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CHAPTER 1

Disease Pathogenesis
Roopali Gandhi and Howard L. Weiner
Partners Multiple Sclerosis Center, Center for Neurologic Diseases, Brigham and Women’s Hospital

and Department of Neurology, Harvard Medical School, Boston, MA, USA

Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central

nervous system (CNS) that primarily affects young adults [1]. The role of

immune system inMS is indisputable. The primary function of the immune

system is to protect the body against myriad ever-evolving pathogens and it

broadly falls into two categories the “innate immune system” and “adaptive

immune system.” The important difference in the innate and adaptive arms

of immunity is that the adaptive immune system is highly specific toward an

antigen. The immune-mediated inflammation of MS was initially recog-

nized in 1948 by Elvin Kabat who observed the presence of oligoclonal

immunoglobulins in the cerebrospinal fluid fromMS patients. In following

years, great strides have been made in understanding the role of both

adaptive and innate immune system in Experimental Autoimmune

Encephalomyelitis (EAE, an animal model of MS) MS but it is not

known the degree to which the adaptive and innate immune systems

interact in MS.

In most instances, MS begins as a relapsing remitting disease that in

many patients becomes secondary progressive. Approximately 10% of

patients begin with a primary progressive form of the disease. Although

primary progressive MS differs clinically and in treatment response from

relapsing MS [2], it is somehow related as there are families in which one

member has relapsing MS and another the primary progressive form. Not

all patients enter the secondary progressive stage and, in addition to these,

there are benign and malignant forms of MS. This heterogeneity of the

clinical course may relate to changes that occur in the adaptive and innate

immune system over the course of the illness (Figure 1.1). The progressive

forms of the disease are the most disabling and are likely similar in terms of

pathogenic mechanisms. Epidemiologic studies have raised the question
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whether relapses are related to or are independent from the development

of progressive MS [3]. This raises the central question: will current therapy

that is effective in reducing relapses also delay or prevent the onset of

progression? The understanding of MS pathology and immune system

helped us to design various treatment strategies for MS and, given this

progress, we must now ask: “What would it mean to cure MS?” and “What

is needed to achieve this goal?” [4]. When one examines these questions, it

becomes clear that there are three definitions of “cure” as it relates to MS:

(1) halt progression of the disease; (2) reverse neurologic deficits; and

(3) develop a strategy to prevent MS. We are making progress in halting or

slowing the progression of MS, have approaches that may help to reverse

neurologic deficits, and, for the first time, are beginning to develop

strategies to prevent MS.

Clinical and pathologic heterogeneity
of MS

Multiple sclerosis is a nondescript term that refers to “multiple scars” that

accumulate in the brain and spinal cord. MS is more a syndrome than a

single disease entity and the MS syndrome has both clinical and pathologic

heterogeneity [5–6]. The clinical heterogeneity is reflected in the different

types and stages of the disease. An important question in MS is the

relationship of the progressive to relapsing forms. Devic disease appears

Innate Immunity

(Microglia, monocytes, dendritic cells)

Adaptive immunity

(Antigen-specific T cells, B cells)

Disability

GD enhancement

Secondary progressiveRelapsing-remitting

Figure 1.1 Immune status and disease course in multiple sclerosis. MS involves a

relapsing-remitting phase followed by a secondary progressive phase. The relapsing-

remitting phase is characterized by clinical attacks, gadolinium enhancement on MRI,

minimal disability, and is driven by the adaptive immune response. The secondary

progressive phase is characterized by the progressive accumulation of disability in the

absence of clinical attacks and is driven by the innate immune system. (Reproduced from

Weiner [147] with permission from Wiley–Blackwell.)
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to be an MS variant associated with antibodies to the aquaporin recep-

tor [7–8]. There are rare malignant forms including Marburg’s variant,

tumefactive MS and Balo’s concentric sclerosis. An unanswered question

relates to why benign forms of MS exist [9–10]. Although some cases of MS

are defined as benign, and progress with prolonged follow up [11] there are

clearly benign formsof the disease. Bydefinitionpatientswith benignMSdo

not enter the progressive phase. The ability to identify benign or malignant

MS early in the course of the illness is very important for treatment

strategies. We compared brain parenchymal fraction (BPF) over a 2-year

period in benign vs early relapsing-remitting MS matched for age and the

EDSS and found that patientswith benignMShad a smaller loss of BPF [12].

As it impinges on the EDSS, the majority of disability inMS relates to spinal

cord dysfunction. The relationship between spinal cord changes and brain

MRI changes is not well known, but changes in the medulla oblongata

which reflect spinal cord can be visualized on brain MRI and may correlate

with entering the progressive phase [13]. In addition, an HLA-DR2 dose

effect may be associated with a more severe form of the disease [14].

What triggers MS?

The etiology of MS is still debatable but the current data suggests that

environmental factors in genetically susceptible background can predispose

an individual to MS. Family studies assessing the risk of relatives suggests

that first-degree relatives are 10–25 times at greater risk of developing MS

than the general population[15–17]. The strongest genetic effect is corre-

lated with HLA haplotypes. For instance HLA�1501, HLA-DRB1�0301, HLA-
DRB1�0405, HLA-DRB1�1303, HLA-DRB1�03, HLA-DRB1�01, HLA-DRB1�10,
HLA-DRB1�11, HLA-DRB1�14 and HLA-DRB1�08 have been shown to have

either positive or negative association with MS [15]. Ethnicity and sex

are other contributors in susceptibility toMS. The white population is more

susceptible to disease than theAfricanAmerican population andwomenare

at higher risk of developingMS thanmen [18], which is not associated with

any MS-related gene present on the X chromosome but is more correlated

with female physiology and hormones [19]. Other potential environmental

risk factors are infections, vaccination, climate, and diet. Infections are

considered the most common risk factor for MS as many infections and

antibodies generated in response to these infections are present in sera or the

cerebrospinal fluid (CSF) of MS patients at higher titers than controls.

Epstein–Barr virus (EBV) is of great interest as >99% of MS patients and

approximately 94% of age-matched controls are infected with EBV and

increased antibody titers to EBV nuclear antigen 1 (EBNA-1) antigen are

reported in MS [20–21]. Other infectious agents linked to MS etiology are
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herpes virus 6, retroviruses and Chlamydia pneumonia [22]. Evidence for

association of Chlamydia pneumonia with MS is debatable, as contradictory

presence of this virus has been reported by different groups [23–26].

Decreased sunlight exposure, vitamin D level, and vitamin intake are

also associatedwithMS incidence or protection [27–28]. In addition, studies

using different cohorts of MS patients have shown a strong association

between smoking and MS [29–30]. The etiology of MS is discussed in detail

in the Chapter 3.

TOP TIPS 1.1: Risk factors for MS

. HLA susceptible genes . Climate

. Ethnicity . Gender

. Infections . Smoking

. Vaccinations . Diet

Pathology of MS

The pathology of MS lesion is defined by the presence of large, multifocal,

demyelinated plaques, oligodendrocyte loss, and axonal degeneration.

During the early development ofMS lesions, the integrity of the blood–brain

barrier is compromised, permitting the invasion of monocytes and T cells to

the brain parenchyma.Mononuclear cells including activatedmicroglia and

peripheralmonocytes are the primary cells involved in the demyelination of

MS lesions. According to Trapp’s classification, MS lesions are categorized

into three groups, active (acute), chronic active, and chronic inactive.Active

and chronic active lesions are characterized by the presence of evenly

distributed MHC class II positive cells [31]. Chronic active plaques are

characterized by the presence of MHC class II and myelin lipid positive

cells that are distributed perivascularly [31], whereas, chronic inactive

lesion have few MHC class II positive cells [31] (Figure 1.2). Microarray

results of autopsies from acute/active vs chronic silent lesions revealed a

number of differentially expressed genes present only in active lesions [32].

Thesedifferentially expressed genes aremostly related to cytokines and their

associated downstream pathways [32]. According to another classification

based upon a broad spectrum of immunological and neurological markers

on a large set ofMSpathological samples,MS lesionswere characterized into

four different patterns. Patterns I and II are defined by the T cell and

macrophage-mediated inflammation where pattern II exclusively showed

antibody and complement dependent demyelination [33]. Pattern III

lesions also contained T cells and macrophages and are defined by distal

oligodendrogliopathy [33]. Pattern IV is characterized by the complete loss
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of oligodendrocyte in addition to the presence of inflammatory infiltrates

mostly dominated by T cells and macrophages [33] (Plate 1.1).

We have identified a unique pattern of antibody reactivities to the CNS

and lipid antigens in these pathological subtypes of MS patients [34]. In

addition to these lesions in white matter, gray matter can be involved

with evidence of brain cortical lesions or spinal cord gray matter involve-

ment [35]. These lesions are characterized by less inflammatory infil-

trates, microglial cell activation, and astrogliosis than white matter lesions

and are independent of white matter lesions [36–38]. Regarding the role

of B cells in MS pathology, postmortem analysis of brain tissue from

secondary progressive patients, in which the initial relapsing-remitting

phase was followed by a progressive phase, showed the formation of

secondary B cell follicles containing germinal centers in the inflamed

cerebral meninges [39] and the authors suggest that follicular positive

SPMS patients have more severe disease [40], although this has yet to be

confirmed. Investigation of MS pathology has provided targets for disease

therapy, which are primarily directed at reduction of inflammatory cells

invading the CNS.

Figure 1.2 Schematic illustration (artistic rendition) of the distribution of MHC class II

positive cells in active andchronic activeMS lesions (AandB).Eachdot represents anMHC

class II positive cell. In active demyelinating lesions (A), MHC class II positive cells are

evenly distributed throughout the lesion. In chronic active lesions (B), MHC class II

positive cells aremore concentrated at the lesion edge thanwithin the lesion. Free-floating

sections (30mm thick) from MS brains stained with MHC class II antibody (C–F)

demonstrate themorphological changes of parenchymalMHCclass II positive cells that are

located outside the lesion (C), near the edge of (D), at the edge of (E), and in the center of

the demyelinated region (F). MHC class II positive cells closer to the lesion sites are

rounder, larger than cells that are further away from the lesion site and extend fewer and

shorter processes. Scale bar ¼ 30mm. (Reproduced from Trapp et al. [31] with permission

from Elsevier.)
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Initiation of disease

(Th1/Th17) T cells

Cd4þ Pathogenic T cells: Upon antigenic stimulation, na€ıve CD4þ T cells

activate, expand and differentiate into distinct subsets of T cells which are

characterized by the production of different cytokines upon activation [41].

It is generally believed that acute MS lesions are initiated by a myelin

reactive CD4þ T cell that is stimulated in the periphery and enters the brain

and spinal cord (Figure 1.3). These CD4þ T cells have previously been felt to

be IFN-g secreting Th1 cells as IFN-g was found to be present at the site of

inflammation [42–45] and adoptive transfer of Th1 cells were able to

transfer the disease [46]. However, it was found later that IFN-g deficient

mice are not resistant but highly susceptible to organ-specific autoimmune

diseases [47]. It is now recognized that Th17 cells play a crucial role in

autoimmunity in the experimental allergic encephalomyelitis (EAE)

model [48] and increased numbers of Th17 cells have also been identified

inMS [49]. Both types of pathogenic cell (Th1 and Th17]most probably play

a role in MS and could account for the immunologic and clinical hetero-

geneity of thedisease [50]. Immunohistochemical examinationsof thebrain

demonstrate Th1/Th17 immune responses [51]. Th1vsTh17 responses have

beenassociatedwithdifferent types of EAE [50]. TGF-b, a central cytokine in
the induction of regulatory T cells, induces Th17 cells when combined with

IL-6 [52]. Anti-IL-6 therapy is being investigated for the treatment of

autoimmunity.

Cd8þ Pathogenic T cells: These cells are another subset of T cells thatmostly

provide defense against viral infections using cytotoxic weapons. Although

CD8þ T cells have not been at the forefront of thinking in MS, CD8þ T cells

are found in MS lesions at a higher frequency and CD8þ T cells reactive to

myelin antigenshavebeen reported inMS. It is likely thatCD8þT cells play a

role inMSandalso contribute to diseaseheterogeneity [53–54]. CD8þT cells

are also well poised to contribute directly to demyelination and axonal loss

during inflammation by expression of various cytotoxic molecules (e.g.

perforin and granzymeB) aswell as death receptor ligands (e.g. FasL, TNF-a,
TNF-related molecules). CD8þ T cells isolated from brain lesions show

evidence of antigen-driven clonal expansion [55]. T cell lines generated

from CD8þ T cell clones isolated from MS patients and healthy controls

could mediate MHC class I restricted lysis of oligodendrocytes [56]. CD8þ

T cells could also target other CNS resident cells including microglia,

astrocytes, and neurons [57] suggesting a pathogenic potential of these

cells in MS biology. The same group also observed the close proximity of

granzyme B expressing CD8þ T cells to injured axons in MS lesions, which
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furthermore emphasizes their role in the direct cytotoxicity of axons [57].

The importance of CD4þ and CD8þ T cells in EAEwas compared in CD4 and

CD8 knockout mice in a MOG-DBA/1 model. CD8-/- mice had reduced

demyelination and CNS inflammation compared to wild type animals.

CD4-/- animals, however, were refractory to EAE induction, suggesting a

pathogenic role forCD8þT cells [58]. Furthermore,CD8þTcells are also able

to contribute toward the secretion of IL-17 [59] and IFN-g [57], which, as

discussed above, are the important cytokines involved in disease pathology.

These observations suggest that both CD4þ and CD8þ T cells are capable of

playing pathogenic roles and their relative contribution might be respon-

sible for disease heterogeneity.

B cells and antibodies
B cells are another essential component of an adaptive immune system,

which mediates immunity against pathogens by the secretion of antigen-

specific antibodies and by acting as an antigen presenting the cells required

for T cell differentiation. Like T cells, B cells are also efficient in the

production of various cytokines including IL-1, IL-4, IL-6, IL-10, IL-12,

IL-23 and IL-16 [60–61]. Antibodies secreted by B cells or immune com-

plexes can also activate other antigen-presenting cells like dendritic cells

(DCs) and macrophages through the Fc receptor (Figure 1.3). Although

autoantibodies (antibodies against self-antigens) have been reported inMS,

there is no evidence that there are high affinity pathogenic antibodies inMS

as in other antibody mediated autoimmune diseases such as myasthenia

gravis [62]. Antibodies to myelin components, however, may participate in

myelin loss [63]. A classic finding in MS is increased locally produced IgG

and oligoclonal bands in the CSF, the pathogenic significance of which

remains unknown. Treatment with rituximab, a monoclonal antibody that

deletes B cells, dramatically reduces inflammatory disease activity as mea-

sured by MRI without affecting immunoglobulin levels, demonstrating a

clear role for B cells in relapsing forms of MS [64]. The almost immediate

response to rituximab suggests that B cells are either affecting T cell

regulation via their antigen presentation function or by directly participat-

ing in lesion formation. B cells may have both anti-inflammatory and pro-

inflammatory functions [60–65].

Regulation/remission of disease

Regulatory cells

Cd4þ and CD8þ regulatory T cells: It is now clear that the adaptive immune

system consists of a network of regulatory T cells (Tregs) [66]. Regulatory
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T cells mediate active suppression of self-antigen specific T cell responses

and in the maintenance of peripheral tolerance [67–68]. Regulatory T cells

can broadly be classified as natural Tregs and induced Tregs. Foxp3 is the

major transcription factor for Tregs. CD25 marks natural Tregs and TGF-b
induces Treg differentiation. Th3 cells are induced Tregs that secrete

TGF-b [69] and Tr1 cells are induced Treg cells that secrete IL–10 [70].

Defects in regulatory T cell percentages[71–72] and function have been

described in MS [73–75] and a major goal of MS immunotherapy is to

induce regulatory cells in a physiologic and nontoxic fashion [76–77]. Th2

cells which are recognized by secretion of IL-4, IL-5, and IL-13, may also

have regulatory T cell function as patients with parasitic infections that

induce Th2 type responses have a milder form of MS [78]. Experimental

data suggests that regulatory cells may not be effective if there is ongoing

CNS inflammation [79]. We have taken the approach of using the mucosal

immune system to induce regulatory cells and have found that oral anti-

CD3monoclonal antibody [80], and ligands that bind the aryl hydrocarbon

receptor induce TGF-b dependent regulatory T cells that suppress EAE and

provide a novel avenue for treatingMS [81–82]. The regulatory function of

CD8þ T cells is mostly ascribed to a population of T cells lacking expression

of CD28 on their cell surface. These cells induce regulatory effect in aMOG-

induced EAE model via induction of tolerogenic dendritic cells which in

turn induces CD4þ and CD8þ regulatory T cell subpopulations [83–85].

Another interesting regulatory population in CD8þ T cell subset is

CD8þCD122þ T cells which mediate suppressive effects via IL-10

[85–86]. The human counterpart of this population is recognized as

CD8þCXCR3þ [87]. Depletion of CD8þCD122þ T cells increased the dura-

tion of disease symptoms. Conversely, transfer of this population amelio-

rated the disease in the MOG EAE model on a C57BL/6 background,

suggesting a protective role of this population [88]. In addition, we have

described the existence of a novel LAPþCD8þ T cell population that

exhibited regulatory properties in EAE mice in a TGF-b and IFN-g depen-

dent manner [89].

Disease relapses

Disease relapses/exacerbation are the defining feature of the relapsing-

remitting form of MS and reflect focal inflammatory events in the CNS.

Relapse events occur on average 1.1 times per year during the early course

of disease and decrease as the disease advances with increasing neurologic

symptoms and age [90]. Disease relapse could last for a week to months or

evenmore. Thus it’s important to identify the conditions that could trigger

relapse to determine if preventative measures could be taken to avoid

Disease Pathogenesis 11



relapse. A strong correlation was found between upper respiratory tract

infections and MS relapses [91–92]. This study confirmed that two-thirds

of the attacks occur during a period of risk (the interval 1week before

and 5 weeks after the initiation of URI symptoms) and attack rates were

2.92 per year at risk compared to 1.16 per year when not at risk [92].

Another longitudinal study with 73 patients also confirmed these results,

showing an increased attacks rate (rate ratio 2.1) during the period of risk

that was associated with an increase in the number of gadolinium-

enhancing regions suggesting that systemic infections result in more

sustained damage than other disease exacerbations [93]. No specific

virus was identified among these studies. Viral infection is associated

with activation of autoreactive T cells through molecular mimicry (T cell

reactive to viral antigen cross-react with self-antigen) [94], epitope

spreading (release of sequestered antigen secondary to tissue destruction
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Figure 1.4 Disease relapse. (1) Cells reactive to a viral antigen can cross react to myelin

self-antigen (molecular mimicry) and initiate a self-reactive immune response.

(2) Inflammatory T cells that enter the CNS initiate a complex immunologic cascade

consisting of epitope spreadingwhich triggers new attacks through activation ofmore self-

reactive T cells (epitope spreading). (3) Nonspecific activation of autoreactive T cells

through cytokines released during an immune response against viral infection (viral super

antigens). Dashed arrows indicate activation of T cells and dotted arrows suggest

inflammation mediated by T cells through cytokine secretion and by direct damage of

myelin sheath. (Reproduced fromWeiner [147] with permission fromWiley–Blackwell.)
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mediated by viral antigen) [95–96], and viral superantigens (nonspecific

stimulation of autoreactive T cells) (Figure 1.4) [97]. Similarly, inflam-

matory cytokines like TNF-a and IFN-g also increase during disease

relapses [98]. Thus treatments targeting or controlling these cytokine

responses should help to reduce relapse rates. Blocking TNF-a using

antibodies or soluble receptors could decrease disease severity in murine

EAE but has a worsening effect inMS patients [99–101]. Other factors that

contribute toward disease relapse include a stressful life event [102–103],

pregnancy [104], and high-dose cranial radiation [105–106]. Based upon

studies describing important factors in the initiation, relapse, and pro-

gression of the disease it appears that lifestyle changes (including stress

management, diet, exercise, smoking, alcohol consumption) in combi-

nation with anti-inflammatory therapy can modify the disease activity

and should be suggested to MS patients.

Disease progression

Activation of the innate immune system
The innate immune system consists of dendritic cells, monocytes, micro-

glia, natural killer (NK), and mast cells. It is increasingly recognized

that the innate immune system plays an important role in the immu-

nopathogenesis of MS. Although the secondary progressive phase of

MS may be related to neuorodegenerative changes in the CNS, it is

now clear that the peripheral innate immune system changes when

patients transition from the relapsing-remitting to the progressive stage.

We found increased expression of osteopontin and costimulatory

(CD40) [107] molecules and decreased expression of IL-27 (unpub-

lished) in dendritic cells isolated from relapsing MS. Coversely, we

observed abnormalities in the expression of CD80 and secretion of

IL-12 and IL-18 in the dendritic cells from progressive patients [108–110].

Chronic microglial activation also occurs in MS [111] and this activation

contributes to MS and EAE pathology via secretion of various pro-

inflammatory cytokines and through antigen presentation [112]. Per-

sistent activation of microglial cells has also been observed in the chronic

phase of relapsing-remitting EAE and a correlation has been found

between activated microglia and the loss of neuronal synapses [113].

Natural killer (NK) cells, another component of innate immune cells,

are present in demyelinating lesions of patients with MS [114] and are

thought to play a protective role through the production of various

neurotrophic factors [115] and cytokines. An increase in IL-5 and IL-13

secreting “NK2” subpopulation was observed in MS patients in remission

compared to patients in relapse, suggesting that the NK2 subpopulation
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may have a beneficial role in maintaining the remission phase [116].

The same subset of NK cells seemed to negatively regulate the activation

of antigen-specific autoreactive T cells [117]. In addition, a decreased

cytotoxic activity of circulating NK cells has been described in patients

with MS in their clinical relapses [118–119]. We have recently described

a reduction of another subpopulation of NK cells, characterized as

CD8dimCD56þCD3-CD4-, in untreated subjects with MS as well as clin-

ical isolated syndrome (CIS) [120]. Treatment with immunomodulatory

and immunosuppressant therapies, like daclizumab [121], interferon-

b [122], and cyclophosphamide [123] show a beneficial effect through

their action on a CD56bright NK cell subset in MS. Mast cells contain

cytoplasmic granules rich in histamine and are known for their role in

allergic and anaphylactic response. These cells can interact with the

innate and acquired immune systems, including dendritric cells, neu-

trophils, and T and B lymphocytes [124–126]. In MS, histopathological

analysis showed an accumulation of mast cells in MS plaques and

normal appearing white matter [127–128]. In addition, the mast cell
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Figure 1.5 Inflammatory T cells that enter the CNS initiate a complex immunologic

cascade consisting of cytokine secretion and exposure of new self-antigens that could

triggers new attacks through activation of the innate immune system (microglia, dendritic

cells, astrocytes, B cells), which leads to chronic CNS inflammation. (Reproduced from

Weiner [147] with permission from Wiley–Blackwell.)
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specific enzyme tryptase is elevated in the CSF of MS patients [129]

along with other mast-cell-specific genes in MS plaques.

In summary, the immunopathogenesis of MS integrates both limbs of the

immune system and links them to different disease stages and processes.

Thus, the adaptive immune system drives acute inflammatory events

(attacks,gadoliniumenhancementonMRI)whereasinnateimmunitydrives

progressive aspects ofMS. Amajor question is whether aggressive and early

anti-inflammatory treatmentwill prevent the secondary progressive formof

the disease. There is some evidence that this is occurring; studies are begin-

ning to show that treatment with interferons delays the onset of the pro-

gressive stage [130]. Of note, there is a form of EAE driven by the innate,

rather than the adaptive, immune system [131]. There are no specific

therapies designed to affect the innate immune system in MS, and efforts

to investigate the innate immune system in MS and characterize it are now

being explored to determine how the innate immune system relates to the

disease stage and response to therapy. Furthermore, like the adaptive

immune system, there are different classes of innate immune responses,

e.g. protective and tolerogenic vs pathogenic and pro-inflammatory.

TOP TIPS 1.2: Immune cell involvement in MS pathogenesis

. Decreased percentages of CD4þ regulatory T cells

. Increased frequency of Th1 and Th17 CD4þ T cells

. CD8þ T cells

. B cells

. Activated dendritic cells

. Natural killer cells

. Microglial cells and monocytes

Neurodegeneration in MS
Axonal andmyelin loss are prominent pathologic features ofMS [132] and

can be directly caused by immune cells (e.g. cytotoxic CD8 cells damaging

neurons or macrophages stripping myelin from the axon [133]); or can

result from release of toxic intermediates (e.g. glutamate, nitric oxide).

These intermediates can trigger immune cascades that further enhance

inflammatory-mediatedCNSdamage. Thus, glutamate andnitric oxide can

lead to enhanced expression of CCL2 on astrocytes which, in turn, leads to

infiltration of CD11b cells and additional tissue damage [134]. AMPA

antagonists have been shown to have an ameliorating affect in acute

EAE models [135–136] and we have found that a carbon-based fullerene

linked to an NMDA receptor with anti-excitotoxic properties slows
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progression and prevents axonal damage in the spinal cord in a model of

chronic progressive EAE [134]. Although the compound is not an immune

compound, it reduces the infiltration of CD11b cells into the CNS. Another

important component of neurodegeneration relates to changes in sodium

channels, suggesting that thesecouldbepotential therapeutic targets [137].

TOP TIPS 1.3: Potential therapeutic pathways for the treatment ofMS

. Decease Th1/Th17 cells . Affect innate immunity

. Induce regulatory T cells . Provide neuroprotection

. Prevent lymphocyte trafficking . Promote remyelin

. Deplete B cells

Conclusion

In summary,MS represents an immune cell mediated neurologic syndrome

rather than a single disease entity that has both clinical and pathologic

heterogeneity [5–6]. Amajor tool to address the pathological heterogeneity

of MS and devise appropriate treatment strategies is to develop reliable

biomarkers. MRI has served as the primary biomarker for MS [138] and

although conventional imaging does not link strongly to clinical outcomes,

every FDA-approved MS drug has shown efficacy on MRI outcomes.

Advances in magnetic resonance imaging are beginning to better define

MS and its heterogeneity. We have also developed a Magnetic Resonance

Disease Severity Scale (MRDSS) which combines multiple measures to

provide an index of disease severity and progression as measured by

MRI [139]. The additionof spinal cord imaging andgraymatter involvement

to theMRDSS should enhance its value as a biomarker. In addition, we and

others have shown immune measures that are associated with disease

activity and MRI activity [140–142]. RNA profiling is beginning to identify

gene expression patterns associated with different forms of MS and disease

progression [143–144]. In addition, we have demonstrated unique serum

immune signatures linked to different stages and pathologic processes inMS

that could provide a new avenue to understand disease heterogeneity, to

monitor MS, and to characterize immunopathogenic mechanisms and

therapeutic targets in the disease.

A complex disease such as MS will require treatment(s) that can affect

multiple pathways, including (1) suppression of Th1/Th17 responses,

(2) induction of Tregs, (3) altering the traffic of cells into the CNS,

(4) protecting axons and myelin from degeneration initiated by inflam-

mation that affects the innate immune system. If multiple drugs are

required to achieve this effect, wemust be certain that one treatment does

not interfere with another. For example, it has been reported that statins
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may interfere with the action of interferons [145]. Because of disease

heterogeneity, there will be responders and nonresponders to each

“effective” therapy and the earlier that treatment is initiated, the more

likely it is to be effective. Inherent in the concept of curing MS by halting

progression is the ability to demonstrate that progression has been halted

in a group of patients and to identify those factors associated with

preventing the onset of progressive disease. We have thus initiated the

CLIMB natural history study in which more than 2000 patients with MS

will be followed over a period of time with clinical evaluation, MRI

studies, and immune and genetic markers, to identify the factors that are

associated with the various stages of the disease and disease progres-

sion [146]. We believe that the identification of such factors may lead to

the stratification of MS patients into smaller subclinical groups with

defined common mechanisms of initiation of disease, inflammation,

and demyelination during the disease progression that could help in

designing/selecting subtype-specific treatment.
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