
  1    Technical Underpinnings in Mathematics 
and Physics     
  

   1.1    Linear  e quations 

 Many problem systems in environmental design, 
planning, engineering, and management may 
be defi ned in terms of a set of equations or 
algorithms that can be solved mathematically. 
Naturally, the method of solution, the kind of 
solutions, and the question of solvability (i.e., 
whether or not the set of equations has a solu-
tion) will depend largely on the types of equa-
tions involved. We shall therefore briefl y describe 
a simple, but also quite typical, type of equation 
known as the  linear equation . 

 Also referred to as  fi rst - degree  equations, 
linear equations obey the following two rules: 

  Rule 1:    All variables or unknown quantities 
are to the exponent 1. Therefore, the equation 
 x 2      −    4 y     =    1 is not a linear equation (because the 
variable  x  is raised to power 2). 

  Rule 2:    Variable or unknown quantities 
appear only once in each term. For example, in 
the equation  ax     +     by     +     cz     =     k , each of the terms 
on the left side of the equation contains a con-
stant (i.e.,  a ,  b,  and  c ) and a variable (i.e.,  x ,  y,  
and  z ), but there is never more than one variable 
in any of the terms. Therefore this is a linear 
equation with three variables. However, in the 
equation 8 xy     =     − 14 the variables  x  and  y  appear 
in the same term and therefore this is not a 
linear equation. If we were to plot this equation 
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 The fi eld of building science is based on scientifi c concepts and principles. This does not mean, 
however, that an in - depth knowledge of science and mathematics is necessarily required for the 
application of sound building - science principles during the building design process. In most cases an 
understanding of the higher - level technical notions involved is suffi cient for the designer to make 
the necessary decisions during the early design stages, when the conceptual design solution is for-
mulated. However, it is most important that those decisions are sound, so that they can be translated 
into detailed solutions during later design stages by consultants with specialized expertise. 

 Accordingly, the purpose of this book is to describe and explain the underlying concepts and 
principles of the thermal, lighting, and acoustic determinants of building design, without delving 
into the detailed methods that are applied by engineers and other technical consultants to design 
and implement detailed system solutions. Nevertheless, there are some basic mathematical methods 
and scientifi c principles that the reader should be familiar with to easily follow the largely qualita-
tive treatment of the subject matter of the subsequent chapters. The particular mathematical 
methods that are briefl y reviewed include elementary linear equations and  normal distribution  
statistics. In respect to Physics the fundamental concepts related to temperature scales and  black 
body  radiation have been selected for explanation in this introductory chapter, because they form 
the basis of discussions related to the thermal determinants of building design and artifi cial light 
sources, respectively. 
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2 Building Science: Concepts and Application

simultaneous equations  there must be at least as 
many equations as there are unknowns .  

   1.1.2    Simultaneous  e quations 
with  t wo  u nknowns 

 A problem that has only two linear variables 
can be solved quite easily in Algebra as a set of 
two simultaneous equations. The approach is to 
eliminate one of the two unknowns by utilizing 
one of the following three alternative methods: 

  Method A:     Elimination by addition or sub-
traction. Multiply one or both of the equations 
by a constant and then add or subtract the equa-
tions to eliminate one of the unknowns. For 
example, solve the following two equations 
for the unknowns  x  and  y :  5 x    +     2 y    =    32 and 
 2 x    −    y    =    2.

  5 x     +    2 y     =    32    [1]  
   4 x     −    2 y     =    4     [2] multiply equation 

[2] by  2   
  9 x     =    36    add equation [2] to 

equation [1]  
   x      =      4     divide both sides of 

the equation by  9   
  20    +    2 y     =    32    substitute for  x     =    4 in 

equation [1]  
  2 y     =    12    subtract  20  from both 

sides of the equation  
   y      =      6     divide both sides of 

the equation by  2   

  Method B:     Elimination by substitution. 
Using one of the equations, fi nd the value of one 
unknown in terms of the other, then substitute. 
For example, solve the following two equations: 
 2 x    +     4 y    =    50 and 3 x     +    5 y     =    66:

  2 x     +    4 y     =    50    [1]  
  3 x     +    5 y     =    66    [2]  

  2 x     =    50    −    4 y     subtract 4 y  from 
both sides of 
equation [1]  

   x     =    25    −    2 y     divide both sides 
by 2 to fi nd  x  
in terms of  y   

on graph paper with  y  on the vertical axis and 
 x  on the horizontal axis, for multiple values of 
 x  and  y , then the resulting graph would be a 
curve. On the other hand a linear equation, by 
virtue of its name, will always result in a straight 
line when plotted on graph paper. 

 The general form of a linear equation is  A 1 X 1      +    
 A 2 X 2      +     A 3 X 3      +      …  A i X i      =     C , where  A 1   to  A i   and  C  
are constants and  X 1   to  X i   are variables. The 
following are examples of linear equations and 
all of these will result in straight lines when 
plotted on graph paper: 

 7 x     =     − 16; or 2 x     −    6 y     =    8; or  x     −    3 y     +    17 z     =     − 3. 

 There is another very useful rule in Algebra 
that applies to not just linear equations, but to 
all equations. 

  Rule 3:    Whatever operation is applied to one 
side of an equation must also be applied to the 
other side. Restating this rule in a more positive 
form: any mathematical operation such as mul-
tiplication, division, addition, or subtraction 
can be applied to an equation as long as it is 
applied to both sides of the equation. We will 
use this rule repeatedly in Section  1.1.2  to solve 
equations involving two unknowns.   

   1.1.1    What  a re  u nknown  q uantities? 

 It is generally considered convenient in Algebra 
to categorize equations according to the num ber 
of unknown quantities (or more commonly the 
number of  unknowns ). This refers simply to 
the number of different variables contained in 
the equation. For example:

  12 x     −    16    =    0    has  1  unknown  

  2 x     +    17 y     =     − 66    has  2  unknowns  

   − 114 x     +    212 y     =    22 z     +    9    has  3  unknowns  

  A 1 X 1     +    A 2 X 2     +    
A 3 X 3     +     …  A i X i     =    C  

  has  i  unknowns  

 A set or  system  of equations that are to be con-
sidered together for the solution of the same 
problem are known as  simultaneous equations . It 
is a fundamental and very important rule in 
mathematics that to be able to solve a system of 
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  3(25    −    2 y )    +    5 y     =    66    substitute 
for  x  in 
equation [2]  

  75    −    6 y     +    5 y     =    66    expand the 
brackets 
on the left 
side  

   −  y     =     − 9    subtract 75 
from both 
sides of the 
equation  

   y      =      9     multiply both 
sides of 
the equation 
by  − 1  

  2 x     +    (4    ×    9)    =    50    substitute for 
 y     =    9 in 
equation [1]  

  2 x     +    36    =    50    expand the 
brackets 
on the left 
side  

  2 x     =    14    subtract 36 
from both 
sides of the 
equation  

   x      =      7     divide both 
sides of 
the equation 
by 2  

  Method C:     Elimination by comparison. From 
each equation fi nd the value of one of the 
unknowns in terms of the other, and then form 
an equation of these equal values. For example, 
solve: 3 x     +    2 y     =    27 and 2 x     −    3 y     =    5:

  3 x     +    2 y     =    27    [1]  
  2 x     −    3 y     =    5    [2]  

  3 x     =    27    −    2 y     subtract 2 y  
from both 
sides of 
equation [1]  

   x     =    (27    −    2 y )/3    divide both sides 
of the equation 
by 3  

  2 x     =    5    +    3 y     add  3y  to both 
sides of 
equation [2]  

   x     =    (5    +    3 y )/2    divide both sides 
of the equation 
by 2  

  (27    −    2 y )/3    =    (5    +    3 y )/2    equate the two 
values of  x   

  27    −    2 y     =    3(5    +    3 y )/2    multiply both 
sides of the 
equation by 3  

  54    −    4 y     =    15    +    9 y     multiply both 
sides of the 
equation by 2  

   − 4 y     =     − 39    +    9 y     subtract  54  from 
both sides of 
the equation  

   − 13 y     =     −  39     subtract 9 y  from 
both sides of 
the equation  

  13 y     =    39    multiply both 
sides of the 
equation by  − 1  

   y      =      3     divide both sides 
of the equation 
by 13  

  3 x     +    6    =    27    substitute for 
 y     =    3 in 
equation [1]  

  3 x     =    21    subtract 6 from 
both sides of 
the equation  

   x      =      7     divide both sides 
of the equation 
by  3   

 In all of these examples we have dealt with 
simultaneous equations that have only two 
unknowns, and already the solution methods 
described become rather tedious. In architec-
tural design, building science, and construction 
management many of the problems encoun-
tered, such as the structural analysis of a build-
ing frame, or the analysis of an electrical circuit, 
or the solution of a work - fl ow management 
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 For example, a large contracting fi rm may 
wish to embark on the manufacture of stand-
ard, mass - produced, precast concrete balus-
trades for staircases, balconies, and similar 
structures. On the assumption that the required 
height of a comfortable balustrade is directly 
related to the heights of human beings, the con-
tracting fi rm considers it necessary to conduct 
a survey of the heights of potential users in 
various countries of the world. Obviously, to 
measure the height of every potential user (even 
if this were possible) would be very costly and 
time - consuming. Instead, a small number of 
potential users constituting a sample of the total 
population are selected for measurement. The 
selection is usually by a random process, 
although a number of other kinds of sampling 
procedure exist. However, what is most useful 
and important is that on the basis of this rela-
tively small set of measurements we are able to 
make predictions about the range and distribu-
tion of heights of persons in the sampled coun-
tries. The accuracy of our predictions will 
depend more on the representativeness than the 
size of the sample (Figure  1.1 ).   

   1.2.1    Ordering  d ata 

 It is very diffi cult to learn anything by examin-
ing unordered and unclassifi ed data. Let us 
assume that in the example under considera-

problem, will often involve a set of linear equa-
tions with three or more unknowns. Such 
systems of equations are normally solved using 
methods that require the equations to be formu-
lated as a matrix of variables and constants, as 
shown below.

   

A X A X A X C
A X A X A X C
A X A X

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2

+ + =
+ + =
+ +

………
………
…………A X C
            
            

A X

n n

n

3 3

1

=
+
+

. . . . . . . .

. . . . . . . .

11 2 2+ + =A X A X Cn nn n n………

 

where:  

 A 11     to A nn  are the known coeffi cients of the 
unknowns (or variables);  

 C 1     to C n  are the known constants;  
 X 1     to X n  are the unknowns for which the equa-

tions are to be solved.    

 The subscripted format is also referred to as an 
 array , and is a very convenient mathematical 
notation for representing problems that involve 
many linear relationships.   

   1.2    Some  s tatistical  m ethods 

 The word  statistics  was fi rst applied to matters 
of government dealing with the quantitative 
analysis of births, deaths, marriages, income, 
and so on, necessary for effective government 
planning. Today, statistics is applied in a 
number of ways to any kind of objective or sub-
jective data, whether this be a small sample or 
the total available information. There are basi-
cally two kinds of statistics: 

   Descriptive statistics  deal with the classifi ca-
tion of data, the construction of histograms and 
other types of graphs, the calculation of means, 
and the analysis of the degree of scatter within 
a given sample.  

   Inferential statistics  may be described as the 
science of making decisions when there is some 
degree of uncertainty present (in other words, 
making the best decision on the basis of incom-
plete information).    

     Figure 1.1     Statistical sampling.  
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tendency that are frequently used to convey a 
quantitative sense of a set of data with a single 
numerical value. Four of these are discussed 
below in order of increasing importance: 

   Mid - Range  is the value halfway between the 
smallest and largest observation. For the sample 
of human heights in Table  1.1  the mid - 
range is calculated to be:

   Mid-Range = + =( )/49 82 2 65.5 IN   

   Mode  is defi ned as the observation in the 
sample that occurs most frequently. This means, 
of course, that some sets of data may not have 
a mode because no single value occurs more 
than once. In the sample shown in Table  1.1  
there are several heights that occur more than 
once.

   Mode occurs six times= 68 IN ( )    

   Median  is defi ned as the middle observation 
if the sample observations are arranged in order 
from smallest to largest. Again, with reference 
to the sample shown in Table  1.1 : 49, 50, 52, 53, 
54, 56, 59, 59, 59, 60, 60, 62, 63, 64, 64, 64, 65, 65, 
65, 67, 67, 67, 67, 68,  68 ,  68 , 68, 68, 68, 69, 69, 69, 
69, 70, 70, 71, 71, 72, 72, 72, 75, 76, 76, 78, 78, 79, 
80, 81, 82, 82 

 But the total number of observations in Table 
 1.1  is 50, which is an even number; therefore 
there are two middle observations. Typically, 
under these conditions the median is calculated 
to be halfway between the two middle observa-
tions. In this case the two middle observations 
are the same.

   Median = + =( )/68 68 2 68 IN    

tion, the following sample (Table  1.1 ) of the 
heights of persons has been collected (i.e., meas-
ured to the nearest inch):   

 These measurements may be represented 
graphically in the form of a histogram (i.e., a bar 
chart) or a distribution curve, as shown in 
Figures  1.2  and  1.3 , respectively.   

 To facilitate the preparation of either of these 
two graphs it is convenient to prepare a fre-
quency distribution table, in which the meas-
urements are grouped into clearly defi ned 
classes. Class limits are carefully chosen so that 
no measurement can be allocated to more than 
one class (see Table  1.2 ).   

 In addition to the construction of graphical 
representations of data, there are a number of 
arithmetically calculated measures of central 

  Table 1.1    Sample of the heights of persons 
(in inches). 

  72    67    65    70    82    76    60    62    68    59  
  50    78    67    68    68    68    64    80    54    49  
  67    64    71    75    60    70    69    69    65    79  
  67    69    65    69    68    78    59    64    72    72  
  81    76    52    53    56    82    71    68    63    59  

     Figure 1.2     Histogram (or bar chart).  

     Figure 1.3     Distribution curve.  

  Table 1.2    Frequency distribution table. 

   Class no.     Class limits     Class frequency  

  1    45.5 to 50.5    2  
  2    50.5 to 55.5    3  
  3    55.5 to 60.5    6  
  4    60.5 to 65.5    8  
  5    65.5 to 70.5    16  
  6    70.5 to 75.5    6  
  7    75.5 to 80.5    6  
  8    80.5 to 85.5    3  
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 It should be noted that the smaller the class 
interval, the more accurate the result will be. In 
this case, with a class interval (c) of 5, the error 
is 0.2 (or 0.3 percent).  

   1.2.2    The  n ormal  d istribution  c urve 

 We have seen that frequency distributions are 
of great value for the statistical analysis of data. 
Moreover, there would appear to be consider-
able merit in the standardization of frequency 
distributions leading, for example, to the tabu-
lation of coordinates and so on. In fact, such 
systems have been devised, and one of them 
relies on a rather distinctive natural phenome-
non. There are a large number of distributions 
that appear to have a symmetrical, bell - shaped 
distribution (e.g., the heights, intelligence, and 
ages of persons) of the type shown in Figure  1.4 .   

 This unique distribution, which is known as 
the Normal Distribution Curve, or the Error 

   Mean  (or Arithmetic Mean) is the average 
value of the sample. It is calculated simply by 
adding the values of all observations and divid-
ing by the number of observations. In reference 
to Table  1.1 :

   Mean x)( /= =3360 50 67.2 IN      

 The manual calculation of a mean using this 
method tends to become tedious if the sample 
is quite large, as it is in this case. Therefore, for 
samples that contain more than 30 observations, 
it is common practice to draw up a frequency 
distribution table with an expanded set of 
columns, as shown in Table  1.3  below.   

 where:  

  t       =    [group mid - value  –  assumed Mean (  xo)] / 
class interval (c);  

   xo       =    any assumed Mean (63 in this case);  
  c       =    the class interval (5 in this case).    

 Based on the frequency distribution table, the 
true mean (  x) of the sample is given as a func-
tion of an assumed mean (  xo) plus a positive or 
negative correction factor.

    Mean (x) = x + c [ (ft) ] / [ f]o ∑ ∑     [1.1]   

 Applying equation  [1.1]  to the sample of heights 
shown in Tables  1.1  and  1.3 , we calculate the 
true mean (  x) of the sample to be:

   

x  
x
x  

= +
= +
=

63 5 40 50
63 4 0

( / )
.

67.0 IN

  
     Figure 1.4     The normal distribution curve.  

  Table 1.3    Expanded frequency 
distribution table.    Group 

boundaries  
   Group 
mid - value  

   f     t     (ft)  

  45.5 to 50.5    48    2     − 3     − 6  
  50.5 to 55.5    53    3     − 2     − 6  
  55.5 to 60.5    58    6     − 1     − 6  
  60.5 to 65.5    63    8    0    0  
  65.5 to 70.5    68    16     + 1     + 16  
  70.5 to 75.5    73    6     + 2     + 12  
  75.5 to 80.5    78    6     + 3     + 18  
  80.5 to 85.5    83    3     + 4     + 12  

                        ∑ =f 50 ∑ =( )ft 40
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Law, or the Gaussian curve, occupies a promi-
nent position in statistical theory. It has the fol-
lowing characteristics: 

   •      The total area under the normal distribution 
curve is assumed to be unity (i.e., 1.0), as 
shown in Figure  1.4 .  

   •      The exact shape of the curve may vary from 
distribution to distribution, although the 
area will always remain the same (Figure 
 1.5 ).  

   •      The Normal Distribution Curve has been 
arbitrarily divided into three major sections 
(with subsections), so that judgments may be 
made regarding the exact variation (i.e., the 
shape of the curve) for each distribution. 
These sections are defi ned as standard devi-
ations from the mean (Figure  1.6 ).      

 Accordingly, the Standard Deviation (SD) of a 
sample provides a method for calculating the 
amount of scatter or variation in a sample. For 
example, we are readily able to distinguish 

     Figure 1.5     Various distributions.  

     Figure 1.6     Standard deviations.  

     Figure 1.7     Two different normal distributions.  

between the two Normal Distributions shown 
in Figure  1.7 , by reference to their standard 
deviations.   

 For the fi rst distribution 68 percent of the 
sample observations lie between 19 units (i.e., 
24    −    5) and 29 units (i.e., 24    +    5). In the case of 
the second distribution 68 percent of the sample 
observations lie between 22 units (i.e., 24    −    2) 
and 26 units (i.e., 24    +    2). Obviously, the fi rst 
distribution has greater variation among the 
observations of the sample than the second dis-
tribution. The calculation of the standard devia-
tion of a sample is basic to virtually all statistical 
procedures dealing with the Normal Distribution 
Curve. It allows us to proceed with further pre-
dictions relating to the degree of scatter or vari-
ation likely to be encountered in the population 
from which the sample was drawn, and the 
probable accuracy of these predictions.  

   1.2.3    The  s tandard  d eviation of a  s ample 

 There are basically three methods available for 
the calculation of the Standard Deviation of a 
sample. The fi rst method is used whenever a 
Frequency Distribution table has been drawn 
up (i.e., when the number of observations in 
the sample is large). In reference to the sample 
of the heights of persons discussed previ-
ously in Section  1.2.1  (Table  1.1 ), the Frequency 
Distribution table may be extended to calculate 
the Standard Deviation of the sample of 50 
measured heights according to the following 
formula:

    S = c [(( (ft ) / (f)) (( (ft) / (f)) ]2 2 1/2∑ ∑ ∑ ∑-     [1.2]   
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S  

S  

S  

= −
= −
= −

5 178 50 40 50

5 3 56 0 8

5 3 56 0

2 1 2

2 1 2

[( / ) ( / ) ]

[ . ( . ) ]

[ . .

/

/

664

5 2 92
5 1 71

1 2

1 2

]

[ . ]
[ . ]

/

/S  
S  

=
=

S = 8.55 IN

  

 Accordingly, with a Mean of 67.2  in  and a Stand-
ard Deviation of 8.55  in , we have now defi ned 
the sample within the following boundaries: 

   68%  of the measured heights will lie in the 
range:

   ( . . ) ( . . ); . .,67 2 8 55 67 2 8 55− +to i e 58.7 to 75.8 IN    

   94%  of the measured heights will lie in the 
range:

   ( . . ) ( . . ); . .,67 2 17 1 67 2 17 1− + to i e 50.1 to 84.3 IN    

   100%  of the measured heights will lie in the 
range:

   ( . . ) ( . . ); . .,67 2 25 7 67 2 25 7− + to i e 41.5 to 92.9 IN      

 The second method for calculating the Standard 
Deviation of a sample is often used when the 
size of the sample is greater than 10 but less 
than 30 (i.e., a Frequency Distribution table has 
not been drawn up).

    S = [( (x ) / (f)) (x) ]2 2 1/2∑ ∑ -     [1.3]  

where:  

  x       =    each observation in sample;  
   ∑f       =    total number of observations;  
    x       =    Mean of sample.    

   Group 
boundaries  

   Group 
mid - value  

   f     t     (ft)     (ft 2 )  

  45.5 to 50.5    48    2     - 3     - 6    18  
  50.5 to 55.5    53    3     - 2     - 6    12  
  55.5 to 60.5    58    6     - 1     - 6    6  
  60.5 to 65.5    63    8    0    0    0  
  65.5 to 70.5    68    16     + 1     + 16    16  
  70.5 to 75.5    73    6     + 2     + 12    24  
  75.5 to 80.5    78    6     + 3     + 18    54  
  80.5 to 85.5    83    3     + 4     + 12    48  

        H                       ∑ =f 50 ∑ =( )ft 40 ∑ =( )ft2 178

 Let us consider the following sample, contain-
ing measurements of the ultimate compressive 
strengths of 10 concrete test cylinders: 

 i.e., 2000, 2500, 4000, 1800, 2100, 3000, 2600, 
2000, 2900, and 1900   psi. 

   x     x 2   

  2000    4   000   000  
  2500    6   250   000  
  4000    16   000   000  
  1800    3   240   000  
  2100    4   410   000  
  3000    9   000   000  
  2600    6   760   000  
  2000    4   000   000  
  2900    8   410   000  
  1900    3   610   000  

            ∑(x) = 24 800 ∑(x ) = 65 680 0002

  Step (1)  –  fi nd the Mean (   x ): 

   

x x f
x

= ∑ ∑
=
=

( )/ ( )
/24 800 10

x 2480 psi
  

  Step (2)  –  fi nd the Standard Deviation (S): 

   

S   

S

= −
= × − ×

[( / ) ( ) ]

[( . ) . ]

/

/

65 680 000 10 2480

6 568 10 6 150 10

2 1 2

6 6 1 2

SS = ×
= ×

[ . ]

[ . ]

/

/

0 418 10

41 8 10

6 1 2

4 1 2S

S = 646.5 psi
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 Obviously, the value of the correction factor 
  [ ( ) / ( )] /∑ ∑f f - 1 1 2 is very much infl uenced by 
the size of the sample (i.e.,   ∑( )f ). For example:

   

If the sample size is then f f

If th

6 1
1 096

1 2, [ ( )/( ( ) )]
.

/∑ ∑ −
=

ee sample size is then f f 1

If the sa

30
1 017

1 2, [ ( )/( ( ) )]
.

/∑ ∑ −
=

mmple size is then f f

If the sampl

100 1
1 005

1 2, [ ( )/( ( ) )]
.

/∑ ∑ −
=

ee size is then f) f900 1
1 001

1 2, [ ( /( ( ) )]
.

/∑ ∑ −
=

  

 Accordingly, samples containing 30 or more 
observations are normally considered to be 
large samples, while samples with fewer than 
30 observations are always described as small 
samples. To summarize: while the Standard 
Deviation of a small sample (S) is used as 
the basis for estimating the Standard Deviation 
of the population ( σ ) utilizing equation  [1.5] , 
the Standard Deviation of a large sample is 
expressed directly as   σ   and the correction factor 
  [ ( )/( ( ) )] /∑ ∑ −f f 1 1 2 is not used.  

   1.2.5    The  c oeffi cient of  v ariation 

 The Coeffi cient of Variation ( v  or  V ) is a further 
measure of the degree of variation or scatter 
within a sample. It is expressed as a percentage 
and provides a simple method of obtaining a 
measure of the correlation among a set of experi-
mental results, such as concrete specimens that 
are tested to destruction to verify the strength of 
the structural concrete members in a building.

    For a small sample: xv = ×[( / ) ]%S 100     [1.6]  

    For a large sample: xV = ×[( / ) ]%σ 100     [1.7]  

where:  

  S       =    Standard Deviation of sample  
  σ        =    Standard Deviation of population  
    x       =    Mean of sample for [1.6] and population for 

[1.7].    

 Naturally, the smaller the value of  v  or  V , the 
better the correlation will be. At the same time, 

 The third method is often used when the sample 
is very small (i.e., less than 10). For example, 
consider the following measurements taken of 
the permanent expansion of six brick panels (in 
thousandths of an inch): 

 i.e., 22, 24, 26, 28, 25, and 22    ×    10  − 3   in .

    S = [( (x x) ) / (f)]2 1 2∑ ∑- /     [1.4]  

where:  

  x       =    each observation in sample  
   ∑f       =    total number of observations  
    x       =    Mean of sample (i.e., 

  x IN= × = ×− −( / ) .147 6 10 24 5 103 3 ).   
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 The square of the Standard Deviation is referred 
to as the  Variance  and is therefore another 
measure of the degree of scatter within a sample.  

   1.2.4    The  s tandard  d eviation 
of the  p opulation 

 Having calculated the Standard Deviation of 
a sample with any one of the three methods 
available (i.e., equations  [1.2] ,  [1.3]  or  [1.4]  in 
Section  1.2.3 ) we are able to predict the Standard 
Deviation of the entire population (i.e., all pos-
sible observations) from which the sample has 
been drawn. If the Standard Deviation of the 
sample is  S , then the best estimate of the 
Standard Deviation of the population ( σ ) is 
given by:

    s -= S [ (f) / ( (f) 1)]1/2∑ ∑     [1.5]   
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could be contained in a particular population. 
For example, if the lengths of a small sample of 
10 tiles were measured to be:

   
7 30 7 20 7 25 7 28 7 32 7 46 7 50 7 22 7 54

7 28
. , . , . , . , . , . , . , . , . ,

. ,and  IN
  

 what is the probability that the Mean of the 
population (i.e., the entire stack of tiles from 
which the sample of 10 was selected at random) 
is 7.27  in  or less? 

 We are able to calculate such probabilities 
by reference to the Normal Distribution curve 
(Figure  1.8 ), based on the following four 
criteria: 

  Criterion A:     Any distribution (X 1 ) is said to 
have been standardized when it has been 
adjusted so that its Mean (  x) is zero and its 
Standard Deviation ( σ ) is 1.  

  Criterion B:     A Normal Distribution with the 
Mean equal to zero and the Standard Devia-
tion equal to unity is known as the Standard 
Normal Distribution.  

  Criterion C:     The Standard Normal Variable (z) 
refers to the area under the Normal Distri-
bution curve and is given by: 

     ± = −z x( )/1 x σ     [1.9]  

where:  

 x 1        =    a single observation  
    x       =    the Mean  
   σ        =    the Standard Deviation of the population.     

  Criterion D:     When considering the probable 
accuracy of the prediction of the Mean of the 
population, equation  [1.9]  is rewritten in the 

the appropriate interpretation of the Coeffi cient 
of Variation value is largely governed by the 
type of material being tested and the experi-
mental procedure that was employed. In the 
case of concrete, it is very diffi cult to achieve a 
 v  value below 10%, even under the most strin-
gent experimental procedures.  

   1.2.6    What  i s a  s tandard  e rror? 

 It is accepted as a general rule in statistics that 
 the scatter of means is always much less than the 
scatter of individual observations . The reader may 
wish to verify this rule by comparing the indi-
vidual and mean results of tossing a coin. If the 
Standard Deviation of individual observations 
in a population ( σ ) is known, then the best esti-
mate of the standard error (or deviation) of the 
means of samples ( σ  m ) taken from the same 
population is given by:

    σ σm f= ∑[ / ( )] /1 2     [1.8]  

where:  

   σ  m        =    Standard Error of Means  
   σ        =    Standard Deviation of single observations  
   ∑( )f        =    total number of observations in sample.     

   1.2.7    What  a re  c onfi dence  l imits? 

 So far we have used the parameters of small 
samples, such as the Mean (  x) and Standard 
Deviation (S), to predict the parameters of the 
populations from which these samples were 
obtained. Let us assume for a moment that the 
Standard Deviation (S) of a small sample of size 
10 is 2.4. Then using equation  [1.5] , the Standard 
Deviation of the population is predicted to be:

   σ = − =2 4 10 10 1 1 2. [ /( )] / 2.53   

 Of course, we have no reason to believe that the 
Standard Deviation of the population ( σ ) is 
exactly 2.53; we have simply estimated it to be 
very close to that value. It is frequently desira-
ble to know the probability that a certain esti-
mate based on a small sample is in fact correct. 
Similarly, we may wish to ascertain the actual 
probability that a certain observation (or mean) 

     Figure 1.8     Standard normal distribution.  
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following form in terms of the calculated 
Mean (  x), the Mean (x ’ ) for which a probabil-
ity is to be determined, and the Standard 
Deviation of Means ( σ  m ):

    ± = − ′z x m( )/x σ     [1.10]  

where:  

    x       =    the Mean  
  x ’        =    a Mean  
  σ  m        =    the Standard Deviation of Means.         

  Table 1.4    The normal probability integral A(z). 

   z     0     1     2     3     4     5     6     7     8     9  

   0.0     .5000    .5040    .5080    .5120    .5160    .5199    .5239    .5279    .5319    .5359  
   0.1     .5398    .5438    .5478    .5517    .5557    .5596    .5636    .5675    .5714    .5753  
   0.2     .5793    .5832    .5871    .5910    .5948    .5987    .6026    .6064    .6103    .6141  
   0.3     .6179    .6217    .6255    .6293    .6331    .6368    .6406    .6443    .6480    .6517  
   0.4     .6554    .6591    .6628    .6664    .6700    .6736    .6772    .6808    .6844    .6879  
   0.5     .6915    .6950    .6985    .7019    .7054    .7088    .7123    .7157    .7190    .7224  
   0.6     .7257    .7291    .7324    .7357    .7389    .7422    .7454    .7486    .7517    .7549  
   0.7     .7580    .7611    .7642    .7673    .7704    .7734    .7764    .7794    .7823    .7852  
   0.8     .7881    .7910    .7939    .7967    .7995    .8023    .8051    .8078    .8106    .8133  
   0.9     .8159    .8186    .8212    .8238    .8264    .8289    .8315    .8340    .8365    .8389  
   1.0     .8413    .8438    .8461    .8485    .8508    .8531    .8554    .8577    .8599    .8621  
   1.1     .8643    .8665    .8686    .8708    .8729    .8749    .8770    .8790    .8810    .8830  
   1.2     .8849    .8869    .8888    .8907    .8925    .8944    .8962    .8980    .8997    .9015  
   1.3     .9032    .9049    .9066    .9082    .9099    .9115    .9131    .9147    .9162    .9177  
   1.4     .9192    .9207    .9222    .9236    .9251    .9265    .9279    .9292    .9306    .9319  
   1.5     .9332    .9345    .9357    .9370    .9382    .9394    .9406    .9418    .9429    .9441  
   1.6     .9452    .9463    .9474    .9484    .9495    .9505    .9515    .9525    .9535    .9545  
   1.7     .9554    .9564    .9573    .9582    .9591    .9599    .9608    .9616    .9625    .9633  
   1.8     .9641    .9649    .9656    .9664    .9671    .9678    .9686    .9693    .9699    .9706  
   1.9     .9713    .9719    .9726    .9732    .9738    .9744    .9750    .9756    .9761    .9767  
   2.0     .9772    .9778    .9783    .9788    .9793    .9798    .9803    .9808    .9812    .9817  
   2.1     .9821    .9826    .9830    .9834    .9838    .9842    .9846    .9850    .9854    .9857  
   2.2     .9861    .9864    .9868    .9871    .9875    .9878    .9881    .9884    .9887    .9890  
   2.3     .9893    .9896    .9898    .9901    .9904    .9906    .9909    .9911    .9913    .9916  
   2.4     .9918    .9920    .9922    .9925    .9927    .9929    .9931    .9932    .9934    .9936  
   2.5     .9938    .9940    .9941    .9943    .9945    .9946    .9948    .9949    .9951    .9952  
   2.6     .9953    .9955    .9956    .9957    .9959    .9960    .9961    .9962    .9963    .9964  
   2.7     .9965    .9966    .9967    .9968    .9969    .9970    .9971    .9972    .9973    .9974  
   2.8     .9974    .9975    .9976    .9977    .9977    .9978    .9979    .9979    .9980    .9981  
   2.9     .9981    .9982    .9982    .9983    .9984    .9984    .9985    .9985    .9986    .9986  
   3.0     .9987    .9987    .9987    .9988    .9988    .9989    .9989    .9989    .9990    .9990  
   3.1     .9990    .9991    .9991    .9991    .9992    .9992    .9992    .9992    .9993    .9993  
   3.2     .9993    .9993    .9994    .9994    .9994    .9994    .9994    .9995    .9995    .9995  
   3.3     .9995    .9995    .9996    .9996    .9996    .9996    .9996    .9996    .9996    .9997  
   3.4     .9997    .9997    .9997    .9997    .9997    .9997    .9997    .9997    .9998    .9998  
   3.5     .9998    .9998    .9998    .9998    .9998    .9998    .9998    .9998    .9998    .9998  
   3.6     .9998    .9998    .9999    .9999    .9999    .9999    .9999    .9999    .9999    .9999  

 Areas under the Normal Distribution Curve are 
frequently needed and are therefore widely 
tabulated (Table  1.4 ).   

 Let us denote by  A(z)  the area under the 
Normal Distribution curve from 0 to  z , where  z  
is any number (i.e.,  z  may have a positive, nega-
tive, or zero value). As shown in Figure  1.9 , 
some Normal Distribution tables give the value 
of  A(z)  for positive values of  z  in steps of 0.01 
from  z     =    0 to  z     =    0.5, and others give the value 
of  A(z)  from  z     =    0.5 to  z     =    1.0, depending on 
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limits of the Mean compressive strength of all 
of the poured concrete deduced from this large 
sample of 121 test cylinders.

   
Sample Mean x psi

Standard Deviation psi
( )
( )

′ =
=

2160
252σ

  

      Step (1):       Apply equation  [1.8]  to determine the 
Standard Deviation of the Mean ( σ  m ). 

    

σ σ
σ

m

m

f= ∑
=

[ / ( )]

[ / ]

/

/

1 2

1 2252 121
sm = 23 psi

   

    Step (2):       Apply equation  [1.10]  to determine the 
95 percent confi dence limits of the Mean 
compressive strength of the whole popula-
tion (  x). 

    ± = − ′z (x x )/ mσ      

 Transposing equation  [1.10]  to make (x) the 
subject of the equation, we obtain:

   x x  m= ′ ± z ( )σ   

 The value of  z  is obtained for the required 95 
percent probability, as shown in Figure  1.10 , to 
be 0.975.   

 The corresponding  z -  value for a probability 
of 0.975 is given in Table  1.4  as 1.96; therefore, 
substituting in the transposed equation:

   

x x  
x
x

= ′ ±
= ± ×
= ±

z m( )
( . )
σ

2160 1 96 23
2160 45

  

 Accordingly, the 95 percent confi dence limits of 
the Mean compressive strength of all of the 
poured concrete in the dam are between  2115    psi 
and  2205    psi.   

whether the area under the curve is measured 
from the Mean or from the left side. It is readily 
seen that Table  1.4  is of table type (1) in Figure 
 1.9  and therefore starts with an  A(z)  value of 0.5 
(as opposed to 0.0) in the top left - hand corner 
of the table.   

 Summarizing, we conclude that equation 
 [1.9]  is always used to fi nd the probability that 
a single random observation may occur in a 
population. Equation  [1.10]  is used to fi nd the 
bounds of the Mean of a population.  

   1.2.8    Predicting the  s trength of  c oncrete 

 On a large concrete dam construction project, 
121 concrete test cylinders were taken and sub-
jected to compressive strength tests, with the 
results shown below. What is the probability 
that a random test cylinder will have a compres-
sive strength of more than 1800   psi?

   

Mean compressive strength x  psi
Standard Deviation 

( )
(

= 2160
σ))

( )
=
=

252
18001

 psi
Random observation x  psi

 

   

Apply equation 

z

[ . ]:
( )/
(

1 9
1800 2160 252

3

± z = (x x) / 1 - s
± = −
± = −

z

660 252)/ )
z = 1.43

  

 From Table  1.4  we obtain a probability of 0.9236 
for a  z  - value of 1.43. Thus the probability of 
obtaining a strength greater than 1800   psi is 
92.36% (i.e., approximately 92 percent). 

 For the same 121 concrete test cylinders of the 
above example, fi nd the 95 percent confi dence 

     Figure 1.9     Normal distribution table formats.       Figure 1.10     Confi dence limits of the mean 
compressive strength of concrete.  
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agreement on the volume measure, the  gallon , 
was not reached until the early nineteenth 
century. Until then there existed the different 
ale, wine, and corn  gallons  (Connor,  1987 ). 

 The US adopted the English system of weights 
and measures, with some specifi c exceptions. 
For example, the wine - gallon of 231 cubic inches 
was adopted in preference to the English  gallon  
of 277 cubic inches. France offi cially adopted 
the metric system in 1799, with the  metre  1  as the 
unit of length. The  metre  was defi ned as one 
ten - millionth part of the quarter of the circum-
ference of the Earth. Later this basis for defi ning 
a standard  metre  was replaced by a more exact 
and observable physical phenomenon, 2  as the 
metric system became the  Syst è me International 
(SI)  (i.e., le Syst è me International d ’ Unit é s) in 
1960. Today almost all nations, with the notable 
exception of the US, have adopted the SI system 
of units (United Nations,  1955 ). However, even 
in the US the scientifi c community has to all 
intents and purposes unoffi cially migrated to 
the SI standard. 

  SI units of measurement:  The SI standard is 
based on seven categories of unit, from which 
many other units are derived. 

   1.3    Foundational  c oncepts in  p hysics 

 The chapters that follow assume some knowl-
edge of the scientifi c concepts and principles 
that underlie current understanding of the 
nature of the physical phenomena that we refer 
to as heat, light, and sound, and how these envi-
ronmental stimuli are perceived by us as human 
beings. Most of these stimuli have been studied 
for centuries as the various specialized fi elds of 
science emerged. In the following sections a few 
selected members of this foundational group of 
scientifi c principles are briefl y explained in lay-
person terms. We will start with units of meas-
urement because they are fundamental to all 
scientifi c and technical endeavors (Cardarelli, 
 1997 ). 

   1.3.1    Units of  m easurement 

 Measurement of length and volume became an 
important early concern as civilization evolved 
with an increasing focus on agriculture, trade, 
specialization, and collective aspirations that 
led to more and more community endeavors. 
The earliest length measurement of major con-
sequence was most likely the Egyptian  cubit , 
which was based on the length of the human 
arm from the elbow to the fi nger tips. While this 
provided a basis for measuring relatively short 
lengths such as those associated with plants, 
animals, and manmade artifacts, two additional 
needs soon surfaced. First, as communities 
grew in size and infl uence the need for stand-
ardization became paramount. By 2500 BC the 
Egyptians had already seen the need for the 
establishment of a Master Cubit made of marble. 
Second, as the roots of science emerged so also 
did the need for the accurate measurement of a 
host of additional quantities beyond length, 
area, volume, and time (Klein,  1975 ). 

 The national standardization of units of 
measurement progressed somewhat more 
slowly than might have been expected. In 
England, units of measurement were not effec-
tively standardized until the early thirteenth 
century; however, deviations and exceptions 
continued long thereafter. For example, total 

   Category     Name     Abbreviation  

  Length    metre    m  
  Mass    kilogram    kg  
  Time    second    s  
  Electric current    ampere    A  
  Temperature    Kelvin    K  
  Amount of substance    mole    mol  
  Luminous intensity    candela    cd  

 Each of these base units is clearly defi ned as a 
fraction of some measurable physical phenom-
enon. For example, the  kilogram  is based on the 
weight of a platinum – iridium cylinder main-
tained under constant environmental condi-
tions in S è vres, France, and the  second  is defi ned 
as the length of time taken by 9   192   631   770 
periods of vibration of the caesium - 133 atom. 
SI units that are derived from these base unit 
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  Apothecaries ’  measures:  minim ,  dram ,  fl uid ounce , 
and  pint .  

  Apothecaries ’  weights:  grain ,  scruple ,  dram , 
 ounce , and  pound ( LB ) .    

 It should be noted that among the mass units 
there are various versions of the  ton  unit, all of 
which are different from the original UK  ton . A 
standard US  ton  is equal to 2000    lb  instead of 
the original 2240    lb , so a US  ton  or  short ton  is 
equal to 2000    lb , while a US  metric ton  is equal 
to 1000    lb , and a US  long ton  is equal to 2240    lb . 
To make matters even more confusing, a US 
 measurement ton  has nothing to do with mass, 
but refers to a volume of 70  cf . 

 Conversion factors that must be applied to 
convert one unit of measurement to another are 
readily available in the form of published tables. 
Horvath  (1986)  has included conversion factors 
covering both historical and current units. 
Cardarelli  (1997)  provides more than 10   000 
conversion factors in his more recent publica-
tion, which claims to be the most complete set 
of tables dealing with unit conversion.  

   1.3.2    Temperature  s cales 
and  t hermometers 

 Temperature provides a measure of the degree 
of hotness or coolness as perceived by our 
human senses. The desire to measure the pre-
cise degree of this sensation has led to a rich 
history of temperature scales and measurement 
instruments, the latter commonly referred to as 
thermometers. 

 As might be expected, the various physical 
states of water have served as a convenient set 
of reference points up to the present day for 
defi ning alternative temperature scales. One of 
the earliest records of a temperature scale dates 
back to 170 AD when Galen, in his medical writ-
ings, proposed four degrees of heat and four 
degrees of cold on either side of boiling water 
and ice. In 1610 Galileo constructed a simple 
apparatus consisting of a glass tube with a bulb 
at one end and open at the other end. Holding 
the tube upright, he placed the open end into a 

categories include: the  farad (F)  for electrical 
capacitance; the  hertz (Hz)  for the frequency of 
a periodic vibration such as sound; the  joule (J)  
for work and energy; the  newton (N)  for force; 
the  ohm ( Ω )  for electrical resistance; the  pascal 
(Pa)  for pressure; the  volt (V)  for electric poten-
tial; and the  watt (W)  for the rate of doing work 
or power. 

 In addition, the SI standard utilizes specifi c 
prefi xes to serve as convenient multiplication 
factors for increasing or reducing the relative 
size of these units in multiples of 1000. Com-
monly used prefi xes are  K  for thousand,  M  for 
million,  G  for billion,  m  for thousandth,   μ   for 
millionth, and  n  for billionth. Therefore,  kW  
stands for kilowatt or 1000 watt, and  mm  stands 
for millimeter or 1000th of a metre. 

  US system of units:  Following the offi cial 
adoption of the SI metric system of measure-
ment by Britain in 1995, the US stands virtually 
alone with its continued use of what was origi-
nally known as the United Kingdom (UK) 
System of Measurements. With only a few spe-
cifi c differences, the US system of measure-
ments is the same as the pre - 1995 UK system. 
However, whereas in the UK system the base 
measures of  yard ,  pound , and  gallon  were origi-
nally defi ned by physical standards, in the US 
system these are all now defi ned by reference 
to the SI  metre ,  kilogram , and  litre . The US system 
recognizes nine distinct categories of units, as 
follows: 3  

  Length:  inch ( IN ) ,  foot ( FT ) ,  yard ,  furlong , and 
 mile .  

  Area:  square inch ( SI ) ,  square foot ( SF ) ,  acre ,  square 
mile  or  section , and  township  (i.e., 36 square 
miles or 36 sections).  

  Volume:  cubic inch ( CI ) ,  cubic foot ( CF ) , and  cubic 
yard .  

  Capacity (dry):  pint ,  quart ,  peck , and  bushel .  
  Capacity (liquid):  fl uid ounce ,  gill ,  pint ,  quart , and 

 gallon .  
  Mass:  grain ,  ounce ,  pound ( LB ) ,  stone ,  hundred-

weight , and  ton .  
  Troy weights:  grain ,  ounce ,  pennyweight , and 

 pound ( LB ) .  
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100 °  as the freezing point of water. Maintaining 
Linnaeus ’  reversal the name  Centigrade  was 
replaced by  Celsius  in 1948. 4  The conversion of 
Fahrenheit to Celsius degrees and vice versa 
proceeds as follows:

    ° = ° −C  F5 9 32/ ( )     [1.11]  

    ° = ° +F  C9 5 32/ ( )     [1.12]   

 There is one other scale that has relevance to 
temperature. It is related to the concept of a 
 thermodynamic temperature . In 1780 the French 
physician Jacques Charles (1746 – 1823) demon-
strated that for the same increase in tempera-
ture all gases exhibit the same increase in 
volume. In other words, the coeffi cient of ther-
mal expansion of all gases is very nearly the 
same. Using this fact it is possible to devise 
a temperature scale that is based on only a 
single fi xed point, rather than the two fi xed 
points that are necessary for the Fahrenheit 
and Celsius scales. This temperature is referred 
to as the  thermodynamic temperature  and is 
now universally accepted as the fundamental 
measure of temperature. The single fi xed point 
in this temperature scale is an  ideal gas  pres-
sure of zero, which is also defi ned as  zero tem-
perature . The unit of measurement on this 
scale is called the  Kelvin , named after Lord 
Kelvin (i.e., William Thompson, 1824 – 1907). 
The symbol used is  K  without the degree ( ° ) 
symbol. To convert degrees Celsius to Kelvin 
units we simply add 273.

    K = C + 273°     [1.13]  

    K = 5 / 9 ( F 32)+ 273° -     [1.14]  

    °C = K 273-     [1.15]  

    °F = 9 / 5 (K) 241-     [1.16]    

   1.3.3    Objective and  s ubjective 
 m easurements 

 With very few exceptions, buildings are designed 
and constructed to be occupied by human beings. 
Therefore, in the study of building science we 
are concerned as much with how the human 

container of wine, and extracted a small amount 
of the trapped air so that the wine would rise 
some distance above the level of the wine con-
tainer inside the glass tube. The contraction and 
expansion of the air above the column of wine 
with changes in temperature would force the 
level of the wine in the glass tube to likewise 
rise and fall, correspondingly. The fi rst attempt 
to use a liquid, rather than a gas, for recording 
temperature is credited to Ferdinand II, Grand 
Duke of Tuscany, in 1641. He proposed a device 
that held a quantity of alcohol in a sealed glass 
container with gradations marked on its stem. 
However, his device failed to reference the scale 
to a fi xed point such as the freezing point of 
water. 

 In 1724, the Dutch instrument maker Gabriel 
Fahrenheit used mercury as a temperature -
 measuring medium. Mercury has several 
advantages as a thermometric medium. First, it 
has a relatively large coeffi cient of thermal 
expansion that remains fairly constant (i.e., 
linear) over a wide range of temperatures. 
Second, it retains its liquid form at tempera-
tures well below the freezing point of water 
and well above the boiling point of water. Third, 
it does not easily separate into bubbles that 
might adhere to the glass surface as the column 
of mercury rises and falls with increasing 
and decreasing temperatures. On his scale, 
Fahrenheit fi xed the boiling and freezing 
points of water to be 212 °  and 32 ° , respectively, 
providing an even 180 divisions in between. 
The Fahrenheit temperature scale was adopted 
as the basis of measuring temperature in 
the British system of units, which has now 
become the US system of units. Measurements 
recorded with this scale are referred to as 
 degrees Fahrenheit ( ° F) . 

 In 1745 Carolus Linnaeus of Sweden pro-
posed a temperature scale in which the freezing 
point of water is fi xed as 0 °  and the boiling 
point of water is fi xed at 100 ° , with 100 divi-
sions in between these two reference points. 
This reversed the temperature scale that had 
been proposed a few years earlier by Anders 
Celsius, who had set 0 °  as the boiling point and 
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 Methods that are normally used to collect 
objective data include: measurements taken 
with an instrument; recorded data (e.g., sound, 
light, heat, humidity, and air movement); and 
direct, objective measurements of a physical 
product, or natural event, phenomenon, or 
object. Such measurements are reproducible and 
factual. However, the methods used for collect-
ing subjective data are quite different in nature. 
They include ranking and rating methods, ques-
tionnaires, and interviews. The interpretation of 
subjective data must be undertaken with a great 
deal of caution because they are subject to 
human bias (Cushman and Rosenberg,  1991 ). 
For this reason alone it is considered good prac-
tice to collect both objective and subjective data 
during experiments, surveys, and assessments 
of environmental conditions involving human 
subjects.  

   1.3.4    Stress and  s train 

 The relationship between stress and strain is 
one of the fundamental concepts in the fi elds of 
material science and structural engineering. 
When a material is subjected to some kind of 
external force, then it will in some manner 
respond by changing its state. For example, if 
we walk on a suspended platform, such as the 
concrete fl oor of a multistory building, then the 
force applied by our weight will produce a 
physical strain within the concrete material. The 
resulting strain may result in a visible defl ection 
of the fl oor. Similarly, if we blow air into a 
rubber balloon, then the air pressure will result 
in a stretching of the balloon material, with the 
result that the balloon increases in size. If we 
continue to blow air into the balloon, then even-
tually the strain in the rubber material will 
exceed the strength limit of the material and the 
balloon will burst. 

 In 1678 the English scientist Robert Hooke 
showed by means of a series of experiments that 
within the elastic range of a material the degree 
of strain produced is directly proportional to 
the amount of stress imposed. This relationship 
has come to be referred to as Hooke ’ s Law and 
is easily verifi ed with a very simple apparatus. 

occupants of buildings perceive their environ-
ment as we are with the physical nature of the 
environment itself. While the perception of heat, 
light, and sound is of course directly related to 
the stimuli that are received and processed in the 
human cognitive system, the measurement of 
what was received and what is perceived may 
differ widely. For example, while the amount of 
sound produced by a person speaking on a cell 
phone in a public place such as a restaurant can 
be measured objectively with a sound - level 
meter, the degree of annoyance that this tele-
phone conversation may cause to nearby cus-
tomers depends very much on the sensitivity, 
current activity and emotional state of each 
person who is forced to overhear the telephone 
conversation. These individual perceptions are 
subjective reactions. 

 Objective information can normally either be 
measured with an instrument, or counted. It is 
typically information that is observable and 
factual. Examples include the measurement of 
light with a light meter, sound with a sound -
 level meter, and temperature with a thermom-
eter. If the instrument is true and properly 
calibrated, then the measurement of exactly the 
same sound should not vary from one sound -
 level meter to another. However, the subjective 
perception of that sound may very widely from 
one person to another, and even for the same 
person under different circumstances. 

 Both objective and subjective data can be col-
lected in experiments or in assessing some par-
ticular aspect of a building environment. For 
example, based on complaints received about 
the stuffi ness of a particular building space 
from the occupants of a new building, it may 
become necessary to conduct a survey of opin-
ions to determine the degree of dissatisfac-
tion. The data collected will likely be based 
on responses to a questionnaire and therefore 
subjective in nature. However, the survey 
may be followed by a systematic assessment 
of actual environmental conditions, including 
measurement of the density of occupation, 
temperature, relative humidity, and degree of 
air movement in the space. All of these are 
objective measurements. 
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Since it is of signifi cance in some aspects of the 
thermal environment  –  in particular in respect 
to the utilization of solar energy, and also in 
respect to artifi cial light sources  –  it warrants 
some explanation. When the temperature of 
any material is raised above the temperature of 
its surroundings it will radiate heat to its sur-
roundings. 5  On the other hand, when an object 
is at a lower temperature than its surroundings, 
then the surroundings will radiate heat to the 
object, which will absorb some of the heat and 
refl ect and transmit the remaining heat. A  black 
body  is a theoretical object that absorbs all of the 
radiant energy that falls on it. It is an idealized 
concept, because no such material exists in the 
real world. The material that comes closest is 
the graphite form of carbon, which absorbs 
close to 97 percent of the radiation that is inci-
dent on its surface. 

 Therefore, an ideal solar collector surface 
would be a black body. Water at any depth is, 
for practical purposes, considered to act as a 
black body and this phenomenon underlies the 
principle of solar ponds. A solar pond is essen-
tially a shallow pool of water that may or may 
not have a single glass sheet placed at a small 
distance above the water surface for added effi -
ciency. Because of the near black - body charac-
teristics of the water, even without the single 
glazing, the pond acts as a very effi cient absorber 
of solar heat radiation. 

 In the case of a standard fl at - plate solar col-
lector, the upper surface of the metal plate is 
typically provided with a matte black fi nish. 
However, sometimes a more expensive  selective 
surface  coating with special heat - absorbing 
characteristics is applied. A  selective surface  is 
a surface fi nish that has a large solar heat 
absorptance and a small solar emittance. 6  

 A black body is also a radiator of heat if its 
temperature is higher than the temperature of 
its surroundings. The radiation produced con-
sists of a continuous spectrum of wavelengths. 
In fact, a black body at any temperature will 
emit energy at all wavelengths, but to varying 
amounts. As shown in Figure  1.11 , the theoreti-
cal energy emission curve is asymptotic 7  to the 
 X -  axis.   

If we freely suspend a thin metal wire from a 
nail at some height above the ground and then 
progressively load the lower end of the wire 
with more and more weights, we will observe 
that the wire will slightly increase in length 
after each weight has been added. When the 
increases in weight and length are plotted on 
graph paper a straight line will be the result, 
indicating a linear relationship between the 
load (i.e., stress) imposed and the resulting 
defl ection (i.e., strain). 

 The relationship between stress (i.e., stimulus) 
and strain (i.e., reaction) applies generally to all 
kinds of situations, although the relationship is 
not necessarily linear when we move out of the 
fi eld of material science into the biological 
domain. For example, in the fi eld of building 
lighting increases in illumination level tend to 
increase the ability to see details. For this reason 
the recommended task illumination level for fi ne 
machine work (e.g., sewing) is much higher than 
for casual reading. However, if we continue to 
increase the illumination level, then a point will 
eventually be reached when the light level is 
so intense that we can no longer see any details. 
This condition is referred to as  disability glare . 

 Similarly, the thermal environment can pro-
duce stresses that will produce physiological 
strain in the occupants of buildings. Examples 
of such strain include an increased heart rate, 
the dilation or constriction of blood vessels, and 
perspiration or shivering. It is important to note 
that the stress imposed by a building environ-
ment is cumulative. For example, slightly inad-
equate lighting conditions in a building space 
may not by themselves produce any observable 
human discomfort. However, when this condi-
tion is coupled with a slightly elevated room 
temperature and perhaps also a moderately 
excessive level of background noise, the result-
ant cumulative strain may exceed the comfort 
level of the building occupant by a dispropor-
tionately high degree.  

   1.3.5    Black -  b ody  r adiation 

 A  black body  is a concept in physics that the non -
 technical reader is unlikely to be familiar with. 
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Standard  black - body radiation  curves have been 
drawn for each temperature, based on the 
Kelvin temperature scale. In this way, for 
example, the spectral distribution of an artifi cial 
light source can be rated according to its equiv-
alent black - body radiation curve. This is referred 
to as the  color temperature  of the light source, 
because it characterizes the color rendition 
properties 8  of the light source. As the tempera-
ture of the black body increases, the maximum 
of the radiation spectrum moves toward the 
shorter wavelengths (Figure  1.12 ).   

 Therefore, at some temperature the radiation 
spectrum of a black body will maximize the 
amount of light produced, because light is a 
narrow bandwidth within the full electromag-
netic spectrum of radiation. This ideal color 
temperature is around 6000   K. 9    

  Endnotes 

  1.     The US has adopted the alternative spelling of 
 meter .  

  2.     In the SI standard the  metre  is defi ned as the dis-
tance light travels in 1/299 792 458th of a second.  

  3.     Where abbreviations are shown they refer to the 
abbreviations used throughout this book (in the 
absence of a standard US notational convention).  

  4.     Apart from the name change, there are also 
some very small differences in the precise tem-
perature values of the freezing and boiling points 
of water. Under standard atmospheric condi-
tions the boiling point of water is defi ned on the 
Celsius scale as 99.975 ° C, as opposed to 100 °  on 
the Centigrade scale.  

  5.     This of course applies only to those surfaces of the 
material that are not in direct contact with the 
surfaces of other objects. In the case of surfaces 
that touch each other heat is transferred by con-
duction from the object that is at a higher tempera-
ture to the object that is at a lower temperature.  

  6.     The effi ciency of the fl at - plate solar collector 
increases if either the absorptance increases or 
the emittance decreases. A maximum effi ciency is 
reached when the emittance is zero. In the case of 
a  selective surface  the absorptance is greater than 
the emittance, while for a  non - selective surface  the 
absorptance is equal to the emittance (Kreider and 
Kreith,  1975 , pp. 42 and 96).  

 In other words, at very long wavelengths the 
curve never quite reaches zero emission. 
However, the actual amount of radiation varies 
both with the wavelength and the temperature 
of the  black body . The precise radiation spectrum 
produced by a black body can be calculated 
mathematically and is referred to as the  black -
 body radiation  for that temperature (Figure  1.12 ). 

     Figure 1.11     Black body curve for 5000   K.  

     Figure 1.12     The black - body radiation spectrum 
at increasing temperatures with the maximum 
emission wavelength moving toward the visible 
range.  
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  7.     An  asymptotic curve  never crosses the axis, but 
comes infi nitesimally close to that axis.  

  8.     The term  color rendition  refers to the appearance of 
colored surfaces under a light source with a par-
ticular spectral distribution. For example, a red 
surface under a blue light will appear almost 
black, because most of the blue light is absorbed 

by the red surface. However, a red light will 
accentuate the redness of a red surface because 
much of the red light will be refl ected.  

  9.     As explained in a later chapter on artifi cial light-
ing,  color temperature  must not be confused with 
the operating temperature of an artifi cial light 
source.     

  
 
 
 
 
 
 
 
 
 
 
  
  

 

 

   


