
PART I

� CHAPTER 1: The Road to Test-Driven Development

� CHAPTER 2: An Introduction to Unit Testing

� CHAPTER 3: A Quick Review of Refactoring

� CHAPTER 4: Test-Driven Development: Let the Tests Be Your Guide

� CHAPTER 5: Mocking External Resources

c01.indd 1c01.indd 1 9/10/2018 7:09:22 PM9/10/2018 7:09:22 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 9/10/2018 7:09:22 PM9/10/2018 7:09:22 PM

 WHAT ’ S IN THIS CHAPTER?

➤ How has software development evolved to bring us to TDD

➤ What an Agile methodology is and how does it diff ers from

traditional waterfall-based technologies

➤ What TDD is and what the benefi ts of using it are

Test-Driven Development (TDD) has become one of the most important concepts andt
practices in modern software development. To understand why this is, consider the history
of the practice of creating software. TDD was created through an almost evolutionary
process. It came about as a response to the diffi culties and challenges of writing software,
but there was no real plan for its creation. It ’ s a classic case of the traits of a thing that make
that thing more successful and stronger being propagated and the traits that lead to failure
being discarded. The practices of TDD were not created by any single company or individual;
they rose from countless discussions (or, more likely, arguments) about what was done in the
past, why it failed, and what could be done better. If TDD is a structure, such as a house, its
foundation is created from failure. Failed projects, whose developers knew there had to be a
better way, are what TDD has been built upon.

 In this chapter you learn about the history of software development and how the methodology
of managing software projects has moved from favoring waterfall to iterative to agile
methodologies. You ’ ll learn how the practice of Test-Driven Development is a key component
of agile methodologies to ensure that quality code that addresses the business needs is being
produced. I will explain the tenets of Test-Driven Development, outline its benefi ts, and show
you an example of how Test-Driven Development is done.

 1

c01.indd 3c01.indd 3 9/10/2018 7:09:22 PM9/10/2018 7:09:22 PM

4 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 THE CLASSICAL APPROACH TO SOFTWARE DEVELOPMENT

 To understand the importance of TDD, it ’ s necessary to see the road that led to it. Over the past
50 years the practice of software development has constantly evolved in an effort to fi nd a balance
between the needs of the business, the capabilities of the current technology, and the methodology
in which developers are most productive. Missteps have occurred along the way, but even they
were important as a means of determining which techniques and methodologies were evolutionary
dead ends. This chapter reviews the road to TDD.

 A Brief History of Software Engineering

 Software development for business began during the age of the mainframe. Each hardware
vendor seemed to have its own unique platform and paradigm for developing software.
Sometimes these systems were similar enough to each other that developers could move from
job to job and platform to platform with very little friction. Other times it was like starting from
scratch. Although the basic concepts of computing were the same, each vendor had its own,
sometimes very unique take on those concepts. Languages were archaic, often requiring many
lines of code to do the simplest things that we take for granted today. And many times what
worked in one implementation of a language or platform didn ’ t work quite the same way
in another.

 The mainframe was a large, expensive piece of equipment. Many companies didn ’ t own one, so the
concept of the service bureau was born: Companies with a mainframe would lease time on their
computer to customers. Unfortunately, this sometimes meant waiting for access to the computer.
Imagine if you wrote a program today but couldn ’ t compile it until next Monday. It would be very
hard to be a productive developer with that kind of constraint. Suppose you attempted to compile
on Monday but encountered an error. You could fi x it, but you wouldn ’ t know if your fi x was
correct for three more days. The limited access to computing resources often meant that testing,
out of necessity, took a backseat to getting the product out the door.

 These were also the days before the concept of waterfall development. Developers, left to their ownl
devices, often worked in an iterative manner, scoping out specifi c pieces of a system and completing
those, and then adding new features and functionality later. This method worked well, because it
allowed developers to approach application development in a logical manner that kept things in
terms they could understand and manage. Unfortunately, business users and what was logical
and comprehensible to them often were not taken into consideration.

 The second generation of mini - computers emerged in 1977, but they didn ’ t really take off
in business until 1979 with the release of VisiCalc. VisiCalc was the fi rst spreadsheet application
available for the personal computer. It demonstrated that PCs weren ’ t just toys for the home,
but machines that could provide real value to business. PCs offered many advantages over
mainframes, the fi rst one being that they were much less expensive. A business that couldn ’ t
afford even one dedicated mainframe could afford dozens of PCs. And although PCs weren ’ t
as fast as mainframes, their availability made them ideal for day - to - day tasks that didn ’ t require
the power of the mainframe. Developers could write applications for the PC and know right
away if their code worked. They also didn ’ t have to wait days to have their jobs scheduled
and run.

c01.indd 4c01.indd 4 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

 Things got even better with third - and fourth - generation programming languages. They abstracted
some of the more mundane tasks of their predecessors and allowed developers to be more productive
by focusing on the business problem at hand. These languages also opened software development to
a wider audience who didn ’ t want to deal with the friction of languages such as Assembler and C.
Business and the business computer industry ultimately settled on a few base languages and their
derivatives. This helped developers become more attractive and marketable to business as their skills
became more portable.

 Ultimately business ’ s need to plan brought about the waterfall project methodology. The concept
behind waterfall was that every software project, whose average time span was about two years,
should have every phase from inception to delivery planned from the start. This necessitated a
long period at the beginning for requirements gathering. After all the requirements were gathered,
they were “ thrown over the wall ” to the architects. The architects took the requirements and
designed the system that would be built down to the smallest detail. When they completed this task,
they threw the design over the wall to the developers, who built the system. After the developers
completed their work, they threw the system to the Quality Assurance (QA) department, which
tested the application. As soon as the application was validated, it was deployed to the users.

 Software testing in a waterfall methodology was often a long, diffi cult, ineffi cient, and expensive
process. QA testers would test applications by manually running through test scripts, which were
documents that instructed the tester to carry out an action in the system and described the result the
tester should observe. Sometimes these scripts ran into hundreds of pages. When a change was made
to the system, it could take a tester two or more weeks to completely regression - test the system.
Another issue was that often these test scripts were written by the developer who created the system.
In these cases the scripts usually described how the system would act, not how it d should act.d

 The fi rst step toward TDD happened with the proliferation of automated QA testing tools. These
recorded a series of actions a user takes on a user interface (UI) and allowed them to be played back
later. This verifi ed that the UI worked correctly. After the initial tests were recorded, the QA tools
also allowed much faster regression testing than manual tests and could be run repeatedly. A large
failing of many of these early tools was that the tests they created were brittle. When an aspect of
the UI changed, the test usually couldn ’ t handle the change, and the test would break. For tools
that used the record/playback model, that meant the test had to be discarded and a new one created.
Later versions of these tools allowed for scripting that would make some of these changes easier
to absorb, but the tests still remained fragile.

 From Waterfall to Iterative and Incremental

 Software development doesn ’ t happen in a void. It doesn ’ t matter if it ’ s an 18 - month project to
create an application to collate the Enterprise ’ s Testing Procedure Specifi cation (TPS) reports or a
website that you built for your child ’ s peewee hockey team; you are using a methodology. You have
requirements, you plan features, and you build the application. After it ’ s tested, you deploy it to a
grateful user base.

 A problem with the waterfall methodology is that all the requirements are gathered early on. In
business, requirements often change for a variety of reasons. Changes in the law, a shift in the
company ’ s strategic direction, or even something as simple as a mistake in the requirements -
 gathering phase could have serious repercussions for the downstream process. The planned - out

The Classical Approach to Software Development ❘ 5

c01.indd 5c01.indd 5 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

6 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

nature of waterfall does not respond well to change. A change request to the system generally must
go through the same requirements/design/development/QA process that the rest of the system did.
This creates a ripple effect that causes the rest of the plan to become inaccurate.

 To create the upfront plan, the work must be estimated early — sometimes years before the actual
work is to be done, and usually by someone who won ’ t actually do the work. This creates a
house of cards in which one wrong estimate can again wreak havoc across the rest of the
project plan.

 The architects aren ’ t blameless either. This era led to “ ivory tower architects ” who created designs
for applications that in practice were impractical or, in some cases, impossible. Developers didn ’ t
help the case either, because many of them simply carried out the architect ’ s design vision, whether
or not it made sense. Many times what was delivered to the business (two years after it had been
requested) did not remotely resemble what was wanted or needed.

 In an effort to solve some of the issues with waterfall, some development shops turned to the
concept of iterative or incremental development. The idea was to take a large waterfall project andl
divide it into several smaller waterfall projects. Each subproject would have a defi ned scope and
delivery target and upon completion would feed into the next iteration of the larger project.
This was an improvement, because it resulted in smaller projects that were easier to defi ne and
got software in front of users much faster. However, in the end this was really just several linked
waterfall projects, albeit shorter ones. The individual subproject still did not have a good
mechanism for dealing with the constant change of business and technology. Another step
was needed.

 A QUICK INTRODUCTION TO AGILE METHODOLOGIES

 Unlike waterfall, which seeks to control and constrain the realities of software development,
agile methodologies embrace them. Change in business is inevitable, and software development
methodologies must be able to adapt. A key failure of the large up - front plan is that estimates
by their very defi nition are always wrong. If they were correct, they wouldn ’ t be estimates; they
would be “ the number. ” An iterative process shows promise, but the iterations themselves, and the
methodology as a whole, must be fl exible and open to change.

 A Brief History of Agile Methodologies

 In February 2001 several proponents of new methodologies such as Scrum, Extreme Programming
(XP), Pragmatic Programming, Feature Driven Development, and others met and drafted the Agile
Manifesto. It reads as follows:

 “ We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

➤ Individuals and interactions over processes and tools

➤ Working software over comprehensive documentation

c01.indd 6c01.indd 6 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

➤ Customer collaboration over contract negotiation

➤ Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the
left more. ”

 The Agile Manifesto itself is not a development methodology. It doesn ’ t prescribe how software
should be developed. It simply states a set of key values that can be used to create and describe
lighter and faster application development methodologies that are more focused on people, working
software, and results than meticulous multiyear project plans and mountains of documentation.

 Many branded agile development methodologies are in use today:

➤ Scrum

➤ Extreme Programming (XP)

➤ Feature Driven Development

➤ Clear Case

➤ Adaptive Software Development

 The Principles and Practices of Test-Driven Development

 These methodologies are all different in how they are implemented, but they share some
characteristics:

➤ They all make communication across the team a high priority. Developers, business users,
and testers are all encouraged to communicate frequently.

➤ They focus on transparency in the project. The development team does not live in a black
box that obscures their actions from the rest of the team. They use very public artifacts
(a Kanban board, a big visible chart, and so on) to keep the team informed.

➤ The members of the team are all accountable to each other. The team does not succeed or
fail because of one person; they either succeed or fail as a team.

➤ Individual developers do not own sections of the code base. The whole team owns the entire
code base, and everyone is responsible for its quality.

➤ Work is done in short, iterative development cycles, ideally with a release at the end of
each cycle.

➤ The ability to handle change is a cornerstone of the methodology.

➤ Broad strokes of a system are defi ned up front, but detailed design is deferred until the
feature is actually scheduled to be developed.

 Agile methodologies are not a silver bullet. They are also not about chaos or “ cowboy coding. ” In
fact, agile methodologies require a larger degree of discipline to administer correctly. Furthermore,
no one true agile methodology exists. Ultimately, each team needs to do what works best for them.
This may mean starting with a branded agile methodology and changing it, or combining aspects

A Quick Introduction to Agile Methodologies ❘ 7

c01.indd 7c01.indd 7 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

8 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

of several. You should constantly evaluate your methodology and do more of what works and
less of what doesn ’ t.

 THE CONCEPTS BEHIND TDD

 The history of TDD starts in 1999 with a group of developers who championed a set of concepts
known as Extreme Programing (XP). XP is an agile based methodology that is based on recognizing
what practices in software development are benefi cial and dedicating the bulk of the developers
time and effort to those practices under the philosophy “ if some is good, more is better. ” A key
component of XP is test - fi rst programming. TDD grew out of XP as some developers found they
were not ready to embrace some of the more, at the time, radical concepts, yet found the promise
of improved quality that was delivered by the practice of TDD compelling.

 As mentioned, agile methodologies do not incorporate a big upfront design. Business requirements
are distilled into features for the system. The detailed design for each feature is done when the
feature is scheduled. Features, and their resulting libraries and code, are kept short and simple.

 TDD as a Design Methodology

 When used as an application design methodology, TDD works best when the business user is
engaged in the process to help the developer defi ne the logic that is being created, sometimes going
so far as to defi ne a set of input and its expected output. This is necessary to ensure that the
developers understand the business requirements behind the feature they are developing. TDD
ensures that the fi nal product is in line with the needs of the business. It also helps ensure that
the scope of the feature is adhered to and helps the developer understand what done really means
with respect to the current feature in development.

 TDD as a Development Practice

 As a development practice, TDD is deceptively simple. Unlike development you ’ ve done in the past,
where you may sit down and start by creating a window, a web page, or even a class, in TDD you
start by writing a test. This is known as test fi rst development , and initially it might seem a bitt
awkward. However, by writing your test fi rst, what you really are doing is creating the requirement
you are designing for in code. As you work with the business user to defi ne what these tests should
be, you create an executable version of the requirement that is composed of your test. Until these
tests pass, your code does not satisfy the business requirement.

 When you write your fi rst test, the fi rst indication that it fails is the fact that the application does
not compile. This is because your test is attempting to instantiate a class that has not been defi ned,
or it wants to use a method on an object that does not exist. The fi rst step is simply to create the
class you are testing and defi ne whatever method on that class you are attempting to test. At this
point your test will still fail, because the class and method you just created don ’ t do anything.
The next step is to write just enough code to make your test pass. This should be the simplest code
you can create that causes the test to pass. The goal is not to write code based on what might be
coming in the requirement. Until that requirement changes, or a test is added to expose that lack
of functionality, it doesn ’ t get written. This prevents you from writing overly complicated code

c01.indd 8c01.indd 8 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

where a simple algorithm would suffi ce. Remember, one of the goals of TDD is to create code that is
easy to understand and maintain.

 As soon as your fi rst test is passing, add more tests. You should try to have enough tests to ensure
that all the requirements of the feature being tested are being met. As part of this process, you want
to ensure that you are testing your methods for multiple input combinations. This includes values
that fall outside the approved range. These are called negative tests . If your requirement says that
your interest calculation method should handle only percentage rates up to 20%, see what happens
if you try to call it with 21%. Usually this should cause an exception of some sort to be thrown. If
your method takes string arguments, what happens if you pass in an empty string? What happens
if you pass in nulls? Although it ’ s important to keep your tests inside the realm of reality,
triangulating tests to ensure the durability of your code is important too. When the entire
requirement has been expressed in tests, and all the tests pass, you ’ re done.

 THE BENEFITS OF TDD

 When describing TDD to developers, development managers, and project managers who have never
experienced it, I am usually met with skepticism. On paper, creating code does seem like a long and
convoluted process. The benefi ts cannot be ignored, however:

➤ TDD ensures quality code from the start. Developers are encouraged to write only the
code needed to make the test pass and thus fulfi ll the requirement. If a method has less
code, it ’ s only logical that the code has fewer opportunities for error.

➤ Whether by design or by coincidence, most TDD practitioners write code that follows the
SOLID principals. These are a set of practices that help developers ensure they are writing
quality software. While the tests generated by the practice of TDD are extremely valuable,
the quality that results as a side - effect is an incredibly important benefi t of TDD. The
SOLID principals will be covered in Chapter 3.

➤ TDD ensures a high degree of fi delity between the code and the business requirements.
If your requirements are written as tests, and your tests all pass, you can say with a high
degree of confi dence that your code meets the needs of the business.

➤ TDD encourages the creation of simpler, more focused libraries and APIs. TDD turns
development a bit on its head, because the developer writing the interface to the library
or API is also its fi rst consumer. This gives you a new perspective on how the interface
should be written, and you know instantly if the interface makes sense.

➤ TDD encourages communication with the business. To create these tests, you are encouraged
to interact with the business users. This way, you can make sure that the input and output
combinations make sense, and you can help the users understand what they are building.

➤ TDD helps keep unused code out of the system. Most developers have written applications
in which they designed interfaces and wrote methods based on what might happen. This
leads to systems with large parts of code or functionality that are never used. This code is
expensive. You expend effort writing it, and even though that code does nothing, it still
has to be maintained. It also makes things cluttered, distracting you from the important
working code. TDD helps keep this parasite code out of your system.

The Benefi ts of TDD ❘ 9

c01.indd 9c01.indd 9 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

10 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

➤ TDD provides built - in regression testing. As changes are made to the system and
your code, you always have the suite of tests you created to ensure that tomorrow ’ s
changes do not damage today ’ s functionality.

➤ TDD puts a stop to recurring bugs. You ’ ve probably been in situations where you are
developing a system and the same bug seems to come back from QA repeatedly. You think
you ’ ve fi nally tracked it down and put a stop to it, only to see it return two weeks later.
With TDD, as soon as a defect is reported, a new test is written to expose it. When this
test passes, and continues to pass, you know the defect is gone for good.

➤ When developing applications with testability in mind, the result is an architecture that
is open, extensible and fl exible. Dependency Injection (covered in Chapter 5) is a key
component of both TDD and a loosely coupled architecture. This results in a system that
by virtue of its architecture is robust, easy to change, and resistant to defects.

 A QUICK EXAMPLE OF THE TDD APPROACH

 The following exercise takes you through an
example of what it ’ s like to develop a feature for
a system using TDD. For this example, imagine
you have been asked to create a feature that
counts occurrences of a character in a string.
Assume that you are working in an existing
solution, with an existing project structure,
but the class you ’ ll implement this method on
does not exist. Also assume for this example
that your unit - testing frameworks have been
referenced in your project. Don ’ t worry; I cover
how to do this in Chapter 6. Currently, the
solution looks like Figure 1 - 1.

 The ChapterOne.UnitTests project will contain
our unit tests. The ChapterOneExample.Utilities
project will be where our completed class will be
placed. The fi rst step is to create a class in our
unit test project that will contain our unit tests,
as shown in Figure 1 - 2.

 You have a variety of ways to arrange your unit
test classes within your unit test project. Some
developers prefer to place each test class in a
separate code fi le. Some developers like to create
a code fi le for all the test classes for a specifi c
feature. A more common approach, which is
the one taken here, is to create a code fi le class
for all the unit test classes for a specifi c section
of the application — in this case, the utilities
project. If you had a business logic library with several business/domain - based services, you could

FIGURE 1 - 1

FIGURE 1 - 2

c01.indd 10c01.indd 10 9/10/2018 7:09:25 PM9/10/2018 7:09:25 PM

create a separate code fi le for each domain service ’ s test classes. For this example that would be
overkill, so you ’ ll use one test class for the whole project.

 When you created the UtilitiesTest.cs class, Visual Studio created some boilerplate code:

namespace ChapterOne.UnitTests
{
 public class UtilitiesTests
 {

 }
}

 For the purposes of this example, the name UtilitiesTests is fi ne, but in a real
business development situation it might not be descriptive enough for the other
developers on your team. It defi nitely won ’ t mean much to a nontechnical
business user. Subsequent examples in this book will employ a method for
naming and constructing tests that is more in line with a Business Driven
Development style. It provides human - friendly names and makes the actual test
easier to understand and follow for nontechnical people.

 Now you write your fi rst test. This can be the simplest expression of what your requirements are. This
test passes in the string mysterious and asks the library to count the occurrences of the letter y :

using NUnit.Framework;

namespace ChapterOne.UnitTests
{
 public class UtilitiesTests
 {
 [Test]
 public void ShouldFindOneYInMysterious()
 {
 var stringToCheck = "mysterious";
 var stringToFind = "y";
 var expectedResult = 1;
 var classUnderTest = new StringUtilities();

 var actualResult =
 classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
 }
 }
}

 The test method ShouldFindOneYInMysterious is decorated with the attribute Test to tell the unit
test framework that this is a test. The test conditions are set up by defi ning the string to search and
the character to fi nd in it. They also defi ne the expected result. Next the method is invoked under
test and captures the actual result. Finally, an Assert statement determines whether the expected
and actual values are the same.

A Quick Example of the TDD Approach ❘ 11

c01.indd 11c01.indd 11 9/10/2018 7:09:26 PM9/10/2018 7:09:26 PM

12 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 The fi rst indication that the test does not pass is the fact that the application does not compile.
This tells you that no one has implemented a StringUtilities class in the application. That ’ s
 what you must do fi rst. To do so you simply add a new class called StringUtilities to your
utilities project. The class that Visual Studio creates looks like this:

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {

 }
}

 The test still fails, because you haven ’ t created a CountOccurences method on this class. The next
step in making this test pass is adding that method:

using System;

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {
 public int CountOccurences(string stringToCheck,
 string stringToFind)
 {
 throw new NotImplementedException ();
 }
 }
}

 This method initially throws an exception because so far the only reason this test has failed is due
to a failure to compile. This might seem silly, but in TDD you don ’ t take anything for granted; it ’ s
important to see your tests fail before you write your methods. This ensures that you are writing
only enough code to make the test pass. When you run the test, it fails, as shown in Figure 1 - 3.

FIGURE 1 - 3

c01.indd 12c01.indd 12 9/10/2018 7:09:27 PM9/10/2018 7:09:27 PM

 The reason for the test failure (as shown by the highlighted text) is that you have not implemented
the method. The next step is to write code to make this test pass:

using System;

namespace ChapterOneExample.Utilities
{
 public class StringUtilities
 {
 public int CountOccurences(string stringToCheck,
 string stringToFind)
 {
 var stringAsCharArray = stringToCheck.ToCharArray();
 var stringToCheckForAsChar =
 stringToFind.ToCharArray()[0];
 var occuranceCount = 0;

 for (var characterIndex = 0;
 characterIndex < stringAsCharArray.GetUpperBound(0);
 characterIndex++)
 {
 if (stringAsCharArray[characterIndex] ==
 stringToCheckForAsChar)
 {
 occuranceCount++;
 }
 }

 return occuranceCount;
 }
 }
}

 This may or may not be the best way to implement this method, but if you run the test you can
see in Figure 1 - 4 that it ’ s enough to satisfy this requirement.

FIGURE 1 - 4

A Quick Example of the TDD Approach ❘ 13

c01.indd 13c01.indd 13 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

14 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 So, right now you know it works when there is one instance of the character you ’ re looking for in
the target word. In the interest of triangulating tests, you need to write another one to verify that
it fi nds multiple instances:

[Test]
public void ShouldFindTwoSInMysterious()
{
 var stringToCheck = "mysterious";
 var stringToFind = "s";
 var expectedResult = 2;
 var classUnderTest = new StringUtilities();

 var actualResult = classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
}

 When you run both tests, you can see that the code has a problem, as shown in Figure 1 - 5.

FIGURE 1 - 5

 The test has uncovered a bug in the code. Specifi cally, the for loop is looping through the target string one
fewer time than is needed (string length - 1). After the defect has been found, you can fi x the code:

for (var characterIndex = 0;
 characterIndex < = stringAsCharArray.GetUpperBound(0);
 characterIndex++)

 Now when you run the test, the code behaves the way it should, as shown in Figure 1 - 6.

FIGURE 1 - 6

c01.indd 14c01.indd 14 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

 Now imagine that as you continue to develop your character counter method, you are given a
new requirement. Your business user wants the search to be case - insensitive. That is, the algorithm
shouldn ’ t care if letters are uppercase or lowercase. Your fi rst step is to write a test that expresses
this new requirement:

public void SearchShouldBeCaseSenstive()
 {
 var stringToCheck = "mySterious";
 var stringToFind = "s";
 var expectedResult = 2;
 var classUnderTest = new StringUtilities();

 var actualResult =
 classUnderTest.CountOccurences(stringToCheck,
 stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
 }

 Figure 1 - 7 shows that when you run this test, the current implementation does not meet this
new requirement.

FIGURE 1 - 7

 The next step is to update your method to make this test pass while making sure that the other
two tests do not start to fail. This change is easy enough; you simply convert both the string
you are searching and the character you are searching for to uppercase before you run the
search algorithm:

var stringAsCharArray = stringToCheck.ToUpper().ToCharArray();
var stringToCheckForAsChar = stringToFind.ToUpper().ToCharArray()[0];

 Figure 1 - 8 shows the results of running this test again. This change was all that was needed
to make the new test pass, without causing the existing tests to fail, so this requirement
is complete.

A Quick Example of the TDD Approach ❘ 15

c01.indd 15c01.indd 15 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

16 ❘ CHAPTER 1 THE ROAD TO TEST-DRIVEN DEVELOPMENT

 You deploy version one of your string utility class, and before long you have your fi rst defect. When
a user passes in a null as the string to be searched, a null reference exception is thrown. You can
question the responsibility of the calling code to check its values before making the call, or argue
that a null reference exception is appropriate; the string is null, after all. But the truth is that good
developers realize that all input is evil and must be validated independently. And in the end, the
business user would rather have the value – 1 returned. You write a test to demonstrate this defect:

public void ShouldBeAbleToHandleNulls()
{
 string stringToCheck = null;
 var stringToFind = "s";
 var expectedResult = -1;
 var classUnderTest = new StringUtilities();

 var actualResult = classUnderTest.CountOccurences(stringToCheck, stringToFind);

 Assert.AreEqual(expectedResult, actualResult);
}

 As expected, you can see in Figure 1 - 9 that this test fails when it is run.

FIGURE 1 - 8

FIGURE 1 - 9

c01.indd 16c01.indd 16 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

 Another code change is needed, this time to validate the incoming arguments and return the
appropriate response if the data fails validation:

public int CountOccurences(string stringToCheck, string stringToFind)
{
 if (stringToCheck == null) return -1;
 var stringAsCharArray = stringToCheck.ToUpper().ToCharArray();

 When you run the test again, the code change corrects the defect, as shown in Figure 1 - 10.

 In addition to ensuring that you have fi xed the defect, this test ensures that the defect doesn ’ t
reappear in the future.

 SUMMARY

 In this chapter you have seen how the history of software development has come full circle to
a preference for iterative development. You also saw how the Agile Manifesto has created a
framework for today ’ s new breed of iterative methodologies. Software developers have also had
to learn the value of change and fi nd ways to adapt their work to the pace of change in the rest of
the business. You saw a basic example of how Test-Driven Development (TDD) can be used to
write robust software that is simple to implement and easy to maintain. You also learned how
these tests can insulate you from introducing new defects while providing a framework for you
to add new features without disrupting current ones. Finally, you learned what tools you need to
start working with TDD.

FIGURE 1 - 10

Summary ❘ 17

c01.indd 17c01.indd 17 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

c01.indd 18c01.indd 18 9/10/2018 7:09:28 PM9/10/2018 7:09:28 PM

