
  1    Introduction to the 
Systems Approach     

    1.1    SYSTEM ARCHITECTURE: AN OVERVIEW 

 The past 40 years have seen amazing advances in silicon technology and result-
ing increases in transistor density and performance. In 1966, Fairchild 
Semiconductor  [84]  introduced a quad two input NAND gate with about 10 
transistors on a die. In 2008, the Intel quad - core Itanium processor has 2 billion 
transistors  [226] . Figures  1.1  and  1.2  show the unrelenting advance in improv-
ing transistor density and the corresponding decrease in device cost.   

 The aim of this book is to present an approach for computer system design 
that exploits this enormous transistor density. In part, this is a direct extension 
of studies in computer architecture and design. However, it is also a study of 
system architecture and design. 

 About 50 years ago, a seminal text,  Systems Engineering — An Introduction 
to the Design of Large - Scale Systems   [111] , appeared. As the authors, H.H. 
Goode and R.E. Machol, pointed out, the system ’ s view of engineering was 
created by a need to deal with complexity. As then, our ability to deal with 
complex design problems is greatly enhanced by computer - based tools. 

 A system - on - chip (SOC) architecture is an ensemble of processors, memo-
ries, and interconnects tailored to an application domain. A simple example 
of such an architecture is the Emotion Engine  [147, 187, 237]  for the Sony 
PlayStation 2 (Figure  1.3 ), which has two main functions: behavior simulation 
and geometry translation. This system contains three essential components: a 
main processor of the reduced instruction set computer (RISC) style  [118]  and 
two vector processing units, VPU0 and VPU1, each of which contains four 
parallel processors of the single instruction, multiple data (SIMD) stream style 
 [97] . We provide a brief overview of these components and our overall 
approach in the next few sections.   

 While the focus of the book is on the system, in order to understand the 
system, one must fi rst understand the components. So, before returning to the 
issue of system architecture later in this chapter, we review the components 
that make up the system.  
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2  INTRODUCTION TO THE SYSTEMS APPROACH 

   1.2    COMPONENTS OF THE SYSTEM: PROCESSORS, MEMORIES, 
AND INTERCONNECTS 

 The term  architecture  denotes the operational structure and the user ’ s view 
of the system. Over time, it has evolved to include both the functional speci-
fi cation and the hardware implementation. The system architecture defi nes 
the system - level building blocks, such as processors and memories, and the 

     Figure 1.1     The increasing transistor density on a silicon die.  
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     Figure 1.2     The decrease of transistor cost over the years.  
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COMPONENTS OF THE SYSTEM  3

interconnection between them. The processor architecture determines the 
processor ’ s instruction set, the associated programming model, its detailed 
implementation, which may include hidden registers, branch prediction cir-
cuits and specifi c details concerning the ALU (arithmetic logic unit). The 
implementation of a processor is also known as  microarchitecture  (Figure  1.4 ).   

 The system designer has a programmer ’ s or user ’ s view of the system com-
ponents, the system view of memory, the variety of specialized processors, and 

     Figure 1.3     High - level functional view of a system - on - chip: the Emotion Engine of the 
Sony PlayStation 2  [147, 187] .  
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     Figure 1.4     The processor architecture and its implementation.  
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4  INTRODUCTION TO THE SYSTEMS APPROACH 

their interconnection. The next sections cover basic components: the processor 
architecture, the memory, and the bus or interconnect architecture. 

 Figure  1.5  illustrates some of the basic elements of an SOC system. These 
include a number of heterogeneous processors interconnected to one or more 
memory elements with possibly an array of reconfi gurable logic. Frequently, 
the SOC also has analog circuitry for managing sensor data and analog - to -
 digital conversion, or to support wireless data transmission.   

 As an example, an SOC for a smart phone would need to support, in addi-
tion to audio input and output capabilities for a traditional phone, Internet 
access functions and multimedia facilities for video communication, document 
processing, and entertainment such as games and movies. A possible confi gura-
tion for the elements in Figure  1.5  would have the core processor being imple-
mented by several ARM Cortex - A9 processors for application processing, and 
the media processor being implemented by a Mali - 400MP graphics processor 
and a Mali - VE video engine. The system components and custom circuitry 
would interface with peripherals such as the camera, the screen, and the wire-
less communication unit. The elements would be connected together by AXI 
(Advanced eXtensible Interface) interconnects. 

 If all the elements cannot be contained on a single chip, the implementation 
is probably best referred to as a system on a board, but often is still called a 
SOC. What distinguishes a system on a board (or chip) from the conventional 
general - purpose computer plus memory on a board is the specifi c nature of 
the design target. The application is assumed to be known and specifi ed so 
that the elements of the system can be selected, sized, and evaluated during 
the design process. The emphasis on selecting, parameterizing, and confi guring 
system components tailored to a target application distinguishes a system 
architect from a computer architect. 

     Figure 1.5     A basic SOC system model.  

Media
Processor

Core
Processor

Vector
Coprocessor

Interconnects

Memory
Analog and

Custom
Circuitry

System
Components

c01.indd   4c01.indd   4 5/4/2011   9:53:48 AM5/4/2011   9:53:48 AM



HARDWARE AND SOFTWARE  5

 In this chapter, we primarily look at the higher - level defi nition of the 
processor — the programmer ’ s view or the instruction set architecture (ISA), 
the basics of the processor microarchitecture, memory hierarchies, and the 
interconnection structure. In later chapters, we shall study in more detail the 
implementation issues for these elements.  

   1.3    HARDWARE AND SOFTWARE: PROGRAMMABILITY 
VERSUS PERFORMANCE 

 A fundamental decision in SOC design is to choose which components in the 
system are to be implemented in hardware and in software. The major benefi ts 
and drawbacks of hardware and software implementations are summarized in 
Table  1.1 .   

 A software implementation is usually executed on a general - purpose pro-
cessor (GPP), which interprets instructions at run time. This architecture offers 
fl exibility and adaptability, and provides a way of sharing resources among 
different applications; however, the hardware implementation of the ISA is 
generally slower and more power hungry than implementing the correspond-
ing function directly in hardware without the overhead of fetching and decod-
ing instructions. 

 Most software developers use high - level languages and tools that enhance 
productivity, such as program development environments, optimizing com-
pilers, and performance profi lers. In contrast, the direct implementation of 
applications in hardware results in custom application - specifi c integrated 
circuits (ASICs), which often provides high performance at the expense of 
programmability — and hence fl exibility, productivity, and cost. 

 Given that hardware and software have complementary features, many 
SOC designs aim to combine the individual benefi ts of the two. The obvious 
method is to implement the performance - critical parts of the application in 
hardware, and the rest in software. For instance, if 90% of the software execu-
tion time of an application is spent on 10% of the source code, up to a 10 - fold 
speedup is achievable if that 10% of the code is effi ciently implemented in 
hardware. We shall make use of this observation to customize designs in 
Chapter  6 . 

 Custom ASIC hardware and software on GPPs can be seen as two extremes 
in the technology spectrum with different trade - offs in programmability and 

  TABLE 1.1    Benefi ts and Drawbacks of Software and Hardware Implementations 

        Benefi ts     Drawbacks  

  Hardware    Fast, low power consumption    Infl exible, unadaptable, complex 
to build and test  

  Software    Flexible, adaptable, simple to 
build and test  

  Slow, high power consumption  
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6  INTRODUCTION TO THE SYSTEMS APPROACH 

performance; there are various technologies that lie between these two 
extremes (Figure  1.6 ). The two more well - known ones are application - specifi c 
instruction processors (ASIPs) and fi eld - programmable gate arrays (FPGAs).   

 An ASIP is a processor with an instruction set customized for a specifi c 
application or domain. Custom instructions effi ciently implemented in hard-
ware are often integrated into a base processor with a basic instruction set. 
This capability often improves upon the conventional approach of using 
standard instruction sets to fulfi ll the same task while preserving its fl exibil-
ity. Chapters  6  and  7  explore further some of the issues involving custom 
instructions. 

 An FPGA typically contains an array of computation units, memories, and 
their interconnections, and all three are usually programmable in the fi eld by 
application builders. FPGA technology often offers a good compromise: It is 
faster than software while being more fl exible and having shorter development 
times than custom ASIC hardware implementations; like GPPs, they are 
offered as off - the - shelf devices that can be programmed without going through 
chip fabrication. Because of the growing demand for reducing the time to 
market and the increasing cost of chip fabrication, FPGAs are becoming more 
popular for implementing digital designs. 

 Most commercial FPGAs contain an array of fi ne - grained logic blocks, each 
only a few bits wide. It is also possible to have the following:

     Figure 1.6     A simplifi ed technology comparison: programmability versus performance. 
GPP, general - purpose processor; CGRA, coarse - grained reconfi gurable architecture.  

FPGA

Custom
ASIC

Structured
ASIC

CGRA

ASIP

DSP

GPP

Programmability

P
ea

k 
pe

rf
or

m
an

ce
: n

um
be

r 
of

 o
pe

ra
tio

ns
 p

er
 w

at
t

Low High

c01.indd   6c01.indd   6 5/4/2011   9:53:48 AM5/4/2011   9:53:48 AM



PROCESSOR ARCHITECTURES  7

    •      Coarse - Grained Reconfi gurable Architecture (CGRA) .      It contains logic 
blocks that process byte - wide or multiple byte - wide data, which can form 
building blocks of datapaths.  

   •      Structured ASIC .      It allows application builders to customize the resources 
before fabrication. While it offers performance close to that of ASIC, the 
need for chip fabrication can be an issue.  

   •      Digital Signal Processors (DSPs) .      The organization and instruction set 
for these devices are optimized for digital signal processing applications. 
Like microprocessors, they have a fi xed hardware architecture that cannot 
be reconfi gured.    

 Figure  1.6  compares these technologies in terms of programmability and per-
formance. Chapters  6  –  8  provide further information about some of these 
technologies.  

   1.4    PROCESSOR ARCHITECTURES 

 Typically, processors are characterized either by their application or by their 
architecture (or structure), as shown in Tables  1.2  and  1.3 . The requirements 
space of an application is often large, and there is a range of implementation 
options. Thus, it is usually diffi cult to associate a particular architecture with 
a particular application. In addition, some architectures combine different 
implementation approaches as seen in the PlayStation example of Section 
 1.1 . There, the graphics processor consists of a four - element SIMD array of 
vector processing functional units (FUs). Other SOC implementations consist 
of multiprocessors using very long instruction word (VLIW) and/or supersca-
lar processors.   

  TABLE 1.2    Processor Examples as Identifi ed by Function 

   Processor Type     Application  

  Graphics processing unit (GPU)    3 - D graphics; rendering, shading, texture  
  Digital signal processor (DSP)    Generic, sometimes used with wireless  
  Media processor    Video and audio signal processing  
  Network processor    Routing, buffering  

  TABLE 1.3    Processor Examples as Identifi ed by Architecture 

   Processor Type     Architecture/Implementation Approach  

  SIMD    Single instruction applied to multiple functional units (processors)  
  Vector (VP)    Single instruction applied to multiple pipelined registers  
  VLIW    Multiple instructions issued each cycle under compiler control  
  Superscalar    Multiple instructions issued each cycle under hardware control  
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8  INTRODUCTION TO THE SYSTEMS APPROACH 

 From the programmer ’ s point of view, sequential processors execute 
one instruction at a time. However, many processors have the capability to 
execute several instructions concurrently in a manner that is transparent to 
the programmer, through techniques such as pipelining, multiple execution 
units, and multiple cores. Pipelining is a powerful technique that is used 
in almost all current processor implementations. Techniques to extract and 
exploit the inherent parallelism in the code at compile time or run time are 
also widely used. 

 Exploiting program parallelism is one of the most important goals in com-
puter architecture. 

  Instruction - level parallelism  (ILP) means that multiple operations can be 
executed in parallel within a program. ILP may be achieved with hardware, 
compiler, or operating system techniques. At the loop level, consecutive loop 
iterations are ideal candidates for parallel execution, provided that there is no 
data dependency between subsequent loop iterations. Next, there is parallel-
ism available at the procedure level, which depends largely on the algorithms 
used in the program. Finally, multiple independent programs can execute in 
parallel. 

 Different computer architectures have been built to exploit this inherent 
parallelism. In general, a computer architecture consists of one or more inter-
connected processor elements (PEs) that operate concurrently, solving a single 
overall problem. 

   1.4.1    Processor: A Functional View 

 Table  1.4  shows different SOC designs and the processor used in each design. 
For these examples, we can characterize them as general purpose, or special 
purpose with support for gaming or signal processing applications. This func-
tional view tells little about the underlying hardware implementation. Indeed, 
several quite different architectural approaches could implement the same 
generic function. The graphics function, for example, requires shading, render-
ing, and texturing functions as well as perhaps a video function. Depending 

  TABLE 1.4    Processor Models for Different  SOC  Examples 

   SOC     Application     Base ISA     Processor Description  

  Freescale e600  [101]     DSP    PowerPC    Superscalar with 
vector extension  

  ClearSpeed 
CSX600  [59]   

  General    Proprietary ISA    Array processor of 96 
processing elements  

  PlayStation 2 
 [147, 187, 237]   

  Gaming    MIPS    Pipelined with two 
vector coprocessors  

  ARM VFP11  [23]     General    ARM    Confi gurable vector 
coprocessor  
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PROCESSOR ARCHITECTURES  9

on the relative importance of these functions and the resolution of the created 
images, we could have radically different architectural implementations.    

   1.4.2    Processor: An Architectural View 

 The architectural view of the system describes the actual implementation at 
least in a broad - brush way. For sophisticated architectural approaches, more 
detail is required to understand the complete implementation. 

  Simple Sequential Processor     Sequential processors directly implement the 
sequential execution model. These processors process instructions sequentially 
from the instruction stream. The next instruction is not processed until all 
execution for the current instruction is complete and its results have been 
committed. 

 The semantics of the instruction determines that a sequence of actions must 
be performed to produce the specifi ed result (Figure  1.7 ). These actions can 
be overlapped, but the result must appear in the specifi ed serial order. These 
actions include 

  1.     fetching the instruction into the instruction register (IF),    
  2.     decoding the opcode of the instruction (ID),  
  3.     generating the address in memory of any data item residing there (AG),  
  4.     fetching data operands into executable registers (DF),  
  5.     executing the specifi ed operation (EX), and  
  6.     writing back the result to the register fi le (WB).    

 A simple sequential processor model is shown in Figure  1.8 . During execution, 
a sequential processor executes one or more operations per clock cycle from 
the instruction stream. An instruction is a container that represents the small-
est execution packet managed explicitly by the processor. One or more opera-
tions are contained within an instruction. The distinction between instructions 
and operations is crucial to distinguish between processor behaviors. Scalar 
and superscalar processors consume one or more instructions per cycle, where 
each instruction contains a single operation.   

 Although conceptually simple, executing each instruction sequentially has 
signifi cant performance drawbacks: A considerable amount of time is spent 
on overhead and not on actual execution. Thus, the simplicity of directly imple-
menting the sequential execution model has signifi cant performance costs.  

     Figure 1.7     Instruction execution sequence.  
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10  INTRODUCTION TO THE SYSTEMS APPROACH 

  Pipelined Processor     Pipelining is a straightforward approach to exploiting 
parallelism that is based on concurrently performing different phases (instruc-
tion fetch, decode, execution, etc.) of processing an instruction. Pipelining 
assumes that these phases are independent between different operations and 
can be overlapped — when this condition does not hold, the processor stalls 
the downstream phases to enforce the dependency. Thus, multiple operations 
can be processed simultaneously with each operation at a different phase of 
its processing. Figure  1.9  illustrates the instruction timing in a pipelined proces-
sor, assuming that the instructions are independent.   

 For a simple pipelined machine, there is only one operation in each phase at 
any given time; thus, one operation is being fetched (IF); one operation is being 
decoded (ID); one operation is generating an address (AG); one operation is 
accessing operands (DF); one operation is in execution (EX); and one opera-
tion is storing results (WB). Figure  1.10  illustrates the general form of a pipe-
lined processor. The most rigid form of a pipeline, sometimes called the static 
pipeline, requires the processor to go through all stages or phases of the pipe-
line whether required by a particular instruction or not. A dynamic pipeline 
allows the bypassing of one or more pipeline stages, depending on the require-
ments of the instruction. The more complex dynamic pipelines allow instruc-
tions to complete out of (sequential) order, or even to initiate out of order. The 
out - of - order processors must ensure that the sequential consistency of the 
program is preserved. Table  1.5  shows some SOC pipelined  “ soft ”  processors.      

     Figure 1.9     Instruction timing in a pipelined processor.  
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PROCESSOR ARCHITECTURES  11

   ILP      While pipelining does not necessarily lead to executing multiple instruc-
tions at exactly the same time, there are other techniques that do. These tech-
niques may use some combination of static scheduling and dynamic analysis 
to perform concurrently the actual evaluation phase of several different opera-
tions, potentially yielding an execution rate of greater than one operation every 
cycle. Since historically most instructions consist of only a single operation, this 
kind of parallelism has been named ILP (instruction level parallelism). 

 Two architectures that exploit ILP are  superscalar  and  VLIW  processors. 
They use different techniques to achieve execution rates greater than one 
operation per cycle. A superscalar processor dynamically examines the instruc-
tion stream to determine which operations are independent and can be exe-
cuted. A VLIW processor relies on the compiler to analyze the available 
operations (OP) and to schedule independent operations into wide instruc-
tion words, which then execute these operations in parallel with no further 
analysis. 

 Figure  1.11  shows the instruction timing of a pipelined superscalar or VLIW 
processor executing two instructions per cycle. In this case, all the instructions 
are independent so that they can be executed in parallel. The next two sections 
describe these two architectures in more detail.   

     Figure 1.10     Pipelined processor model.  
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  TABLE 1.5    SOC Examples Using Pipelined Soft Processors  [177, 178] . A Soft 
Processor Is Implemented with FPGAs or Similar Reconfi gurable Technology 

   Processor  
   Word 

Length (bit)  
   Pipeline 
Stages  

   I/D - Cache  *   
Total (KB)  

   Floating -
 Point Unit 

(FPU)  
   Usual 
Target  

  Xilinx MicroBlaze    32    3    0 – 64    Optional    FPGA  
  Altera Nios II fast    32    6    0 – 64     —     FPGA  
  ARC 600  [19]     16/32    5    0 – 32    Optional    ASIC  
  Tensilica Xtensa LX    16/24    5 – 7    0 – 32    Optional    ASIC  
  Cambridge XAP3a    16/32    2     —      —     ASIC  

    *   Means confi gurable I - cache and/or D - cache.   
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12  INTRODUCTION TO THE SYSTEMS APPROACH 

  Superscalar Processors     Dynamic pipelined processors remain limited to 
executing a single operation per cycle by virtue of their scalar nature. This 
limitation can be avoided with the addition of multiple functional units and a 
dynamic scheduler to process more than one instruction per cycle (Figure 
 1.12 ). These superscalar processors  [135]  can achieve execution rates of several 
instructions per cycle (usually limited to two, but more is possible depending 
on the application). The most signifi cant advantage of a superscalar processor 
is that processing multiple instructions per cycle is done transparently to the 

     Figure 1.11     Instruction timing in a pipelined ILP processor.  
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     Figure 1.12     Superscalar processor model.  
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PROCESSOR ARCHITECTURES  13

user, and that it can provide binary code compatibility while achieving better 
performance.   

 Compared to a dynamic pipelined processor, a superscalar processor adds 
a scheduling instruction window that analyzes multiple instructions from the 
instruction stream in each cycle. Although processed in parallel, these instruc-
tions are treated in the same manner as in a pipelined processor. Before an 
instruction is issued for execution, dependencies between the instruction and 
its prior instructions must be checked by hardware. 

 Because of the complexity of the dynamic scheduling logic, high - performance 
superscalar processors are limited to processing four to six instructions per 
cycle. Although superscalar processors can exploit ILP from the dynamic 
instruction stream, exploiting higher degrees of parallelism requires other 
approaches.  

   VLIW  Processors     In contrast to dynamic analyses in hardware to determine 
which operations can be executed in parallel, VLIW processors (Figure  1.13 ) 
rely on static analyses in the compiler.   

 VLIW processors are thus less complex than superscalar processors and 
have the potential for higher performance. A VLIW processor executes opera-
tions from statically scheduled instructions that contain multiple independent 
operations. Because the control complexity of a VLIW processor is not signifi -
cantly greater than that of a scalar processor, the improved performance 
comes without the complexity penalties. 

 VLIW processors rely on the static analyses performed by the compiler and 
are unable to take advantage of any dynamic execution characteristics. For 
applications that can be scheduled statically to use the processor resources 
effectively, a simple VLIW implementation results in high performance. 
Unfortunately, not all applications can be effectively scheduled statically. In 
many applications, execution does not proceed exactly along the path defi ned 

     Figure 1.13     VLIW processor model.  
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14  INTRODUCTION TO THE SYSTEMS APPROACH 

by the code scheduler in the compiler. Two classes of execution variations can 
arise and affect the scheduled execution behavior:

   1.     delayed results from operations whose latency differs from the assumed 
latency scheduled by the compiler and  

  2.     interruptions from exceptions or interrupts, which change the execution 
path to a completely different and unanticipated code schedule.    

 Although stalling the processor can control a delayed result, this solution can 
result in signifi cant performance penalties. The most common execution delay 
is a data cache miss. Many VLIW processors avoid all situations that can result 
in a delay by avoiding data caches and by assuming worst - case latencies for 
operations. However, when there is insuffi cient parallelism to hide the exposed 
worst - case operation latency, the instruction schedule has many incompletely 
fi lled or empty instructions, resulting in poor performance. 

 Tables  1.6  and  1.7  describe some representative  superscalar  and  VLIW 
processors .     

   SIMD  Architectures: Array and Vector Processors     The SIMD class of pro-
cessor architecture includes both array and vector processors. The SIMD pro-
cessor is a natural response to the use of certain regular data structures, such as 
vectors and matrices. From the view of an assembly - level programmer, pro-
gramming SIMD architecture appears to be very similar to programming a 
simple processor except that some operations perform computations on aggre-
gate data. Since these regular structures are widely used in scientifi c program-
ming, the SIMD processor has been very successful in these environments. 

 The two popular types of SIMD processor are the array processor and the 
vector processor. They differ both in their implementations and in their data 

  TABLE 1.6     SOC  Examples Using Superscalar Processors 

   Device  
   Number of 

Functional Units     Issue Width     Base Instruction Set  

  MIPS 74K Core  [183]     4    2    MIPS32  
  Infi neon TriCore2  [129]     4    3    RISC  
  Freescale e600  [101]     6    3    PowerPC  

  TABLE 1.7     SOC  Examples Using  VLIW  Processors 

   Device     Number of Functional Units     Issue Width  

  Fujitsu MB93555A  [103]     8    8  
  TI TMS320C6713B  [243]     8    8  
  CEVA - X1620  [54]     30    8  
  Philips Nexperia PNX1700  [199]     30    5  
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PROCESSOR ARCHITECTURES  15

organizations. An array processor consists of many interconnected processor 
elements, each having their own local memory space. A vector processor con-
sists of a single processor that references a global memory space and has 
special function units that operate on vectors. 

 An array processor or a vector processor can be obtained by extending the 
instruction set to an otherwise conventional machine. The extended instruc-
tions enable control over special resources in the processor, or in some sort 
of coprocessor. The purpose of such extensions is to enable increased perfor-
mance on special applications. 

  Array Processors     The array processor (Figure  1.14 ) is a set of parallel proces-
sor elements connected via one or more networks, possibly including local and 
global interelement communications and control communications. Processor 
elements operate in lockstep in response to a single broadcast instruction from 
a control processor (SIMD). Each processor element (PE) has its own private 
memory, and data are distributed across the elements in a regular fashion that 
is dependent on both the actual structure of the data and also the computa-
tions to be performed on the data. Direct access to global memory or another 
processor element ’ s local memory is expensive, so intermediate values are 
propagated through the array through local interprocessor connections. This 
requires that the data be distributed carefully so that the routing required to 
propagate these values is simple and regular. It is sometimes easier to dupli-
cate data values and computations than it is to support a complex or irregular 
routing of data between processor elements.   

 Since instructions are broadcast, there is no means local to a processor 
element of altering the fl ow of the instruction stream; however, individual 
processor elements can conditionally disable instructions based on local status 
information — these processor elements are idle when this condition occurs. 
The actual instruction stream consists of more than a fi xed stream of opera-
tions. An array processor is typically coupled to a general - purpose control 
processor that provides both scalar operations as well as array operations that 
are broadcast to all processor elements in the array. The control processor 
performs the scalar sections of the application, interfaces with the outside 

     Figure 1.14     Array processor model.  
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16  INTRODUCTION TO THE SYSTEMS APPROACH 

world, and controls the fl ow of execution; the array processor performs the 
array sections of the application as directed by the control processor. 

 A suitable application for use on an array processor has several key char-
acteristics: a signifi cant amount of data that have a regular structure, computa-
tions on the data that are uniformly applied to many or all elements of the 
data set, and simple and regular patterns relating the computations and the 
data. An example of an application that has these characteristics is the solution 
of the Navier – Stokes equations, although any application that has signifi cant 
matrix computations is likely to benefi t from the concurrent capabilities of an 
array processor. 

 Table  1.8  contains several array processor examples. The ClearSpeed pro-
cessor is an example of an array processor chip that is directed at signal pro-
cessing applications.    

  Vector Processors     A vector processor is a single processor that resembles a 
traditional single stream processor, except that some of the function units (and 
registers) operate on vectors — sequences of data values that are seemingly 
operated on as a single entity. These function units are deeply pipelined and 
have high clock rates. While the vector pipelines often have higher latencies 
compared with scalar function units, the rapid delivery of the input vector data 
elements, together with the high clock rates, results in a signifi cant throughput. 

 Modern vector processors require that vectors be explicitly loaded into 
special vector registers and stored back into memory — the same course that 
modern scalar processors use for similar reasons. Vector processors have 
several features that enable them to achieve high performance. One feature 
is the ability to concurrently load and store values between the vector register 
fi le and the main memory while performing computations on values in the 
vector register fi le. This is an important feature since the limited length of 
vector registers requires that vectors longer than the register length would be 
processed in segments — a technique called strip mining. Not being able to 
overlap memory accesses and computations would pose a signifi cant perfor-
mance bottleneck. 

 Most vector processors support a form of result bypassing — in this case 
called chaining — that allows a follow - on computation to commence as soon 
as the fi rst value is available from the preceding computation. Thus, instead of 
waiting for the entire vector to be processed, the follow - on computation can 
be signifi cantly overlapped with the preceding computation that it is depen-
dent on. Sequential computations can be effi ciently compounded to behave as 

  TABLE 1.8     SOC  Examples Based on Array Processors 

   Device     Processors per Control Unit     Data Size (bit)  

  ClearSpeed CSX600  [59]     96    32  
  Atsana J2211  [174]     Confi gurable    16/32  
  Xelerator X10q  [257]     200    4  
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if they were a single operation, with a total latency equal to the latency of the 
fi rst operation with the pipeline and chaining latencies of the remaining opera-
tions, but none of the start - up overhead that would be incurred without chain-
ing. For example, division could be synthesized by chaining a reciprocal with 
a multiply operation. Chaining typically works for the results of load opera-
tions as well as normal computations. 

 A typical vector processor confi guration (Figure  1.15 ) consists of a vector 
register fi le, one vector addition unit, one vector multiplication unit, and one 
vector reciprocal unit (used in conjunction with the vector multiplication unit 
to perform division); the vector register fi le contains multiple vector registers 
(elements).   

 Table  1.9  shows examples of vector processors. The IBM mainframes have 
vector instructions (and support hardware) as an option for scientifi c users.     

  Multiprocessors     Multiple processors can cooperatively execute to solve a 
single problem by using some form of interconnection for sharing results. In 

     Figure 1.15     Vector processor model.  
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  TABLE 1.9     SOC  Examples Using Vector Processor 

   Device     Vector Function Units     Vector Registers  

  Freescale e600  [101]     4    32 Confi gurable  
  Motorola RSVP  [58]     4 (64 bit partitionable at 16 bits)    2 streams (each 2 from, 

1 to) memory  
  ARM VFP11  [23]     3 (64 bit partitionable to 32 bits)    4    ×    8, 32 bit  

   Confi gurable implies a pool of N registers that can be confi gured as p register sets of N/p 
elements.   
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18  INTRODUCTION TO THE SYSTEMS APPROACH 

this confi guration, each processor executes completely independently, although 
most applications require some form of synchronization during execution to 
pass information and data between processors. Since the multiple processors 
share memory and execute separate program tasks (MIMD [multiple instruc-
tion stream, multiple data stream]), their proper implementation is signifi -
cantly more complex then the array processor. Most confi gurations are 
homogeneous with all processor elements being identical, although this is not 
a requirement. Table  1.10  shows examples of SOC multiprocessors.   

 The interconnection network in the multiprocessor passes data between 
processor elements and synchronizes the independent execution streams 
between processor elements. When the memory of the processor is distributed 
across all processors and only the local processor element has access to it, all 
data sharing is performed explicitly using messages, and all synchronization is 
handled within the message system. When the memory of the processor is 
shared across all processor elements, synchronization is more of a problem —
 certainly, messages can be used through the memory system to pass data and 
information between processor elements, but this is not necessarily the most 
effective use of the system. 

 When communications between processor elements are performed through 
a shared memory address space — either global or distributed between proces-
sor elements (called distributed shared memory to distinguish it from distrib-
uted memory) — there are two signifi cant problems that arise. The fi rst is 
maintaining memory consistency: the programmer - visible ordering effects on 
memory references, both within a processor element and between different 
processor elements. This problem is usually solved through a combination of 
hardware and software techniques. The second is cache coherency — the 
programmer - invisible mechanism to ensure that all processor elements see the 
same value for a given memory location. This problem is usually solved exclu-
sively through hardware techniques. 

 The primary characteristic of a multiprocessor system is the nature of the 
memory address space. If each processor element has its own address space 
(distributed memory), the only means of communication between processor 
elements is through message passing. If the address space is shared (shared 
memory), communication is through the memory system. 

  TABLE 1.10     SOC  Multiprocessors and Multithreaded Processors 

   SOC  
   Machanick 

 [162]   
   IBM Cell 

 [141]   
   Philips 

PNX8500  [79]   
   Lehtoranta 

 [155]   

  Number of CPUs    4    1    2    4  
  Threads    1    Many    1    1  
  Vector units    0    8    0    0  
  Application    Various    Various    HDTV    MPEG decode  
  Comment    Proposal only        Also called 

Viper 2  
  Soft processors  
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 The implementation of a distributed memory machine is far easier than the 
implementation of a shared memory machine when memory consistency and 
cache coherency are taken into account. However, programming a distributed 
memory processor can be much more diffi cult since the applications must be 
written to exploit and not to be limited by the use of message passing as the 
only form of communication between processor elements. On the other hand, 
despite the problems associated with maintaining consistency and coherency, 
programming a shared memory processor can take advantage of whatever 
communications paradigm is appropriate for a given communications require-
ment, and can be much easier to program.    

   1.5    MEMORY AND ADDRESSING 

 SOC applications vary signifi cantly in memory requirements. In one case, the 
memory structure can be as simple as the program residing entirely in an on -
 chip read - only memory (ROM), with the data in on - chip RAM. In another 
case, the memory system might support an elaborate operating system requir-
ing a large off - chip memory (system on a board), with a memory management 
unit and cache hierarchy. 

 Why not simply include memory with the processor on the die? This has 
many attractions:

   1.     It improves the accessibility of memory, improving both memory access 
time and bandwidth.  

  2.     It reduces the need for large cache.  
  3.     It improves performance for memory - intensive applications.    

 But there are problems. The fi rst problem is that DRAM memory process 
technology differs from standard microprocessor process technology, and 
would cause some sacrifi ce in achievable bit density. The second problem is 
more serious: If memory were restricted to the processor die, its size would be 
correspondingly limited. Applications that require very large real memory 
space would be crippled. Thus, the conventional processor die model has 
evolved (Figure  1.16 ) to implement multiple robust homogeneous processors 
sharing the higher levels of a two -  or three - level cache structure with the main 
memory off - die, on its own multidie module.   

 From a design complexity point of view, this has the advantage of being a 
 “ universal ”  solution: One implementation fi ts all applications, although not 
necessarily equally well. So, while a great deal of design effort is required for 
such an implementation, the production quantities can be large enough to 
justify the costs. 

 An alternative to this approach is clear. For specifi c applications, whose 
memory size can be bounded, we can implement an integrated memory SOC. 
This concept is illustrated in Figure  1.17  (also recall Figure  1.3 ).   

c01.indd   19c01.indd   19 5/4/2011   9:53:48 AM5/4/2011   9:53:48 AM
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 A related but separate question is: Does the application require virtual 
memory (mapping disk space onto memory) or is all real memory suitable? 
We look at the requirement for virtual memory addressing in the next section. 

 Finally, the memory can be centralized or distributed. Even here, the 
memory can appear to the programmer as a single (centralized) shared 
memory, even though it is implemented in several distributed modules. Sev-
eral memory considerations are listed in Table  1.11 .   

 The  memory system  comprises the physical storage elements in the memory 
hierarchy. These elements include those specifi ed by the instruction set (reg-
isters, main memory, and disk sectors) as well as those elements that are largely 
transparent to the user ’ s program (buffer registers, cache, and page mapped 
virtual memory). 

   1.5.1     SOC  Memory Examples 

 Table  1.12  shows a number of different SOC designs and their cache and 
memory confi guration. It is important for SOC designers to consider whether 
to put RAM and ROM on - die or off - die. Table  1.13  shows various examples 
of SOC embedded memory macro cell.    

     Figure 1.16     Processors with memory off - die.  
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     Figure 1.17     System on a chip: processors and memory.  
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MEMORY AND ADDRESSING  21

   1.5.2    Addressing: The Architecture of Memory 

 The user ’ s view of memory primarily consists of the addressing facilities avail-
able to the programmer. Some of these facilities are available to the applica-
tion programmer and some to the operating system programmer. Virtual 
memory enables programs requiring larger storage than the physical memory 
to run and allows separation of address spaces to protect unauthorized access 
to memory regions when executing multiple application programs. When 
virtual addressing facilities are properly implemented and programmed, 
memory can be effi ciently and securely accessed. 

 Virtual memory is often supported by a memory management unit. 
Conceptually, the physical memory address is determined by a sequence of (at 
least) three steps:

  TABLE 1.11     SOC  Memory Considerations 

   Issue     Implementation     Comment  

  Memory placement    On - die    Limited and fi xed size  
  Off - die    System on a board, slow 

access, limited bandwidth  

  Addressing    Real addressing    Limited size, simple OS  
  Virtual addressing    Much more complex, require 

TLB, in - order instruction 
execution support  

  Arrangement (as programmed 
for multiple processors)  

  Shared memory    Requires hardware support  
  Message passing    Additional programming  

  Arrangement (as 
implemented)  

  Centralized    Limited by chip 
considerations  

  Distributed    Can be clustered with a 
processor or other 
memory modules  

  TABLE 1.12    Memory Hierarchy for Different  SOC  Examples 

   SOC     Application     Cache Size  
   On - Die/
Off - Die  

   Real/
Virtual  

  NetSilicon NET    +    40 
 [184]   

  Networking    4 - KB I - cache, 
4 - KB D - cache  

  Off    Real  

  NetSilicon NS9775  [185]     Printing    8 - KB I - cache, 
4 - KB D - cache  

  Off    Virtual  

  NXP LH7A404  [186]     Networking    16 - KB I - cache, 
8   KB D - Cache  

  On    Virtual  

  Motorola RSVP  [58]     Multimedia    Tile buffer memory    Off    Real  
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   1.     The application produces a  process address . This, together with the 
 process or user ID , defi nes the  virtual address :  virtual address     =     offset     +    
 (program) base     +     index , where the  offset  is specifi ed in the instruction 
while the  base  and  index  values are in specifi ed registers.  

  2.     Since multiple processes must cooperate in the same memory space, the 
process addresses must be coordinated and relocated. This is typically 
done by a segment table. Upper bits of the  virtual address  are used to 
address a segment table, which has a (predetermined)  base  and  bound  
values for the process, resulting in a  system address :  system address     =     virtual 
address     +     (process) base , where the  system address  must be less than the 
 bound .  

  3.      Virtual versus real.  For many SOC applications (and all generic systems), 
the memory space exceeds the available (real) implemented memory. 
Here the memory space is implemented on disk and only the recently 
used regions (pages) are brought into memory. The available pages are 
located by a page table. The upper bits of the system address access a 
page table. If the data for this page have been loaded from the disk, the 
location in memory will be provided as the upper address bits of the 
 “ real ”  or physical memory address. The lower bits of the real address are 
the same as the corresponding lower bits of the virtual address.    

 Usually, the tables (segment and page) performing address translation are in 
memory, and a mechanism for the translation called the translation lookaside 
buffer (TLB) must be used to speed up this translation. A TLB is a simple 
register system, usually consisting of between 64 and 256 entries, that saves 
recent address translations for reuse. A small number of (hashed) virtual 
address bits address the TLB. The TLB entry has both the real address and 
the complete virtual address (and ID). If the virtual address matches, the real 
address from the TLB can be used. Otherwise, a  not - in - TLB  event occurs and 
a complete translation must occur (Figure  1.18 ).    

   1.5.3    Memory for  SOC  Operating System 

 One of the most critical decisions (or requirements) concerning an SOC design 
is the selection of the operating system and its memory management function-

  TABLE 1.13    Example  SOC  Embedded Memory Macro Cell (See Chapter  4  for 
the Discussion on Cell Types) 

   Vendor     Cell Type (Typical)     SOC User (Typical)  

  Virage Logic    6T (SRAM)    SigmaTel/ARM  
  ATMOS    1T (eDRAM)    Philips  
  IBM    1T (eDRAM)    IBM  

   Note: T refers to the number of transistors in a 1 - bit cell.   
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ality. Of primary interest to the designer is the requirement for virtual memory. 
If the system can be restricted to a real memory (physically, not virtually 
addressed) and the size of the memory can be contained to the order of 10   s 
of megabytes, the system can be implemented as a true system on a chip (all 
memory on - die). The alternative, virtual memory, is often slower and signifi -
cantly more expensive, requiring a complex memory management unit. Table 
 1.14  illustrates some current SOC designs and their operating systems.   

     Figure 1.18     Virtual - to - real address mapping with a TLB bypass.  
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  TABLE 1.14    Operating Systems for  SOC  Designs 

   OS     Vendor     Memory Model  

  uClinux    Open source    Real  
  VxWorks (RTOS)  [254]     Wind River    Real  
  Windows CE    Microsoft    Virtual  
  Nucleus (RTOS)  [175]     Mentor Graphics    Real  
  MQX (RTOS)  [83]     ARC    Real  
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 Of course, fast real memory designs come at the price of functionality. The 
user has limited ways of creating new processes and of expanding the applica-
tion base of the systems.   

   1.6    SYSTEM - LEVEL INTERCONNECTION 

 SOC technology typically relies on the interconnection of predesigned circuit 
modules (known as intellectual property [IP] blocks) to form a complete 
system, which can be integrated onto a single chip. In this way, the design task 
is raised from a circuit level to a system level. Central to the system - level 
performance and the reliability of the fi nished product is the method of inter-
connection used. A well - designed interconnection scheme should have vigor-
ous and effi cient communication protocols, unambiguously defi ned as a 
published standard. This facilitates interoperability between IP blocks designed 
by different people from different organizations and encourages design reuse. 
It should provide effi cient communication between different modules maxi-
mizing the degree of parallelism achieved. 

 SOC interconnect methods can be classifi ed into two main approaches: 
buses and network - on - chip, as illustrated in Figures  1.19  and  1.20 .   

   1.6.1    Bus - Based Approach 

 With the bus - based approach, IP blocks are designed to conform to published 
bus standards (such as ARM ’ s Advanced Microcontroller Bus Architecture 

     Figure 1.19     SOC system - level interconnection: bus - based approach.  
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[AMBA]  [21]  or IBM ’ s CoreConnect  [124] ). Communication between modules 
is achieved through the sharing of the physical connections of address, data, 
and control bus signals. This is a common method used for SOC system - level 
interconnect. Usually, two or more buses are employed in a system, organized 
in a hierarchical fashion. To optimize system - level performance and cost, the 
bus closest to the CPU has the highest bandwidth, and the bus farthest from 
the CPU has the lowest bandwidth.  

   1.6.2    Network - on - Chip Approach 

 A network - on - chip system consists of an array of switches, either dynamically 
switched as in a crossbar or statically switched as in a mesh. 

 The crossbar approach uses asynchronous channels to connect synchronous 
modules that can operate at different clock frequencies. This approach has the 
advantage of higher throughput than a bus - based system while making inte-
gration of a system with multiple clock domains easier. 

 In a simple statically switched network (Figure  1.20 ), each node contains 
processing logic forming the core, and its own routing logic. The interconnect 
scheme is based on a two - dimensional mesh topology. All communications 
between switches are conducted through data packets, routed through the 
router interface circuit within each node. Since the interconnections between 
switches have a fi xed distance, interconnect - related problems such as wire 
delay and cross talk noise are much reduced. Table  1.15  lists some interconnect 
examples used in SOC designs.     

     Figure 1.20     SOC system - level interconnection: network - on - chip approach.  
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   1.7    AN APPROACH FOR  SOC  DESIGN 

 Two important ideas in a design process are fi guring out the requirements and 
specifi cations, and iterating through different stages of design toward an effi -
cient and effective completion. 

   1.7.1    Requirements and Specifi cations 

 Requirements and specifi cations are fundamental concepts in any system 
design situation. There must be a thorough understanding of both before a 
design can begin. They are useful at the beginning and at the end of the design 
process: at the beginning, to clarify what needs to be achieved; and at the end, 
as a reference against which the completed design can be evaluated. 

 The system requirements are the largely externally generated criteria for 
the system. They may come from competition, from sales insights, from cus-
tomer requests, from product profi tability analysis, or from a combination. 
Requirements are rarely succinct or defi nitive of anything about the system. 
Indeed, requirements can frequently be unrealistic:  “ I want it fast, I want it 
cheap, and I want it now! ”  

 It is important for the designer to analyze carefully the requirements 
expressions, and to spend suffi cient time in understanding the market situation 
to determine all the factors expressed in the requirements and the priorities 
those factors imply. Some of the factors the designer considers in determining 
requirements include 

   •      compatibility with previous designs or published standards,  
   •      reuse of previous designs,  
   •      customer requests/complaints,  
   •      sales reports,  
   •      cost analysis,  
   •      competitive equipment analysis, and  
   •      trouble reports (reliability) of previous products and competitive 

products.    

  TABLE 1.15    Interconnect Models for Different  SOC  Examples 

   SOC     Application     Interconnect Type  

  ClearSpeed CSX600  [59]     High Performance 
Computing  

  ClearConnect bus  

  NetSilicon NET  + 40  [184]     Networking    Custom bus  
  NXP LH7A404  [186]     Networking    AMBA bus  
  Intel PXA27x  [132]     Mobile/wireless    PXBus  
  Matsushita i - Platform  [176]     Media    Internal connect bus  
  Emulex InSpeed SOC320  [130]     Switching    Crossbar switch  
  MultiNOC  [172]     Multiprocessing system    Network - on - chip  
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 The designer can also introduce new requirements based on new technology, 
new ideas, or new materials that have not been used in a similar systems 
environment. 

 The system specifi cations are the quantifi ed and prioritized criteria for the 
target system design. The designer takes the requirements and must produce 
a succinct and defi nitive set of statements about the eventual system. The 
designer may have no idea of what the eventual system will look like, but 
usually, there is some  “ straw man ”  design in mind that seems to provide a 
feasibility framework to the specifi cation. In any effective design process, it 
would be surprising if the fi nal design signifi cantly resembles the straw man 
design. 

 The specifi cation does not complete any part of the design process; it initial-
izes the process. Now the design can begin with the selection of components 
and approaches, the study of alternatives, and the optimization of the parts of 
the system.  

   1.7.2    Design Iteration 

 Design is always an iterative process. So, the obvious question is how to get 
the very fi rst, initial design. This is the design that we can then iterate through 
and optimize according to the design criteria. For our purposes, we defi ne 
several types of designs based on the stage of design effort. 

  Initial Design     This is the fi rst design that shows promise in meeting the key 
requirements, while other performance and cost criteria are not considered. 
For instance, processor or memory or input/output (I/O) should be sized to 
meet high - priority real - time constraints. Promising components and their 
parameters are selected and analyzed to provide an understanding of their 
expected idealized performance and cost. Idealized does not mean ideal; it 
means a simplifi ed model of the expected area occupied and computational 
or data bandwidth capability. It is usually a simple linear model of perfor-
mance, such as the expected million instructions per second (MIPS) rate of a 
processor.  

  Optimized Design     Once the base performance (or area) requirements are 
met and the base functionality is ensured, then the goal is to minimize the cost 
(area) and/or the power consumption or the design effort required to complete 
the design. This is the iterative step of the process. The fi rst steps of this process 
use higher - fi delity tools (simulations, trial layouts, etc.) to ensure that the 
initial design actually does satisfy the design specifi cations and requirements. 
The later steps refi ne, complete, and improve the design according to the 
design criteria. 

 Figure  1.21  shows the steps in creating an initial design. This design is 
detailed enough to create a component view of the design and a corresponding 
projection of the component ’ s expected performance. This projection is, at this 
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step, necessarily simplifi ed and referenced to here as the idealized view of the 
component (Figure  1.22 ).   

 System performance is limited by the component with the least capability. 
The other components can usually be modeled as simply presenting a delay 
to the critical component. In a good design, the most expensive component is 
the one that limits the performance of the system. The system ’ s ability to 
process transactions should closely follow that of the limiting component. 
Typically, this is the processor or memory complex. 

 Usually, designs are driven by either (1) a specifi c real - time requirement, 
after which functionality and cost become important, or (2) functionality and/
or throughput under cost – performance constraints. In case (1), the real - time 
constraint is provided by I/O consideration, which the processor – memory –
 interconnect system must meet. The I/O system then determines the perfor-
mance, and any excess capability of the remainder of the system is usually used 
to add functionality to the system. In case (2), the object is to improve task 

     Figure 1.21     The SOC initial design process.  
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throughput while minimizing the cost. Throughput is limited by the most con-
strained component, so the designer must fully understand the trade - offs at 
that point. There is more fl exibility in these designs, and correspondingly more 
options in determining the fi nal design. 

 The purpose of this book is to provide an approach for determining the 
initial design by 

   (a)     describing the range of components — processors, memories, and 
interconnects — that are available in building an SOC;  

   (b)     providing examples of requirements for various domains of applica-
tions, such as data compression and encryption; and  

   (c)     illustrating how an initial design, or a reported implementation, can 
show promise in meeting specifi c requirements.    

 We explain this approach in Chapters  3  –  5  on a component by component basis 
to cover (a), with Chapter  6  covering techniques for system confi guration and 
customization. Chapter  7  contains application studies to cover (b) and (c). 

 As mentioned earlier, the designer must optimize each component for pro-
cessing and storage. This optimization process requires extensive simulation. 
We provide access to basic simulation tools through our associated web site.    

   1.8    SYSTEM ARCHITECTURE AND COMPLEXITY 

 The basic difference between processor architecture and system architecture 
is that the system adds another layer of complexity, and the complexity of 
these systems limits the cost savings. Historically, the notion of a computer is 
a single processor plus a memory. As long as this notion is fi xed (within broad 
tolerances), implementing that processor on one or more silicon die does not 
change the design complexity. Once die densities enable a scalar processor to 
fi t on a chip, the complexity issue changes. 

 Suppose it takes about 100,000 transistors to implement a 32 - bit pipelined 
processor with a small fi rst - level cache. Let this be a processor unit of design 
complexity. 

 As long as we need to implement the 100,000 transistor processors, addi-
tional transistor density on the die does not much affect design complexity. 
More transistors per die, while increasing die complexity, simplify the problem 
of interconnecting multiple chips that make up the processor. Once the unit 
processor is implemented on a single die, the design complexity issue changes. 
As transistor densities signifi cantly improve after this point, there are obvious 
processor extension strategies to improve performance:

   1.     Additional Cache .      Here we add cache storage and, as large caches have 
slower access times, a second - level cache.  
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  2.     A More Advanced Processor .      We implement a superscalar or a VLIW 
processor that executes more than one instruction each cycle. Additionally, 
we speed up the execution units that affect the critical path delay, espe-
cially the fl oating - point execution times.  

  3.     Multiple Processors .      Now we implement multiple (superscalar) proces-
sors and their associated multilevel caches. This leaves us limited only by 
the memory access times and bandwidth.    

 The result of the above is a signifi cantly greater design complexity (see Figure 
 1.23 ). Instead of the 100,000 transistor processors, our advanced processor has 
millions of transistors; the multilevel caches are also complex, as is the need 
to coordinate (synchronize) the multiple processors, since they require a con-
sistent image of the contents of memory.   

 The obvious way to manage this complexity is to reuse designs. So, reusing 
several simpler processor designs implemented on a die is preferable to a new, 
more advanced, single processor. This is especially true if we can select specifi c 
processor designs suited to particular parts of an application. For this to work, 
we also need a robust interconnection mechanism to access the various proces-
sors and memory. 

 So, when an application is well specifi ed, the system - on - a - chip approach 
includes 

  1.     multiple (usually) heterogeneous processors, each specialized for specifi c 
parts of the application;  

  2.     the main memory with (often) ROM for partial program storage;  
  3.     a relatively simple, small (single - level) cache structure or buffering 

schemes associated with each processor; and  
  4.     a bus or switching mechanism for communications.    

     Figure 1.23     Complexity of design.  
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 Even when the SOC approach is technically attractive, it has economic limita-
tions and implications. Given the processor and interconnect complexity, if 
we limit the usefulness of an implementation to a particular application, we 
have to either (1) ensure that there is a large market for the product or (2) 
fi nd methods for reducing the design cost through design reuse or similar 
techniques.  

   1.9    PRODUCT ECONOMICS AND IMPLICATIONS FOR  SOC  

   1.9.1    Factors Affecting Product Costs 

 The basic cost and profi tability of a product depend on many factors: its tech-
nical appeal, its cost, the market size, and the effect the product has on future 
products. The issue of cost goes well beyond the product ’ s manufacturing cost. 

 There are fi xed and variable costs, as shown in Figure  1.24 . Indeed, the 
engineering costs, frequently the largest of the fi xed costs, are expended before 
any revenue can be realized from sales (Figure  1.25 ).   

 Depending on the complexity, designing a new chip requires a development 
effort of anywhere between 12 and 30 months before the fi rst manufactured 
unit can be shipped. Even a moderately sized project may require up to 30 or 
more hardware and software engineers, CAD design, and support personnel. 
For instance, the paper describing the Sony Emotion Engine has 22 authors 
 [147, 187] . However, their salary and indirect costs might represent only a 
fraction of the total development cost. 

 Nonengineering fi xed costs include manufacturing start - up costs, inven-
tory costs, initial marketing and sales costs, and administrative overhead. The 

     Figure 1.24     Project cost components.  
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marketing costs include obvious items such as market research, strategic 
market planning, pricing studies, and competitive analysis, and so on, as well 
as sales planning and advertising costs. The concept of general and administra-
tive (G  &  A)  “ overhead ”  includes a proportional share of the  “ front offi ce ”  —
 the executive management, personnel department (human resources), fi nancial 
offi ce, and other costs. 

 Later, in the beginning of the manufacturing process, unit cost remains high. 
It is not until many units are shipped that the marginal manufacturing cost 
can approach the ultimate manufacturing costs. 

 After this, manufacturing produces units at a cost increasingly approaching 
the ultimate manufacturing cost. Still, during this time, there is a continuing 
development effort focused on extending the life of the product and broaden-
ing its market applicability. 

 Will the product make a profi t? From the preceding discussion, it is easy to 
see how sensitive the cost is to the product life and to the number of products 
shipped. If market forces or the competition is aggressive and produces rival 
systems with expanded performance, the product life may be shortened and 
fewer units may be delivered than expected. This could be disastrous even if 
the ultimate manufacturing cost is reached; there may not be enough units to 
amortize the fi xed costs and ensure profi t. On the other hand, if competition 

     Figure 1.25     Engineering (development) costs.  
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is not aggressive and the follow - on development team is successful in enhanc-
ing the product and continuing its appeal in the marketplace, the product can 
become one of those jewels in a company ’ s repertoire, bringing fame to the 
designers and smiles to the stockholders.  

   1.9.2    Modeling Product Economics and Technology Complexity: 
The Lesson for  SOC  

 To put all this into perspective, consider a general model of a product ’ s  average  
unit cost (as distinct from its ultimate manufactured cost):

   unit cost project cost number of units= ( ) /( ).   

 The product cost is simply the sum of all the fi xed and variable costs. We rep-
resent the fi xed cost as a constant,  K f  . It is also clear that the variable costs 
are of the form  K v      ×     n , where  n  is the number of units. However, there are 
certain ongoing engineering, sales, and marketing costs that are related to  n  
but are not necessarily linear. 

 Let us assume that we can represent this effect as a term that starts as 0.1 
of  K f   and then slowly increases with  n , say,   n3 . So, we get

    Product cost = + × × + ×K K n K nf f v0 1 3. .     (1.1)   

 We can use Equation  1.1  to illustrate the effects of advancing technology on 
product design. We compare a design done in 1995 with a more complex 2005 
design, which has a much lower production cost. With  K f   fi xed, Figure  1.26  
shows the expected decrease in unit cost as the volume of 1995 products pro-
duced,  n , increases. But the fi gure also shows that, if we increase the fi xed costs 

     Figure 1.26     The effect of volume on unit cost.  
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(more complex designs) by 10 - fold, even if we cut the unit costs ( K v  ) by the 
same amount, the 2005 unit product costs remain high until much larger 
volumes are reached. This might not be a problem for a  “ universal ”  processor 
design with a mass market, but it can be a challenge for those SOC designs 
targeted at specifi c applications, which may have limited production volume; 
a more specifi c design will be more effi cient for a particular application, at the 
expense of generality, which affects volume.     

   1.10    DEALING WITH DESIGN COMPLEXITY 

 As design cost and complexity increase, there is a basic trade - off between the 
design optimization of the physical product and the cost of the design. This is 
shown in Figure  1.27 . The balance point depends on  n , the number of units 
expected to be produced. There are several approaches to the design produc-
tivity problem. The most basic approaches are purchasing predesigned com-
ponents and utilizing reconfi gurable devices.   

   1.10.1    Buying  IP  

 If the goal is to produce a design optimized in the use of the technology, the 
fi xed costs will be high, so the result must be broadly applicable. The alterna-
tive to this is to  “ reuse ”  the existing design. These may be suboptimal for all 
the nuances of a particular process technology, but the savings in design time 
and effort can be signifi cant. The purchase of such designs from third parties 
is referred to as the sale of  IP . 

 The use of IP reduces the risk in design development: It is intended to 
reduce the design costs and improves the time to market. The cost of an IP 
usually depends on the volume. Hence, the adoption of an IP approach tends 
to reduce  K f   at the expense of increasing  K v   in Equation  1.1 . 

     Figure 1.27     The design effort must balance volume.  
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 Specialized SOC designs often use several different types of processors. 
Noncritical and specialized processors are purchased as IP and are integrated 
into the design. For example, the ARM7TDMA is a popular licensed 32 - bit 
processor or  “ core ”  design. Generally, processor cores can be designed and 
licensed in a number of ways as shown in Table  1.16 .   

 Hard IPs are physical - level designs that use all features available in a 
process technology, including circuit design and physical layout. Many analog 
IPs and mixed - signal IPs (such as SRAM, phase - locked loop) are distributed 
in this format to ensure optimal timing and other design characteristics. Firm 
IPs are gate - level designs that include device sizing but are applicable to many 
fab facilities with different processor technologies. Soft IPs are logic - level 
designs in synthesizable format and are directly applicable to standard cell 
technologies. This approach allows users to adapt the source code to fi t their 
design over a broad range of situations. 

 Clearly, the more optimized designs from the manufacturer are usually less 
customizable by the user, but they often have better physical, cost – performance 
trade - offs. There are potential performance – cost – power overheads in delaying 
the customization process, since the design procedure and even the product 
technology itself would have to support user customization. Moreover, cus-
tomizing a design may also necessitate reverifi cation to ensure its correctness. 
Current technologies, such as the reconfi guration technology described below, 
aim to maximize the advantages of late customization, such as risk reduction 
and improvement of time to market. At the same time, they aim to minimize 
the associated disadvantages, for instance, by introducing hardwired, nonpro-
grammable blocks to support common operations such as integer multiplica-
tion; such hardwired blocks are more effi cient than reconfi gurable resources, 
but they are not as fl exible.  

   1.10.2    Reconfi guration 

 The term  reconfi guration  refers to a number of approaches that enable the 
same circuitry to be reused in many applications. A reconfi gurable device can 
also be thought of as a type of purchased IP in which the cost and risk of 
fabrication are eliminated, while the support for user customization would 

  TABLE 1.16    Types of Processor Cores Available as  IP  

   Type of Design     Design Level     Description  

  Customized hard IP    Physical level    IP used in fi xed process, optimized  
  Synthesized fi rm IP    Gate level    IP used in multiple processes but 

some optimization possible  
  Synthesizable soft IP    Register transfer 

level (RTL)  
  IP used in any process, nonoptimized  
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raise the unit cost. In other words, the adoption of reconfi gurable devices 
would tend to reduce  K f   at the expense of increasing  K v   in Equation  1.1 . 

 The best - known example of this approach is FPGA technology. An FPGA 
consists of a large array of cells. Each cell consists of a small lookup table, a 
fl ip - fl op, and perhaps an output selector. The cells are interconnected by pro-
grammable connections, enabling fl exible routing across the array (Figure 
 1.28 ). Any logic function can be implemented on the FPGA by confi guring 
the lookup tables and the interconnections. Since an array can consist of over 
100,000 cells, it can easily defi ne a processor. An obvious disadvantage of the 
FPGA - based soft processor implementation is its performance – cost – power. 
The approach has many advantages, however:

   1.     Circuit fabrication costs increase exponentially with time; hence, it would 
not be economical to fabricate a circuit unless it can support a large 
volume. FPGAs themselves are general - purpose devices and are expected 
to be produced in large volume.    

  2.     The design time for FPGA implementations is low compared to design-
ing a chip for fabrication. There are extensive libraries of designs avail-
able for use. This is particularly important for designs for which a short 
time to market is critical.  

     Figure 1.28     The FPGA array.  
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  3.     FPGAs can be used for rapid prototyping of circuits that would be fab-
ricated. In this approach, one or more FPGAs are confi gured according 
to the proposed design to emulate it, as a form of  “ in - circuit emulation. ”  
Programs are run and design errors can be detected.  

  4.     The reconfi gurability of FPGAs enables in - system upgrade, which helps 
to increase the time in market of a product; this capability is especially 
valuable for applications where new functions or new standards tend to 
emerge rapidly.  

  5.     The FPGA can be confi gured to suit a portion of a task and then recon-
fi gured for the remainder of the task (called  “ run - time reconfi guration ” ). 
This enables specialized functional units for certain computations to 
adapt to environmental changes.  

  6.     In a number of compute - intensive applications, FPGAs can be confi g-
ured as a very effi cient systolic computational array. Since each FPGA 
cell has one or more storage elements, computations can be pipelined 
with very fi ne granularity. This can provide an enormous computational 
bandwidth, resulting in impressive speedup on selected applications. 
Some devices, such as the Stretch S5 software confi gurable processor, 
couple a conventional processor with an FPGA array  [25] .    

 Reconfi guration and FPGAs play an important part in effi cient SOC design. 
We shall explore them in more detail in the next chapter.   

   1.11    CONCLUSIONS 

 Building modern processors or targeted application systems is a complex 
undertaking. The great advantages offered by the technology — hundreds of 
millions of transistors on a die — comes at a price, not the silicon itself, but the 
enormous design effort that is required to implement and support the product. 

 There are many aspects of SOC design, such as high - level descriptions, 
compilation technologies, and design fl ow, that are not mentioned in this 
chapter. Some of these will be covered later. 

 In the following chapters, we shall fi rst take a closer look at basic trade - offs 
in the technology: time, area, power, and reconfi gurability. Then, we shall look 
at some of the details that make up the system components: the processor, the 
cache, and the memory, and the bus or switch interconnecting them. Next, we 
cover design and implementation issues from the perspective of customization 
and confi gurability. This is followed by a discussion of SOC design fl ow and 
application studies. Finally, some challenges facing future SOC technology are 
presented. 

 The goal of the text is to help system designers identify the most effi cient 
design choices, together with the mechanisms to manage the design complexity 
by exploiting the advances in technology.  
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   1.12    PROBLEM SET 

     1.      Suppose the TLB in Figure  1.18  had 256 entries (directly addressed). If 
the virtual address is 32   bits, the real memory is 512   MB and the page size 
is 4   KB, show the possible layout of a TLB entry. What is the purpose of 
the user ID in Figure  1.18  and what is the consequence of ignoring it?  

   2.      Discuss possible arrangement of addressing the TLB.  

   3.      Find an actual VLIW instruction format. Describe the layout and the con-
straints on the program in using the applications in a single instruction.  

   4.      Find an actual vector instruction for vector ADD. Describe the instruction 
layout. Repeat for vector load and vector store. Is overlapping of vector 
instruction execution permitted? Explain.  

   5.      For the pipelined processor in Figure  1.9 , suppose instruction #3 sets the 
CC (condition code that can be tested by following a branch instruction) 
at the end of WB and instruction #4 is the condition branch. Without 
additional hardware support, what is the delay in executing instruction #5 
if the branch is taken and if the branch is not taken?  

   6.      Suppose we have four different processors; each does 25% of the applica-
tion. If we improve two of the processors by 10 times, what would be the 
overall application speedup?  

   7.      Suppose we have four different processors and all but one are totally 
limited by the bus. If we speed up the bus by three times and assume the 
processor performance also scales, what is the application speedup?  

   8.      For the pipelined processor in Figure  1.9 , assume the cache miss rate is 
0.05 per instruction execution and the total cache miss delay is 20 cycles. 
For this processor, what is the achievable cycle per instruction (CPI)? 
Ignore other delays, such as branch delays.  

   9.      Design validation is a very important SOC design consideration. Find 
several approaches specifi c to SOC designs. Evaluate each from the per-
spective of a small SOC vendor.  

   10.      Find (from the Internet) two new VLIW DSPs. Determine the maximum 
number of operations issued in each cycle and the makeup of the opera-
tions (number of integer, fl oating point, branch, etc.). What is the stated 
maximum performance (operations per second)? Find out how this 
number was computed.  

   11.      Find (from the Internet) two new, large FPGA parts. Determine the 
number of logic blocks (confi gurable logic blocks [CLBs]), the minimum 
cycle time, and the maximum allowable power consumption. What soft 
processors are supported?       
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