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1.1 INTRODUCTION

Many sophisticated techniques are currently used for an accurate recognition and
diagnosis of different diseases. Advanced imaging techniques are useful in study-
ing medical conditions in a noninvasive manner. Common imaging methodolo-
gies to visualize and study anatomical structures include Computed Tomography
(CT, Chapter 4), Magnetic Resonance Imaging (MRI, Chapter 5), and Positron
Emission Tomography (PET, Chapter 7). Recent developments are focused on
understanding the molecular mechanisms of diseases and the response to therapy.
Magnetic Resonance Spectroscopy (MRS) (Section 5.12), for example, provides
chemical information about particular regions within an organism or sample.
This technique has been used on patients with a wide range of neurological and
psychiatric disorders, such as stroke, epilepsy, multiple sclerosis, dementia, and
schizophrenia.

Examination of the images, obtained by any of the imaging techniques to
visualize and study anatomical structures, is a straightforward task. In many
situations, abnormalities are clearly visible in the acquired images and often
the particular disease can also be identified by the clinician. However, in some
cases, it is more difficult to make the diagnosis. The spectral data obtained from
MRS can then assist, to a large extent, in the noninvasive diagnosis of diseases.
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However, the appearance of the spectral data is different compared to the image
data (Fig. 1.5). Although spectra obtained from diseased tissues are different
from spectra obtained from normal tissue, the complexity of the data limits the
interpretability. Furthermore, the amount of spectral data can be overwhelming,
which makes the data analysis even more difficult and time consuming. In order
to use the information in MR spectra effectively, a (statistical) model is required,
which reduces the complexity and provides an output that can easily be interpreted
by clinicians. Preferably, the output of the model should be some kind of an image
that can be compared to MRI images to obtain a better diagnosis.

In this chapter, the application of a chemometric approach to facilitate the anal-
ysis of image data is explained. This approach is based on a similarity measure
between data obtained from a patient and reference data by searching for patterns
in the data. In particular, when the amount of data is large, the use of such a
mathematical approach has proved to be useful. The basics of pattern recognition
methods are discussed in Section 1.2. A distinction is made between commonly
used methods and several advantages and disadvantages are discussed. The appli-
cation of a useful pattern recognition technique is presented in Section 1.3. The
required data processing and quantitation steps are mentioned, and subsequently,
data of different patients is classified. Finally, results are shown to illustrate the
applicability of pattern recognition techniques.

1.2 DATA ANALYSIS

Chemometrics is a field in chemistry that helps improve the understanding of
chemical data (1–3). With the use of mathematical and statistical methods, chem-
ical data is studied to obtain maximum information and knowledge about the data.
Chemometrics is typically used to explore patterns in data sets, that is, to dis-
cover relations between samples. In particular, when the data is complex and the
amount of data is large, chemometrics can assist in data analysis. A technique
that is frequently applied to compress the information into a more comprehensi-
ble form is Principal Component Analysis (PCA) (2, 4). Another application of
chemometrics is to predict properties of a sample on the basis of the information
in a set of known measurements. Such techniques are found very useful in pro-
cess monitoring and process control to predict and make decisions about product
quality (3, 5). Finally, chemometrics can be used to make classification models
that divide samples into several distinct groups (6, 7).

This last mentioned application of chemometrics could be very helpful, for
example, in the discrimination of the different and complex spectra acquired by
MRS examinations. Patient diagnosis and treatment can be improved if chemo-
metric techniques can automatically distinguish diseased tissue from normal
tissue.

The aim of such pattern recognition techniques is to search for patterns in the
data. Individual measurements are grouped into several categories on the basis
of a similarity measure (7–9). If class membership is used in the grouping of
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objects, the classification is called supervised pattern recognition (6, 8). Pattern
recognition can also be unsupervised, where no predefined classes are available.
The grouping of objects is then obtained by the data itself. Unsupervised pattern
recognition is also called clustering (7–9).

The resulting clusters obtained by pattern recognition contain objects, for
example, MR spectra, which are more similar to each other compared to objects
in the other clusters. If the spectra of a patient with brain tumor are considered,
the data could be divided into two groups: one group contains normal spectra
and the other group contains spectra acquired from the tumorous tissue. If the
group that contains normal spectra and the group that contains tumorous spectra
can be identified, this grouping can be used for classification. The tissue from
a region of the brain can be classified as normal or tumorous by matching its
spectra to the class that contains the most similar spectra.

1.2.1 Similarity Measures

Most essential in pattern recognition is the definition of the similarity measure.
Usually, the (dis)similarity between a set of objects is calculated using a dis-
tance measure, of which the Euclidean distance is most popular (6–8, 10). The
dissimilarity between two objects xi and xj is calculated as in Equation 1.1.

d2
euc(xi, xj) =

P∑
l=1

(xil − xjl)
2 (1.1)

where xi = {xi1, . . . , xiP }, in which P denotes the number of measured variables.
In vector notation, this can be written as

d2
euc(xi , xj ) = (xi − xj )

T (xi − xj ) (1.2)

Another widely used distance measure is the Mahalanobis distance, which
incorporates the correlations between variables in the calculations (6, 7, 11). To
calculate the distance between an object xi and the centroid (mean) of a group of
objects, μk, it takes the covariance matrix Ck of the cluster into account, that is,
the size and shape of the cluster. The squared Mahalanobis distance is given by

d2
mah(xi , μk) = (xi − μk)

T C−1
k (xi − μk) (1.3)

Several variants of these distance measures exist, such as the Manhattan or Bhat-
tacharyya distance (3, 6–8), but are not commonly used in practice.

Instead of clustering the data using distances as a similarity measure, the data
can also be modeled by several distributions such as the normal distribution.
In that case, the likelihood, which is discussed in Section 1.2.2.1, is used as a
criterion function (12, 13).
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1.2.2 Unsupervised Pattern Recognition

A large variety of clustering methods have been developed for different kinds
of problems (6–8, 14). A distinction between these different approaches can
be made on the basis of their definition of a cluster. The techniques can be
categorized into three main types: partitional (15, 16), hierarchical (17, 18), and
density based (19).

1.2.2.1 Partitional Clustering. The type of clustering techniques that are most
widely applied obtain a single partition of the data. These partitional clustering
methods try to divide the data into a predefined number of clusters. Usually,
the techniques divide the data into several clusters by optimizing a criterion or
cost function. In the popular K-means algorithm (15, 16, 20), for example, the
sum of squares of within-cluster distances is minimized (Equation 1.4). This
is obtained by iteratively transferring objects between clusters, until the data is
partitioned into well-separated and compact clusters. Because compact clusters
contain objects with a relatively small distance to the mean of the cluster, these
clusters result in a small value for the criterion function.

E =
K∑

k=1

∑
i∈k

d2(xi , μk) (1.4)

The K-means algorithm starts with a random selection of K cluster centers.
In the next step, each object of the data set is assigned to the closest cluster. To
determine the closest cluster, the distances of a particular object to the cluster
centers, d(xi , μk), are calculated using one of the similarity measures. Subse-
quently, the cluster centers are updated, and this process is repeated until a stop
criterion is met, such as a threshold for the criterion function. In the end, each
object is assigned to one cluster.

This clustering algorithm requires short computation time and is therefore suit-
able to handle large data sets. A major disadvantage, however, is the sensitivity
to the cluster centers chosen initially, which makes the clustering results hard to
reproduce. Another drawback is that the number of clusters has to be defined in
advance (6, 7).

It is also possible to associate each object to every cluster using a member-
ship function. Membership reflects the probability that the object belongs to the
particular cluster. The K-means variant, which results in a fuzzy clustering by
including cluster memberships, is fuzzy c-means (16, 21). The membership func-
tion uik , which is used in fuzzy c-means, is given in Equation 1.5 and represents
the probability of object xi belonging to cluster k. This membership is dependent
on the distance of the object to the cluster center. If the distance to a cluster
center is small, the membership for this cluster becomes relatively large (22).

uik = 1

∑K
j=1

(
d(xi , μk)

d(xi , μj )

) 1
γ−1

(1.5)
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In addition to the distances, the membership also depends on the fuzziness
index γ , which is 2 in most situations. By taking smaller values for the index, the
membership for clusters close to object xi is increased. If two clusters overlap in
variable space, the membership of an object will be low for both clusters because
the uncertainty of belonging to a particular cluster is high. This is an attractive
property of fuzzy methods. Because the problem with overlapping clusters is
common in cluster analysis, fuzzy clustering algorithms are frequently applied.

The partitional methods that have been described earlier are based on a distance
measure to calculate cluster similarities. Another variant to determine clusters in
a data set is based on a statistical approach and is called model-based clustering
or mixture modeling (7, 13, 23). It describes the data by mixtures of multivariate
distributions. The density of objects in a particular cluster can, for example, be
described by a P -dimensional Gaussian distribution. The formula of the distri-
bution is given in Equation 1.6, where μk and Ck are the mean and covariance
matrix of the data in cluster k, respectively.

Fki = (2π)−P/2 · C−1/2
k · e

(
− 1

2 (xi−μk)TC−1
k (xi −μk)

)
(1.6)

If the sum of the Gaussians, which describe the density of objects in the
individual clusters, exactly fits the original data, the entire data set is perfectly
described. Each Gaussian can then be considered as one cluster. For the one-
dimensional data set presented in Figure 1.1a three Gaussian distributions (dashed
lines) are required to obtain a proper fit of the density of objects in the original
data (solid line) (24).

With the use of multidimensional Gaussian distributions, more complicated
data sets can be modeled. The density of objects in a data set consisting of
two variables can be modeled by two-dimensional distributions, as illustrated
in Figure 1.1b. In this situation also, three clusters are present, and therefore,

(a) (b)
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Figure 1.1. Example of modeling the density of objects by three Gaussian distributions
for (a) one-dimensional and (b) two-dimensional data sets (25).
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three distributions are required to obtain a good fit of the object density in the
entire data.

The goodness of fit is evaluated by the log-likelihood criterion function, which
is given in Equation 1.7 (13). The distributions are weighted by the mixture pro-
portion τk , which corresponds to the fraction of objects in the particular cluster.
The log-likelihood depends also on the cluster memberships of each of the N

objects. In Equation 1.7, this is expressed as uik , which represents the probability
that object xi belongs to cluster k, similar to the membership function given in
Equation 1.5. The data set is optimally described by the distributions when the
criterion function is maximized (13).

log L =
K∑

k=1

N∑
i=1

uik · log(τk · Fki) (1.7)

The optimal partitioning of the data is usually obtained by the Expectation-
Maximization (EM) algorithm (4, 7, 26). In the first step of EM, the probabilities
uik are estimated by an initial guess of some statistical parameters of each clus-
ter. These parameters are the means, covariances, and mixture proportions of
the cluster. Subsequently, the statistical parameters are recalculated using these
estimated probabilities (4). This process is iterated until convergence of the log-
likelihood criterion. The data is eventually clustered according to the calculated
probabilities of each object to belong to the particular clusters. It is an advantage
that model-based clustering yields cluster memberships instead of assigning each
object to one particular cluster. However, because of the random initialization
of the parameters, the results of mixture modeling are not robust. Furthermore,
the number of distributions to describe the data has to be defined ahead of the
clustering procedure (7, 24).

1.2.2.2 Hierarchical Clustering. Another approach to clustering is to obtain a
clustering structure instead of a single partitioning of the data. Such a hierarchical
clustering can be agglomerative or divisive. The agglomerative strategy starts
with assigning each object to an individual cluster (16, 17, 27). Subsequently, the
two most similar clusters are iteratively merged, until the data is grouped in one
single cluster. Once an object is merged to a cluster, it cannot join another cluster.
Divisive hierarchical clustering is similar to the agglomerative strategy, but starts
with one cluster that is divided into two clusters that have least similarity. This
process is repeated until all clusters contain only one object. Repeated application
of hierarchical clustering will result in identical merging or splitting sequences,
and thus the results are reproducible (12).

Agglomerative methods are more commonly used. On the basis of the defini-
tion of the similarity measure, several variants exist: single, complete, average,
and centroid linkage (28, 29). In single linkage, the (updated) distance between
the objects of a particular cluster (e.g. c1 and c2) and an object xi is the min-
imum distance (dmin) between xi and the objects of the cluster. The maximum
(dmax) and average (davg) of the distances between the particular object xi and
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(a)

dmin dmax davg
dcen

(b) (c) (d)

Figure 1.2. Distances between clusters used in hierarchical clustering. (a) Single linkage.
(b) Complete linkage. (c) Average linkage. (d) Centroid linkage.

the objects of the cluster is used in complete and average linkage, respectively.
In centroid linkage, the distance between an object and the centroid of the cluster
(dcen) is used. This is schematically represented in Figure 1.2.

Analogous to the methods based on distance measures, hierarchical clustering
can also be performed by model-based clustering. The hierarchical approach is
an adaptation from the partitional approach of model-based clustering (12, 23).
Model-based agglomerative clustering also starts with individual objects, but
merges the pair of objects that lead to the largest increase in the log-likelihood
criterion (see Eq. 1.7). This process then continues until all objects are grouped
into one cluster (23).

The sequence of merging or splitting can be visualized in a dendrogram,
representing, in a treelike manner, the similarity levels at which clusters are
merged. The dendrogram can be cut at a particular level to obtain a clustering with
a desired number of clusters. The results with different number of clusters can
then be easily compared. The dendrogram obtained by average linkage, applied
to MR spectra of a patient, is given in Figure 1.3. If, for example, the data
should be clustered into four groups, the dendrogram should be cut at a distance
of 11,700. This threshold is indicated by the red line in Figure 1.3.

Hierarchical clustering methods are not sensitive to outliers because outliers
will be assigned to distinct clusters (6). A possible drawback is the computation
time. Hierarchical clustering of large data sets will require the merging of many
objects: at each merging step, the similarities between pairs of objects need to
be recalculated (6, 12, 23, 30).

1.2.2.3 Density-Based Clustering. The third type of clustering methods is based
on the density of objects in variable space (7, 19, 31). Clusters are formed by high
density areas, and the boundaries of the clusters are given by less dense regions.
These densities are determined by a threshold. Another parameter that has to
be defined is the size of the volume for which the density is estimated. Objects
are then assigned to a cluster when the density within this volume exceeds the
predefined threshold. The number of areas with high density indicates the number
of clusters in the clustering result. Objects that are not assigned to a cluster are
considered as noise or outliers.
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Figure 1.3. Dendrogram showing the sequence of merging MR spectral data by hierar-
chical clustering. The red line indicates the threshold to obtain four clusters.

DBSCAN is a well-known method to cluster data into regions using high
density constraints (19, 22). The algorithm scans an area within a certain radius
from a particular object and determines the number of other objects within this
neighborhood. The size of the area and the minimum number of objects in the
neighborhood have to be defined in advance. If the neighborhood contains more
objects than the threshold, then every object in the neighborhood is assigned to
one cluster. Subsequently, the neighborhood of another object in the particular
cluster is scanned to expand the cluster. When the cluster does not grow anymore,
the neighborhood of another object, not belonging to this cluster, is considered.
If this object is also located in a dense region, a second cluster is found, and the
whole procedure is repeated. With fewer objects in the neighborhood than the
threshold, an object is assigned to a group of noisy objects.

Originally, density-based clustering was developed to detect clusters in a data
set with exceptional shapes and to exclude noise and outliers. However, the
method fails to simultaneously detect clusters with different densities (22). Clus-
ters with a relatively low density will then be considered as noise. Another
limitation is the computation time for calculating the density estimation for each
object. Moreover, it can be difficult to determine proper settings for the size of
the neighborhood and the threshold for the number of objects.
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1.2.3 Supervised Pattern Recognition

Pattern recognition can also be supervised, by including class information in
the grouping of objects (6, 8). Predefined classes are used by this type of pattern
recognition for the classification of unknown objects. For example, the distance of
an unidentified object to all the objects in the reference data set can be calculated
by a particular distance measure, to determine the most similar (closest) object.
The unknown object can then be assigned to the class to which this nearest
neighbor belongs. This is the basic principle of the k-nearest neighbor (kNN)
method (3, 6, 7). A little more sophisticated approach is to extend the number
of neighbors. In that case, there is a problem if the nearest neighbors are from
different classes. Usually, a majority rule is applied to assign the object to the
class to which the majority of the nearest neighbors belong. If the majority rule
cannot be applied because there is a tie, that is, the number of nearest neighbors
of several classes is equal, another approach is required. The unknown object
can, for example, randomly be assigned to a predefined class. Another method
is to assign the object, in this situation, to the class to which its nearest neighbor
belongs (7).

Another type of supervised pattern recognition is discriminant analysis (3,
7, 32). These methods are designed to find boundaries between classes. One
of the best-known methods is Linear Discriminant Analysis (LDA). With the
assumption that the classes have a common covariance matrix, it describes the
boundaries by straight lines. More generally, an unknown object is assigned to
the class for which the Mahalanobis distance (Eq. 1.3) is minimal. Because the
covariance matrices of the classes are assumed to be equal, the pooled covariance
matrix is used to calculate the Mahalanobis distances:

C = 1

n − K

K∑
k=1

nkCk (1.8)

where Ck and nk are the covariance matrix and the number of objects in cluster
k, K is the number of predefined classes, and n is the total number of objects in
the data set.

In Quadratic Discriminant Analysis (QDA), the covariance matrices of the
classes are not assumed to be equal. Each class is described by its own covariance
matrix (3, 7, 32). Similar to LDA, QDA calculates the Mahalanobis distances of
unknown objects to the predefined classes and assigns the objects to the closest
class. Other more sophisticated techniques also exist, such as support vector
machines (33) or neural networks (34), but these approaches are beyond the
scope of this chapter.

1.2.3.1 Probability of Class Membership. To reflect the reliability of the classi-
fication, the probabilities of class membership could be calculated. This is espe-
cially useful to detect overlapping classes. An object will then have a relatively
high probability to belong to two or more classes. Furthermore, the probabilities
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can be used to find new classes, which are not present in the reference data set.
If the class membership is low for the predefined classes, the unknown object
probably belongs to a totally different class.

The probabilities of class membership can be estimated on the basis of the
distribution of the objects in the classes (6, 7). The density of objects at a partic-
ular distance from a class centroid is a direct estimator of the probability that an
object at this distance belongs to the class. If it is assumed that the data follows
a normal distribution, the density of objects can be expressed as in Equation 1.6.
If the distance of a new object to a class centroid is known, the density and thus
the probability of class membership can be calculated on the basis of Equation
1.6 (3, 7, 32).

A more straightforward approach is based on the actual distribution of the
objects, without the assumption that the data can be described by a theoretical
distribution (35). In this method, the Mahalanobis distances of the objects in
a particular class, say class A, with respect to the centroid of this class are
calculated. Also, the Mahalanobis distances of the other objects (not belonging
to class A) with respect to the centroid of class A are calculated. This procedure is
repeated for every class present in the data set. Eventually, the distances are used
to determine the number of objects within certain distances from the centroid of
each class. These distributions of objects can be visualized in a plot as presented
in Figure 1.4 (36). The solid line represents the percentage of objects from class
A within certain Mahalanobis distances (d) from the centroid of class A. Every
object of class A is within a distance of 6d from the particular centroid. The
dotted line represents the percentage of other objects (not from class A) within
certain distances from the centroid of class A. In this example, there is little
overlap between objects from class A and the other objects, indicating that class
A is well separated from the other classes.

The percentage of objects within a particular distance from a class centroid
reflects the object density of the class at this distance. Therefore, these percentages
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Figure 1.4. Distribution of objects belonging to class A (solid line) and objects belonging
to other classes (dotted line) with respect to the centroid of class A (36).
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can be used to estimate the probabilities of class membership for the classes that
are present in the data set. At a distance 3d from the centroid of class A, for
example, about 30% of the objects belonging to class A are within this distance.
This is illustrated in Figure 1.4. If the Mahalanobis distance of an unknown
object with respect to the centroid of class A is 3d, the estimated probability is
then 70%. By comparing the probabilities of class membership for each class,
the unknown objects can be classified and conclusions can be drawn about the
reliability of classification (35).

1.3 APPLICATIONS

Pattern recognition techniques can be applied to magnetic resonance data to
improve the noninvasive diagnosis of brain tumors (37–41). Because the spectra
obtained by MRS are complex, statistical models can facilitate data analysis. The
application of pattern recognition techniques to MR spectra and MRI image data
is illustrated using research performed on a widely studied data set (24, 35). This
data set was constructed during a project called INTERPRET, which was funded
by the European Commission to develop new methodologies for automatic tumor
type recognition in the human brain (42).

1.3.1 Brain Tumor Diagnosis

Uncontrolled growth of cells is a major issue in medicine, as it results in a
malignant or benign tumor. If the tumor spreads to vital organs, such as the
brain, tumor growth can even be life threatening (43). Brain tumors are the
leading cause of cancer death in children and third leading cause of cancer death
in young adults. Only one-third of people diagnosed with a brain tumor survive
more than 5 years from the moment of diagnosis (44).

Two commonly used techniques to diagnose brain tumors are magnetic res-
onance imaging (MRI, Chapter 5) and magnetic resonance spectroscopy (MRS,
Section 5.12). MRI provides detailed pictures of organs and soft tissues within
the human body (45, 46). This technique merely shows the differences in the
water content and composition of various tissues. Because tumorous tissues have
a composition (and water content) different from that of normal tissues, MRI can
be used to detect tumors, as shown in Figure 1.5a. Even different types of tissue
within the same organ, such as white and gray matter in the brain, can easily be
distinguished (46).

Magnetic resonance spectroscopy (MRS) is another technique that can
be used for diagnosing brain tumors (47–49). It allows the qualitative and
quantitative assessment of the biochemical composition in specific brain regions
(50). A disadvantage of the technique is that interpretation of the resulting
spectra representing the compounds present in the human tissue is difficult and
time consuming. Several spectra acquired from a tumorous region in the brain
are presented in Figure 1.5b to illustrate the complexity of the data. To compare
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(a) (b)

Figure 1.5. Example of the data obtained by MRI and MRS. (a) An MRI image of the
brain that clearly shows the presence of abnormal tissue. The grid on the MRI image
indicates the resolution of the spectroscopic data. (b) Part of the spectroscopic data,
showing the spectra obtained by MRS from several regions of the brain.

the differences in resolution, the MR spectra are visualized on top of the
corresponding region of the MRI image. Another limitation of MRS is that the
size of the investigated region, for example, of the brain, might be larger than
the suspected lesion. The heterogeneity of the tissue under examination will then
disturb the spectra, making characterization of the region more difficult (51).

1.3.2 MRS Data Processing

Before chemometrics can be applied to the complex spectra obtained by MRS,
these spectra require some processing. Owing to time constraints, the quality of
the acquired MR spectra is often very poor. The spectra frequently contain rel-
atively small signals and a large amount of noise: the so-called signal-to-noise
ratio is low. Furthermore, several artifacts are introduced by the properties of
the MR system. For example, magnetic field inhomogeneities result in distortion
of the spectra. Also, patient movement during the MR examinations will intro-
duce artifacts. Another characteristic of the spectra is the appearance of broad
background signals from macromolecules and the presence of a large water peak.

1.3.2.1 Removing MRS Artifacts. In order to remove the previously mentioned
artifacts, several processing steps need to be performed (26). Different software
packages are commercially available to process and analyze MR spectra (43, 52,
53) and, in general, they apply some commonly used correction methods. These
methods include eddy current correction (54), residual water filtering (55), phase
and frequency shift correction (56), and a baseline correction method (26).

Eddy current correction is performed to correct for magnetic field inhomo-
geneities, induced in the magnetic system during data acquisition (54, 57). One
method to correct for these distortions is to measure the field variation as a func-
tion of time. This can be achieved by measuring the phase of the much stronger
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signal of water. The actual signal can then be divided by this phase factor in
order to remove the effect of field variation (57).

Residual water filtering is required to remove the intense water peak that is
still present in the spectra after correction for eddy current distortions. A use-
ful filtering method is based on Hankel-Lanczos Singular Value Decomposition
(HLSVD) (58). Resonances between 4.1 and 5.1 ppm, as determined by the
HLSVD algorithm, are subtracted from the spectra. Water resonates at approx-
imately 4.7 ppm, and therefore, the water peak and its large tails are removed
from the spectra without affecting the peak areas of other compounds (55, 58).

Several small phase differences between the peaks in a spectrum may still be
present after eddy current correction. In addition, frequency shifts between spectra
of different regions, for example, of the brain, may also be present. These peak
shifts may be induced by patient movement. A correction method based on PCA
can be applied to eliminate the phase and frequency shift variations of a single
resonance peak across a series of spectra. PCA methodology is used to model
the effects of phase and frequency shifts, and this information can then be used
to remove the variations (56, 59).

Broad resonances of large molecules or influences from the large water peak
may contribute to baseline distortions, which make the quantification of the reso-
nances of small compounds more difficult. The removal of these broad resonances
improves the accuracy of quantification and appearance of the spectrum. Usu-
ally, the correction is performed by estimating the baseline using polynomial
functions, followed by subtraction from the original signal (26).

1.3.2.2 MRS Data Quantitation. After processing the spectra obtained by MRS,
the data can be interpreted. As the spectra contain information from important
brain metabolites, deviation in the spectra, and thus in metabolite concentrations,
might be indicative of the presence of abnormal tissue. Two different MR spectra
are shown in Figure 1.6. The spectrum in Figure 1.6a is acquired from a normal
region of the brain and the spectrum in Figure 1.6b originates from a malignant
region. The differences between these spectra are obvious and MRS could
therefore be used to detect abnormal tissues. Several metabolites are particularly
useful for tumor diagnosis, and some of these are creatine (resonates at 3.95
and 3.02 ppm), glutamate (3.75 and 2.20 ppm), glutamine (3.75 and 2.20 ppm),
myoinositol (3.56 ppm), choline (3.20 ppm), N-acetyl aspartate (NAA,
2.02 ppm), lactate (1.33 ppm), and fatty acids (1.3 and 0.90 ppm) (25, 60, 61).

To use the metabolic information in the MR spectra for diagnosis of brain
tumors, the intensity of the signals in the spectra requires quantitation (62).
A simple approach is to integrate several spectral regions, assuming that each
region contains information from one single metabolite. Because some metabo-
lites show overlap in the spectra, for example, glutamate and glutamine, more
sophisticated methods could be applied. More accurate methods fit the spectrum
by a specific lineshape function, using a reference set of model spectra. A method
that has been introduced for the analysis of MR spectra is the LCModel (52, 62,
63). This method analyzes a spectrum as linear combinations of a set of model
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Figure 1.6. Two MR spectra, illustrating the difference between spectra obtained from a
normal region (a) and a malignant region (b) of the brain. The signals of some metabolites
are indicated in the figure: myoinositol (mI) at 3.56 ppm, choline (Cho) at 3.20 ppm,
creatine (Cr) at 3.02 ppm, NAA at 2.02 ppm, and lactate (Lac) at 1.33 ppm.

spectra from individual metabolites in solution. Another powerful tool for pro-
cessing and quantitation of MR spectra is MRUI (64, 65). This program has a
graphical user interface and is able to analyze the MR spectra and present the
results in an accessible manner.

Differences in the quantitated metabolite levels are often used to diagnose
the malignancy of a tumor. But even when only the peak intensities of the
previously mentioned metabolites are quantitated and interpreted, the amount of
data is still large. Especially if MRS is applied to a large region of the brain, to
obtain multiple spectra, many metabolite concentrations have to be compared. To
facilitate the data analysis, the relative metabolite concentrations within different
regions (or actually volumes) could be presented in an image. These regions
are referred to as voxels . The resulting metabolic maps visualize the spatial
distribution of the concentration of several metabolic compounds, and this can
be used to localize or diagnose brain tumors. This is shown in Figure 1.7, in
which the relative metabolite concentrations of choline, creatine, and NAA are
presented. As shown, an increased concentration of choline is detected in the
tumorous region, and reduced concentrations of creatine and NAA are found.
Another application of such metabolic maps is to study tumor heterogeneity
since this is important for an accurate diagnosis (66–68).

1.3.3 MRI Data Processing

As mentioned in Section 5.7, the echo time (TE) and the repetition time (TR) are
acquisition parameters that determine the T1- and T2-sensitivity of the acquired
images. By using different settings for these parameters, different MRI images
are obtained (45, 46). Examples of these images are given in Figure 1.8. In the



APPLICATIONS 15

(a) (b) (c) (d)

Figure 1.7. Metabolic maps constructed from MRS data. (a) The MRI image shows the
presence of a tumor in the lower right corner of the image. The differences in metabolic
concentration are illustrated for (b) choline, (c) creatine, and (d) NAA. Bright pixels
represent a high concentration of the particular metabolite.

(a) (b) (c) (d)

Figure 1.8. MRI images obtained by different acquisition parameters. (a) T1-weighted
image. (b) T2-weighted image. (c) Proton density image. (d) T1-weighted image after
administration of a gadolinium tracer.

T1- and T2-weighted images (Fig. 1.8a and b), the differences in contrast reveal
the ventricles while this is less visible in the PD-weighted image (Fig. 1.8c).

T1-, T2-, and PD-weighted images are commonly acquired with different com-
binations of TR and TE to be able to discriminate between different tissues. For
tumor diagnosis, a contrast medium can be used to improve the tissue differen-
tiation. Usually, gadolinium (Gd) is used as a contrast agent to enhance lesions
where the blood–brain barrier is defective. An example of a T1-weighted image
enhanced by gadolinium is presented in Figure 1.8d (69).

When the different images need to be compared, they should be aligned with
respect to each other. This is necessary because when patients move during
the acquisition of the different MRI images, artifacts may be introduced, which
complicates the data analysis.

1.3.3.1 Image Registration. Image registration is the alignment of the different
images obtained by MRI examinations. This alignment compensates for differ-
ences in the position or orientation of the brain in the images due to patient
movement. If the images are taken from a series of MRI examinations to study
tumor growth or shrinkage after radiation treatment, differences in image size or
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resolution may be obtained. Image registration should then be applied to match
the areas of interest in the images (36).

Although manual alignment of images is possible, it is time consuming and not
always reproducible. Automated procedures are therefore preferred. Numerous
approaches are available for medical images (69, 70), and in general, they are
based on a similarity measure between an image and a corresponding reference
image. Because patient movement results in small shifts between different images,
a simple cross-correlation method can be used to correct for this artifact (71).
However, sensitivity to large intensity differences in different contrast images
limits the use of cross-correlation methods. To perform the alignment by matching
specific features in the images, which are insensitive to changes in tissue or
acquisition, the registration can be improved. These features are, for example,
edges and corners in normal brain tissue regions. The chemometric technique
Procrustes analysis can then be applied to match the specific features by means
of translation, rotation, and uniform scaling transformations. The best match is
found when the least-squares solution is obtained by minimizing the distance
between all pairs of points in the two images (3, 72).

1.3.4 Combining MRI and MRS Data

If the magnetic resonance data is properly processed, tumorous tissue may be
distinguished from normal or other abnormal nonmalignant tissue types, such
as necrosis, edema, or scar tissue, by examining the data. However, from the
standard acquired MRI images, it is often difficult to properly discriminate tis-
sues within the tumorous region. This can be improved by the contrast-enhanced
image, which reveals the lesion where the blood–brain barrier is defective. But
because this barrier may variably be affected, the size of the tumor may be
under- or overestimated. This has been observed in some brain tumor studies,
where the contrast-enhanced lesion was found to be much smaller than the region
of abnormal metabolism (73). In addition, MRS examinations have shown that
metabolite levels are highly variable for particular tissue types. Also, overlap of
metabolite levels between different tumor grades has been observed (73). These
findings indicate that MRI and MRS are two complementary techniques for brain
tumor diagnosis. MRS provides metabolic information on a low spatial resolu-
tion, and MRI provides morphological information on a high spatial resolution.
Therefore, the analysis of MRI images and metabolic maps should be performed
simultaneously. One of the possibilities is to display a specific metabolic map
over an MRI image. Examination of these overlay images facilitates the differ-
entiation between tissue types. For example, the delineation of a viable tumor
can be detected more accurately. This is important for studying the effect of
chemotherapy or radiation treatment. The combination of MRI and MRS data
will improve patient diagnosis and treatment or will facilitate the sampling of
biopsies to regions of tumorous tissue.

1.3.4.1 Reference Data Set. For pattern recognition, the data from several
patients with a brain tumor and several volunteers was selected from the
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INTERPRET database (42). After reaching consensus about the histopathology,
three tumor types were identified according to the World Health Organization
classification system. These three classes contained glial tumors with different
grades, indicating the level of malignancy. If a tumor could be assigned to more
than one grade, the highest malignancy level determined the grade for the entire
tumor, even if most of the tumor is of a lower grade (74). The brain tumors
of six patients were diagnosed as grade II, of four patients as grade III, and of
five patients as grade IV glial tumors. In addition, classes of normal tissue and
Cerebrospinal Fluid (CSF) were created from the patient and volunteer data.

For each predefined class, a selection of voxels from different patients was
made. Only voxels from regions that clearly consisted of tissue belonging to the
particular class were selected. The data for the normal class was selected from
the volunteers or from the contralateral brain region of the patients. The CSF
class contained only data from CSF regions that were not in close contact with
the tumor region (35).

From the MR spectra of these selected voxels, only the regions where impor-
tant metabolites appear were selected, as these regions contain most information
for the discrimination between brain tumors. The remaining regions contain
mainly spectral noise. Besides excluding noise, this also results in a significant
reduction in the amount of data.

The estimated metabolite levels should be subsequently combined with the
MRI data to improve data analysis (75–77). However, the spatial resolution of
MRI images is much higher than the resolution of MRS data. Therefore, to
combine MRI with MRS data, the resolution of the MRI images was lowered
to the resolution of the MRS data by averaging the pixel intensities within each
spectroscopic voxel. To equally weigh the influence from both data modalities
in the classification process, the averaged intensities were scaled to the range of
the spectral data.

Different (statistical) methods are available to classify the processed data (see
Section 1.2). Application of these methods to the data will result in a classi-
fication for each individual voxel. It is also possible to calculate an accuracy
measure to indicate the reliability of the classification outcome. An example of
a classification method with a statistical basis and the possibility of determining
the reliability are discussed in the following sections.

1.3.5 Probability of Class Memberships

After processing the data of the reference set, the distribution of objects in each
class can be investigated. By determining the percentage of objects within certain
distances from the class centroids, as explained in Section 1.2.3.1, separated and
overlapping classes can be found. To investigate which classes are overlapping,
the Mahalanobis distance of the objects in each surrounding tissue class with
respect to a class centroid was calculated. The surrounding of an isolated class
will contain no objects from other classes, whereas the neighborhood of overlap-
ping classes will contain objects belonging to multiple classes. The distributions
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of the classes in the reference data set are presented in Figure 1.9 (35). Within a
distance of about 6d from the centroid of the normal class, every object belong-
ing to this class and some objects from the cerebrospinal fluid class are found.
The CSF class shows some overlap with the normal class, but is well separated
from the other classes, as depicted in Figure 1.9b. This indicates that the normal
and CSF classes are isolated from the tumor classes, and thus, a classification
method should discriminate well between normal tissue and malignant tumors.

More overlap exists between grade II and III classes. Although at a distance
of 5.5d from the centroid of grade II class, almost every object from this class
is found; also, about 25% of the objects from grade III class appear within this
distance. Less overlap is found with grade IV class. Therefore, discrimination
between grade II and grade IV is possible, but grade II class is difficult to be
separated from grade III class. The same can be concluded from the distribution
of grade III class (Fig. 1.9d). Because grade IV class is isolated from the other
classes, this type of tumor can probably be classified with a high reliability
(Fig. 1.9e).

1.3.6 Class Membership of Individual Voxels

The distribution of objects can be used to estimate probabilities of class mem-
bership for a new patient, as discussed in Section 1.2.3.1. Four patients (A–D)
were analyzed; histopathological examination of the brain tissue resulted in the
diagnosis of grade III (patient A and D), grade II (patient B), and grade IV
(patient C) tumors. The probability maps calculated for the patients are pre-
sented in Figure 1.10. Dark voxels in the map represent a high probability that
the underlying tissue belongs to the particular class. The probability maps need to
be compared regionwise because the probabilities are relative, that is, the inten-
sities are scaled to its maximum value. If a region in the map, for example, of
grade II, is dark, while it is bright in the other maps, the estimated probability for
grade II class is high (close to 100%). If the region is dark in several maps, the
estimated probability of the class membership is lower, and a black pixel does
not correspond with a probability of 100%. The probabilities may, therefore, also
assist in the assessment of tumor heterogeneity. If the probability is high exclu-
sively for one class, then the tissue will be homogeneous. If the probability is
high for two tissue classes, the region might be a mixture of these tissues and
might therefore be heterogeneous. However, if a mixture of these two tissues is
not possible from a clinical point of view, the high probabilities for both classes
indicate a low classification reliability.

The probability maps for the four patients show that large regions have a
high probability to belong to the normal class while these regions have a low
probability to belong to another class. The CSF and grade IV regions of the
patients show a similar behavior. The voxels with a high probability for the CSF
or grade IV class have low probabilities to belong to the other classes. This
indicates that these classes are well separated from other classes and that the
reliability of classification is high.
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Figure 1.9. Distribution of the objects in different classes with respect to the centroid of
the (a) normal, (b) CSF, (c) grade II, (d) grade III, and (e) grade IV class. The vertical
dotted lines indicate thresholds that are used in the classification.
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Figure 1.10. Probability maps of four patients (A–D). For comparison, an MRI image of
each patient is shown on the left. The probability of each voxel to belong to the normal,
CSF, grade II, grade III, and grade IV class are shown. Patients A and D are diagnosed
with a grade III tumor, patient B with a grade II tumor, and patient C with a grade IV
tumor.

Different results are obtained for grade II and grade III classes. The regions
where the estimated probability is high for belonging to grade II class also have
a high probability to belong to grade III class. In particular, patients A and B
show clearly the overlapping problem of these two tissue classes. This could
indicate the presence of heterogeneous tumor tissue in these regions and that the
reliability of the classification is low.

1.3.7 Classification of Individual Voxels

The estimated probabilities of class membership can be used for classification
by assigning each voxel to the class for which it has the highest probability. To
define specific classification accuracies, thresholds are set for each class. For a
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correct classification of 99% of the normal objects, and thus an α-error of 1%,
the threshold was set at the position shown in Figure 1.9a. However, with the
threshold set at 6d, about 3% of the objects will be classified incorrectly (β-error)
as normal. Similar to the normal class, the threshold for the CSF objects was
also set at 6d to obtain a low α-error. To minimize the chance that normal or
CSF objects are classified as grade IV, the specific threshold for grade IV class
was set at 5.5d even though the α-error is then relatively large. Because of the
overlap between grade II and III classes, additional thresholds were defined. To
obtain a low β-error, an object is directly assigned to grade II when the distance
to the particular centroid is very small. With larger distances to grade II class
(between 2.5d and 5.5d), the object is assigned to this class only if the distance
to grade III class is 1.3 times larger than to grade II class. Otherwise, the object
is located in the area of overlap between both classes and the object is assigned
to an “undecided” class. The value of 1.3 is obtained after optimization. Identical
thresholds are used when the object is closest to grade III class (Fig. 1.9d). If the
distance of an object exceeds the specific thresholds for each individual class,
the object probably does not belong to any of the classes in the reference data
set, and the object is therefore assigned to an “unknown” class.

By applying these thresholds to the classification of the four patients A–D,
good results are obtained, as shown in Figure 1.11. The results of pattern recog-
nition are projected over different MRI images to compare the results with
morphological information. Patient A was diagnosed with a grade III tumor, and
the classification result shows the presence of regions of grade II and grade III
tumors. But because a tumor is diagnosed by the most malignant tissue present,
the result of the statistical method is in agreement with histopathology. From the
maps in Figure 1.10, it was clear that some voxels in the tumorous region have
equal probability of belonging to grade II and grade III classes. This indicates

Patient A Patient B

Undecided

Unknown

G
rade IV

G
rade III

G
rade II

CSF

Norm
al

Patient C Patient D

Figure 1.11. Classification results of patients A–D. Classification was performed by
applying specific thresholds to define classification accuracies.
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the presence of a heterogeneous tumor. Therefore, the voxels in the overlapping
region of grade II and III tumors are assigned to the undecided class. The voxels
in the center of the tumor have the highest probability of belonging to grade III
class and are therefore assigned to this class. The tumors of patients B and C are
classified as grade II and grade IV tumor in correspondence with the histopathol-
ogy. Although the tumorous voxels of patient B also have a relatively high
probability to belong to grade III class, the estimated probability for grade II
class is much higher, and the voxels are classified as grade II. One region of
patient C is classified as unknown. This is probably because the particular class
is not represented in the reference data set. One voxel of patient D has been
misclassified as a grade IV tumor while the patient was diagnosed with a grade
III tumor. The reason for this could be that the voxel is a corner voxel, where the
MRS signal is low because of the characteristics of the MRS data acquisition.

1.3.8 Clustering into Segments

More robust classification results can be obtained by grouping similar voxels in
advance of the classification. The voxels that are grouped in one cluster will then
be assigned to the same class. The voxels within a region covering a brain tumor,
for example, will be grouped in one cluster, and this cluster will subsequently be
classified as tumorous tissue. Because a tumor is often larger than the size of a
voxel, it could be advantageous to combine the voxels within the tumorous region
for classification purposes. However, when the information of the voxels within
the tumor is averaged, it is not possible to discover any spatial heterogeneity of
the tumor. Therefore, a clustering method that groups only similar voxels instead
of grouping neighboring voxels should be applied. One of the methods that
could be used to cluster similar voxels is mixture modeling (see Section 1.2.2.1),
which describes the spread of the data by a set of distributions. Similar objects
will be described by the same distribution and the resulting distributions can be
considered as individual clusters. This method is based on a statistical approach,
which makes it possible to calculate the probability of an object to belong to a
particular cluster. The fit of the data can be evaluated by the likelihood criterion
given in Equation 1.7. However, the number of distributions, and thus clusters,
has to be defined in advance.

The voxels of a patient are clustered to obtain a partitioning with three, four,
five, and six segments. The results for patient A are given in Figure 1.12a
(78). The different colors in the clustering results are used only for visualization
purpose. Clustering the data into three segments results in one large cluster rep-
resenting normal tissue and one cluster of tumorous tissue, with a third cluster
scattered over the recorded image. If the data is partitioned into more clusters,
the voxels covering the tumorous region are divided into multiple segments as
illustrated in Figure 1.12a. For example, by clustering the data of patient A into
five segments, the tumorous region is covered by three clusters, which could
indicate tumor heterogeneity.

The optimal number of segments can be obtained by comparing the estimated
probabilities of class membership. Similar to the calculation for individual voxels,
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Figure 1.12. (a) Results of clustering patient A into three, four, five, and six segments.
Clustering was performed by mixture modeling. (b) Estimated probabilities of each seg-
ment for each of the five classes. Dark areas correspond to a high probability.

the estimated probabilities can be determined for each segment. This is performed
by averaging the MRI and MRS information in each segment. Subsequently, the
Mahalanobis distances to the classes in a reference data set are calculated. The
estimated probabilities of each segment in the clustering results of patient A are
given in the bottom of Figure 1.12b. Each row shows, for a specific segment,
the probability of membership for all investigated classes. Dark areas represent
high probabilities.

In the three segments solution, the first row represents the probabilities for the
blue segment. The probabilities are relatively low, and this could indicate that
the blue segment does not belong to any of the classes in the reference data set.
The black segment has the highest probability for grade III class, and also some
for grade II. The green segment probably contains voxels of the normal class.

In the five cluster solution, more segments are obtained with a high proba-
bility for a particular class. Therefore, clustering the patient in five segments is
preferred. The blue segment most probably belongs to grade III and the black
segment to grade II class. The green segment has a high probability for grade II
and III class. The red and yellow segments have a high probability to contain
normal tissue.

1.3.9 Classification of Segments

The calculated probabilities can be used to assign each segment to a particular
class. With the specific thresholds used in the classification, the result presented
in Figure 1.13a is obtained. Each class is color coded according to the legend
shown in Figure 1.13. The blue segment of the five cluster solution is classified
as grade III and the black segment as grade II (Fig. 1.12). The green segment has
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Figure 1.13. Results of classification of (a) the segments and (b) the individual voxels.
The classification is based on the estimated probabilities for each class.

equal probabilities to belong to grade II and grade III and is therefore classified as
undecided. The red and yellow segments have the highest probability to belong to
the normal class, and therefore both segments are classified as normal. Because
the probabilities of four segments are high for only one class, the classification
of these segments is reliable. The reliability of the green segment is low, or
the high probability for more classes could indicate that the underlying tissue is
heterogeneous. Overall, the classification indicates that the most malignant tumor
of this patient is of grade III, and this is in agreement with the pathology.

For comparison, the result of the classification of individual voxels is shown
in Figure 1.13b. Although the classes after classification of the individual vox-
els are more scattered and the clustered result seems more robust, both results
indicate the presence of a grade III tumor. Because the estimated probability of
classification of some segments is higher than any of the probabilities of the
individual voxels, it could be advantageous to cluster the data first.

Presented as images, the results of classification could facilitate the diagnosis
of brain tumors. The probabilities of class membership are also important as they
give an indication about the reliability of classification and/or the heterogeneity
of the tissue.

1.3.10 Future Directions

In the procedures described, the data of each voxel was classified without includ-
ing the spatial relation between voxels. By including the neighborhood infor-
mation in the classification, the results can be improved (79). In one paper,
Canonical Correlation Analysis (CCA) was used to study the effect of including
spatial information in the classification of MRS data (80). This technique is based
on the correlation between variables (3), for example, MR spectra of a patient
and several model (reference) spectra. The problem with heterogeneous tissues
is addressed by incorporating mixed spectra of normal and tumorous tissues in
the set of model spectra. The application of this approach to the data of patient
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Figure 1.14. Classification result of canonical correlation analysis after the inclusion
of neighborhood information, applied on the data of patient A. Source: Adapted from
Reference (80).

A results in the classification presented in Figure 1.14, in which distinct regions
are obtained. Further details are given in De Vos et al. (80).

The improvement of the classification accuracy by taking the neighboring vox-
els into account can be extended further by considering three-dimensional data.
This kind of data becomes more widely available with recent developments in the
instrumentation. As more neighboring voxels are available in three-dimensional
data, more information is used to obtain more robust classification results.

Another future direction could be to combine MRS data with the data obtained
from other imaging techniques, such as CT and PET. As other data modalities
may contain different information, the fusion of these images may contribute to
an improved tumor diagnosis.
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