
 1 Introduction to the
Systems Approach

 1.1 SYSTEM ARCHITECTURE: AN OVERVIEW

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild
Semiconductor [84] introduced a quad two input NAND gate with about 10
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion
transistors [226] . Figures 1.1 and 1.2 show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.

 The aim of this book is to present an approach for computer system design
that exploits this enormous transistor density. In part, this is a direct extension
of studies in computer architecture and design. However, it is also a study of
system architecture and design.

 About 50 years ago, a seminal text, Systems Engineering — An Introduction
to the Design of Large - Scale Systems [111] , appeared. As the authors, H.H.
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was
created by a need to deal with complexity. As then, our ability to deal with
complex design problems is greatly enhanced by computer - based tools.

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example
of such an architecture is the Emotion Engine [147, 187, 237] for the Sony
PlayStation 2 (Figure 1.3), which has two main functions: behavior simulation
and geometry translation. This system contains three essential components: a
main processor of the reduced instruction set computer (RISC) style [118] and
two vector processing units, VPU0 and VPU1, each of which contains four
parallel processors of the single instruction, multiple data (SIMD) stream style
 [97] . We provide a brief overview of these components and our overall
approach in the next few sections.

 While the focus of the book is on the system, in order to understand the
system, one must fi rst understand the components. So, before returning to the
issue of system architecture later in this chapter, we review the components
that make up the system.

Computer System Design: System-on-Chip, First Edition. Michael J. Flynn and Wayne Luk.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1

c01.indd 1c01.indd 1 5/4/2011 9:53:47 AM5/4/2011 9:53:47 AM

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION TO THE SYSTEMS APPROACH

 1.2 COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES,
AND INTERCONNECTS

 The term architecture denotes the operational structure and the user ’ s view
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes
the system - level building blocks, such as processors and memories, and the

 Figure 1.1 The increasing transistor density on a silicon die.

 1

 100

 10,000

 1e + 06

 1e + 08

 1e + 10

 1960 1970 1980 1990 2000 2010

T
ra

ns
is

to
rs

Year

Transistors per die

 Figure 1.2 The decrease of transistor cost over the years.

 1e – 07

 1e – 06

 1e – 05

 1e – 04

 0.001

 0.01

 0.1

 1.0

1970 1980 1990 2000 2010

C
os

t

Year

Cost per transistor

c01.indd 2c01.indd 2 5/4/2011 9:53:47 AM5/4/2011 9:53:47 AM

COMPONENTS OF THE SYSTEM 3

interconnection between them. The processor architecture determines the
processor ’ s instruction set, the associated programming model, its detailed
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The
implementation of a processor is also known as microarchitecture (Figure 1.4).

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and

 Figure 1.3 High - level functional view of a system - on - chip: the Emotion Engine of the
Sony PlayStation 2 [147, 187] .

4 FP SIMD
processor
(VPU1)

Tasks synchronized with
the rendering engine

(geometry translation)

BufferBuffer Buffer

Main
processor

(RISC core)

4 FP SIMD
processor
(VPU0)

Tasks synchronized with
the main processor

(behavior simulation)

Rendering
engine

DMA (direct memory
access) path

External memory

Arbiter

+

 Figure 1.4 The processor architecture and its implementation.

Architecture

Implementation

Data Paths Control

Registers

ALU

Memory

Hidden
Registers

Branch
Prediction

Microinstructions

Instruction Set

c01.indd 3c01.indd 3 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

4 INTRODUCTION TO THE SYSTEMS APPROACH

their interconnection. The next sections cover basic components: the processor
architecture, the memory, and the bus or interconnect architecture.

 Figure 1.5 illustrates some of the basic elements of an SOC system. These
include a number of heterogeneous processors interconnected to one or more
memory elements with possibly an array of reconfi gurable logic. Frequently,
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet
access functions and multimedia facilities for video communication, document
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure 1.5 would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and
the media processor being implemented by a Mali - 400MP graphics processor
and a Mali - VE video engine. The system components and custom circuitry
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI
(Advanced eXtensible Interface) interconnects.

 If all the elements cannot be contained on a single chip, the implementation
is probably best referred to as a system on a board, but often is still called a
SOC. What distinguishes a system on a board (or chip) from the conventional
general - purpose computer plus memory on a board is the specifi c nature of
the design target. The application is assumed to be known and specifi ed so
that the elements of the system can be selected, sized, and evaluated during
the design process. The emphasis on selecting, parameterizing, and confi guring
system components tailored to a target application distinguishes a system
architect from a computer architect.

 Figure 1.5 A basic SOC system model.

Media
Processor

Core
Processor

Vector
Coprocessor

Interconnects

Memory
Analog and

Custom
Circuitry

System
Components

c01.indd 4c01.indd 4 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

HARDWARE AND SOFTWARE 5

 In this chapter, we primarily look at the higher - level defi nition of the
processor — the programmer ’ s view or the instruction set architecture (ISA),
the basics of the processor microarchitecture, memory hierarchies, and the
interconnection structure. In later chapters, we shall study in more detail the
implementation issues for these elements.

 1.3 HARDWARE AND SOFTWARE: PROGRAMMABILITY
VERSUS PERFORMANCE

 A fundamental decision in SOC design is to choose which components in the
system are to be implemented in hardware and in software. The major benefi ts
and drawbacks of hardware and software implementations are summarized in
Table 1.1 .

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers
fl exibility and adaptability, and provides a way of sharing resources among
different applications; however, the hardware implementation of the ISA is
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions.

 Most software developers use high - level languages and tools that enhance
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of
applications in hardware results in custom application - specifi c integrated
circuits (ASICs), which often provides high performance at the expense of
programmability — and hence fl exibility, productivity, and cost.

 Given that hardware and software have complementary features, many
SOC designs aim to combine the individual benefi ts of the two. The obvious
method is to implement the performance - critical parts of the application in
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold
speedup is achievable if that 10% of the code is effi ciently implemented in
hardware. We shall make use of this observation to customize designs in
Chapter 6 .

 Custom ASIC hardware and software on GPPs can be seen as two extremes
in the technology spectrum with different trade - offs in programmability and

 TABLE 1.1 Benefi ts and Drawbacks of Software and Hardware Implementations

 Benefi ts Drawbacks

 Hardware Fast, low power consumption Infl exible, unadaptable, complex
to build and test

 Software Flexible, adaptable, simple to
build and test

 Slow, high power consumption

c01.indd 5c01.indd 5 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

6 INTRODUCTION TO THE SYSTEMS APPROACH

performance; there are various technologies that lie between these two
extremes (Figure 1.6). The two more well - known ones are application - specifi c
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).

 An ASIP is a processor with an instruction set customized for a specifi c
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set.
This capability often improves upon the conventional approach of using
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters 6 and 7 explore further some of the issues involving custom
instructions.

 An FPGA typically contains an array of computation units, memories, and
their interconnections, and all three are usually programmable in the fi eld by
application builders. FPGA technology often offers a good compromise: It is
faster than software while being more fl exible and having shorter development
times than custom ASIC hardware implementations; like GPPs, they are
offered as off - the - shelf devices that can be programmed without going through
chip fabrication. Because of the growing demand for reducing the time to
market and the increasing cost of chip fabrication, FPGAs are becoming more
popular for implementing digital designs.

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each
only a few bits wide. It is also possible to have the following:

 Figure 1.6 A simplifi ed technology comparison: programmability versus performance.
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

DSP

GPP

Programmability

P
ea

k
pe

rf
or

m
an

ce
: n

um
be

r
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

Low High

c01.indd 6c01.indd 6 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 7

 • Coarse - Grained Reconfi gurable Architecture (CGRA) . It contains logic
blocks that process byte - wide or multiple byte - wide data, which can form
building blocks of datapaths.

 • Structured ASIC . It allows application builders to customize the resources
before fabrication. While it offers performance close to that of ASIC, the
need for chip fabrication can be an issue.

 • Digital Signal Processors (DSPs) . The organization and instruction set
for these devices are optimized for digital signal processing applications.
Like microprocessors, they have a fi xed hardware architecture that cannot
be reconfi gured.

 Figure 1.6 compares these technologies in terms of programmability and per-
formance. Chapters 6 – 8 provide further information about some of these
technologies.

 1.4 PROCESSOR ARCHITECTURES

 Typically, processors are characterized either by their application or by their
architecture (or structure), as shown in Tables 1.2 and 1.3 . The requirements
space of an application is often large, and there is a range of implementation
options. Thus, it is usually diffi cult to associate a particular architecture with
a particular application. In addition, some architectures combine different
implementation approaches as seen in the PlayStation example of Section
 1.1 . There, the graphics processor consists of a four - element SIMD array of
vector processing functional units (FUs). Other SOC implementations consist
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.

 TABLE 1.2 Processor Examples as Identifi ed by Function

 Processor Type Application

 Graphics processing unit (GPU) 3 - D graphics; rendering, shading, texture
 Digital signal processor (DSP) Generic, sometimes used with wireless
 Media processor Video and audio signal processing
 Network processor Routing, buffering

 TABLE 1.3 Processor Examples as Identifi ed by Architecture

 Processor Type Architecture/Implementation Approach

 SIMD Single instruction applied to multiple functional units (processors)
 Vector (VP) Single instruction applied to multiple pipelined registers
 VLIW Multiple instructions issued each cycle under compiler control
 Superscalar Multiple instructions issued each cycle under hardware control

c01.indd 7c01.indd 7 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

8 INTRODUCTION TO THE SYSTEMS APPROACH

 From the programmer ’ s point of view, sequential processors execute
one instruction at a time. However, many processors have the capability to
execute several instructions concurrently in a manner that is transparent to
the programmer, through techniques such as pipelining, multiple execution
units, and multiple cores. Pipelining is a powerful technique that is used
in almost all current processor implementations. Techniques to extract and
exploit the inherent parallelism in the code at compile time or run time are
also widely used.

 Exploiting program parallelism is one of the most important goals in com-
puter architecture.

 Instruction - level parallelism (ILP) means that multiple operations can be
executed in parallel within a program. ILP may be achieved with hardware,
compiler, or operating system techniques. At the loop level, consecutive loop
iterations are ideal candidates for parallel execution, provided that there is no
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms
used in the program. Finally, multiple independent programs can execute in
parallel.

 Different computer architectures have been built to exploit this inherent
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single
overall problem.

 1.4.1 Processor: A Functional View

 Table 1.4 shows different SOC designs and the processor used in each design.
For these examples, we can characterize them as general purpose, or special
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed,
several quite different architectural approaches could implement the same
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending

 TABLE 1.4 Processor Models for Different SOC Examples

 SOC Application Base ISA Processor Description

 Freescale e600 [101] DSP PowerPC Superscalar with
vector extension

 ClearSpeed
CSX600 [59]

 General Proprietary ISA Array processor of 96
processing elements

 PlayStation 2
 [147, 187, 237]

 Gaming MIPS Pipelined with two
vector coprocessors

 ARM VFP11 [23] General ARM Confi gurable vector
coprocessor

c01.indd 8c01.indd 8 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 9

on the relative importance of these functions and the resolution of the created
images, we could have radically different architectural implementations.

 1.4.2 Processor: An Architectural View

 The architectural view of the system describes the actual implementation at
least in a broad - brush way. For sophisticated architectural approaches, more
detail is required to understand the complete implementation.

 Simple Sequential Processor Sequential processors directly implement the
sequential execution model. These processors process instructions sequentially
from the instruction stream. The next instruction is not processed until all
execution for the current instruction is complete and its results have been
committed.

 The semantics of the instruction determines that a sequence of actions must
be performed to produce the specifi ed result (Figure 1.7). These actions can
be overlapped, but the result must appear in the specifi ed serial order. These
actions include

 1. fetching the instruction into the instruction register (IF),
 2. decoding the opcode of the instruction (ID),
 3. generating the address in memory of any data item residing there (AG),
 4. fetching data operands into executable registers (DF),
 5. executing the specifi ed operation (EX), and
 6. writing back the result to the register fi le (WB).

 A simple sequential processor model is shown in Figure 1.8 . During execution,
a sequential processor executes one or more operations per clock cycle from
the instruction stream. An instruction is a container that represents the small-
est execution packet managed explicitly by the processor. One or more opera-
tions are contained within an instruction. The distinction between instructions
and operations is crucial to distinguish between processor behaviors. Scalar
and superscalar processors consume one or more instructions per cycle, where
each instruction contains a single operation.

 Although conceptually simple, executing each instruction sequentially has
signifi cant performance drawbacks: A considerable amount of time is spent
on overhead and not on actual execution. Thus, the simplicity of directly imple-
menting the sequential execution model has signifi cant performance costs.

 Figure 1.7 Instruction execution sequence.

IF DFAGID WBEX

Instruction

c01.indd 9c01.indd 9 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

10 INTRODUCTION TO THE SYSTEMS APPROACH

 Pipelined Processor Pipelining is a straightforward approach to exploiting
parallelism that is based on concurrently performing different phases (instruc-
tion fetch, decode, execution, etc.) of processing an instruction. Pipelining
assumes that these phases are independent between different operations and
can be overlapped — when this condition does not hold, the processor stalls
the downstream phases to enforce the dependency. Thus, multiple operations
can be processed simultaneously with each operation at a different phase of
its processing. Figure 1.9 illustrates the instruction timing in a pipelined proces-
sor, assuming that the instructions are independent.

 For a simple pipelined machine, there is only one operation in each phase at
any given time; thus, one operation is being fetched (IF); one operation is being
decoded (ID); one operation is generating an address (AG); one operation is
accessing operands (DF); one operation is in execution (EX); and one opera-
tion is storing results (WB). Figure 1.10 illustrates the general form of a pipe-
lined processor. The most rigid form of a pipeline, sometimes called the static
pipeline, requires the processor to go through all stages or phases of the pipe-
line whether required by a particular instruction or not. A dynamic pipeline
allows the bypassing of one or more pipeline stages, depending on the require-
ments of the instruction. The more complex dynamic pipelines allow instruc-
tions to complete out of (sequential) order, or even to initiate out of order. The
out - of - order processors must ensure that the sequential consistency of the
program is preserved. Table 1.5 shows some SOC pipelined “ soft ” processors.

 Figure 1.9 Instruction timing in a pipelined processor.

IF DFAGID WBEX

Instruction #1

IF DFAGID WBEX

Instruction #2

IF DFAGID WBEX

Instruction #3

IF DFAGID WBEX

Instruction #4

Time

 Figure 1.8 Sequential processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Decode Unit

Functional
Unit

c01.indd 10c01.indd 10 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 11

 ILP While pipelining does not necessarily lead to executing multiple instruc-
tions at exactly the same time, there are other techniques that do. These tech-
niques may use some combination of static scheduling and dynamic analysis
to perform concurrently the actual evaluation phase of several different opera-
tions, potentially yielding an execution rate of greater than one operation every
cycle. Since historically most instructions consist of only a single operation, this
kind of parallelism has been named ILP (instruction level parallelism).

 Two architectures that exploit ILP are superscalar and VLIW processors.
They use different techniques to achieve execution rates greater than one
operation per cycle. A superscalar processor dynamically examines the instruc-
tion stream to determine which operations are independent and can be exe-
cuted. A VLIW processor relies on the compiler to analyze the available
operations (OP) and to schedule independent operations into wide instruc-
tion words, which then execute these operations in parallel with no further
analysis.

 Figure 1.11 shows the instruction timing of a pipelined superscalar or VLIW
processor executing two instructions per cycle. In this case, all the instructions
are independent so that they can be executed in parallel. The next two sections
describe these two architectures in more detail.

 Figure 1.10 Pipelined processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Decode Unit

Integer FU

Floating-Point
FU

 TABLE 1.5 SOC Examples Using Pipelined Soft Processors [177, 178] . A Soft
Processor Is Implemented with FPGAs or Similar Reconfi gurable Technology

 Processor
 Word

Length (bit)
 Pipeline
Stages

 I/D - Cache *
Total (KB)

 Floating -
 Point Unit

(FPU)
 Usual
Target

 Xilinx MicroBlaze 32 3 0 – 64 Optional FPGA
 Altera Nios II fast 32 6 0 – 64 — FPGA
 ARC 600 [19] 16/32 5 0 – 32 Optional ASIC
 Tensilica Xtensa LX 16/24 5 – 7 0 – 32 Optional ASIC
 Cambridge XAP3a 16/32 2 — — ASIC

 * Means confi gurable I - cache and/or D - cache.

c01.indd 11c01.indd 11 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

12 INTRODUCTION TO THE SYSTEMS APPROACH

 Superscalar Processors Dynamic pipelined processors remain limited to
executing a single operation per cycle by virtue of their scalar nature. This
limitation can be avoided with the addition of multiple functional units and a
dynamic scheduler to process more than one instruction per cycle (Figure
 1.12). These superscalar processors [135] can achieve execution rates of several
instructions per cycle (usually limited to two, but more is possible depending
on the application). The most signifi cant advantage of a superscalar processor
is that processing multiple instructions per cycle is done transparently to the

 Figure 1.11 Instruction timing in a pipelined ILP processor.

IF DFAGID WBEX

Instruction #2

IF DFAGID WBEX

Instruction #3

IF DFAGID WBEX

Instruction #5

IF DFAGID WBEX

Instruction #6

Time

IF DFAGID WBEX

IF DFAGID WBEX

Instruction #4

Instruction #1

 Figure 1.12 Superscalar processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Data

Registers
Predecode

FU0

FU1

FU2

. . . .

Reorder
Buffer

Rename
BufferDecode Unit

Dispatch
Stack

c01.indd 12c01.indd 12 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 13

user, and that it can provide binary code compatibility while achieving better
performance.

 Compared to a dynamic pipelined processor, a superscalar processor adds
a scheduling instruction window that analyzes multiple instructions from the
instruction stream in each cycle. Although processed in parallel, these instruc-
tions are treated in the same manner as in a pipelined processor. Before an
instruction is issued for execution, dependencies between the instruction and
its prior instructions must be checked by hardware.

 Because of the complexity of the dynamic scheduling logic, high - performance
superscalar processors are limited to processing four to six instructions per
cycle. Although superscalar processors can exploit ILP from the dynamic
instruction stream, exploiting higher degrees of parallelism requires other
approaches.

 VLIW Processors In contrast to dynamic analyses in hardware to determine
which operations can be executed in parallel, VLIW processors (Figure 1.13)
rely on static analyses in the compiler.

 VLIW processors are thus less complex than superscalar processors and
have the potential for higher performance. A VLIW processor executes opera-
tions from statically scheduled instructions that contain multiple independent
operations. Because the control complexity of a VLIW processor is not signifi -
cantly greater than that of a scalar processor, the improved performance
comes without the complexity penalties.

 VLIW processors rely on the static analyses performed by the compiler and
are unable to take advantage of any dynamic execution characteristics. For
applications that can be scheduled statically to use the processor resources
effectively, a simple VLIW implementation results in high performance.
Unfortunately, not all applications can be effectively scheduled statically. In
many applications, execution does not proceed exactly along the path defi ned

 Figure 1.13 VLIW processor model.

Memory/L2

Instruction
Cache

Data
Cache

Decode Unit
Data

Registers

FU0

FU1

FU2

. . . .

VLIW

Control Unit

c01.indd 13c01.indd 13 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

14 INTRODUCTION TO THE SYSTEMS APPROACH

by the code scheduler in the compiler. Two classes of execution variations can
arise and affect the scheduled execution behavior:

 1. delayed results from operations whose latency differs from the assumed
latency scheduled by the compiler and

 2. interruptions from exceptions or interrupts, which change the execution
path to a completely different and unanticipated code schedule.

 Although stalling the processor can control a delayed result, this solution can
result in signifi cant performance penalties. The most common execution delay
is a data cache miss. Many VLIW processors avoid all situations that can result
in a delay by avoiding data caches and by assuming worst - case latencies for
operations. However, when there is insuffi cient parallelism to hide the exposed
worst - case operation latency, the instruction schedule has many incompletely
fi lled or empty instructions, resulting in poor performance.

 Tables 1.6 and 1.7 describe some representative superscalar and VLIW
processors .

 SIMD Architectures: Array and Vector Processors The SIMD class of pro-
cessor architecture includes both array and vector processors. The SIMD pro-
cessor is a natural response to the use of certain regular data structures, such as
vectors and matrices. From the view of an assembly - level programmer, pro-
gramming SIMD architecture appears to be very similar to programming a
simple processor except that some operations perform computations on aggre-
gate data. Since these regular structures are widely used in scientifi c program-
ming, the SIMD processor has been very successful in these environments.

 The two popular types of SIMD processor are the array processor and the
vector processor. They differ both in their implementations and in their data

 TABLE 1.6 SOC Examples Using Superscalar Processors

 Device
 Number of

Functional Units Issue Width Base Instruction Set

 MIPS 74K Core [183] 4 2 MIPS32
 Infi neon TriCore2 [129] 4 3 RISC
 Freescale e600 [101] 6 3 PowerPC

 TABLE 1.7 SOC Examples Using VLIW Processors

 Device Number of Functional Units Issue Width

 Fujitsu MB93555A [103] 8 8
 TI TMS320C6713B [243] 8 8
 CEVA - X1620 [54] 30 8
 Philips Nexperia PNX1700 [199] 30 5

c01.indd 14c01.indd 14 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 15

organizations. An array processor consists of many interconnected processor
elements, each having their own local memory space. A vector processor con-
sists of a single processor that references a global memory space and has
special function units that operate on vectors.

 An array processor or a vector processor can be obtained by extending the
instruction set to an otherwise conventional machine. The extended instruc-
tions enable control over special resources in the processor, or in some sort
of coprocessor. The purpose of such extensions is to enable increased perfor-
mance on special applications.

 Array Processors The array processor (Figure 1.14) is a set of parallel proces-
sor elements connected via one or more networks, possibly including local and
global interelement communications and control communications. Processor
elements operate in lockstep in response to a single broadcast instruction from
a control processor (SIMD). Each processor element (PE) has its own private
memory, and data are distributed across the elements in a regular fashion that
is dependent on both the actual structure of the data and also the computa-
tions to be performed on the data. Direct access to global memory or another
processor element ’ s local memory is expensive, so intermediate values are
propagated through the array through local interprocessor connections. This
requires that the data be distributed carefully so that the routing required to
propagate these values is simple and regular. It is sometimes easier to dupli-
cate data values and computations than it is to support a complex or irregular
routing of data between processor elements.

 Since instructions are broadcast, there is no means local to a processor
element of altering the fl ow of the instruction stream; however, individual
processor elements can conditionally disable instructions based on local status
information — these processor elements are idle when this condition occurs.
The actual instruction stream consists of more than a fi xed stream of opera-
tions. An array processor is typically coupled to a general - purpose control
processor that provides both scalar operations as well as array operations that
are broadcast to all processor elements in the array. The control processor
performs the scalar sections of the application, interfaces with the outside

 Figure 1.14 Array processor model.

Memory/L2

Instruction
Cache

Control Unit

PE0 PE1 PE2

Decode Unit

MEM/REG MEM/REG MEM/REG

Communication method (e.g., bus)

c01.indd 15c01.indd 15 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

16 INTRODUCTION TO THE SYSTEMS APPROACH

world, and controls the fl ow of execution; the array processor performs the
array sections of the application as directed by the control processor.

 A suitable application for use on an array processor has several key char-
acteristics: a signifi cant amount of data that have a regular structure, computa-
tions on the data that are uniformly applied to many or all elements of the
data set, and simple and regular patterns relating the computations and the
data. An example of an application that has these characteristics is the solution
of the Navier – Stokes equations, although any application that has signifi cant
matrix computations is likely to benefi t from the concurrent capabilities of an
array processor.

 Table 1.8 contains several array processor examples. The ClearSpeed pro-
cessor is an example of an array processor chip that is directed at signal pro-
cessing applications.

 Vector Processors A vector processor is a single processor that resembles a
traditional single stream processor, except that some of the function units (and
registers) operate on vectors — sequences of data values that are seemingly
operated on as a single entity. These function units are deeply pipelined and
have high clock rates. While the vector pipelines often have higher latencies
compared with scalar function units, the rapid delivery of the input vector data
elements, together with the high clock rates, results in a signifi cant throughput.

 Modern vector processors require that vectors be explicitly loaded into
special vector registers and stored back into memory — the same course that
modern scalar processors use for similar reasons. Vector processors have
several features that enable them to achieve high performance. One feature
is the ability to concurrently load and store values between the vector register
fi le and the main memory while performing computations on values in the
vector register fi le. This is an important feature since the limited length of
vector registers requires that vectors longer than the register length would be
processed in segments — a technique called strip mining. Not being able to
overlap memory accesses and computations would pose a signifi cant perfor-
mance bottleneck.

 Most vector processors support a form of result bypassing — in this case
called chaining — that allows a follow - on computation to commence as soon
as the fi rst value is available from the preceding computation. Thus, instead of
waiting for the entire vector to be processed, the follow - on computation can
be signifi cantly overlapped with the preceding computation that it is depen-
dent on. Sequential computations can be effi ciently compounded to behave as

 TABLE 1.8 SOC Examples Based on Array Processors

 Device Processors per Control Unit Data Size (bit)

 ClearSpeed CSX600 [59] 96 32
 Atsana J2211 [174] Confi gurable 16/32
 Xelerator X10q [257] 200 4

c01.indd 16c01.indd 16 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

PROCESSOR ARCHITECTURES 17

if they were a single operation, with a total latency equal to the latency of the
fi rst operation with the pipeline and chaining latencies of the remaining opera-
tions, but none of the start - up overhead that would be incurred without chain-
ing. For example, division could be synthesized by chaining a reciprocal with
a multiply operation. Chaining typically works for the results of load opera-
tions as well as normal computations.

 A typical vector processor confi guration (Figure 1.15) consists of a vector
register fi le, one vector addition unit, one vector multiplication unit, and one
vector reciprocal unit (used in conjunction with the vector multiplication unit
to perform division); the vector register fi le contains multiple vector registers
(elements).

 Table 1.9 shows examples of vector processors. The IBM mainframes have
vector instructions (and support hardware) as an option for scientifi c users.

 Multiprocessors Multiple processors can cooperatively execute to solve a
single problem by using some form of interconnection for sharing results. In

 Figure 1.15 Vector processor model.

Memory/L2

Instruction
Cache

Data
Cache

Control Unit
Integer

Registers
FU0

FU1

FU2

. . . .

Vector
Registers

Decode Unit

64

 TABLE 1.9 SOC Examples Using Vector Processor

 Device Vector Function Units Vector Registers

 Freescale e600 [101] 4 32 Confi gurable
 Motorola RSVP [58] 4 (64 bit partitionable at 16 bits) 2 streams (each 2 from,

1 to) memory
 ARM VFP11 [23] 3 (64 bit partitionable to 32 bits) 4 × 8, 32 bit

 Confi gurable implies a pool of N registers that can be confi gured as p register sets of N/p
elements.

c01.indd 17c01.indd 17 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

18 INTRODUCTION TO THE SYSTEMS APPROACH

this confi guration, each processor executes completely independently, although
most applications require some form of synchronization during execution to
pass information and data between processors. Since the multiple processors
share memory and execute separate program tasks (MIMD [multiple instruc-
tion stream, multiple data stream]), their proper implementation is signifi -
cantly more complex then the array processor. Most confi gurations are
homogeneous with all processor elements being identical, although this is not
a requirement. Table 1.10 shows examples of SOC multiprocessors.

 The interconnection network in the multiprocessor passes data between
processor elements and synchronizes the independent execution streams
between processor elements. When the memory of the processor is distributed
across all processors and only the local processor element has access to it, all
data sharing is performed explicitly using messages, and all synchronization is
handled within the message system. When the memory of the processor is
shared across all processor elements, synchronization is more of a problem —
 certainly, messages can be used through the memory system to pass data and
information between processor elements, but this is not necessarily the most
effective use of the system.

 When communications between processor elements are performed through
a shared memory address space — either global or distributed between proces-
sor elements (called distributed shared memory to distinguish it from distrib-
uted memory) — there are two signifi cant problems that arise. The fi rst is
maintaining memory consistency: the programmer - visible ordering effects on
memory references, both within a processor element and between different
processor elements. This problem is usually solved through a combination of
hardware and software techniques. The second is cache coherency — the
programmer - invisible mechanism to ensure that all processor elements see the
same value for a given memory location. This problem is usually solved exclu-
sively through hardware techniques.

 The primary characteristic of a multiprocessor system is the nature of the
memory address space. If each processor element has its own address space
(distributed memory), the only means of communication between processor
elements is through message passing. If the address space is shared (shared
memory), communication is through the memory system.

 TABLE 1.10 SOC Multiprocessors and Multithreaded Processors

 SOC
 Machanick

 [162]
 IBM Cell

 [141]
 Philips

PNX8500 [79]
 Lehtoranta

 [155]

 Number of CPUs 4 1 2 4
 Threads 1 Many 1 1
 Vector units 0 8 0 0
 Application Various Various HDTV MPEG decode
 Comment Proposal only Also called

Viper 2
 Soft processors

c01.indd 18c01.indd 18 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 19

 The implementation of a distributed memory machine is far easier than the
implementation of a shared memory machine when memory consistency and
cache coherency are taken into account. However, programming a distributed
memory processor can be much more diffi cult since the applications must be
written to exploit and not to be limited by the use of message passing as the
only form of communication between processor elements. On the other hand,
despite the problems associated with maintaining consistency and coherency,
programming a shared memory processor can take advantage of whatever
communications paradigm is appropriate for a given communications require-
ment, and can be much easier to program.

 1.5 MEMORY AND ADDRESSING

 SOC applications vary signifi cantly in memory requirements. In one case, the
memory structure can be as simple as the program residing entirely in an on -
 chip read - only memory (ROM), with the data in on - chip RAM. In another
case, the memory system might support an elaborate operating system requir-
ing a large off - chip memory (system on a board), with a memory management
unit and cache hierarchy.

 Why not simply include memory with the processor on the die? This has
many attractions:

 1. It improves the accessibility of memory, improving both memory access
time and bandwidth.

 2. It reduces the need for large cache.
 3. It improves performance for memory - intensive applications.

 But there are problems. The fi rst problem is that DRAM memory process
technology differs from standard microprocessor process technology, and
would cause some sacrifi ce in achievable bit density. The second problem is
more serious: If memory were restricted to the processor die, its size would be
correspondingly limited. Applications that require very large real memory
space would be crippled. Thus, the conventional processor die model has
evolved (Figure 1.16) to implement multiple robust homogeneous processors
sharing the higher levels of a two - or three - level cache structure with the main
memory off - die, on its own multidie module.

 From a design complexity point of view, this has the advantage of being a
 “ universal ” solution: One implementation fi ts all applications, although not
necessarily equally well. So, while a great deal of design effort is required for
such an implementation, the production quantities can be large enough to
justify the costs.

 An alternative to this approach is clear. For specifi c applications, whose
memory size can be bounded, we can implement an integrated memory SOC.
This concept is illustrated in Figure 1.17 (also recall Figure 1.3).

c01.indd 19c01.indd 19 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

20 INTRODUCTION TO THE SYSTEMS APPROACH

 A related but separate question is: Does the application require virtual
memory (mapping disk space onto memory) or is all real memory suitable?
We look at the requirement for virtual memory addressing in the next section.

 Finally, the memory can be centralized or distributed. Even here, the
memory can appear to the programmer as a single (centralized) shared
memory, even though it is implemented in several distributed modules. Sev-
eral memory considerations are listed in Table 1.11 .

 The memory system comprises the physical storage elements in the memory
hierarchy. These elements include those specifi ed by the instruction set (reg-
isters, main memory, and disk sectors) as well as those elements that are largely
transparent to the user ’ s program (buffer registers, cache, and page mapped
virtual memory).

 1.5.1 SOC Memory Examples

 Table 1.12 shows a number of different SOC designs and their cache and
memory confi guration. It is important for SOC designers to consider whether
to put RAM and ROM on - die or off - die. Table 1.13 shows various examples
of SOC embedded memory macro cell.

 Figure 1.16 Processors with memory off - die.

Processor Multilevel
Cache

Bus
Control DRAM

Processor Die

 Figure 1.17 System on a chip: processors and memory.

Processor 1 Processor n...

Embedded memory ROM

System on die

c01.indd 20c01.indd 20 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 21

 1.5.2 Addressing: The Architecture of Memory

 The user ’ s view of memory primarily consists of the addressing facilities avail-
able to the programmer. Some of these facilities are available to the applica-
tion programmer and some to the operating system programmer. Virtual
memory enables programs requiring larger storage than the physical memory
to run and allows separation of address spaces to protect unauthorized access
to memory regions when executing multiple application programs. When
virtual addressing facilities are properly implemented and programmed,
memory can be effi ciently and securely accessed.

 Virtual memory is often supported by a memory management unit.
Conceptually, the physical memory address is determined by a sequence of (at
least) three steps:

 TABLE 1.11 SOC Memory Considerations

 Issue Implementation Comment

 Memory placement On - die Limited and fi xed size
 Off - die System on a board, slow

access, limited bandwidth

 Addressing Real addressing Limited size, simple OS
 Virtual addressing Much more complex, require

TLB, in - order instruction
execution support

 Arrangement (as programmed
for multiple processors)

 Shared memory Requires hardware support
 Message passing Additional programming

 Arrangement (as
implemented)

 Centralized Limited by chip
considerations

 Distributed Can be clustered with a
processor or other
memory modules

 TABLE 1.12 Memory Hierarchy for Different SOC Examples

 SOC Application Cache Size
 On - Die/
Off - Die

 Real/
Virtual

 NetSilicon NET + 40
 [184]

 Networking 4 - KB I - cache,
4 - KB D - cache

 Off Real

 NetSilicon NS9775 [185] Printing 8 - KB I - cache,
4 - KB D - cache

 Off Virtual

 NXP LH7A404 [186] Networking 16 - KB I - cache,
8 KB D - Cache

 On Virtual

 Motorola RSVP [58] Multimedia Tile buffer memory Off Real

c01.indd 21c01.indd 21 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

22 INTRODUCTION TO THE SYSTEMS APPROACH

 1. The application produces a process address . This, together with the
 process or user ID , defi nes the virtual address : virtual address = offset +
 (program) base + index , where the offset is specifi ed in the instruction
while the base and index values are in specifi ed registers.

 2. Since multiple processes must cooperate in the same memory space, the
process addresses must be coordinated and relocated. This is typically
done by a segment table. Upper bits of the virtual address are used to
address a segment table, which has a (predetermined) base and bound
values for the process, resulting in a system address : system address = virtual
address + (process) base , where the system address must be less than the
 bound .

 3. Virtual versus real. For many SOC applications (and all generic systems),
the memory space exceeds the available (real) implemented memory.
Here the memory space is implemented on disk and only the recently
used regions (pages) are brought into memory. The available pages are
located by a page table. The upper bits of the system address access a
page table. If the data for this page have been loaded from the disk, the
location in memory will be provided as the upper address bits of the
 “ real ” or physical memory address. The lower bits of the real address are
the same as the corresponding lower bits of the virtual address.

 Usually, the tables (segment and page) performing address translation are in
memory, and a mechanism for the translation called the translation lookaside
buffer (TLB) must be used to speed up this translation. A TLB is a simple
register system, usually consisting of between 64 and 256 entries, that saves
recent address translations for reuse. A small number of (hashed) virtual
address bits address the TLB. The TLB entry has both the real address and
the complete virtual address (and ID). If the virtual address matches, the real
address from the TLB can be used. Otherwise, a not - in - TLB event occurs and
a complete translation must occur (Figure 1.18).

 1.5.3 Memory for SOC Operating System

 One of the most critical decisions (or requirements) concerning an SOC design
is the selection of the operating system and its memory management function-

 TABLE 1.13 Example SOC Embedded Memory Macro Cell (See Chapter 4 for
the Discussion on Cell Types)

 Vendor Cell Type (Typical) SOC User (Typical)

 Virage Logic 6T (SRAM) SigmaTel/ARM
 ATMOS 1T (eDRAM) Philips
 IBM 1T (eDRAM) IBM

 Note: T refers to the number of transistors in a 1 - bit cell.

c01.indd 22c01.indd 22 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

MEMORY AND ADDRESSING 23

ality. Of primary interest to the designer is the requirement for virtual memory.
If the system can be restricted to a real memory (physically, not virtually
addressed) and the size of the memory can be contained to the order of 10 s
of megabytes, the system can be implemented as a true system on a chip (all
memory on - die). The alternative, virtual memory, is often slower and signifi -
cantly more expensive, requiring a complex memory management unit. Table
 1.14 illustrates some current SOC designs and their operating systems.

 Figure 1.18 Virtual - to - real address mapping with a TLB bypass.

Virtual Address

User ID

Byte in a
Page

Page
Address

Segment
Table

TLB

Page Table

Physical Address

 TABLE 1.14 Operating Systems for SOC Designs

 OS Vendor Memory Model

 uClinux Open source Real
 VxWorks (RTOS) [254] Wind River Real
 Windows CE Microsoft Virtual
 Nucleus (RTOS) [175] Mentor Graphics Real
 MQX (RTOS) [83] ARC Real

c01.indd 23c01.indd 23 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

24 INTRODUCTION TO THE SYSTEMS APPROACH

 Of course, fast real memory designs come at the price of functionality. The
user has limited ways of creating new processes and of expanding the applica-
tion base of the systems.

 1.6 SYSTEM - LEVEL INTERCONNECTION

 SOC technology typically relies on the interconnection of predesigned circuit
modules (known as intellectual property [IP] blocks) to form a complete
system, which can be integrated onto a single chip. In this way, the design task
is raised from a circuit level to a system level. Central to the system - level
performance and the reliability of the fi nished product is the method of inter-
connection used. A well - designed interconnection scheme should have vigor-
ous and effi cient communication protocols, unambiguously defi ned as a
published standard. This facilitates interoperability between IP blocks designed
by different people from different organizations and encourages design reuse.
It should provide effi cient communication between different modules maxi-
mizing the degree of parallelism achieved.

 SOC interconnect methods can be classifi ed into two main approaches:
buses and network - on - chip, as illustrated in Figures 1.19 and 1.20 .

 1.6.1 Bus - Based Approach

 With the bus - based approach, IP blocks are designed to conform to published
bus standards (such as ARM ’ s Advanced Microcontroller Bus Architecture

 Figure 1.19 SOC system - level interconnection: bus - based approach.

CPU 1 CPU 2 Memory

High-Speed Bus

DSP Bus Bridge

Low-Speed Bus

c01.indd 24c01.indd 24 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

SYSTEM-LEVEL INTERCONNECTION 25

[AMBA] [21] or IBM ’ s CoreConnect [124]). Communication between modules
is achieved through the sharing of the physical connections of address, data,
and control bus signals. This is a common method used for SOC system - level
interconnect. Usually, two or more buses are employed in a system, organized
in a hierarchical fashion. To optimize system - level performance and cost, the
bus closest to the CPU has the highest bandwidth, and the bus farthest from
the CPU has the lowest bandwidth.

 1.6.2 Network - on - Chip Approach

 A network - on - chip system consists of an array of switches, either dynamically
switched as in a crossbar or statically switched as in a mesh.

 The crossbar approach uses asynchronous channels to connect synchronous
modules that can operate at different clock frequencies. This approach has the
advantage of higher throughput than a bus - based system while making inte-
gration of a system with multiple clock domains easier.

 In a simple statically switched network (Figure 1.20), each node contains
processing logic forming the core, and its own routing logic. The interconnect
scheme is based on a two - dimensional mesh topology. All communications
between switches are conducted through data packets, routed through the
router interface circuit within each node. Since the interconnections between
switches have a fi xed distance, interconnect - related problems such as wire
delay and cross talk noise are much reduced. Table 1.15 lists some interconnect
examples used in SOC designs.

 Figure 1.20 SOC system - level interconnection: network - on - chip approach.

CPU 1

Routing logic

CPU 2

MemoryMemory

DSP I/O controller

c01.indd 25c01.indd 25 5/4/2011 9:53:48 AM5/4/2011 9:53:48 AM

26 INTRODUCTION TO THE SYSTEMS APPROACH

 1.7 AN APPROACH FOR SOC DESIGN

 Two important ideas in a design process are fi guring out the requirements and
specifi cations, and iterating through different stages of design toward an effi -
cient and effective completion.

 1.7.1 Requirements and Specifi cations

 Requirements and specifi cations are fundamental concepts in any system
design situation. There must be a thorough understanding of both before a
design can begin. They are useful at the beginning and at the end of the design
process: at the beginning, to clarify what needs to be achieved; and at the end,
as a reference against which the completed design can be evaluated.

 The system requirements are the largely externally generated criteria for
the system. They may come from competition, from sales insights, from cus-
tomer requests, from product profi tability analysis, or from a combination.
Requirements are rarely succinct or defi nitive of anything about the system.
Indeed, requirements can frequently be unrealistic: “ I want it fast, I want it
cheap, and I want it now! ”

 It is important for the designer to analyze carefully the requirements
expressions, and to spend suffi cient time in understanding the market situation
to determine all the factors expressed in the requirements and the priorities
those factors imply. Some of the factors the designer considers in determining
requirements include

 • compatibility with previous designs or published standards,
 • reuse of previous designs,
 • customer requests/complaints,
 • sales reports,
 • cost analysis,
 • competitive equipment analysis, and
 • trouble reports (reliability) of previous products and competitive

products.

 TABLE 1.15 Interconnect Models for Different SOC Examples

 SOC Application Interconnect Type

 ClearSpeed CSX600 [59] High Performance
Computing

 ClearConnect bus

 NetSilicon NET + 40 [184] Networking Custom bus
 NXP LH7A404 [186] Networking AMBA bus
 Intel PXA27x [132] Mobile/wireless PXBus
 Matsushita i - Platform [176] Media Internal connect bus
 Emulex InSpeed SOC320 [130] Switching Crossbar switch
 MultiNOC [172] Multiprocessing system Network - on - chip

c01.indd 26c01.indd 26 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

AN APPROACH FOR SOC DESIGN 27

 The designer can also introduce new requirements based on new technology,
new ideas, or new materials that have not been used in a similar systems
environment.

 The system specifi cations are the quantifi ed and prioritized criteria for the
target system design. The designer takes the requirements and must produce
a succinct and defi nitive set of statements about the eventual system. The
designer may have no idea of what the eventual system will look like, but
usually, there is some “ straw man ” design in mind that seems to provide a
feasibility framework to the specifi cation. In any effective design process, it
would be surprising if the fi nal design signifi cantly resembles the straw man
design.

 The specifi cation does not complete any part of the design process; it initial-
izes the process. Now the design can begin with the selection of components
and approaches, the study of alternatives, and the optimization of the parts of
the system.

 1.7.2 Design Iteration

 Design is always an iterative process. So, the obvious question is how to get
the very fi rst, initial design. This is the design that we can then iterate through
and optimize according to the design criteria. For our purposes, we defi ne
several types of designs based on the stage of design effort.

 Initial Design This is the fi rst design that shows promise in meeting the key
requirements, while other performance and cost criteria are not considered.
For instance, processor or memory or input/output (I/O) should be sized to
meet high - priority real - time constraints. Promising components and their
parameters are selected and analyzed to provide an understanding of their
expected idealized performance and cost. Idealized does not mean ideal; it
means a simplifi ed model of the expected area occupied and computational
or data bandwidth capability. It is usually a simple linear model of perfor-
mance, such as the expected million instructions per second (MIPS) rate of a
processor.

 Optimized Design Once the base performance (or area) requirements are
met and the base functionality is ensured, then the goal is to minimize the cost
(area) and/or the power consumption or the design effort required to complete
the design. This is the iterative step of the process. The fi rst steps of this process
use higher - fi delity tools (simulations, trial layouts, etc.) to ensure that the
initial design actually does satisfy the design specifi cations and requirements.
The later steps refi ne, complete, and improve the design according to the
design criteria.

 Figure 1.21 shows the steps in creating an initial design. This design is
detailed enough to create a component view of the design and a corresponding
projection of the component ’ s expected performance. This projection is, at this

c01.indd 27c01.indd 27 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

28 INTRODUCTION TO THE SYSTEMS APPROACH

step, necessarily simplifi ed and referenced to here as the idealized view of the
component (Figure 1.22).

 System performance is limited by the component with the least capability.
The other components can usually be modeled as simply presenting a delay
to the critical component. In a good design, the most expensive component is
the one that limits the performance of the system. The system ’ s ability to
process transactions should closely follow that of the limiting component.
Typically, this is the processor or memory complex.

 Usually, designs are driven by either (1) a specifi c real - time requirement,
after which functionality and cost become important, or (2) functionality and/
or throughput under cost – performance constraints. In case (1), the real - time
constraint is provided by I/O consideration, which the processor – memory –
 interconnect system must meet. The I/O system then determines the perfor-
mance, and any excess capability of the remainder of the system is usually used
to add functionality to the system. In case (2), the object is to improve task

 Figure 1.21 The SOC initial design process.

z

 Figure 1.22 Idealized SOC components.

Idealized
I/O

Idealized interconnect
(fixed access time and

ample bandwidth)

Idealized memory
(fixed access time)

P1 Pn

n idealized processors (P) selected by function

...

c01.indd 28c01.indd 28 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

SYSTEM ARCHITECTURE AND COMPLEXITY 29

throughput while minimizing the cost. Throughput is limited by the most con-
strained component, so the designer must fully understand the trade - offs at
that point. There is more fl exibility in these designs, and correspondingly more
options in determining the fi nal design.

 The purpose of this book is to provide an approach for determining the
initial design by

 (a) describing the range of components — processors, memories, and
interconnects — that are available in building an SOC;

 (b) providing examples of requirements for various domains of applica-
tions, such as data compression and encryption; and

 (c) illustrating how an initial design, or a reported implementation, can
show promise in meeting specifi c requirements.

 We explain this approach in Chapters 3 – 5 on a component by component basis
to cover (a), with Chapter 6 covering techniques for system confi guration and
customization. Chapter 7 contains application studies to cover (b) and (c).

 As mentioned earlier, the designer must optimize each component for pro-
cessing and storage. This optimization process requires extensive simulation.
We provide access to basic simulation tools through our associated web site.

 1.8 SYSTEM ARCHITECTURE AND COMPLEXITY

 The basic difference between processor architecture and system architecture
is that the system adds another layer of complexity, and the complexity of
these systems limits the cost savings. Historically, the notion of a computer is
a single processor plus a memory. As long as this notion is fi xed (within broad
tolerances), implementing that processor on one or more silicon die does not
change the design complexity. Once die densities enable a scalar processor to
fi t on a chip, the complexity issue changes.

 Suppose it takes about 100,000 transistors to implement a 32 - bit pipelined
processor with a small fi rst - level cache. Let this be a processor unit of design
complexity.

 As long as we need to implement the 100,000 transistor processors, addi-
tional transistor density on the die does not much affect design complexity.
More transistors per die, while increasing die complexity, simplify the problem
of interconnecting multiple chips that make up the processor. Once the unit
processor is implemented on a single die, the design complexity issue changes.
As transistor densities signifi cantly improve after this point, there are obvious
processor extension strategies to improve performance:

 1. Additional Cache . Here we add cache storage and, as large caches have
slower access times, a second - level cache.

c01.indd 29c01.indd 29 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

30 INTRODUCTION TO THE SYSTEMS APPROACH

 2. A More Advanced Processor . We implement a superscalar or a VLIW
processor that executes more than one instruction each cycle. Additionally,
we speed up the execution units that affect the critical path delay, espe-
cially the fl oating - point execution times.

 3. Multiple Processors . Now we implement multiple (superscalar) proces-
sors and their associated multilevel caches. This leaves us limited only by
the memory access times and bandwidth.

 The result of the above is a signifi cantly greater design complexity (see Figure
 1.23). Instead of the 100,000 transistor processors, our advanced processor has
millions of transistors; the multilevel caches are also complex, as is the need
to coordinate (synchronize) the multiple processors, since they require a con-
sistent image of the contents of memory.

 The obvious way to manage this complexity is to reuse designs. So, reusing
several simpler processor designs implemented on a die is preferable to a new,
more advanced, single processor. This is especially true if we can select specifi c
processor designs suited to particular parts of an application. For this to work,
we also need a robust interconnection mechanism to access the various proces-
sors and memory.

 So, when an application is well specifi ed, the system - on - a - chip approach
includes

 1. multiple (usually) heterogeneous processors, each specialized for specifi c
parts of the application;

 2. the main memory with (often) ROM for partial program storage;
 3. a relatively simple, small (single - level) cache structure or buffering

schemes associated with each processor; and
 4. a bus or switching mechanism for communications.

 Figure 1.23 Complexity of design.

 0.1

 1.0

 10.0

 100.0

 1000.0

 10,000.0

 1980 1985 1990 1995 2000 2005 2010

P
ro

ce
ss

or
s

(1
 =

 1
0

M
 tr

an
si

st
or

s)

Year

Small, limited

Robust

Multiple, SOC

Processor equivalents/die

c01.indd 30c01.indd 30 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC 31

 Even when the SOC approach is technically attractive, it has economic limita-
tions and implications. Given the processor and interconnect complexity, if
we limit the usefulness of an implementation to a particular application, we
have to either (1) ensure that there is a large market for the product or (2)
fi nd methods for reducing the design cost through design reuse or similar
techniques.

 1.9 PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC

 1.9.1 Factors Affecting Product Costs

 The basic cost and profi tability of a product depend on many factors: its tech-
nical appeal, its cost, the market size, and the effect the product has on future
products. The issue of cost goes well beyond the product ’ s manufacturing cost.

 There are fi xed and variable costs, as shown in Figure 1.24 . Indeed, the
engineering costs, frequently the largest of the fi xed costs, are expended before
any revenue can be realized from sales (Figure 1.25).

 Depending on the complexity, designing a new chip requires a development
effort of anywhere between 12 and 30 months before the fi rst manufactured
unit can be shipped. Even a moderately sized project may require up to 30 or
more hardware and software engineers, CAD design, and support personnel.
For instance, the paper describing the Sony Emotion Engine has 22 authors
 [147, 187] . However, their salary and indirect costs might represent only a
fraction of the total development cost.

 Nonengineering fi xed costs include manufacturing start - up costs, inven-
tory costs, initial marketing and sales costs, and administrative overhead. The

 Figure 1.24 Project cost components.

Product cost

Manufacturing
costs

Engineering

Marketing,
sales,

administration

Fixed
costs

Variable costs

c01.indd 31c01.indd 31 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

32 INTRODUCTION TO THE SYSTEMS APPROACH

marketing costs include obvious items such as market research, strategic
market planning, pricing studies, and competitive analysis, and so on, as well
as sales planning and advertising costs. The concept of general and administra-
tive (G & A) “ overhead ” includes a proportional share of the “ front offi ce ” —
 the executive management, personnel department (human resources), fi nancial
offi ce, and other costs.

 Later, in the beginning of the manufacturing process, unit cost remains high.
It is not until many units are shipped that the marginal manufacturing cost
can approach the ultimate manufacturing costs.

 After this, manufacturing produces units at a cost increasingly approaching
the ultimate manufacturing cost. Still, during this time, there is a continuing
development effort focused on extending the life of the product and broaden-
ing its market applicability.

 Will the product make a profi t? From the preceding discussion, it is easy to
see how sensitive the cost is to the product life and to the number of products
shipped. If market forces or the competition is aggressive and produces rival
systems with expanded performance, the product life may be shortened and
fewer units may be delivered than expected. This could be disastrous even if
the ultimate manufacturing cost is reached; there may not be enough units to
amortize the fi xed costs and ensure profi t. On the other hand, if competition

 Figure 1.25 Engineering (development) costs.

Chip
design

CAD
support

Software

Verify and
test

Mask
costs

Capital
equipment

CAD
programs

Labor
costs

Fixed
project
costs

Engineering
costs

c01.indd 32c01.indd 32 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

PRODUCT ECONOMICS AND IMPLICATIONS FOR SOC 33

is not aggressive and the follow - on development team is successful in enhanc-
ing the product and continuing its appeal in the marketplace, the product can
become one of those jewels in a company ’ s repertoire, bringing fame to the
designers and smiles to the stockholders.

 1.9.2 Modeling Product Economics and Technology Complexity:
The Lesson for SOC

 To put all this into perspective, consider a general model of a product ’ s average
unit cost (as distinct from its ultimate manufactured cost):

 unit cost project cost number of units= () /().

 The product cost is simply the sum of all the fi xed and variable costs. We rep-
resent the fi xed cost as a constant, K f . It is also clear that the variable costs
are of the form K v × n , where n is the number of units. However, there are
certain ongoing engineering, sales, and marketing costs that are related to n
but are not necessarily linear.

 Let us assume that we can represent this effect as a term that starts as 0.1
of K f and then slowly increases with n , say, n3 . So, we get

 Product cost = + × × + ×K K n K nf f v0 1 3. . (1.1)

 We can use Equation 1.1 to illustrate the effects of advancing technology on
product design. We compare a design done in 1995 with a more complex 2005
design, which has a much lower production cost. With K f fi xed, Figure 1.26
shows the expected decrease in unit cost as the volume of 1995 products pro-
duced, n , increases. But the fi gure also shows that, if we increase the fi xed costs

 Figure 1.26 The effect of volume on unit cost.

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 100,000 2000 1000 500

C
os

t p
er

 u
ni

t

Units

1995
2005

c01.indd 33c01.indd 33 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

34 INTRODUCTION TO THE SYSTEMS APPROACH

(more complex designs) by 10 - fold, even if we cut the unit costs (K v) by the
same amount, the 2005 unit product costs remain high until much larger
volumes are reached. This might not be a problem for a “ universal ” processor
design with a mass market, but it can be a challenge for those SOC designs
targeted at specifi c applications, which may have limited production volume;
a more specifi c design will be more effi cient for a particular application, at the
expense of generality, which affects volume.

 1.10 DEALING WITH DESIGN COMPLEXITY

 As design cost and complexity increase, there is a basic trade - off between the
design optimization of the physical product and the cost of the design. This is
shown in Figure 1.27 . The balance point depends on n , the number of units
expected to be produced. There are several approaches to the design produc-
tivity problem. The most basic approaches are purchasing predesigned com-
ponents and utilizing reconfi gurable devices.

 1.10.1 Buying IP

 If the goal is to produce a design optimized in the use of the technology, the
fi xed costs will be high, so the result must be broadly applicable. The alterna-
tive to this is to “ reuse ” the existing design. These may be suboptimal for all
the nuances of a particular process technology, but the savings in design time
and effort can be signifi cant. The purchase of such designs from third parties
is referred to as the sale of IP .

 The use of IP reduces the risk in design development: It is intended to
reduce the design costs and improves the time to market. The cost of an IP
usually depends on the volume. Hence, the adoption of an IP approach tends
to reduce K f at the expense of increasing K v in Equation 1.1 .

 Figure 1.27 The design effort must balance volume.

Basic
physical

trade-offs
Design time
and effort

Balance point depends on
n, the number of units.

c01.indd 34c01.indd 34 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

DEALING WITH DESIGN COMPLEXITY 35

 Specialized SOC designs often use several different types of processors.
Noncritical and specialized processors are purchased as IP and are integrated
into the design. For example, the ARM7TDMA is a popular licensed 32 - bit
processor or “ core ” design. Generally, processor cores can be designed and
licensed in a number of ways as shown in Table 1.16 .

 Hard IPs are physical - level designs that use all features available in a
process technology, including circuit design and physical layout. Many analog
IPs and mixed - signal IPs (such as SRAM, phase - locked loop) are distributed
in this format to ensure optimal timing and other design characteristics. Firm
IPs are gate - level designs that include device sizing but are applicable to many
fab facilities with different processor technologies. Soft IPs are logic - level
designs in synthesizable format and are directly applicable to standard cell
technologies. This approach allows users to adapt the source code to fi t their
design over a broad range of situations.

 Clearly, the more optimized designs from the manufacturer are usually less
customizable by the user, but they often have better physical, cost – performance
trade - offs. There are potential performance – cost – power overheads in delaying
the customization process, since the design procedure and even the product
technology itself would have to support user customization. Moreover, cus-
tomizing a design may also necessitate reverifi cation to ensure its correctness.
Current technologies, such as the reconfi guration technology described below,
aim to maximize the advantages of late customization, such as risk reduction
and improvement of time to market. At the same time, they aim to minimize
the associated disadvantages, for instance, by introducing hardwired, nonpro-
grammable blocks to support common operations such as integer multiplica-
tion; such hardwired blocks are more effi cient than reconfi gurable resources,
but they are not as fl exible.

 1.10.2 Reconfi guration

 The term reconfi guration refers to a number of approaches that enable the
same circuitry to be reused in many applications. A reconfi gurable device can
also be thought of as a type of purchased IP in which the cost and risk of
fabrication are eliminated, while the support for user customization would

 TABLE 1.16 Types of Processor Cores Available as IP

 Type of Design Design Level Description

 Customized hard IP Physical level IP used in fi xed process, optimized
 Synthesized fi rm IP Gate level IP used in multiple processes but

some optimization possible
 Synthesizable soft IP Register transfer

level (RTL)
 IP used in any process, nonoptimized

c01.indd 35c01.indd 35 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

36 INTRODUCTION TO THE SYSTEMS APPROACH

raise the unit cost. In other words, the adoption of reconfi gurable devices
would tend to reduce K f at the expense of increasing K v in Equation 1.1 .

 The best - known example of this approach is FPGA technology. An FPGA
consists of a large array of cells. Each cell consists of a small lookup table, a
fl ip - fl op, and perhaps an output selector. The cells are interconnected by pro-
grammable connections, enabling fl exible routing across the array (Figure
 1.28). Any logic function can be implemented on the FPGA by confi guring
the lookup tables and the interconnections. Since an array can consist of over
100,000 cells, it can easily defi ne a processor. An obvious disadvantage of the
FPGA - based soft processor implementation is its performance – cost – power.
The approach has many advantages, however:

 1. Circuit fabrication costs increase exponentially with time; hence, it would
not be economical to fabricate a circuit unless it can support a large
volume. FPGAs themselves are general - purpose devices and are expected
to be produced in large volume.

 2. The design time for FPGA implementations is low compared to design-
ing a chip for fabrication. There are extensive libraries of designs avail-
able for use. This is particularly important for designs for which a short
time to market is critical.

 Figure 1.28 The FPGA array.

Logic
Cell

Logic
Cell

Switch
Box

Logic
Cell

Switch
Box

Logic
Cell

Logic
Cell

Logic
Cell

Switch
Box

Switch
Box

Logic
Cell

Logic
Cell

Logic
Cell

c01.indd 36c01.indd 36 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

CONCLUSIONS 37

 3. FPGAs can be used for rapid prototyping of circuits that would be fab-
ricated. In this approach, one or more FPGAs are confi gured according
to the proposed design to emulate it, as a form of “ in - circuit emulation. ”
Programs are run and design errors can be detected.

 4. The reconfi gurability of FPGAs enables in - system upgrade, which helps
to increase the time in market of a product; this capability is especially
valuable for applications where new functions or new standards tend to
emerge rapidly.

 5. The FPGA can be confi gured to suit a portion of a task and then recon-
fi gured for the remainder of the task (called “ run - time reconfi guration ”).
This enables specialized functional units for certain computations to
adapt to environmental changes.

 6. In a number of compute - intensive applications, FPGAs can be confi g-
ured as a very effi cient systolic computational array. Since each FPGA
cell has one or more storage elements, computations can be pipelined
with very fi ne granularity. This can provide an enormous computational
bandwidth, resulting in impressive speedup on selected applications.
Some devices, such as the Stretch S5 software confi gurable processor,
couple a conventional processor with an FPGA array [25] .

 Reconfi guration and FPGAs play an important part in effi cient SOC design.
We shall explore them in more detail in the next chapter.

 1.11 CONCLUSIONS

 Building modern processors or targeted application systems is a complex
undertaking. The great advantages offered by the technology — hundreds of
millions of transistors on a die — comes at a price, not the silicon itself, but the
enormous design effort that is required to implement and support the product.

 There are many aspects of SOC design, such as high - level descriptions,
compilation technologies, and design fl ow, that are not mentioned in this
chapter. Some of these will be covered later.

 In the following chapters, we shall fi rst take a closer look at basic trade - offs
in the technology: time, area, power, and reconfi gurability. Then, we shall look
at some of the details that make up the system components: the processor, the
cache, and the memory, and the bus or switch interconnecting them. Next, we
cover design and implementation issues from the perspective of customization
and confi gurability. This is followed by a discussion of SOC design fl ow and
application studies. Finally, some challenges facing future SOC technology are
presented.

 The goal of the text is to help system designers identify the most effi cient
design choices, together with the mechanisms to manage the design complexity
by exploiting the advances in technology.

c01.indd 37c01.indd 37 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

38 INTRODUCTION TO THE SYSTEMS APPROACH

 1.12 PROBLEM SET

 1. Suppose the TLB in Figure 1.18 had 256 entries (directly addressed). If
the virtual address is 32 bits, the real memory is 512 MB and the page size
is 4 KB, show the possible layout of a TLB entry. What is the purpose of
the user ID in Figure 1.18 and what is the consequence of ignoring it?

 2. Discuss possible arrangement of addressing the TLB.

 3. Find an actual VLIW instruction format. Describe the layout and the con-
straints on the program in using the applications in a single instruction.

 4. Find an actual vector instruction for vector ADD. Describe the instruction
layout. Repeat for vector load and vector store. Is overlapping of vector
instruction execution permitted? Explain.

 5. For the pipelined processor in Figure 1.9 , suppose instruction #3 sets the
CC (condition code that can be tested by following a branch instruction)
at the end of WB and instruction #4 is the condition branch. Without
additional hardware support, what is the delay in executing instruction #5
if the branch is taken and if the branch is not taken?

 6. Suppose we have four different processors; each does 25% of the applica-
tion. If we improve two of the processors by 10 times, what would be the
overall application speedup?

 7. Suppose we have four different processors and all but one are totally
limited by the bus. If we speed up the bus by three times and assume the
processor performance also scales, what is the application speedup?

 8. For the pipelined processor in Figure 1.9 , assume the cache miss rate is
0.05 per instruction execution and the total cache miss delay is 20 cycles.
For this processor, what is the achievable cycle per instruction (CPI)?
Ignore other delays, such as branch delays.

 9. Design validation is a very important SOC design consideration. Find
several approaches specifi c to SOC designs. Evaluate each from the per-
spective of a small SOC vendor.

 10. Find (from the Internet) two new VLIW DSPs. Determine the maximum
number of operations issued in each cycle and the makeup of the opera-
tions (number of integer, fl oating point, branch, etc.). What is the stated
maximum performance (operations per second)? Find out how this
number was computed.

 11. Find (from the Internet) two new, large FPGA parts. Determine the
number of logic blocks (confi gurable logic blocks [CLBs]), the minimum
cycle time, and the maximum allowable power consumption. What soft
processors are supported?

c01.indd 38c01.indd 38 5/4/2011 9:53:49 AM5/4/2011 9:53:49 AM

