Technical Underpinnings in Mathematics
and Physics

The field of building science is based on scientific concepts and principles. This does not mean,
however, that an in-depth knowledge of science and mathematics is necessarily required for the
application of sound building-science principles during the building design process. In most cases an
understanding of the higher-level technical notions involved is sufficient for the designer to make
the necessary decisions during the early design stages, when the conceptual design solution is for-
mulated. However, it is most important that those decisions are sound, so that they can be translated
into detailed solutions during later design stages by consultants with specialized expertise.
Accordingly, the purpose of this book is to describe and explain the underlying concepts and
principles of the thermal, lighting, and acoustic determinants of building design, without delving
into the detailed methods that are applied by engineers and other technical consultants to design
and implement detailed system solutions. Nevertheless, there are some basic mathematical methods
and scientific principles that the reader should be familiar with to easily follow the largely qualita-
tive treatment of the subject matter of the subsequent chapters. The particular mathematical
methods that are briefly reviewed include elementary linear equations and normal distribution
statistics. In respect to Physics the fundamental concepts related to temperature scales and black
body radiation have been selected for explanation in this introductory chapter, because they form
the basis of discussions related to the thermal determinants of building design and artificial light

sources, respectively.

1.1 Linear equations

Many problem systems in environmental design,
planning, engineering, and management may
be defined in terms of a set of equations or
algorithms that can be solved mathematically.
Naturally, the method of solution, the kind of
solutions, and the question of solvability (i.e.,
whether or not the set of equations has a solu-
tion) will depend largely on the types of equa-
tions involved. We shall therefore briefly describe
a simple, but also quite typical, type of equation
known as the linear equation.
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Also referred to as first-degree equations,
linear equations obey the following two rules:

Rule 1: All variables or unknown quantities
are to the exponent 1. Therefore, the equation
x* — 4y =1 is not a linear equation (because the
variable x is raised to power 2).

Rule 2: Variable or unknown quantities
appear only once in each term. For example, in
the equation ax + by + cz = k, each of the terms
on the left side of the equation contains a con-
stant (i.e., 4, b, and ¢) and a variable (i.e., x, y,
and z), but there is never more than one variable
in any of the terms. Therefore this is a linear
equation with three variables. However, in the
equation 8xy = —14 the variables x and y appear
in the same term and therefore this is not a
linear equation. If we were to plot this equation
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on graph paper with y on the vertical axis and
x on the horizontal axis, for multiple values of
x and y, then the resulting graph would be a
curve. On the other hand a linear equation, by
virtue of its name, will always result in a straight
line when plotted on graph paper.

The general form of a linear equation is A;X; +
A X, + Az X5+ ... AiX;=C, where A; to A; and C
are constants and X; to X, are variables. The
following are examples of linear equations and
all of these will result in straight lines when
plotted on graph paper:

7x =-16; or 2x — 6y = 8; or x — 3y + 17z = 3.

There is another very useful rule in Algebra
that applies to not just linear equations, but to
all equations.

Rule 3: Whatever operation is applied to one
side of an equation must also be applied to the
other side. Restating this rule in a more positive
form: any mathematical operation such as mul-
tiplication, division, addition, or subtraction
can be applied to an equation as long as it is
applied to both sides of the equation. We will
use this rule repeatedly in Section 1.1.2 to solve
equations involving two unknowns.

1.1.1  What are unknown quantities?

It is generally considered convenient in Algebra
to categorize equations according to the number
of unknown quantities (or more commonly the
number of unknowns). This refers simply to
the number of different variables contained in
the equation. For example:

12x -16=0 has 1 unknown
2x + 17y = —66
—114x + 212y =22z +9 has 3 unknowns

A Xy + AX, +
A3X3 + ... AiXi = C

has 2 unknowns

has i unknowns

A set or system of equations that are to be con-
sidered together for the solution of the same
problem are known as simultaneous equations. It
is a fundamental and very important rule in
mathematics that to be able to solve a system of

simultaneous equations there must be at least as
many equations as there are unknowns.

1.1.2 Simultaneous equations
with two unknowns

A problem that has only two linear variables
can be solved quite easily in Algebra as a set of
two simultaneous equations. The approach is to
eliminate one of the two unknowns by utilizing
one of the following three alternative methods:

Method A: Elimination by addition or sub-
traction. Multiply one or both of the equations
by a constant and then add or subtract the equa-
tions to eliminate one of the unknowns. For
example, solve the following two equations
for the unknowns x and y: 5x + 2y =32 and
2x—-y=2.

Sx+2y =32 [1]

4x -2y =4 [2] multiply equation
[2] by 2
9x =36 add equation [2] to
equation [1]
x=4 divide both sides of
the equation by 9
20 +2y =32 substitute for x =4 in
equation [1]
2y =12 subtract 20 from both
sides of the equation
y =6 divide both sides of

the equation by 2

Method B: Elimination by substitution.
Using one of the equations, find the value of one
unknown in terms of the other, then substitute.
For example, solve the following two equations:
2x + 4y = 50 and 3x + 5y = 66:

2x +4y =50 [1]
3x + 5y =66 [2]
2x =50 — 4y subtract 4y from
both sides of

equation [1]
x=25-2y dividebothsides

by 2 to find x

interms of y
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substitute
for x in
equation [2]

3(25 — 2y) + 5y = 66

75— 6y + 5y = 66 expand the
brackets
on the left
side

subtract 75
from both
sides of the
equation

_y=_9

multiply both
sides of
the equation
by -1
substitute for
y=9in
equation [1]

2x + (4 x9) =50

2x +36 =50 expand the
brackets
on the left
side

subtract 36
from both
sides of the
equation

divide both
sides of
the equation
by 2

2x =14

Method C: Elimination by comparison. From
each equation find the value of one of the
unknowns in terms of the other, and then form
an equation of these equal values. For example,
solve: 3x + 2y = 27 and 2x — 3y = 5:

3x +2y =27 [1]
2x-3y=>5 [2]
3x =27 -2y subtract 2y
from both
sides of

equation [1]

x=(27-2y)/3 divide both sides
of the equation
by 3

2x=5+3y add 3y to both
sides of
equation [2]

divide both sides
of the equation
by 2

equate the two
values of x

x=(5+3y)/2

(27 -2y)/3=(5+3y)/2
27 =2y =3(5+3y)/2 multiply both
sides of the
equation by 3
54 — 4y =15+9y multiply both
sides of the
equation by 2
subtract 54 from
both sides of
the equation

—4y = -39 + 9y

-13y = -39 subtract 9y from
both sides of
the equation

13y =39 multiply both
sides of the
equation by —1

divide both sides
of the equation
by 13

substitute for
y=3in
equation [1]

3x+6=27

3x=21 subtract 6 from
both sides of

the equation

divide both sides
of the equation
by 3

In all of these examples we have dealt with
simultaneous equations that have only two
unknowns, and already the solution methods
described become rather tedious. In architec-
tural design, building science, and construction
management many of the problems encoun-
tered, such as the structural analysis of a build-
ing frame, or the analysis of an electrical circuit,
or the solution of a work-flow management
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problem, will often involve a set of linear equa-
tions with three or more unknowns. Such
systems of equations are normally solved using
methods that require the equations to be formu-
lated as a matrix of variables and constants, as
shown below.

ApXi+ApXy+.n.... ApX, =G
Ay Xi+ApXo+ ... A X, =G,
A Xi+ApnXy+.oi... A3 X, =Cs
+
A Xi+AnXo+ ... ALX, =C,
where:

Ay to A, are the known coefficients of the
unknowns (or variables);

C, to C, are the known constants;

X; to X, are the unknowns for which the equa-
tions are to be solved.

The subscripted format is also referred to as an
array, and is a very convenient mathematical
notation for representing problems that involve
many linear relationships.

1.2 Some statistical methods

The word statistics was first applied to matters
of government dealing with the quantitative
analysis of births, deaths, marriages, income,
and so on, necessary for effective government
planning. Today, statistics is applied in a
number of ways to any kind of objective or sub-
jective data, whether this be a small sample or
the total available information. There are basi-
cally two kinds of statistics:

Descriptive statistics deal with the classifica-
tion of data, the construction of histograms and
other types of graphs, the calculation of means,
and the analysis of the degree of scatter within
a given sample.

Inferential statistics may be described as the
science of making decisions when there is some
degree of uncertainty present (in other words,
making the best decision on the basis of incom-
plete information).

SAMPLE

@ Includes the heights of a small
number of users.

@ Carc is taken to choose a
representative sample.

* * - POPULATION " "'

. "L (Includes the height of eve PREDICTIONS
t )« potentialuser) Y @ Predictions about the

population are based on an
amalysis of the sample.,

Figure 1.1 Statistical sampling.

For example, a large contracting firm may
wish to embark on the manufacture of stand-
ard, mass-produced, precast concrete balus-
trades for staircases, balconies, and similar
structures. On the assumption that the required
height of a comfortable balustrade is directly
related to the heights of human beings, the con-
tracting firm considers it necessary to conduct
a survey of the heights of potential users in
various countries of the world. Obviously, to
measure the height of every potential user (even
if this were possible) would be very costly and
time-consuming. Instead, a small number of
potential users constituting a sample of the total
population are selected for measurement. The
selection is usually by a random process,
although a number of other kinds of sampling
procedure exist. However, what is most useful
and important is that on the basis of this rela-
tively small set of measurements we are able to
make predictions about the range and distribu-
tion of heights of persons in the sampled coun-
tries. The accuracy of our predictions will
depend more on the representativeness than the
size of the sample (Figure 1.1).

1.2.1 Ordering data

It is very difficult to learn anything by examin-
ing unordered and unclassified data. Let us
assume that in the example under considera-
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Table 1.1
(in inches).

Sample of the heights of persons

72 67 65 70 82 76 60 62 68 59
50 78 67 68 68 68 64 80 54 49
67 64 71 75 60 70 69 69 65 79
67 69 65 69 68 78 59 64 72 72
81 76 52 53 56 82 71 68 63 59
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Figure 1.2 Histogram (or bar chart).
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Figure 1.3 Distribution curve.

tion, the following sample (Table 1.1) of the
heights of persons has been collected (i.e., meas-
ured to the nearest inch):

These measurements may be represented
graphically in the form of a histogram (i.e., a bar
chart) or a distribution curve, as shown in
Figures 1.2 and 1.3, respectively.

To facilitate the preparation of either of these
two graphs it is convenient to prepare a fre-
quency distribution table, in which the meas-
urements are grouped into clearly defined
classes. Class limits are carefully chosen so that
no measurement can be allocated to more than
one class (see Table 1.2).

In addition to the construction of graphical
representations of data, there are a number of
arithmetically calculated measures of central

Table 1.2 Frequency distribution table.

Class no. Class limits Class frequency

45.5 to 50.5
50.5 to 55.5
55.5 to 60.5
60.5 to 65.5
65.5 to 70.5
70.5 to 75.5
75.5 to 80.5
80.5 to 85.5

OO Ul WN =
—
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tendency that are frequently used to convey a
quantitative sense of a set of data with a single
numerical value. Four of these are discussed
below in order of increasing importance:

Mid-Range is the value halfway between the
smallest and largest observation. For the sample
of human heights in Table 1.1 the mid-
range is calculated to be:

Mid-Range =(49+82)/2=65.5IN

Mode is defined as the observation in the
sample that occurs most frequently. This means,
of course, that some sets of data may not have
a mode because no single value occurs more
than once. In the sample shown in Table 1.1
there are several heights that occur more than
once.

Mode = 68 IN (occurs six times)

Median is defined as the middle observation
if the sample observations are arranged in order
from smallest to largest. Again, with reference
to the sample shown in Table 1.1: 49, 50, 52, 53,
54, 56,59, 59, 59, 60, 60, 62, 63, 64, 64, 64, 65, 65,
65, 67, 67,67, 67,68, 68, 68, 68, 68, 68, 69, 69, 69,
69,70, 70,71, 71,72, 72, 72, 75, 76, 76, 78, 78, 79,
80, 81, 82, 82

But the total number of observations in Table
1.1 is 50, which is an even number; therefore
there are two middle observations. Typically,
under these conditions the median is calculated
to be halfway between the two middle observa-
tions. In this case the two middle observations
are the same.

Median = (68 +68)/2 = 68 IN
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Mean (or Arithmetic Mean) is the average
value of the sample. It is calculated simply by
adding the values of all observations and divid-
ing by the number of observations. In reference
to Table 1.1:

Mean (xX) =3360/50=67.2 IN

The manual calculation of a mean using this
method tends to become tedious if the sample
is quite large, as it is in this case. Therefore, for
samples that contain more than 30 observations,
it is common practice to draw up a frequency
distribution table with an expanded set of
columns, as shown in Table 1.3 below.

where:

t = [group mid-value — assumed Mean (X,)] /
class interval (c);
X, = any assumed Mean (63 in this case);
¢ = the class interval (5 in this case).

Based on the frequency distribution table, the
true mean (X) of the sample is given as a func-
tion of an assumed mean (X,) plus a positive or
negative correction factor.

It should be noted that the smaller the class
interval, the more accurate the result will be. In
this case, with a class interval (c) of 5, the error
is 0.2 (or 0.3 percent).

1.2.2 The normal distribution curve

We have seen that frequency distributions are
of great value for the statistical analysis of data.
Moreover, there would appear to be consider-
able merit in the standardization of frequency
distributions leading, for example, to the tabu-
lation of coordinates and so on. In fact, such
systems have been devised, and one of them
relies on a rather distinctive natural phenome-
non. There are a large number of distributions
that appear to have a symmetrical, bell-shaped
distribution (e.g., the heights, intelligence, and
ages of persons) of the type shown in Figure 1.4.

This unique distribution, which is known as
the Normal Distribution Curve, or the Error

3
L4

Mean () =X, +c[SEO1/[Lf]  [11] & N
3 i Total Area = 1.0
Applying equation [1.1] to the sample of heights é :
shown in Tables 1.1 and 1.3, we calculate the 2z |
true mean (X) of the sample to be: El |
£ i
X =63+5 (40/50) - ! ,
X=63+4.0 Mean (% )
X =67.0 IN Figure 1.4 The normal distribution curve.
Table 1.3 Expanded frequency
Group Group f E () distribution table.
boundaries mid-value
45.5 to 50.5 48 2 -3 —6
50.5 to 55.5 53 3 -2 -6
55.5 to 60.5 58 6 -1 -6
60.5 to 65.5 63 8 0 0
65.5 to 70.5 68 16 +1 +16
70.5 to 75.5 73 6 +2 +12
75.5 to 80.5 78 6 +3 +18
80.5 to 85.5 83 3 +4 +12
Yf=50 S(ft) =40
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Figure 1.6 Standard deviations.

Law, or the Gaussian curve, occupies a promi-
nent position in statistical theory. It has the fol-
lowing characteristics:

® The total area under the normal distribution
curve is assumed to be unity (i.e., 1.0), as
shown in Figure 1.4.

® The exact shape of the curve may vary from
distribution to distribution, although the
area will always remain the same (Figure
1.5).

® The Normal Distribution Curve has been
arbitrarily divided into three major sections
(with subsections), so that judgments may be
made regarding the exact variation (i.e., the
shape of the curve) for each distribution.
These sections are defined as standard devi-
ations from the mean (Figure 1.6).

Accordingly, the Standard Deviation (SD) of a
sample provides a method for calculating the
amount of scatter or variation in a sample. For
example, we are readily able to distinguish

Assume: X2 = 24 (units)
S5.D. = 2 (units)

Assume: X1 = 24 (units)
S.D. = 5 (units)

Frequency of Occurrence
Frequency of Occurrence

i X
Mean (.TI ) Meun (¥ )
- 18.D. fzgalx +18D. x-18D. fedx+18D.

Figure 1.7 Two different normal distributions.

between the two Normal Distributions shown
in Figure 1.7, by reference to their standard
deviations.

For the first distribution 68 percent of the
sample observations lie between 19 units (i.e.,
24 — 5) and 29 units (i.e., 24 + 5). In the case of
the second distribution 68 percent of the sample
observations lie between 22 units (i.e., 24 — 2)
and 26 units (i.e., 24 + 2). Obviously, the first
distribution has greater variation among the
observations of the sample than the second dis-
tribution. The calculation of the standard devia-
tion of a sample is basic to virtually all statistical
procedures dealing with the Normal Distribution
Curve. It allows us to proceed with further pre-
dictions relating to the degree of scatter or vari-
ation likely to be encountered in the population
from which the sample was drawn, and the
probable accuracy of these predictions.

1.2.3 The standard deviation of a sample

There are basically three methods available for
the calculation of the Standard Deviation of a
sample. The first method is used whenever a
Frequency Distribution table has been drawn
up (i.e.,, when the number of observations in
the sample is large). In reference to the sample
of the heights of persons discussed previ-
ously in Section 1.2.1 (Table 1.1), the Frequency
Distribution table may be extended to calculate
the Standard Deviation of the sample of 50
measured heights according to the following
formula:

S =c[((ZHFt?) / X)) = (Z(F) / )1 [1.2]
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Group Group f t (ft) (ft)
boundaries mid-value
45.5 to 50.5 48 2 -3 -6 18
50.5 to 55.5 53 3 -2 -6 12
55.5 to 60.5 58 6 -1 -6 6
60.5 to 65.5 63 8 0 0 0
65.5 to 70.5 68 16 +1 +16 16
70.5 to 75.5 73 6 +2 +12 24
75.5 to 80.5 78 6 +3 +18 54
80.5 to 85.5 83 3 +4 +12 48
H >f=50 S(ft) =40 Y(ft?) =178

S=51[(178/50)—(40/50)*]"*
S=5[3.56—(0.8)*]"*
S=51[3.56-0.64]""2
S=5[2.92]/2
S=5[1.71]
S=8.55IN

Accordingly, with a Mean of 67.2 IN and a Stand-

ard Deviation of 8.55 1IN, we have now defined
the sample within the following boundaries:

68% of the measured heights will lie in the
range:

(67.2-8.55) to (67.2+8.55); i.e., 58.7 to 75.8 IN
94% of the measured heights will lie in the

range:

(67.2-17.1) to (67.2+17.1); i.e., 50.1 to 84.3 IN
100% of the measured heights will lie in the

range:

(67.2—-25.7) to (67.2+25.7); i.e., 41.5 t0 92.9 IN
The second method for calculating the Standard
Deviation of a sample is often used when the
size of the sample is greater than 10 but less

than 30 (i.e., a Frequency Distribution table has
not been drawn up).

S =[(Z(*) / X)) - 1" [1.3]
where:

x = each observation in sample;
2f = total number of observations;
X = Mean of sample.

Let us consider the following sample, contain-
ing measurements of the ultimate compressive
strengths of 10 concrete test cylinders:

i.e., 2000, 2500, 4000, 1800, 2100, 3000, 2600,
2000, 2900, and 1900 psi.

2

X X

2000 4000000
2500 6250000
4000 16000000
1800 3240000
2100 4410000
3000 9000000
2600 6760000
2000 4000000
2900 8410000
1900 3610000
Y(x) =24 800 Y(x*) = 65 680 000

Step (1) - find the Mean (x):

X =209/ X(f)
X =24800/10
X

Step (2) — find the Standard Deviation (S):
S=[(65 680 000/10)—(2480)*]"/>
S=[(6.568x10°)-6.150x 10°]"/?
S=[0.418x10°]"/2
S=[41.8x10*]"/2
S =646.5 psi
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The third method is often used when the sample
is very small (i.e., less than 10). For example,
consider the following measurements taken of
the permanent expansion of six brick panels (in
thousandths of an inch):

ie., 22,24,26,28,25 and 22 x 107 IN.

S =[(X(x—-%))/ X(H1'* [1.4]

where:

x = each observation in sample
2f = total number of observations
X = Mean of sample (i.e.,
X =(147/6)x107° =24.5x107° IN).

S =[((22-24.5)2 + (24— 24.5)* + (26 — 24.5)
+(28—24.5)2 +(25-24.5)
+(22-245))/6]/2x10°

S =[((=2.5)% + (=0.5) + (1.5)% + (3.5)* +(0.5)?
+(=2.5)%)/6]"% x10

S=[(6.25+0.25+2.25+12.25+0.25+6.25)/6]"/>
x107

S=[27.5/6]"2x107

S=[4.58]"/2x 107

$=2.14%x107IN

The square of the Standard Deviation is referred
to as the Variance and is therefore another
measure of the degree of scatter within a sample.

1.2.4 The standard deviation
of the population

Having calculated the Standard Deviation of
a sample with any one of the three methods
available (i.e., equations [1.2], [1.3] or [1.4] in
Section 1.2.3) we are able to predict the Standard
Deviation of the entire population (i.e., all pos-
sible observations) from which the sample has
been drawn. If the Standard Deviation of the
sample is S, then the best estimate of the
Standard Deviation of the population (o) is
given by:

6 =S[X(0 /(O -1 [1.5]

Obviously, the value of the correction factor
[(f)/(Xf =1)]"? is very much influenced by
the size of the sample (i.e., 2(f)). For example:

If the sample size is 6, then [X(f) /(X (f) - 1)]"/?
=1.096

If the sample size is 30, then [X(f) /(X(f) - 1)]'/?
=1.017

If the sample size is 100, then [X(f) / (X(f) - 1)]'/?
=1.005

If the sample size is 900, then [X(f) / (X(f) - 1)]"/*
=1.001

Accordingly, samples containing 30 or more
observations are normally considered to be
large samples, while samples with fewer than
30 observations are always described as small
samples. To summarize: while the Standard
Deviation of a small sample (S) is used as
the basis for estimating the Standard Deviation
of the population (c) utilizing equation [1.5],
the Standard Deviation of a large sample is
expressed directly as o and the correction factor

2(f)/(X(f)-D]? is not used.

1.2.5 The coefficient of variation

The Coefficient of Variation (v or V) is a further
measure of the degree of variation or scatter
within a sample. It is expressed as a percentage
and provides a simple method of obtaining a
measure of the correlation among a set of experi-
mental results, such as concrete specimens that
are tested to destruction to verify the strength of
the structural concrete members in a building.

[1.6]
[1.7]

For a small sample: v =[(S/X) x100]%
For a large sample: V =[(c /X)x100]%
where:

S = Standard Deviation of sample

o = Standard Deviation of population

X = Mean of sample for [1.6] and population for
[1.7].

Naturally, the smaller the value of v or V, the
better the correlation will be. At the same time,
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the appropriate interpretation of the Coefficient
of Variation value is largely governed by the
type of material being tested and the experi-
mental procedure that was employed. In the
case of concrete, it is very difficult to achieve a
v value below 10%, even under the most strin-
gent experimental procedures.

1.2.6 What is a standard error?

It is accepted as a general rule in statistics that
the scatter of means is always much less than the
scatter of individual observations. The reader may
wish to verify this rule by comparing the indi-
vidual and mean results of tossing a coin. If the
Standard Deviation of individual observations
in a population (o) is known, then the best esti-
mate of the standard error (or deviation) of the
means of samples (0,,) taken from the same
population is given by:

om =[0/2(H)]"? [1.8]

where:

o, = Standard Error of Means
¢ = Standard Deviation of single observations
2.(f) = total number of observations in sample.

1.2.7 What are confidence limits?

So far we have used the parameters of small
samples, such as the Mean (X) and Standard
Deviation (S), to predict the parameters of the
populations from which these samples were
obtained. Let us assume for a moment that the
Standard Deviation (S) of a small sample of size
10is 2.4. Then using equation [1.5], the Standard
Deviation of the population is predicted to be:

6=24[10/(10-1)]"? =2.53

Of course, we have no reason to believe that the
Standard Deviation of the population (o) is
exactly 2.53; we have simply estimated it to be
very close to that value. It is frequently desira-
ble to know the probability that a certain esti-
mate based on a small sample is in fact correct.
Similarly, we may wish to ascertain the actual
probability that a certain observation (or mean)

Frequency of Occurrence

-

Mean(X) z

Figure 1.8 Standard normal distribution.

could be contained in a particular population.
For example, if the lengths of a small sample of
10 tiles were measured to be:

7.30,7.20,7.25,7.28,7.32,7.46,7.50,7.22,7.54,
and 7.28 IN,

what is the probability that the Mean of the
population (i.e., the entire stack of tiles from
which the sample of 10 was selected at random)
is 7.27 1IN or less?

We are able to calculate such probabilities
by reference to the Normal Distribution curve
(Figure 1.8), based on the following four
criteria:

Criterion A: Any distribution (X;) is said to
have been standardized when it has been
adjusted so that its Mean (X) is zero and its
Standard Deviation (o) is 1.

Criterion B: A Normal Distribution with the
Mean equal to zero and the Standard Devia-
tion equal to unity is known as the Standard
Normal Distribution.

Criterion C: The Standard Normal Variable (z)
refers to the area under the Normal Distri-
bution curve and is given by:

+tz=(x;—X)/0 [1.9]

where:
x; = a single observation

X = the Mean
o = the Standard Deviation of the population.

Criterion D: When considering the probable
accuracy of the prediction of the Mean of the
population, equation [1.9] is rewritten in the
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following form in terms of the calculated
Mean (X), the Mean (x”) for which a probabil-
ity is to be determined, and the Standard
Deviation of Means (G,,,):

tz=(x-x")/0n [1.10]
where:

X = the Mean
x" = a Mean
0, = the Standard Deviation of Means.

Table 1.4 The normal probability integral A(z).

Areas under the Normal Distribution Curve are
frequently needed and are therefore widely
tabulated (Table 1.4).

Let us denote by A(z) the area under the
Normal Distribution curve from 0 to z, where z
is any number (i.e., z may have a positive, nega-
tive, or zero value). As shown in Figure 1.9,
some Normal Distribution tables give the value
of A(z) for positive values of z in steps of 0.01
from z =0 to z = 0.5, and others give the value
of A(z) from z=0.5 to z=1.0, depending on

z 0 1 2 3 4 5 6 7 8 9

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 5675 5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 7123 7157 7190 7224
0.6 7257 7291 7324 .7357 .7389 7422 7454 .7486 7517 7549
0.7 .7580 7611 7642 7673 7704 7734 7764 7794 7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
11 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 9015
13 .9032 .9049 .9066 .9082 .9099 9115 9131 9147 9162 9177
14 9192 9207 9222 9236 9251 9265 .9279 .9292 9306 9319
1.5 .9332 .9345 .9357 .9370 .9382 9394 9406 9418 9429 9441
1.6 .9452 9463 9474 .9484 .9495 .9505 9515 9525 9535 9545
1.7 9554 9564 .9573 .9582 9591 .9599 9608 9616 9625 9633
1.8 9641 9649 .9656 9664 9671 9678 9686 9693 9699 .9706
1.9 9713 9719 9726 9732 .9738 9744 9750 9756 9761 9767
2.0 9772 9778 .9783 .9788 .9793 .9798 .9803 .9808 9812 9817
21 9821 .9826 .9830 9834 .9838 9842 9846 .9850 9854 9857
2.2 9861 9864 .9868 9871 .9875 9878 9881 9884 .9887 .9890
2.3 .9893 .9896 .9898 9901 .9904 .9906 9909 9911 9913 9916
24 9918 9920 9922 9925 .9927 .9929 9931 9932 9934 9936
2.5 .9938 .9940 9941 .9943 .9945 9946 .9948 .9949 9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 9961 9962 9963 9964
2.7 9965 .9966 .9967 .9968 .9969 .9970 9971 9972 9973 9974
2.8 9974 9975 9976 9977 9977 9978 9979 9979 .9980 9981
2.9 .9981 .9982 .9982 .9983 9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 9990 9990
3.1 9990 9991 9991 9991 .9992 .9992 9992 9992 9993 9993
3.2 .9993 .9993 9994 9994 9994 9994 .9994 .9995 9995 .9995
3.3 .9995 .9995 .9996 .9996 .9996 .9996 9996 9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 9997 9997 9998 9998
3.5 .9998 .9998 .9998 .9998 .9998 9998 9998 9998 9998 9998
3.6 .9998 .9998 .9999 .9999 .9999 9999 .9999 .9999 .9999 9999
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Figure 1.9 Normal distribution table formats.

whether the area under the curve is measured
from the Mean or from the left side. It is readily
seen that Table 1.4 is of table type (1) in Figure
1.9 and therefore starts with an A(z) value of 0.5
(as opposed to 0.0) in the top left-hand corner
of the table.

Summarizing, we conclude that equation
[1.9] is always used to find the probability that
a single random observation may occur in a
population. Equation [1.10] is used to find the
bounds of the Mean of a population.

1.2.8 Predicting the strength of concrete

On a large concrete dam construction project,
121 concrete test cylinders were taken and sub-
jected to compressive strength tests, with the
results shown below. What is the probability
that a random test cylinder will have a compres-
sive strength of more than 1800 psi?

Mean compressive strength (X) = 2160 psi

Standard Deviation (¢) = 252 psi
Random observation (x;) = 1800 psi

tz=(;-X)/0

+z = (1800 — 2160) / 252

+7 = (-360)/252)
z=1.43

From Table 1.4 we obtain a probability of 0.9236
for a z-value of 1.43. Thus the probability of
obtaining a strength greater than 1800psi is
92.36% (i.e., approximately 92 percent).

For the same 121 concrete test cylinders of the
above example, find the 95 percent confidence

Apply equation [1.9]:

Frequency of Oceurrence
Frequency of Oceurrence

95% 0 N5 Iz

0.95/2 = 0,475 (and in reference 1o table) 0.475 +0.500 = 0.975

"
R

Figure 1.10 Confidence limits of the mean
compressive strength of concrete.

limits of the Mean compressive strength of all
of the poured concrete deduced from this large
sample of 121 test cylinders.
Sample Mean (x”) = 2160 psi
Standard Deviation (¢) = 252 psi
Step (1): Apply equation [1.8] to determine the
Standard Deviation of the Mean (G,,).
O =[o/2(f)]
Om =[252/121]"/2
Om =23 psi
Step (2): Apply equation [1.10] to determine the
95 percent confidence limits of the Mean
compressive strength of the whole popula-
tion (X).
+z=(X-X")/0m
Transposing equation [1.10] to make (x) the
subject of the equation, we obtain:
X=x"tz (on)

The value of z is obtained for the required 95
percent probability, as shown in Figure 1.10, to
be 0.975.

The corresponding z-value for a probability
of 0.975 is given in Table 1.4 as 1.96; therefore,
substituting in the transposed equation:

X=x"*z(0,)
X =2160+£(1.96 x23)
X =2160+45

Accordingly, the 95 percent confidence limits of
the Mean compressive strength of all of the
poured concrete in the dam are between 2115 psi
and 2205 psi.
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1.3 Foundational concepts in physics

The chapters that follow assume some knowl-
edge of the scientific concepts and principles
that underlie current understanding of the
nature of the physical phenomena that we refer
to as heat, light, and sound, and how these envi-
ronmental stimuli are perceived by us as human
beings. Most of these stimuli have been studied
for centuries as the various specialized fields of
science emerged. In the following sections a few
selected members of this foundational group of
scientific principles are briefly explained in lay-
person terms. We will start with units of meas-
urement because they are fundamental to all
scientific and technical endeavors (Cardarelli,
1997).

1.3.1 Units of measurement

Measurement of length and volume became an
important early concern as civilization evolved
with an increasing focus on agriculture, trade,
specialization, and collective aspirations that
led to more and more community endeavors.
The earliest length measurement of major con-
sequence was most likely the Egyptian cubit,
which was based on the length of the human
arm from the elbow to the finger tips. While this
provided a basis for measuring relatively short
lengths such as those associated with plants,
animals, and manmade artifacts, two additional
needs soon surfaced. First, as communities
grew in size and influence the need for stand-
ardization became paramount. By 2500 BC the
Egyptians had already seen the need for the
establishment of a Master Cubit made of marble.
Second, as the roots of science emerged so also
did the need for the accurate measurement of a
host of additional quantities beyond length,
area, volume, and time (Klein, 1975).

The national standardization of units of
measurement progressed somewhat more
slowly than might have been expected. In
England, units of measurement were not effec-
tively standardized until the early thirteenth
century; however, deviations and exceptions
continued long thereafter. For example, total

agreement on the volume measure, the gallon,
was not reached until the early nineteenth
century. Until then there existed the different
ale, wine, and corn gallons (Connor, 1987).

The US adopted the English system of weights
and measures, with some specific exceptions.
For example, the wine-gallon of 231 cubic inches
was adopted in preference to the English gallon
of 277 cubic inches. France officially adopted
the metric system in 1799, with the metre' as the
unit of length. The metre was defined as one
ten-millionth part of the quarter of the circum-
ference of the Earth. Later this basis for defining
a standard metre was replaced by a more exact
and observable physical phenomenon,” as the
metric system became the Systeme International
(SI) (i.e., le Systéme International d’Unités) in
1960. Today almost all nations, with the notable
exception of the US, have adopted the SI system
of units (United Nations, 1955). However, even
in the US the scientific community has to all
intents and purposes unofficially migrated to
the SI standard.

SI units of measurement: The SI standard is
based on seven categories of unit, from which
many other units are derived.

Category Name Abbreviation
Length metre m

Mass kilogram kg

Time second s

Electric current ampere A
Temperature Kelvin K

Amount of substance  mole mol
Luminous intensity candela cd

Each of these base units is clearly defined as a
fraction of some measurable physical phenom-
enon. For example, the kilogram is based on the
weight of a platinum-iridium cylinder main-
tained under constant environmental condi-
tions in Sevres, France, and the second is defined
as the length of time taken by 9192631770
periods of vibration of the caesium-133 atom.
SI units that are derived from these base unit
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categories include: the farad (F) for electrical
capacitance; the hertz (Hz) for the frequency of
a periodic vibration such as sound; the joule (J)
for work and energy; the newton (N) for force;
the ohm () for electrical resistance; the pascal
(Pa) for pressure; the volt (V) for electric poten-
tial; and the watt (W) for the rate of doing work
or power.

In addition, the SI standard utilizes specific
prefixes to serve as convenient multiplication
factors for increasing or reducing the relative
size of these units in multiples of 1000. Com-
monly used prefixes are K for thousand, M for
million, G for billion, m for thousandth, u for
millionth, and n for billionth. Therefore, kW
stands for kilowatt or 1000 watt, and mm stands
for millimeter or 1000th of a metre.

US system of units: Following the official
adoption of the SI metric system of measure-
ment by Britain in 1995, the US stands virtually
alone with its continued use of what was origi-
nally known as the United Kingdom (UK)
System of Measurements. With only a few spe-
cific differences, the US system of measure-
ments is the same as the pre-1995 UK system.
However, whereas in the UK system the base
measures of yard, pound, and gallon were origi-
nally defined by physical standards, in the US
system these are all now defined by reference
to the Sl metre, kilogram, and litre. The US system
recognizes nine distinct categories of units, as
follows:®

Length: inch (IN), foot (FT), yard, furlong, and
mile.

Area: square inch (S1), square foot (SF), acre, square
mile or section, and township (i.e., 36 square
miles or 36 sections).

Volume: cubic inch (Cl), cubic foot (CF), and cubic
yard.

Capacity (dry): pint, quart, peck, and bushel.

Capacity (liquid): fluid ounce, gill, pint, quart, and
gallon.

Mass: grain, ounce, pound (LB), stone, hundred-
weight, and ton.

Troy weights: grain, ounce, pennyweight, and
pound (LB).

Apothecaries’ measures: minim, dram, fluid ounce,
and pint.

Apothecaries” weights: grain, scruple, dram,
ounce, and pound (LB).

It should be noted that among the mass units
there are various versions of the ton unit, all of
which are different from the original UK ton. A
standard US ton is equal to 2000LB instead of
the original 2240LB, so a US fon or short ton is
equal to 2000LB, while a US metric ton is equal
to 1000LB, and a US long ton is equal to 2240LB.
To make matters even more confusing, a US
measurement ton has nothing to do with mass,
but refers to a volume of 70 cF.

Conversion factors that must be applied to
convert one unit of measurement to another are
readily available in the form of published tables.
Horvath (1986) has included conversion factors
covering both historical and current units.
Cardarelli (1997) provides more than 10000
conversion factors in his more recent publica-
tion, which claims to be the most complete set
of tables dealing with unit conversion.

1.3.2 Temperature scales
and thermometers

Temperature provides a measure of the degree
of hotness or coolness as perceived by our
human senses. The desire to measure the pre-
cise degree of this sensation has led to a rich
history of temperature scales and measurement
instruments, the latter commonly referred to as
thermometers.

As might be expected, the various physical
states of water have served as a convenient set
of reference points up to the present day for
defining alternative temperature scales. One of
the earliest records of a temperature scale dates
back to 170 AD when Galen, in his medical writ-
ings, proposed four degrees of heat and four
degrees of cold on either side of boiling water
and ice. In 1610 Galileo constructed a simple
apparatus consisting of a glass tube with a bulb
at one end and open at the other end. Holding
the tube upright, he placed the open end into a
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container of wine, and extracted a small amount
of the trapped air so that the wine would rise
some distance above the level of the wine con-
tainer inside the glass tube. The contraction and
expansion of the air above the column of wine
with changes in temperature would force the
level of the wine in the glass tube to likewise
rise and fall, correspondingly. The first attempt
to use a liquid, rather than a gas, for recording
temperature is credited to Ferdinand II, Grand
Duke of Tuscany, in 1641. He proposed a device
that held a quantity of alcohol in a sealed glass
container with gradations marked on its stem.
However, his device failed to reference the scale
to a fixed point such as the freezing point of
water.

In 1724, the Dutch instrument maker Gabriel
Fahrenheit used mercury as a temperature-
measuring medium. Mercury has several
advantages as a thermometric medium. First, it
has a relatively large coefficient of thermal
expansion that remains fairly constant (i.e.,
linear) over a wide range of temperatures.
Second, it retains its liquid form at tempera-
tures well below the freezing point of water
and well above the boiling point of water. Third,
it does not easily separate into bubbles that
might adhere to the glass surface as the column
of mercury rises and falls with increasing
and decreasing temperatures. On his scale,
Fahrenheit fixed the boiling and freezing
points of water to be 212° and 32°, respectively,
providing an even 180 divisions in between.
The Fahrenheit temperature scale was adopted
as the basis of measuring temperature in
the British system of units, which has now
become the US system of units. Measurements
recorded with this scale are referred to as
degrees Fahrenheit (°F).

In 1745 Carolus Linnaeus of Sweden pro-
posed a temperature scale in which the freezing
point of water is fixed as 0° and the boiling
point of water is fixed at 100°, with 100 divi-
sions in between these two reference points.
This reversed the temperature scale that had
been proposed a few years earlier by Anders
Celsius, who had set 0° as the boiling point and

100° as the freezing point of water. Maintaining
Linnaeus’ reversal the name Centigrade was
replaced by Celsius in 1948.* The conversion of
Fahrenheit to Celsius degrees and vice versa
proceeds as follows:

°C=5/9 (°F-32)
°F=9/5 (°C)+32

[1.11]
[1.12]

There is one other scale that has relevance to
temperature. It is related to the concept of a
thermodynamic temperature. In 1780 the French
physician Jacques Charles (1746-1823) demon-
strated that for the same increase in tempera-
ture all gases exhibit the same increase in
volume. In other words, the coefficient of ther-
mal expansion of all gases is very nearly the
same. Using this fact it is possible to devise
a temperature scale that is based on only a
single fixed point, rather than the two fixed
points that are necessary for the Fahrenheit
and Celsius scales. This temperature is referred
to as the thermodynamic temperature and is
now universally accepted as the fundamental
measure of temperature. The single fixed point
in this temperature scale is an ideal gas pres-
sure of zero, which is also defined as zero tem-
perature. The unit of measurement on this
scale is called the Kelvin, named after Lord
Kelvin (i.e., William Thompson, 1824-1907).
The symbol used is K without the degree (°)
symbol. To convert degrees Celsius to Kelvin
units we simply add 273.

K=°C+273 [1.13]
K=5/9(°F-32)+273 [1.14]
°C=K-273 [1.15]
°F=9/5(K)-241 [1.16]

1.3.3 Objective and subjective
measurements

With very few exceptions, buildings are designed
and constructed to be occupied by human beings.
Therefore, in the study of building science we
are concerned as much with how the human
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occupants of buildings perceive their environ-
ment as we are with the physical nature of the
environment itself. While the perception of heat,
light, and sound is of course directly related to
the stimuli that are received and processed in the
human cognitive system, the measurement of
what was received and what is perceived may
differ widely. For example, while the amount of
sound produced by a person speaking on a cell
phone in a public place such as a restaurant can
be measured objectively with a sound-level
meter, the degree of annoyance that this tele-
phone conversation may cause to nearby cus-
tomers depends very much on the sensitivity,
current activity and emotional state of each
person who is forced to overhear the telephone
conversation. These individual perceptions are
subjective reactions.

Objective information can normally either be
measured with an instrument, or counted. It is
typically information that is observable and
factual. Examples include the measurement of
light with a light meter, sound with a sound-
level meter, and temperature with a thermom-
eter. If the instrument is true and properly
calibrated, then the measurement of exactly the
same sound should not vary from one sound-
level meter to another. However, the subjective
perception of that sound may very widely from
one person to another, and even for the same
person under different circumstances.

Both objective and subjective data can be col-
lected in experiments or in assessing some par-
ticular aspect of a building environment. For
example, based on complaints received about
the stuffiness of a particular building space
from the occupants of a new building, it may
become necessary to conduct a survey of opin-
ions to determine the degree of dissatisfac-
tion. The data collected will likely be based
on responses to a questionnaire and therefore
subjective in nature. However, the survey
may be followed by a systematic assessment
of actual environmental conditions, including
measurement of the density of occupation,
temperature, relative humidity, and degree of
air movement in the space. All of these are
objective measurements.

Methods that are normally used to collect
objective data include: measurements taken
with an instrument; recorded data (e.g., sound,
light, heat, humidity, and air movement); and
direct, objective measurements of a physical
product, or natural event, phenomenon, or
object. Such measurements are reproducible and
factual. However, the methods used for collect-
ing subjective data are quite different in nature.
They include ranking and rating methods, ques-
tionnaires, and interviews. The interpretation of
subjective data must be undertaken with a great
deal of caution because they are subject to
human bias (Cushman and Rosenberg, 1991).
For this reason alone it is considered good prac-
tice to collect both objective and subjective data
during experiments, surveys, and assessments
of environmental conditions involving human
subjects.

1.3.4 Stress and strain

The relationship between stress and strain is
one of the fundamental concepts in the fields of
material science and structural engineering.
When a material is subjected to some kind of
external force, then it will in some manner
respond by changing its state. For example, if
we walk on a suspended platform, such as the
concrete floor of a multistory building, then the
force applied by our weight will produce a
physical strain within the concrete material. The
resulting strain may result in a visible deflection
of the floor. Similarly, if we blow air into a
rubber balloon, then the air pressure will result
in a stretching of the balloon material, with the
result that the balloon increases in size. If we
continue to blow air into the balloon, then even-
tually the strain in the rubber material will
exceed the strength limit of the material and the
balloon will burst.

In 1678 the English scientist Robert Hooke
showed by means of a series of experiments that
within the elastic range of a material the degree
of strain produced is directly proportional to
the amount of stress imposed. This relationship
has come to be referred to as Hooke’s Law and
is easily verified with a very simple apparatus.
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If we freely suspend a thin metal wire from a
nail at some height above the ground and then
progressively load the lower end of the wire
with more and more weights, we will observe
that the wire will slightly increase in length
after each weight has been added. When the
increases in weight and length are plotted on
graph paper a straight line will be the result,
indicating a linear relationship between the
load (i.e., stress) imposed and the resulting
deflection (i.e., strain).

The relationship between stress (i.e., stimulus)
and strain (i.e., reaction) applies generally to all
kinds of situations, although the relationship is
not necessarily linear when we move out of the
field of material science into the biological
domain. For example, in the field of building
lighting increases in illumination level tend to
increase the ability to see details. For this reason
the recommended task illumination level for fine
machine work (e.g., sewing) is much higher than
for casual reading. However, if we continue to
increase the illumination level, then a point will
eventually be reached when the light level is
so intense that we can no longer see any details.
This condition is referred to as disability glare.

Similarly, the thermal environment can pro-
duce stresses that will produce physiological
strain in the occupants of buildings. Examples
of such strain include an increased heart rate,
the dilation or constriction of blood vessels, and
perspiration or shivering. It is important to note
that the stress imposed by a building environ-
ment is cumulative. For example, slightly inad-
equate lighting conditions in a building space
may not by themselves produce any observable
human discomfort. However, when this condi-
tion is coupled with a slightly elevated room
temperature and perhaps also a moderately
excessive level of background noise, the result-
ant cumulative strain may exceed the comfort
level of the building occupant by a dispropor-
tionately high degree.

1.3.5 Black-body radiation

A black body is a concept in physics that the non-
technical reader is unlikely to be familiar with.

Since it is of significance in some aspects of the
thermal environment — in particular in respect
to the utilization of solar energy, and also in
respect to artificial light sources — it warrants
some explanation. When the temperature of
any material is raised above the temperature of
its surroundings it will radiate heat to its sur-
roundings.” On the other hand, when an object
is at a lower temperature than its surroundings,
then the surroundings will radiate heat to the
object, which will absorb some of the heat and
reflect and transmit the remaining heat. A black
body is a theoretical object that absorbs all of the
radiant energy that falls on it. It is an idealized
concept, because no such material exists in the
real world. The material that comes closest is
the graphite form of carbon, which absorbs
close to 97 percent of the radiation that is inci-
dent on its surface.

Therefore, an ideal solar collector surface
would be a black body. Water at any depth is,
for practical purposes, considered to act as a
black body and this phenomenon underlies the
principle of solar ponds. A solar pond is essen-
tially a shallow pool of water that may or may
not have a single glass sheet placed at a small
distance above the water surface for added effi-
ciency. Because of the near black-body charac-
teristics of the water, even without the single
glazing, the pond acts as a very efficient absorber
of solar heat radiation.

In the case of a standard flat-plate solar col-
lector, the upper surface of the metal plate is
typically provided with a matte black finish.
However, sometimes a more expensive selective
surface coating with special heat-absorbing
characteristics is applied. A selective surface is
a surface finish that has a large solar heat
absorptance and a small solar emittance.®

A black body is also a radiator of heat if its
temperature is higher than the temperature of
its surroundings. The radiation produced con-
sists of a continuous spectrum of wavelengths.
In fact, a black body at any temperature will
emit energy at all wavelengths, but to varying
amounts. As shown in Figure 1.11, the theoreti-
cal energy emission curve is asymptotic’ to the
X-axis.
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Figure 1.12 The black-body radiation spectrum
at increasing temperatures with the maximum
emission wavelength moving toward the visible
range.

In other words, at very long wavelengths the
curve never quite reaches zero emission.
However, the actual amount of radiation varies
both with the wavelength and the temperature
of the black body. The precise radiation spectrum
produced by a black body can be calculated
mathematically and is referred to as the black-
body radiation for that temperature (Figure 1.12).

Standard black-body radiation curves have been
drawn for each temperature, based on the
Kelvin temperature scale. In this way, for
example, the spectral distribution of an artificial
light source can be rated according to its equiv-
alentblack-body radiation curve. This is referred
to as the color temperature of the light source,
because it characterizes the color rendition
properties® of the light source. As the tempera-
ture of the black body increases, the maximum
of the radiation spectrum moves toward the
shorter wavelengths (Figure 1.12).

Therefore, at some temperature the radiation
spectrum of a black body will maximize the
amount of light produced, because light is a
narrow bandwidth within the full electromag-
netic spectrum of radiation. This ideal color
temperature is around 6000K.”

Endnotes

1. The US has adopted the alternative spelling of
meter.

2. In the SI standard the metre is defined as the dis-
tance light travels in 1/299 792 458th of a second.

3. Where abbreviations are shown they refer to the
abbreviations used throughout this book (in the
absence of a standard US notational convention).

4. Apart from the name change, there are also
some very small differences in the precise tem-
perature values of the freezing and boiling points
of water. Under standard atmospheric condi-
tions the boiling point of water is defined on the
Celsius scale as 99.975°C, as opposed to 100° on
the Centigrade scale.

5. This of course applies only to those surfaces of the
material that are not in direct contact with the
surfaces of other objects. In the case of surfaces
that touch each other heat is transferred by con-
duction from the object that is at a higher tempera-
ture to the object that is at a lower temperature.

6. The efficiency of the flat-plate solar collector
increases if either the absorptance increases or
the emittance decreases. A maximum efficiency is
reached when the emittance is zero. In the case of
a selective surface the absorptance is greater than
the emittance, while for a non-selective surface the
absorptance is equal to the emittance (Kreider and
Kreith, 1975, pp. 42 and 96).
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7. An asymptotic curve never crosses the axis, but

8.

comes infinitesimally close to that axis.

The term color rendition refers to the appearance of
colored surfaces under a light source with a par-
ticular spectral distribution. For example, a red
surface under a blue light will appear almost
black, because most of the blue light is absorbed

by the red surface. However, a red light will
accentuate the redness of a red surface because
much of the red light will be reflected.

9. As explained in a later chapter on artificial light-
ing, color temperature must not be confused with
the operating temperature of an artificial light
source.



