CHAPTER 1 NERDDINNER

 StringComparison.OrdinalIgnoreCase));
 }
}

Code snippet 1-81.txt

We can then add the following code to our Details.aspx View template to display an appropriate
message indicating whether the user is registered or not for the event:

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <p>You are not registered for this event</p>

 <% } %>

<% } else { %>

 Logon to RSVP for this event.

<% } %>

Code snippet 1-82.txt

And now when users visit a Dinner they are registered for, they’ll see the message shown in
Figure 1-126.

FIGURE 1-126

643181c01.indd 120643181c01.indd 120 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

AJAX Enabling RSVPs Accepts ❘ 121

And when they visit a Dinner they are not registered for, they’ll see the message shown in
Figure 1-127.

FIGURE 1-127

Implementing the Register Action Method

Now let’s add the functionality necessary to enable users to RSVP for a Dinner from the Details page.

To implement this, we’ll create a new RSVPController class by right-clicking on the \Controllers
directory and choosing the Add ➪ Controller menu command.

We’ll implement a Register action method within the new RSVPController class that takes an ID for
a Dinner as an argument, retrieves the appropriate Dinner object, checks to see if the logged-in user is
currently in the list of users who have registered for it, and if not adds an RSVP object for them:

public class RSVPController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Dinners/Register/1

 [Authorize, HttpPost]
 public ActionResult Register(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsUserRegistered(User.Identity.Name)) {
 RSVP rsvp = new RSVP();

643181c01.indd 121643181c01.indd 121 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

122 ❘ CHAPTER 1 NERDDINNER

 rsvp.AttendeeName = User.Identity.Name;

 dinner.RSVPs.Add(rsvp);
 dinnerRepository.Save();
 }

 return Content(“Thanks - we’ll see you there!”);
 }
}

Code snippet 1-83.txt

Notice, in the previous code, how we are returning a simple string as the output of the action
method. We could have embedded this message within a View template — but since it is so small,
we’ll just use the Content helper method on the Controller base class and return a string message
like the previous one.

Calling the Register Action Method Using AJAX

We’ll use AJAX to invoke the Register action method from our Details View. Implementing this is
pretty easy. First, we’ll add two script library references:

<script src=”/Scripts/MicrosoftAjax.js” type=”text/javascript”></script>
<script src=”/Scripts/MicrosoftMvcAjax.js” type=”text/javascript”></script>

Code snippet 1-84.txt

The fi rst library references the core ASP.NET AJAX client-side script library. This fi le is approxi-
mately 24k in size (compressed) and contains core client-side AJAX functionality. The second library
contains utility functions that integrate with ASP.NET MVC’s built-in AJAX helper methods (which
we’ll use shortly).

We can then update the View template code we added earlier so that, instead of outputting a “You
are not registered for this event” message, we render a link that when pushed performs an AJAX call
that invokes our Register action method on our RSVP Controller and RSVPs the user:

<div id=”rsvpmsg”>

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <%: Ajax.ActionLink(“RSVP for this event”,
 “Register”, “RSVP”,
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId=”rsvpmsg” }) %>

643181c01.indd 122643181c01.indd 122 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

AJAX Enabling RSVPs Accepts ❘ 123

 <% } %>

<% } else { %>

 Logon to RSVP for this event!

<% } %>

</div>

Code snippet 1-85.txt

The Ajax.ActionLink helper method in the previous code is built into ASP.NET MVC and is
similar to the Html.ActionLink helper method except that instead of performing a standard navi-
gation, it makes an AJAX call to the action method. Above we are calling the “Register” action
method on the “RSVP” Controller and passing the DinnerID as the id parameter to it. The fi nal
AjaxOptions parameter we are passing indicates that we want to take the content returned from the
action method and update the HTML <div> element on the page whose ID is “rsvpmsg”.

And now when users browse to a Dinner they aren’t registered for yet, they’ll see a link to RSVP for
it (see Figure 1-128).

FIGURE 1-128

If they click the “RSVP for this event” link, they’ll make an AJAX call to the Register action
method on the RSVP Controller, and when it completes, they’ll see an updated message like that
shown in Figure 1-129.

643181c01.indd 123643181c01.indd 123 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

124 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-129

The network bandwidth and traffi c involved when making this AJAX call are really lightweight.
When the user clicks on the “RSVP for this event” link, a small HTTP-POST network request is
made to the /Dinners/Register/1 URL that looks like the following on the wire:

POST /Dinners/Register/49 HTTP/1.1
X-Requested-With: XMLHttpRequest
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Referer: http://localhost:8080/Dinners/Details/49

Code snippet 1-86.txt

And the response from our Register action method is simply:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 29
Thanks - we’ll see you there!

Code snippet 1-87.txt

This lightweight call is fast and will work even over a slow network.

Adding a jQuery Animation

The AJAX functionality we implemented works well and fast. Sometimes it can happen so fast,
though, that a user might not notice that the RSVP link has been replaced with new text. To
make the outcome a little more obvious, we can add a simple animation to draw attention to the
updates message.

643181c01.indd 124643181c01.indd 124 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

AJAX Enabling RSVPs Accepts ❘ 125

The default ASP.NET MVC project template includes jQuery — an excellent (and very popular)
open source JavaScript library that is also supported by Microsoft. jQuery provides several features,
including a nice HTML DOM selection and effects library.

To use jQuery, we’ll fi rst add a script reference to it. Because we are going to be using jQuery within
a variety of places within our site, we’ll add the script reference within our Site.master Master Page
fi le so that all pages can use it.

<script src=”/Scripts/jQuery-1.4.1.js” type=”text/javascript”></script>

If you are using ASP.NET MVC 2 with Visual Studio 2008, make sure you have
installed the JavaScript IntelliSense hotfi x for VS 2008 SP1 that enables richer
IntelliSense support for JavaScript fi les (including jQuery). You can download it
from: http://tinyurl.com/vs2008javascripthotfix.

For Visual Studio 2010 there is no hotfi x needed.

Code written using jQuery often uses a global $() JavaScript method that retrieves one or more
HTML elements using a CSS selector. For example, $(“#rsvpmsg”) selects any HTML element
with the ID of rsvpmsg, while $(“.something”) would select all elements with the “something”
CSS class name. You can also write more advanced queries like “return all of the checked radio but-
tons” using a selector query like $(“input[@type=radio][@checked]”).

Once you’ve selected elements, you can call methods on them to take action, such as hiding them:
$(“#rsvpmsg”).hide();.

For our RSVP scenario, we’ll defi ne a simple JavaScript function named AnimateRSVPMessage that
selects the “rsvpmsg” <div> and animates the size of its text content. The next code starts the text
small and then causes it to increase over a 400-millisecond (400-ms) time frame:

<script type=”text/javascript”>

 function AnimateRSVPMessage() {
 $(“#rsvpmsg”).animate({fontSize: “1.5em”}, 400);
 }

</script>

Code snippet 1-88.txt

We can then wire up this JavaScript function to be called after our AJAX call successfully completes
by passing its name to our Ajax.ActionLink helper method (via the AjaxOptions OnSuccess event
property):

<%: Ajax.ActionLink(“RSVP for this event”,
 “Register”, “RSVP”,
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId=”rsvpmsg”,
 OnSuccess=”AnimateRSVPMessage” }) %>

Code snippet 1-89.txt

643181c01.indd 125643181c01.indd 125 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

126 ❘ CHAPTER 1 NERDDINNER

And now when the “RSVP for this event” link is clicked and our AJAX call completes successfully,
the content message sent back will animate and grow larger (see Figure 1-130).

FIGURE 1-130

In addition to providing an OnSuccess event, the AjaxOptions object exposes OnBegin, OnFailure,
and OnComplete events that you can handle (along with a variety of other properties and useful
options).

Cleanup — Refactor Out a RSVP Partial View

Our Details View template is starting to get a little long, which over time will make it a little harder
to understand. To help improve the code readability, let’s fi nish up by creating a Partial View —
RSVPStatus.ascx — that encapsulates all of the RSVP View code for our Details page.

We can do this by right-clicking the \Views\Dinners folder and then choosing the Add ➪ View menu
command. We’ll have it take a Dinner object as its strongly typed ViewModel. We can then copy/
paste the RSVP content from our Details.aspx View into it.

Once we’ve done that, let’s also create another Partial View — EditAndDeleteLinks.ascx — that
encapsulates our Edit and Delete link View code. We’ll also have it take a Dinner object as its strongly
typed ViewModel, and copy/paste the Edit and Delete logic from our Details.aspx View into it.

Our Details View template can then just include two Html.RenderPartial method calls at the
bottom:

 <% Html.RenderPartial(“RSVPStatus”); %>
 <% Html.RenderPartial(“EditAndDeleteLinks”); %>

643181c01.indd 126643181c01.indd 126 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

Integrating an AJAX Map ❘ 127

This makes the code cleaner to read and maintain.

INTEGRATING AN AJAX MAP

We’ll now make our application a little more visually exciting by integrating AJAX mapping sup-
port. This will enable users who are creating, editing, or viewing Dinners to see the location of the
Dinner graphically.

Creating a Map Partial View

We are going to use mapping functionality in
several places within our application. To keep
our code DRY, we’ll encapsulate the com-
mon map functionality within a single Partial
template that we can reuse across multiple
Controller actions and Views. We’ll name this
Partial View map.ascx and create it within the
\Views\Dinners directory.

We can create the map.ascx Partial by right-
clicking the \Views\Dinners directory and
choosing the Add ➪ View menu command.
We’ll name the view Map.ascx, check it as a
Partial View, and indicate that we are going to
pass it a strongly typed Dinner model class (see
Figure 1-131).

When we click the Add button, our Partial template will be created. We’ll then update the Map.ascx
fi le to have the following content:

<script src=”http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2”
 type=”text/javascript”></script>

<script src=”/Scripts/Map.js” type=”text/javascript”></script>

<div id=”theMap”>
</div>
<script type=”text/javascript”>

 $(document).ready(function() {
 var latitude = <%:Model.Latitude %>;
 var longitude = <%:Model.Longitude %>;

 if ((latitude == 0) || (longitude == 0))
 LoadMap();
 else
 LoadMap(latitude, longitude, mapLoaded);

FIGURE 1-131

643181c01.indd 127643181c01.indd 127 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

128 ❘ CHAPTER 1 NERDDINNER

 });

 function mapLoaded() {
 var title = “<%: Model.Title %>”;
 var address = “<%: Model.Address %>”;

 LoadPin(center, title, address);
 map.SetZoomLevel(14);
 }

</script>

Code snippet 1-90.txt

The fi rst <script> reference points to the Microsoft Virtual Earth 6.2 mapping library. The second
<script> reference points to a map.js fi le that we will shortly create, which will encapsulate our
common JavaScript mapping logic. The <div id=”theMap”> element is the HTML container that
Virtual Earth will use to host the map.

We then have an embedded <script> block that contains two JavaScript functions specifi c to this
View. The fi rst function uses jQuery to wire up a function that executes when the page is ready to
run client-side script. It calls a LoadMap helper function that we’ll defi ne within our Map.js script fi le
to load the Virtual Earth map control. The second function is a callback event handler that adds a
pin to the map that identifi es a location.

Notice how we are using a server-side <%: %> block within the client-side script block to embed
the latitude and longitude of the Dinner we want to map into the JavaScript. This is a useful tech-
nique to output dynamic values that can be used by client-side script (without requiring a separate
AJAX call back to the server to retrieve the values — which makes it faster). The <%: %> blocks will
execute when the View is rendering on the server — and so the output of the HTML will just end up
with embedded JavaScript values (e.g., var latitude = 47.64312;).

Creating a Map.js Utility Library

Let’s now create the Map.js fi le that we can use to encapsulate the JavaScript functionality for our
map (and implement the preceding LoadMap and LoadPin methods). We can do this by right-clicking
the \Scripts directory within our project, and then choose the Add ➪ New Item menu command,
select the JScript item, and name it Map.js.

We’ll add the following JavaScript code to the Map.js fi le, which will interact with Virtual Earth to
display our map and add location pins to it for our Dinners:

var map = null;
var points = [];
var shapes = [];
var center = null;

function LoadMap(latitude, longitude, onMapLoaded) {
 map = new VEMap(‘theMap’);
 options = new VEMapOptions();

643181c01.indd 128643181c01.indd 128 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

Integrating an AJAX Map ❘ 129

 options.EnableBirdseye = false;

 // Makes the control bar less obtrusive.
 map.SetDashboardSize(VEDashboardSize.Small);

 if (onMapLoaded != null)
 map.onLoadMap = onMapLoaded;

 if (latitude != null && longitude != null) {
 center = new VELatLong(latitude, longitude);
 }

 map.LoadMap(center, null, null, null, null, null, null, options);
}

function LoadPin(LL, name, description) {
 var shape = new VEShape(VEShapeType.Pushpin, LL);

 //Make a nice Pushpin shape with a title and description
 shape.SetTitle(“ “ + escape(name) + “”);
 if (description !== undefined) {
 shape.SetDescription(“<p class=\”pinDetails\”>” +
 escape(description) + “</p>”);
 }
 map.AddShape(shape);
 points.push(LL);
 shapes.push(shape);
}

function FindAddressOnMap(where) {
 var numberOfResults = 20;
 var setBestMapView = true;
 var showResults = true;

 map.Find(““, where, null, null, null,
 numberOfResults, showResults, true, true,
 setBestMapView, callbackForLocation);
}

function callbackForLocation(layer, resultsArray, places,
 hasMore, VEErrorMessage) {

 clearMap();

 if (places == null)
 return;

 //Make a pushpin for each place we find
 $.each(places, function(i, item) {
 var description = ““;
 if (item.Description !== undefined) {

643181c01.indd 129643181c01.indd 129 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

130 ❘ CHAPTER 1 NERDDINNER

 description = item.Description;
 }
 var LL = new VELatLong(item.LatLong.Latitude,
 item.LatLong.Longitude);

 LoadPin(LL, item.Name, description);
 });

 //Make sure all pushpins are visible
 if (points.length > 1) {
 map.SetMapView(points);
 }

 //If we’ve found exactly one place, that’s our address.
 if (points.length === 1) {
 $(“#Latitude”).val(points[0].Latitude);
 $(“#Longitude”).val(points[0].Longitude);
 }
}

function clearMap() {
 map.Clear();
 points = [];
 shapes = [];
}

Code snippet 1-91.txt

Integrating the Map with Create and Edit Forms

We’ll now integrate the Map support with our existing Create and Edit scenarios. The good news
is that this is pretty easy to do and doesn’t require us to change any of our Controller code. Because
our Create and Edit Views share a common DinnerForm Partial View used to implement the Dinner
form UI, we can add the map in one place and have both our Create and Edit scenarios use it.

All we need to do is to open the \Views\Dinners\DinnerForm.ascx Partial View and update it to
include our new map Partial. Following is what the updated DinnerForm will look like once the map
is added (the HTML form elements are omitted from the following code snippet for brevity):

<%: Html.ValidationSummary() %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <div id=”dinnerDiv”>
 <p>
 [HTML Form Elements Removed for Brevity]
 </p>
 <p>
 <input type=”submit” value=”Save” />

643181c01.indd 130643181c01.indd 130 5/20/10 10:23:34 AM5/20/10 10:23:34 AM

Integrating an AJAX Map ❘ 131

 </p>
 </div>

 <div id=”mapDiv”>
 <% Html.RenderPartial(“Map”, Model.Dinner); %>
 </div>

 </fieldset>

 <script type=”text/javascript”>

 $(document).ready(function() {
 $(“#Address”).blur(function(evt) {
 $(“#Latitude”).val(““);
 $(“#Longitude”).val(““);

 var address = jQuery.trim($(“#Address”).val());
 if (address.length < 1)
 return;

 FindAddressOnMap(address);
 });
 });

 </script>

<% } %>

Code snippet 1-92.txt

The DinnerForm Partial above takes an object of type DinnerFormViewModel as its Model type
(because it needs both a Dinner object and a SelectList to populate the dropdown list of coun-
tries). Our map Partial just needs an object of type Dinner as its Model type, and so when we render
the map Partial, we are passing just the Dinner subproperty of DinnerFormViewModel to it:

<% Html.RenderPartial(“Map”, Model.Dinner); %>

The JavaScript function we’ve added to the Partial uses jQuery to attach a blur event to the Address
HTML textbox. You’ve probably heard of focus events that fi re when a user clicks or tabs into a
textbox. The opposite is a blur event that fi res when a user exits a textbox. The event handler in the
previous code clears the latitude and longitude textbox values when this happens, and then plots the
new address location on our map. A callback event handler that we defi ned within the map.js fi le
will then update the longitude and latitude textboxes on our form using values returned by Virtual
Earth based on the address we gave it.

And now when we run our application again and click the Host Dinner tab, we’ll see a default map
displayed along with our standard Dinner form elements (Figure 1-132).

When we type in an address and then tab away, the map will dynamically update to display the
location, and our event handler will populate the latitude/longitude textboxes with the location val-
ues (Figure 1-133).

643181c01.indd 131643181c01.indd 131 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

132 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-132

FIGURE 1-133

643181c01.indd 132643181c01.indd 132 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

Integrating an AJAX Map ❘ 133

If we save the new Dinner and then open it again for editing, we’ll fi nd that the map location is dis-
played when the page loads (Figure 1-134).

FIGURE 1-134

Every time the address fi eld is changed, the map and the latitude/longitude coordinates will update.

Now that the map displays the Dinner location, we can also change the Latitude and Longitude
form fi elds from being visible textboxes to instead be hidden elements (since the map is automati-
cally updating them each time an address is entered). To do this, we’ll switch from using the
Html.TextBox HTML helper to using the Html.Hidden helper method:

<p>
 <%: Html.Hidden(“Latitude”, Model.Dinner.Latitude)%>
 <%: Html.Hidden(“Longitude”, Model.Dinner.Longitude)%>
</p>

Code snippet 1-93.txt

And now our forms are a little more user-friendly (Figure 1-135) and avoid displaying the raw
latitude/longitude (while still storing them with each Dinner in the database).

643181c01.indd 133643181c01.indd 133 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

134 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-135

Integrating the Map with the Details View

Now that we have the map integrated with our Create and Edit scenarios, let’s also integrate it with
our Details scenario. All we need to do is to call <% Html.RenderPartial(“map”); %> within the
Details View.

The following is what the source code to the complete Details View (with map integration) looks like:

<asp:Content ID=”Title” ContentPlaceHolderID=”TitleContent” runat=”server”>
 <%: Model.Title %>
</asp:Content>

<asp:Content ID=”details” ContentPlaceHolderID=”MainContent” runat=”server”>

 <div id=”dinnerDiv”>

 <h2><%: Model.Title %></h2>

643181c01.indd 134643181c01.indd 134 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

Integrating an AJAX Map ❘ 135

 <p>
 When:
 <%: Model.EventDate.ToShortDateString() %>

 @
 <%: Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%: Model.Address %>,
 <%: Model.Country %>
 </p>
 <p>
 Description:
 <%: Model.Description %>
 </p>
 <p>
 Organizer:
 <%: Model.HostedBy %>
 (<%: Model.ContactPhone %>)
 </p>

 <% Html.RenderPartial(“RSVPStatus”); %>
 <% Html.RenderPartial(“EditAndDeleteLinks”); %>

 </div>

 <div id=”mapDiv”>
 <% Html.RenderPartial(“map”); %>
 </div>

</asp:Content>

Code snippet 1-94.txt

Now when users navigate to a /Dinners/Details/[id] URL, they’ll see details about the Dinner,
the location of the Dinner on the map (complete with a pushpin that, when hovered over, displays
the title and address of the Dinner), and have an AJAX link to RSVP for it (see Figure 1-136).

Implementing Location Search in Our Database and Repository

To fi nish off our AJAX implementation, let’s add a map to the home page of the application that
allows users to graphically search for Dinners near them (see Figure 1-137).

We’ll begin by implementing support within our database and data repository layer to effi ciently
perform a location-based radius search for Dinners. We could use the geospatial features of SQL
Server 2008 (www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx) to implement
this, or alternatively we can use a SQL function approach that Gary Dryden discussed in the article
at www.codeproject.com/KB/cs/distancebetweenlocations.aspx.

To implement this technique, we will open the Server Explorer within Visual Studio, select the
NerdDinner database, and then right-click the Functions subnode under it and choose to create a
new “Scalar-valued function” (Figure 1-138).

643181c01.indd 135643181c01.indd 135 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

136 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-136

FIGURE 1-137

643181c01.indd 136643181c01.indd 136 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

Integrating an AJAX Map ❘ 137

We’ll then paste in the following DistanceBetween function:

CREATE FUNCTION [dbo].[DistanceBetween] (@Lat1 as real,
 @Long1 as real, @Lat2 as real, @Long2 as real)
RETURNS real
AS
BEGIN

DECLARE @dLat1InRad as float(53);
SET @dLat1InRad = @Lat1 * (PI()/180.0);
DECLARE @dLong1InRad as float(53);
SET @dLong1InRad = @Long1 * (PI()/180.0);
DECLARE @dLat2InRad as float(53);
SET @dLat2InRad = @Lat2 * (PI()/180.0);
DECLARE @dLong2InRad as float(53);
SET @dLong2InRad = @Long2 * (PI()/180.0);

DECLARE @dLongitude as float(53);
SET @dLongitude = @dLong2InRad - @dLong1InRad;
DECLARE @dLatitude as float(53);
SET @dLatitude = @dLat2InRad - @dLat1InRad;
/* Intermediate result a. */
DECLARE @a as float(53);
SET @a = SQUARE (SIN (@dLatitude / 2.0)) + COS (@dLat1InRad)
 * COS (@dLat2InRad)
 * SQUARE(SIN (@dLongitude / 2.0));
/* Intermediate result c (great circle distance in Radians). */
DECLARE @c as real;
SET @c = 2.0 * ATN2 (SQRT (@a), SQRT (1.0 - @a));
DECLARE @kEarthRadius as real;
/* SET kEarthRadius = 3956.0 miles */
SET @kEarthRadius = 6376.5; /* kms */

DECLARE @dDistance as real;
SET @dDistance = @kEarthRadius * @c;
return (@dDistance);
END

Code snippet 1-95.txt

We’ll then create a new “Table-valued Function” in SQL Server that we’ll call NearestDinners (see
Figure 1-139).

FIGURE 1-138 FIGURE 1-139

643181c01.indd 137643181c01.indd 137 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

138 ❘ CHAPTER 1 NERDDINNER

This NearestDinners table function uses the DistanceBetween helper function to return all
Dinners within 100 miles of the latitude and longitude we supply it:

CREATE FUNCTION [dbo].[NearestDinners]
 (
 @lat real,
 @long real
)
RETURNS TABLE
AS
 RETURN
 SELECT Dinners.DinnerID
 FROM Dinners
 WHERE dbo.DistanceBetween(@lat, @long, Latitude, Longitude) <100

Code snippet 1-96.txt

Now that we’ve added this function to our database, we need to update the entity model from the
database so that it knows about the new function.

Open the Entity Designer by double-clicking the NerdDinner.edmx fi le, as shown in Figure 1-140.

Right-click the design surface and select the Update Model from Database option, as shown in
Figure 1-141.

This brings up an Update Wizard. Our table-valued function shows up within the Stored Procedures
node of the Add tab. Expand the Stored Procedures node, select the DistanceBetween option, and
click Finish, as seen in Figure 1-142.

After clicking Finish, the entity framework Wizard updates the entity model (EDMX fi le) with the
function. We’ll need to tweak the EDMX fi le to translate SQL Server Real values to .NET fl oats. To

FIGURE 1-140 FIGURE 1-141

643181c01.indd 138643181c01.indd 138 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

Integrating an AJAX Map ❘ 139

do that, we’ll need to open the EDMX fi le as XML. To do that, right-click the EDMX fi le and select
the Open With option, as shown in Figure 1-143.

This brings up the Open With dialog. Select the XML option, as seen in Figure 1-144.

FIGURE 1-142

FIGURE 1-143
FIGURE 1-144

643181c01.indd 139643181c01.indd 139 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

140 ❘ CHAPTER 1 NERDDINNER

Search for the string DistanceBetween within the XML. You’ll fi nd some XML that looks like the
following:

<Function Name=”DistanceBetween” ReturnType=”real” Aggregate=”false”
BuiltIn=”false” NiladicFunction=”false” IsComposable=”true”
ParameterTypeSemantics=”AllowImplicitConversion” Schema=”dbo”>
 <Parameter Name=”Lat1” Type=”real” Mode=”In” />
 <Parameter Name=”Long1” Type=”real” Mode=”In” />
 <Parameter Name=”Lat2” Type=”real” Mode=”In” />
 <Parameter Name=”Long2” Type=”real” Mode=”In” />
</Function>

Code snippet 1-97.txt

Change the return type and the parameter types from “real” to “float”. When you are done, the
snippet of XML should look like this:

<Function Name=”DistanceBetween” ReturnType=”float” Aggregate=”false”
BuiltIn=”false” NiladicFunction=”false” IsComposable=”true”
ParameterTypeSemantics=”AllowImplicitConversion” Schema=”dbo”>
 <Parameter Name=”Lat1” Type=”float” Mode=”In” />
 <Parameter Name=”Long1” Type=”float” Mode=”In” />
 <Parameter Name=”Lat2” Type=”float” Mode=”In” />
 <Parameter Name=”Long2” Type=”float” Mode=”In” />
</Function>

Code snippet 1-98.txt

Now that we have this table-valued function as part of our database, how do we make use of it
when building a LINQ query against our entities?

Entity Framework can’t call a table-valued function directly so we need to add in a scalar stub func-
tion. That allows us to write a LINQ query in C# or VB that calls this stub function, but the func-
tion won’t actually be executed in the client code. Instead, when the query is translated to a call in
the database, the call to the stub function gets translated as a call to our table-valued function in the
database.

To set this up, the fi rst thing we’ll do is add a new function to DinnerRepository.

[EdmFunction(“NerdDinnerModel.Store”, “DistanceBetween”)]
public static double DistanceBetween(double lat1, double long1,
 double lat2, double long2)
{
 throw new NotImplementedException(“Only call through LINQ expression”);
}

Code snippet 1-99.txt

This function has the EdmFunctionAttribute applied. You’ll need to add the
following using statement to the top of this class.

using System.Data.Objects.DataClasses;

643181c01.indd 140643181c01.indd 140 5/20/10 10:23:35 AM5/20/10 10:23:35 AM

Integrating an AJAX Map ❘ 141

We can then expose a FindByLocation query method on our DinnerRepository class that uses
the NearestDinner function to return upcoming dinners that are within 100 miles of the specifi ed
location:

public IQueryable<Dinner> FindByLocation(float latitude, float longitude) {

 var dinners = from dinner in FindUpcomingDinners()
 join i in NearestDinners(latitude, longitude)
 on dinner.DinnerID equals i.DinnerID
 select dinner;

 return dinners;
}

Implementing a JSON-Based AJAX Search Action Method

We’ll now implement a Controller action method that takes advantage of the new
FindByLocation repository method to return a list of Dinner data that can be used to populate a
map. We’ll have this action method return the Dinner data in a JSON (JavaScript Object Notation)
format so that it can be easily manipulated using JavaScript on the client.

To implement this, we’ll create a new SearchController class by right-clicking the \Controllers direc-
tory and choosing the Add ➪ Controller menu command. We’ll then implement a SearchByLocation
action method within the new SearchController class like the one that follows:

public class JsonDinner {
 public int DinnerID { get; set; }
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public string Description { get; set; }
 public int RSVPCount { get; set; }
}

public class SearchController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Search/SearchByLocation

 [HttpPost]
 public ActionResult SearchByLocation(float longitude, float latitude) {

 var dinners = dinnerRepository.FindByLocation(latitude, longitude);

 var jsonDinners = from dinner in dinners
 select new JsonDinner {
 DinnerID = dinner.DinnerID,
 Latitude = dinner.Latitude,

643181c01.indd 141643181c01.indd 141 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

142 ❘ CHAPTER 1 NERDDINNER

 Longitude = dinner.Longitude,
 Title = dinner.Title,
 Description = dinner.Description,
 RSVPCount = dinner.RSVPs.Count
 };

 return Json(jsonDinners.ToList());
 }
}

Code snippet 1-100.txt

The SearchController’s SearchByLocation action method internally calls the FindByLocation
method on DinnerRespository to get a list of nearby Dinners. Rather than return the Dinner
objects directly to the client, though, it instead returns JsonDinner objects. The JsonDinner class
exposes a subset of Dinner properties (e.g., for security reasons it doesn’t disclose the names of the
people who have RSVP’ed for a Dinner). It also includes an RSVPCount property that doesn’t exist
in Dinner — and that is dynamically calculated by counting the number of RSVP objects associated
with a particular Dinner.

We are then using the Json helper method on the Controller base class to return the sequence of
Dinners using a JSON-based wire format. JSON is a standard text format for representing simple
data structures. The following is an example of what a JSON-formatted list of two JsonDinner
objects look like when returned from our action method:

[{“DinnerID”:53,”Title”:”Dinner with the Family”,”Latitude”:47.64312,
“Longitude”:-122.130609, “Description”:”Fun dinner”,”RSVPCount”:2},
{“DinnerID”:54, “Title”:”Another Dinner”,”Latitude”:47.632546,
“Longitude”:-122.21201,”Description”:”Dinner with Friends”,
“RSVPCount”:3}]

Code snippet 1-101.txt

Calling the JSON-Based AJAX Method Using jQuery

We are now ready to update the home page of the NerdDinner application to use the
SearchController’s SearchByLocation action method. To do this, we’ll open the /Views/Home/
Index.aspx View template and update it to have a textbox, search button, our map, and a <div> ele-
ment named dinnerList:

<h2>Find a Dinner</h2>

<div id=”mapDivLeft”>

 <div id=”searchBox”>
 Enter your location: <%: Html.TextBox(“Location”) %>
 <input id=”search” type=”submit” value=”Search” />
 </div>

 <div id=”theMap”>

643181c01.indd 142643181c01.indd 142 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Integrating an AJAX Map ❘ 143

 </div>

</div>

<div id=”mapDivRight”>
 <div id=”dinnerList”></div>
</div>

Code snippet 1-102.txt

We can then add two JavaScript functions to the page:

<script type=”text/javascript”>

 $(document).ready(function() {
 LoadMap();
 });

 $(“#search”).click(function(evt) {
 var where = jQuery.trim($(“#Location”).val());
 if (where.length < 1)
 return;

 FindDinnersGivenLocation(where);
 });

</script>

The fi rst JavaScript function loads the map when the page fi rst loads. The second JavaScript func-
tion wires up a JavaScript click event handler on the Search button. When the button is pressed, it
calls the FindDinnersGivenLocation JavaScript function, which we’ll add to our Map.js fi le:

function FindDinnersGivenLocation(where) {
 map.Find(““, where, null, null, null, null, null, false,
 null, null, callbackUpdateMapDinners);
}

Code snippet 1-103.txt

This FindDinnersGivenLocation function calls map.Find on the Virtual Earth Control to center it
on the entered location. When the Virtual Earth map service returns, the map.Find method invokes
the callbackUpdateMapDinners callback method we passed it as the fi nal argument.

The callbackUpdateMapDinners method is where the real work is done. It uses jQuery’s $.post
helper method to perform an AJAX call to our SearchController’s SearchByLocation action
method — passing it the latitude and longitude of the newly centered map. It defi nes an inline func-
tion that will be called when the $.post helper method completes, and the JSON-formatted Dinner
results returned from the SearchByLocation action method will be passed it using a variable called
dinners. It then does a foreach over each returned dinner, and uses the Dinner’s latitude and lon-
gitude and other properties to add a new pin on the map. It also adds a Dinner entry to the HTML

643181c01.indd 143643181c01.indd 143 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

144 ❘ CHAPTER 1 NERDDINNER

list of Dinners to the right of the map. It then wires up a hover event for both the pushpins and the
HTML list so that details about the Dinner are displayed when a user hovers over them:

function callbackUpdateMapDinners(layer, resultsArray,
 places, hasMore, VEErrorMessage) {

 $(“#dinnerList”).empty();
 clearMap();
 var center = map.GetCenter();

 $.post(“/Search/SearchByLocation”, { latitude: center.Latitude,
 longitude: center.Longitude },
 function(dinners) {
 $.each(dinners, function(i, dinner) {

 var LL = new VELatLong(dinner.Latitude,
 dinner.Longitude, 0, null);

 var RsvpMessage = ““;

 if (dinner.RSVPCount == 1)
 RsvpMessage = ““ + dinner.RSVPCount + “ RSVP”;
 else
 RsvpMessage = ““ + dinner.RSVPCount + “ RSVPs”;

 // Add Pin to Map
 LoadPin(LL, ‘’
 + dinner.Title + ‘’,
 “<p>” + dinner.Description + “</p>” + RsvpMessage);

 //Add a dinner to the dinnerList on the right
 $(‘#dinnerList’).append($(‘’)
 .attr(“class”, “dinnerItem”)
 .append($(‘<a/>’).attr(“href”,
 “/Dinners/Details/” + dinner.DinnerID)
 .html(dinner.Title))
 .append(“ (“+RsvpMessage+”)”));
 });

 // Adjust zoom to display all the pins we just added.

 if (points.length > 1) {
 map.SetMapView(points);
 }

 // Display the event’s pin-bubble on hover.
 $(“.dinnerItem”).each(function(i, dinner) {
 $(dinner).hover(
 function() { map.ShowInfoBox(shapes[i]); },
 function() { map.HideInfoBox(shapes[i]); }
);
 });
 }, “json”);

Code snippet 1-104.txt

643181c01.indd 144643181c01.indd 144 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Integrating an AJAX Map ❘ 145

Now when we run the application and visit the home page, we’ll be presented with a map. When we
enter the name of a city, the map will display the upcoming Dinners near it (see Figure 1-145).

Hovering over a Dinner will display details about it (Figure 1-146).

FIGURE 1-145

FIGURE 1-146

643181c01.indd 145643181c01.indd 145 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

146 ❘ CHAPTER 1 NERDDINNER

Clicking the Dinner title either in the bubble or on the right-hand side in the HTML list will navi-
gate us to the Dinner — which we can then optionally RSVP for (Figure 1-147).

FIGURE 1-147

UNIT TESTING

Let’s develop a suite of automated unit tests that verify our NerdDinner functionality and that will
give us the confi dence to make changes and improvements to the application in the future.

Why Unit Test?

On the drive into work one morning you have a sudden fl ash of inspiration about an application you
are working on. You realize there is a change you can implement that will make the application dra-
matically better. It might be a refactoring that cleans up the code, adds a new feature, or fi xes a bug.

The question that confronts you when you arrive at your computer is, “How safe is it to make this
improvement?” What if making the change has side effects or breaks something? The change might
be simple and only take a few minutes to implement, but what if it takes hours to manually test out
all of the application scenarios? What if you forget to cover a scenario and a broken application goes
into production? Is making this improvement really worth all the effort?

643181c01.indd 146643181c01.indd 146 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Unit Testing ❘ 147

Automated unit tests can provide a safety net that enables you to continually enhance your applica-
tions and avoid being afraid of the code you are working on. Having automated tests that quickly
verify functionality enables you to code with confi dence and empowers you to make improvements
you might otherwise not have felt comfortable doing. They also help create solutions that are more
maintainable and have a longer lifetime — which leads to a much higher return on investment.

The ASP.NET MVC Framework makes it easy and natural to unit test application functionality. It
also enables a Test Driven Development (TDD) workfl ow that enables test-fi rst-based development.

NerdDinner.Tests Project

When we created our NerdDinner application at the beginning of this tutorial, we were prompted
with a dialog asking whether we wanted to create a unit test project to go along with the application
project (Figure 1-148).

We kept the “Yes, create a unit test project” radio button selected, which resulted in a NerdDinner.
Tests project being added to our solution (Figure 1-149).

The NerdDinner.Tests project references the NerdDinner application project assembly and enables
us to easily add automated tests to it that verify the application.

Creating Unit Tests for Our Dinner Model Class

Let’s add some tests to our NerdDinner.Tests project that verify the Dinner class we created when
we built our Model layer.

We’ll start by creating a new folder within our test project called Models, where we’ll place our
Model-related tests. We’ll then right-click the folder and choose the Add ➪ New Test menu com-
mand. This will bring up the “Add New Test” dialog.

We’ll choose to create a unit test and name it DinnerTest.cs (see Figure 1-150).

FIGURE 1-149FIGURE 1-148

643181c01.indd 147643181c01.indd 147 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

148 ❘ CHAPTER 1 NERDDINNER

When we click the OK button, Visual Studio will add (and open) a DinnerTest.cs fi le to the project
(Figure 1-151).

FIGURE 1-150

FIGURE 1-151

643181c01.indd 148643181c01.indd 148 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Unit Testing ❘ 149

The default Visual Studio Unit Test template has a bunch of boilerplate code within it that I fi nd a
little messy. Let’s clean it up to just contain the code that follows:

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NerdDinner.Models;

namespace NerdDinner.Tests.Models {

 [TestClass]
 public class DinnerTest {

 }
}

Code snippet 1-105.txt

The [TestClass] attribute on the preceding DinnerTest class identifi es it as a class that will con-
tain tests, as well as optional test initialization and teardown code. We can defi ne tests within it by
adding public methods that have a [TestMethod] attribute on them.

To get warmed up, we’ll start with a couple of simple tests that exercise our Dinner class. The fi rst
test verifi es that the IsHostedBy method of our Dinner returns true if the value of the HostedBy
property matches the supplied username. The second test verifi es that the IsRegistered method of
the Dinner class checks its list of RSVPs:

[TestClass]
public class DinnerTest {
 [TestMethod]
 public void IsHostedBy_Should_Return_True_When_Dinner_HostedBy_User()
 {
 // Arrange
 Dinner dinner = new Dinner
 {
 HostedBy = “ScottGu”
 };

 // Act
 bool isHostedByScott = dinner.IsHostedBy(“ScottGu”);

 // Assert
 Assert.IsTrue(isHostedByScott);
 }

 [TestMethod]
 public void IsUserRegistered_Should_Return_True_When_User_RSVPs() {
 // Arrange
 Dinner dinner = new Dinner();
 dinner.RSVPs.Add(new RSVP { AttendeeName = “Haacked” });

 // Act

643181c01.indd 149643181c01.indd 149 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

150 ❘ CHAPTER 1 NERDDINNER

 bool haackedIsRegistered = dinner.IsUserRegistered(“Haacked”);

 // Assert
 Assert.IsTrue(haackedIsRegistered);
 }
}

Code snippet 1-106.txt

You’ll notice that our test names are very explicit (and somewhat verbose). We are doing this
because we might end up creating hundreds or thousands of small tests, and we want to make it
easy to quickly determine the intent and behavior of each of them (especially when we are looking
through a list of failures in a test runner). The test names should always be named after the func-
tionality they are testing. In the preceding code, we are using a Noun_Should_Verb naming pattern.

We are structuring the tests using the AAA testing pattern, which stands for Arrange, Act, Assert:

Arrange: ➤ Set up the unit being tested.

Act: ➤ Exercise the unit under test and capture the results.

Assert: ➤ Verify the behavior.

When we write tests, we want to avoid having the individual tests do too much. Instead, each test
should verify only a single concept (which will make it much easier to pinpoint the cause of failures).
A good guideline is to try to only have a single Assert statement for each test. If you have more than
one Assert statement in a test method, make sure that they are all being used to test the same con-
cept. When in doubt, make another test.

Running Tests

Visual Studio 2008 Professional (and higher editions) includes a built-in test runner that can be used
to run Visual Studio Unit Test projects within the IDE. We can select the Test ➪ Run ➪ All Tests in
Solution menu command (or press Ctrl+R, A) to run all of our unit tests. Or, alternatively, we can
position our cursor within a specifi c test class or test method and use the Test ➪ Run ➪ Tests in
Current Context menu command (or press Ctrl+R, T) to run a subset of the unit tests.

Let’s position our cursor within the DinnerTest class and press Ctrl+R, T to run the two tests we
just defi ned. When we do this, a Test Results window will appear within Visual Studio and we’ll see
the results of our test run listed within it (see Figure 1-152).

FIGURE 1-152

643181c01.indd 150643181c01.indd 150 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Unit Testing ❘ 151

The VS Test Results window does not show the Class Name column by default.
You can add this by right-clicking within the Test Results window and using the
Add/Remove Columns menu command.

Our two tests took only a fraction of a second to run — and as you can see, they both passed. We
can now go on and augment them by creating additional tests such as those that validate the nega-
tive cases where we make sure that these methods don’t return true for cases that they shouldn’t.

Having all these tests in place for the Dinner class will make it much easier and safer to add new
business rules in the future. We can add our new rule logic to Dinner, and then within seconds
verify that it hasn’t broken any of our previous logic functionality.

Notice how using a descriptive test name makes it easy to quickly understand what each test is
verifying. I recommend using the Tools ➪ Options menu command, opening the Test Tools/Test
Execution confi guration screen, and checking the “Double-clicking a failed or inconclusive unit test
result displays the point of failure in the test” checkbox. This will allow you to double-click on a
failure in the Test Results window and jump immediately to the Assert failure.

Creating DinnersController Unit Tests

Let’s now create some unit tests that verify our DinnersController functionality. We’ll start by
right-clicking the Controllers folder within our Test project and then choose the Add ➪ New Test
menu command. We’ll create a unit test and name it DinnersControllerTest.cs.

We’ll create two test methods that verify the Details action method on the DinnersController.
The fi rst will verify that a View is returned when an existing Dinner is requested. The second will
verify that a “NotFound” View is returned when a nonexistent dinner is requested:

[TestClass]
public class DinnersControllerTest {

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_ExistingDinner() {

 // Arrange
 var controller = new DinnersController();

 // Act
 var result = controller.Details(1) as ViewResult;

 // Assert
 Assert.IsNotNull(result, “Expected View”);
 }

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange

643181c01.indd 151643181c01.indd 151 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

152 ❘ CHAPTER 1 NERDDINNER

 var controller = new DinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual(“NotFound”, result.ViewName);
 }
}

Code snippet 1-107.txt

The previous code compiles cleanly. When we run the tests, though, they both fail, as shown in
Figure 1-153.

FIGURE 1-153

If we look at the Error Messages, we see that the reason the tests failed was because our
DinnersRepository class was unable to connect to a database. Our NerdDinner application is
using a connection string to a local SQL Server Express fi le that lives under the \App_Data directory
of the NerdDinner application project. Because our NerdDinner.Tests project compiles and runs in a
different directory from the application project, the relative path location of our connection string is
incorrect.

We could fi x this by copying the SQL Express database fi le to our test project, and then add an
appropriate test connection string to it in the App.confi g of our test project. This would get the pre-
ceding tests unblocked and running.

Unit testing code using a real database, though, brings with it a number of challenges. Specifi cally:

It signifi cantly slows down the execution time of unit tests. The longer it takes to run tests, ➤

the less likely you are to execute them frequently. Ideally, you want your unit tests to be
able to be run in seconds — and have it be something you do as naturally as compiling the
project.

It complicates the setup and cleanup logic within tests. You want each unit test to be isolated ➤

and independent of others (with no side effects or dependencies). When working against a
real database, you have to be mindful of state and reset it between tests.

Let’s look at a design pattern called dependency injection that can help us work around these issues
and avoid the need to use a real database with our tests.

643181c01.indd 152643181c01.indd 152 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

Unit Testing ❘ 153

Dependency Injection

Right now DinnersController is tightly coupled to the DinnerRepository class. Coupling refers
to a situation in which a class explicitly relies on another class in order to work:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/Details/5

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View(“NotFound”);

 return View(dinner);
 }

Code snippet 1-108.txt

Because the DinnerRepository class requires access to a database, the tightly coupled dependency
the DinnersController class has on the DinnerRepository ends up requiring us to have a data-
base in order for the DinnersController action methods to be tested.

We can get around this by using a design pattern called dependency injection — which is an
approach in which dependencies (like repository classes that provide data access) are no longer cre-
ated within classes that use them. Instead, dependencies can be passed to the class that uses them,
using constructor arguments. If the dependencies are defi ned using interfaces, we then have the fl ex-
ibility to pass in fake dependency implementations for unit test scenarios. This enables us to create
test-specifi c dependency implementations that do not actually require access to a database.

To see this in action, let’s implement dependency injection with our DinnersController.

Extracting an IDinnerRepository Interface

Our fi rst step will be to create a new IDinnerRepository interface that encapsulates the repository
contract our Controllers require to retrieve and update dinners.

We can defi ne this interface contract manually by right-clicking the \Models folder and then choosing
the Add ➪ New Item menu command and creating a new interface named IDinnerRepository.cs.

Alternatively, we can use the refactoring tools built into Visual Studio Professional (and higher edi-
tions) to automatically extract and create an interface for us from our existing DinnerRepository
class. To extract this interface using VS, simply position the cursor in the text editor on the
DinnerRepository class, and then right-click and choose the Refactor ➪ Extract Interface menu
command (see Figure 1-154).

643181c01.indd 153643181c01.indd 153 5/20/10 10:23:36 AM5/20/10 10:23:36 AM

154 ❘ CHAPTER 1 NERDDINNER

FIGURE 1-154

This will launch the “Extract Interface” dialog and prompt us for the name of the interface to cre-
ate. It will default to IDinnerRepository and automatically select all public members on the exist-
ing DinnerRepository class to add to the interface (Figure 1-155).

FIGURE 1-155

When we click the OK button, Visual Studio will add a new IDinnerRepository interface to our
application:

public interface IDinnerRepository {

 IQueryable<Dinner> FindAllDinners();
 IQueryable<Dinner> FindByLocation(float latitude, float longitude);

643181c01.indd 154643181c01.indd 154 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

Unit Testing ❘ 155

 IQueryable<Dinner> FindUpcomingDinners();
 Dinner GetDinner(int id);

 void Add(Dinner dinner);
 void Delete(Dinner dinner);

 void Save();
}

Code snippet 1-109.txt

And our existing DinnerRepository class will be updated so that it implements the interface:

public class DinnerRepository : IDinnerRepository {
 ...
}

Code snippet 1-110.txt

Updating DinnersController to Support Constructor Injection

We’ll now update the DinnersController class to use the new interface.

Currently DinnersController is hard-coded such that its dinnerRepository fi eld is always a
DinnerRepository instance:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 ...
}

Code snippet 1-111.txt

We’ll change it so that the dinnerRepository fi eld is of type IDinnerRepository instead of
DinnerRepository. We’ll then add two public DinnersController constructors. One of the con-
structors allows an IDinnerRepository to be passed as an argument. The other is a default con-
structor that uses our existing DinnerRepository implementation:

public class DinnersController : Controller {

 IDinnerRepository dinnerRepository;

 public DinnersController()
 : this(new DinnerRepository()) {
 }

 public DinnersController(IDinnerRepository repository) {
 dinnerRepository = repository;
 }
 ...
}

Code snippet 1-112.txt

643181c01.indd 155643181c01.indd 155 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

156 ❘ CHAPTER 1 NERDDINNER

Because ASP.NET MVC, by default, creates Controller classes using default constructors, our
DinnersController at run time will continue to use the DinnerRepository class to perform
data access.

We can now update our unit tests, though, to pass in a fake dinner repository implementation using
the parameter constructor. This fake dinner repository will not require access to a real database
and, instead, will use in-memory sample data.

Creating the FakeDinnerRepository Class

Let’s create a FakeDinnerRepository class.

We’ll begin by creating a Fakes directory within our NerdDinner
.Tests project and then add a new FakeDinnerRepository class
to it (right-click the folder and choose Add ➪ New Class, as
shown in Figure 1-156).

We’ll update the code so that the FakeDinnerRepository class
implements the IDinnerRepository interface. To do so, we
can right-click on the interface and choose the Implement inter-
face context menu command or we can place our mouse over
the interface and implement the interface via the smart tag (see
Figure 1-157).

FIGURE 1-157

This will cause Visual Studio to automatically add all of the IDinnerRepository interface members
to our FakeDinnerRepository class with default stub out implementations:

public class FakeDinnerRepository : IDinnerRepository {

 public IQueryable<Dinner> FindAllDinners() {
 throw new NotImplementedException();
 }

 public IQueryable<Dinner> FindByLocation(float lat, float long){

FIGURE 1-156

643181c01.indd 156643181c01.indd 156 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

Unit Testing ❘ 157

 throw new NotImplementedException();
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 throw new NotImplementedException();
 }

 public Dinner GetDinner(int id) {
 throw new NotImplementedException();
 }

 public void Add(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Delete(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Save() {
 throw new NotImplementedException();
 }
}

Code snippet 1-113.txt

We can then update the FakeDinnerRepository implementation to work off of an in-memory
List<Dinner> collection passed to it as a constructor argument:

public class FakeDinnerRepository : IDinnerRepository {

 private List<Dinner> dinnerList;

 public FakeDinnerRepository(List<Dinner> dinners) {
 dinnerList = dinners;
 }

 public IQueryable<Dinner> FindAllDinners() {
 return dinnerList.AsQueryable();
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return (from dinner in dinnerList
 where dinner.EventDate > DateTime.Now
 select dinner).AsQueryable();
 }

 public IQueryable<Dinner> FindByLocation(float latitude
 , float longitude) {
 return (from dinner in dinnerList
 where dinner.Latitude == lat && dinner.Longitude == lon
 select dinner).AsQueryable();
 }

 public Dinner GetDinner(int id) {

643181c01.indd 157643181c01.indd 157 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

158 ❘ CHAPTER 1 NERDDINNER

 return dinnerList.SingleOrDefault(d => d.DinnerID == id);
 }

 public void Add(Dinner dinner) {
 dinnerList.Add(dinner);
 }

 public void Delete(Dinner dinner) {
 dinnerList.Remove(dinner);
 }

 public void Save() {
 }
}

Code snippet 1-114.txt

We now have a fake IDinnerRepository implementation that does not require a database and can
instead work off an in-memory list of Dinner objects.

Using the FakeDinnerRepository with Unit Tests

Let’s return to the DinnersController unit tests that failed earlier because the database wasn’t
available. We can update the test methods to use a FakeDinnerRepository populated with sample
in-memory dinner data to the DinnersController using the code that follows:

[TestClass]
public class DinnersControllerTest {

 List<Dinner> CreateTestDinners() {

 List<Dinner> dinners = new List<Dinner>();

 for (int i = 0; i < 101; i++) {

 Dinner sampleDinner = new Dinner() {
 DinnerID = i,
 Title = “Sample Dinner”,
 HostedBy = “SomeUser”,
 Address = “Some Address”,
 Country = “USA”,
 ContactPhone = “425-555-1212”,
 Description = “Some description”,
 EventDate = DateTime.Now.AddDays(i),
 Latitude = 99,
 Longitude = -99
 };
 dinners.Add(sampleDinner);
 }
 return dinners;

643181c01.indd 158643181c01.indd 158 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

Unit Testing ❘ 159

 }

 DinnersController CreateDinnersController() {
 var repository = new FakeDinnerRepository(CreateTestDinners());
 return new DinnersController(repository);
 }

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_Dinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(1);

 // Assert
 Assert.IsInstanceOfType(result, typeof(ViewResult));
 }

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual(“NotFound”, result.ViewName);
 }
}

Code snippet 1-115.txt

Now when we run these tests, they both pass (see Figure 1-158).

FIGURE 1-158

Best of all, they take only a fraction of a second to run and do not require any complicated
setup/cleanup logic. We can now unit test all of our DinnersController action method code
(including listing, paging, details, create, update, and delete) without ever needing to connect to
a real database.

643181c01.indd 159643181c01.indd 159 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

160 ❘ CHAPTER 1 NERDDINNER

DEPENDENCY INJECTION FRAMEWORKS

Performing manual dependency injection (as we are doing) works fi ne, but does
become harder to maintain as the number of dependencies and components in an
application increases.

Several dependency injection frameworks exist for .NET that can help provide
even more dependency management fl exibility. These frameworks, also sometimes
called inversion of control (IoC) containers, provide mechanisms that enable an
additional level of confi guration support for specifying and passing dependencies to
objects at run time (most often using constructor injection). Some of the more pop-
ular OSS (Open Source Software) Dependency Injection/IoC frameworks in .NET
include Autofac, Ninject, Spring.NET, StructureMap, and Windsor.

ASP.NET MVC exposes extensibility APIs that enable developers to participate
in the resolution and instantiation of Controllers and that enable Dependency
Injection/IoC frameworks to be cleanly integrated within this process. Using a DI/
IoC framework would also enable us to remove the default constructor from our
DinnersController, which would completely remove the coupling between it and
the DinnerRepository.

We won’t be using a Dependency Injection/IoC framework with our NerdDinner
application. But it is something we could consider for the future if the NerdDinner
code-base and capabilities grew.

Creating Edit Action Unit Tests

Let’s now create some unit tests that verify the Edit functionality of the DinnersController. We’ll
start by testing the HTTP-GET version of our Edit action:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-116.txt

We’ll create a test that verifi es that a View backed by a DinnerFormViewModel object is rendered
back when a valid dinner is requested:

643181c01.indd 160643181c01.indd 160 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

Unit Testing ❘ 161

[TestMethod]
public void EditAction_Should_Return_View_For_ValidDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

Code snippet 1-117.txt

When we run the test, though, we’ll fi nd that it fails because a null reference exception is thrown
when the Edit method accesses the User.Identity.Name property to perform the Dinner
.IsHostedBy check.

The User object on the Controller base class encapsulates details about the logged-in user and is
populated by ASP.NET MVC when it creates the Controller at run time. Because we are testing the
DinnersController outside of a web-server environment, the User object isn’t set (hence the null
reference exception).

Mocking the User.Identity.Name Property

Mocking frameworks make testing easier by enabling
us to dynamically create fake versions of depen-
dent objects that support our tests. For example, we
can use a mocking framework in our Edit action
test to dynamically create a User object that our
DinnersController can use to look up a simulated
username. This will prevent a null reference from being
thrown when we run our test.

There are many .NET mocking frameworks that can
be used with ASP.NET MVC (you can see a list of
them at www.mockframeworks.com/). For testing our
NerdDinner application, we’ll use an open source
mocking framework called Moq, which can be down-
loaded for free from http://code.google.com/p/
moq/. The samples in this book assume Moq version
4.0.423.5.

Once it is downloaded, we’ll add a reference in our
NerdDinner.Tests project to the Moq.dll assembly (see
Figure 1-159).

FIGURE 1-159

643181c01.indd 161643181c01.indd 161 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

162 ❘ CHAPTER 1 NERDDINNER

We’ll then add an overloaded CreateDinnersControllerAs(username) helper method to the test
class, which takes a username as a parameter and then mocks the User.Identity.Name property
on the DinnersController instance:

DinnersController CreateDinnersControllerAs(string userName) {

 var mock = new Mock<ControllerContext>();
 mock.SetupGet(p => p.HttpContext.User.Identity.Name).Returns(userName);
 mock.SetupGet(p => p.HttpContext.Request.IsAuthenticated).Returns(true);

 var controller = CreateDinnersController();
 controller.ControllerContext = mock.Object;

 return controller;
}

Code snippet 1-118.txt

In this, we are using Moq to create a Mock object that fakes a ControllerContext object (which
is what ASP.NET MVC passes to Controller classes to expose runtime objects like User, Request,
Response, and Session). We are calling the SetupGet method on the Mock to indicate that the
HttpContext.User.Identity.Name property on ControllerContext should return the username
string we passed to the helper method.

We can mock any number of ControllerContext properties and methods. To illustrate this, I’ve
also added a SetupGet call for the Request.IsAuthenticated property (which isn’t actually
needed for the tests below but helps illustrate how you can mock Request properties). When we are
done, we assign an instance of the ControllerContext mock to the DinnersController our helper
method returns.

We can now write unit tests that use this helper method to test Edit scenarios involving different
users:

[TestMethod]
public void EditAction_Should_Return_EditView_When_ValidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

[TestMethod]
public void EditAction_Should_Return_InvalidOwnerView_When_InvalidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs(“NotOwnerUser”);

 // Act

643181c01.indd 162643181c01.indd 162 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

Unit Testing ❘ 163

 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.AreEqual(result.ViewName, “InvalidOwner”);
}

Code snippet 1-119.txt

Now when we run the tests, they pass (see Figure 1-160).

FIGURE 1-160

Testing UpdateModel Scenarios

We’ve created tests that cover the HTTP-GET version of the Edit action. Let’s now create some
tests that verify the HTTP-POST version of the Edit action:

//
// POST: /Dinners/Edit/5

[HttpPost, Authorize]
public ActionResult Edit (int id, FormCollection collection) {
 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View(“InvalidOwner”);

 if(TryUpdateModel(dinner)) {
 dinnerRepository.Save();

 return RedirectToAction(“Details”, new { id=dinner.DinnerID });
 }
 return View(new DinnerFormViewModel(dinner));
}

Code snippet 1-120.txt

The interesting new testing scenario for us to support with this action method is its usage of the
UpdateModel helper method on the Controller base class. We are using this helper method to bind
form-post values to our Dinner object instance.

The following code has two tests that demonstrate how we can supply form-posted values for the
UpdateModel helper method to use. We’ll do this by creating and populating a FormCollection
object, and then assign it to the ValueProvider property on the Controller.

643181c01.indd 163643181c01.indd 163 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

164 ❘ CHAPTER 1 NERDDINNER

The fi rst test verifi es that upon a successful save, the browser is redirected to the Details action. The
second test verifi es that when invalid input is posted, the action redisplays the Edit view again with
an error message.

public void EditAction_Should_Redirect_When_Update_Successful() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 var formValues = new FormCollection() {
 { “Title”, “Another value” },
 { “Description”, “Another description” }
 };

 controller.ValueProvider = formValues;

 // Act
 var result = controller.Edit(1, formValues) as RedirectToRouteResult;

 // Assert
 Assert.AreEqual(“Details”, result.RouteValues[“Action”]);
}

[TestMethod]
public void EditAction_Should_Redisplay_With_Errors_When_Update_Fails() {

 // Arrange
 var controller = CreateDinnersControllerAs(“SomeUser”);

 var formValues = new FormCollection() {
 { “EventDate”, “Bogus date value!!!”}
 };

 controller.ValueProvider = formValues;

 // Act
 var result = controller.Edit(1, formValues) as ViewResult;

 // Assert
 Assert.IsNotNull(result, “Expected redisplay of view”);
 Assert.IsTrue(result.ViewData.ModelState.Count > 0, “Expected errors”);
}

Code snippet 1-121.txt

Testing Wrap-Up

We’ve covered the core concepts involved in unit testing Controller classes. We can use these tech-
niques to easily create hundreds of simple tests that verify the behavior of our application.

Because our Controller and Model tests do not require a real database, they are extremely fast and
easy to run. We’ll be able to execute hundreds of automated tests in seconds, and immediately get
feedback as to whether a change we made broke something. This will help provide us the confi dence
to continually improve, refactor, and refi ne our application.

643181c01.indd 164643181c01.indd 164 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

NerdDinner Wrap-Up ❘ 165

We covered testing as the last topic in this chapter — but not because testing is something you
should do at the end of a development process! On the contrary, you should write automated tests
as early as possible in your development process. Doing so enables you to get immediate feedback
as you develop, helps you think thoughtfully about your application’s use case scenarios, and guides
you to design your application with clean layering and coupling in mind.

A later chapter in this book will discuss Test Driven Development (TDD) and how to use it with
ASP.NET MVC. TDD is an iterative coding practice wherein you fi rst write the tests that your
resulting code will satisfy. With TDD you begin each feature by creating a test that verifi es the
functionality you are about to implement. Writing the unit test fi rst helps ensure that you clearly
understand the feature and how it is supposed to work. Only after the test is written (and you have
verifi ed that it fails) do you then implement the actual functionality the test verifi es. Because you’ve
already spent time thinking about the use case of how the feature is supposed to work, you will have
a better understanding of the requirements and how best to implement them. When you are done
with the implementation, you can re-run the test and get immediate feedback as to whether the fea-
ture works correctly. We’ll cover TDD more in Chapter 10.

NERDDINNER WRAP-UP

Our initial version of our NerdDinner application is now complete and ready to deploy on the Web
(Figure 1-161).

FIGURE 1-161

643181c01.indd 165643181c01.indd 165 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

166 ❘ CHAPTER 1 NERDDINNER

We used a broad set of ASP.NET MVC features to build NerdDinner. I hope that the process of
developing it shed some light on how the core ASP.NET MVC features work and provided context
on how these features integrate within an application.

The following chapters will go into more depth on ASP.NET MVC and discuss its features in detail.

643181c01.indd 166643181c01.indd 166 5/20/10 10:23:37 AM5/20/10 10:23:37 AM

