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Key Points
• The endothelium is a key participant in the homeostasis of the vessel wall.

• Nitric oxide (NO) plays a key role in regulating healthy vascular function.

• Reduced local NO bioavailability is a characteristic hallmark of vascular endothelial
dysfunction.

• Endothelial dysfunction is chiefly driven by oxidative stress and inflammation.

• A number of techniques for assessing endothelial function are available;
flow-mediated dilatation (FMD) is the current noninvasive ‘gold-standard’
methodology.

• A number of circulating markers are also helpful in assessment of endothelial
dysfunction.

• Hyperglycemia, insulin resistance, and dyslipidemia are all important contributors to
endothelial dysfunction.

• Endothelial dysfunction in diabetes is associated with adverse micro- and
macrovascular complications.

• Drug therapies, including statins, insulin sensitizers, and ACE inhibitors, have been
shown to improve endothelial dysfunction in diabetes.

Introduction

The vascular endothelium, the monolayer of thin cells lining the arteries

and veins, serves as the key regulator of arterial homeostasis. It plays a

vital role in regulating vascular tone, cellular adhesion, platelet activity,

vessel wall inflammation, angiogenesis, and vascular smooth muscle cell

proliferation. In order to regulate these functions, a number of important

vasoactive molecules, including nitric oxide (NO), endothelium-derived

hyperpolarizing factor (EDHF), prostacyclin (PGI2), and endothelin (ET-1),

are produced and released by the endothelial cells [1, 2].
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Normal Endothelial Cell Function

The arterial endothelium is composed of a layer of spindle-shaped endothe-

lial cells that are bound together by tight junctions and communicate

directly with each other and the underlying smooth muscle cells via gap

junctions. This forms a protective barrier between the blood and the rest

of the vessel wall that is relatively impermeable to low-density lipoprotein

(the core component of atherosclerotic lesions), able to sense molecular

cues and interact with cellular components of the circulating blood.

Furchgott and Zawadzki first demonstrated in 1980 that endothelial cells

are essential in order for underlying smooth muscle relaxation to occur in

response to acetylcholine administration in the rabbit aorta [3] and NO was

subsequently identified as this endothelium-derived relaxing factor [4]. A

healthy endothelium is able to secrete NO, a diatomic molecule generated

from L-arginine, by the action of the enzyme endothelial NO synthase

(eNOS) in the presence of cofactors such as tetrahydrobiopterin [5]. NO

exerts its action by diffusing into vascular smooth muscle cells where it

activates G-protein-bound guanylate cyclase, resulting in c-GMP genera-

tion, smooth muscle relaxation, and vasodilatation [1] (Figure 1.1). eNOS,

in normal physiology, is activated by shear stress from blood flow through

the vessels and also by molecules such as adenosine, bradykinin, serotonin

(in response to platelet aggregation), and vascular endothelial growth fac-

tor (induced by hypoxia; Figure 1.1) [6, 7, 8].

In addition, NO has antiplatelet effects and can down-regulate inflamma-

tory pathways and also decrease the generation of ET-1, a potent vasocon-

strictor polypeptide, which also possesses pro-inflammatory, pro-oxidant,

and pro-proliferative activity [9].

Other endothelial-derived vasodilators exist and act independently of

NO to maintain vasodilator tone. PGI2, produced from the cyclooxygenase

system, and EDHF are such molecules, with the latter able to compensate

for the loss of NO-mediated vasodilator tone when NO bioavailabil-

ity is reduced [10, 11]. Normal health and physiological functioning

of the vascular endothelium are maintained by a balanced release of

endothelial-derived relaxing factors, such as NO and prostacyclin (PGI2),

and vasoconstricting factors like ET-1 and angiotensin II. The dysequilib-

rium of their production, release, and action is the chief characteristic of

endothelial dysfunction [12].

Beyond its function in regulating vessel tone, the vascular endothelium

also serves to play an important role in both mediating and responding to

inflammatory pathways. In addition to its constrictor effects, angiotensin II

generated by the endothelium has effects on vascular smooth muscle cell

contraction, growth, proliferation, and differentiation. A range of selectins

and adhesion molecules are produced, resulting in the binding and
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Figure 1.1 Illustration of the stimulation of endothelial NO synthase by acetylcholine

and shear stress leading to increased nitric oxide (NO) production in endothelial cells by

receptor and nonreceptor and calcium-dependent and noncalcium-dependent

pathways. (Source: Herrmann J et al. 2010 [8]. Reproduced with permission of Oxford

University Press.) (Color plate 1.1).

transendothelial migration of inflammatory cells [13, 14]. Furthermore,

the endothelium is directly involved in the balance between coagulation

and fibrinolysis, which is mediated by its synthesis of both tissue-type

plasminogen activator (t-PA) and its inhibitor, plasminogen activator

inhibitor-1 (PAI-1) [12, 15].

Measuring Endothelial Function

Following the in vitro work of Furchgott and Zawadzki, Ludmer et al.

demonstrated for the first time in humans that locally administered

acetylcholine caused vasoconstriction of atherosclerotic coronary arteries

and vasodilatation in normal coronary vessels in subjects undergoing

cardiac catheterization [16]. Subsequently, a noninvasive method was

developed for assessing endothelial function in the conduit arteries of the

peripheral circulation. This method used a period of forearm ischemia

followed by reactive hyperemia to increase blood flow through the

brachial artery, increasing local shear stress, mediating NO release and
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brachial artery dilatation [17]. Peripheral endothelial vasodilator function

correlates with coronary endothelial function and cardiovascular risk

factors, including smoking, dyslipidemia, and diabetes, and can predict

incident cardiovascular events in older adults [18, 19, 20, 21].

Various techniques have been developed that use pharmacologic agents

to act on the endothelium or that measure the vasodilator response to

increased shear stress. No one test has been shown to be ideal and indeed

a combination may be required to evaluate fully the various aspects of vas-

cular endothelial biology (Figure 1.2).

Invasive methods for assessing endothelial function include venous

occlusion plethysmography and quantitative coronary angiography with

Doppler flow wire to assess coronary diameter and blood flow.

The original tests of endothelial function used the latter techniques

to assess coronary circulatory physiology. Pharmacologic agents, such

as acetylcholine, are used to induce an endothelium-dependent vaso-

motor response, measuring changes in the epicardial and microvascular

circulation. At the doses traditionally used, a vasodilator response is

usually observed in normal coronary vessels, but in the presence of

endothelial dysfunction, where NO bioavailability is reduced, the action

of acetylcholine on smooth muscle muscarinic receptors predominates,

resulting in vasoconstriction [22]. This method of measuring endothelial

function is limited to patients with more advanced and established arterial

disease who warrant cardiac catheterization, but is helpful in quantifying

the response to potential beneficial therapeutic agents, such as statins, on

endothelial function [23].

A further invasive technique for evaluation of forearm microcirculation

and resistance is by measuring changes in forearm blood flow (FBF) using

venous occlusion strain-gauge plethysmography [24]. The method uses

the contralateral arm as its control, with most studies assessing percentage

differences in FBF and vascular resistance between experimental and

control arm after the administration of endothelium-dependent and

endothelium-independent agonists. By using eNOS antagonists, such as

L-NMMA, the contribution of NO to vasomotor regulation can be inferred;

the technique can also be used in healthy controls and allows other

vasomotor pathways to be studied in detail. Its invasive nature, however,

thus limits its use to smaller studies and its clinical relevance to conduit

vessel atherosclerosis is also questioned.

The noninvasive methods of measuring endothelial function are inher-

ently more practical in that they can be more readily used in large patient

groups. Flow-mediated dilatation (FMD) using ultrasound stands as the

current gold-standard technique for noninvasive assessment of endothelial

function. The rationale is based on the reactive blood flow in the brachial

artery following a five-minute period of forearm ischemia caused by
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suprasystolic inflation of a blood-pressure cuff. The increased shear stress

during the resulting hyperemia stimulates NO release from the endothe-

lium, causing smooth muscle relaxation and dilatation of the artery. By

imaging the brachial artery with high-resolution 2D ultrasound and using

pulsed-wave Doppler interrogation, changes in arterial diameter and blood

flow can be assessed [17]. When care is paid to methodology, FMD has

been demonstrated to have good reproducibility [25]. Some differences

in techniques, including cuff position and duration of cuff occlusion,

remain areas of controversy in using this method [26, 27, 28], although

guidelines have been produced in an attempt to reduce the variability of

the methodology in research [29, 30]. Despite variations in methodology,

FMD stands as a reliable method of measuring endothelial function and is

associated with coronary endothelial vasodilator function and circulating

markers of endothelial activation, as well as being a predictor of long-term

cardiovascular outcomes [21, 31].

Another useful noninvasive technique that is emerging for measuring

endothelial function is pulse amplitude tonometry (PAT). The same stimu-

lus as FMD is used and the EndoPAT system employs a probe placed on the

fingertip to record changes in arterial pulsatile volume. Both fingertips are

used for recordings in order to have an internal control. Measurements are

made at baseline and following reactive hyperemia (RH) so as to allow an

RH-PAT index (ratio) to be calculated. The RH-PAT signal is decreased with

risk factor expression, has been shown to correlate well with risk factor

burden, and can help to identify coronary vascular dysfunction [32, 33].

Reproducibility has been shown to be similar to that of FMD. Although the

mechanism of vasodilatation is not entirely NO dependent and the auto-

nomic nervous system may also have an influence on the fingertip pulse

waveform [34], RH-PAT is widely considered to be a useful and practical

tool for assessing endothelial dysfunction.

Endothelial function can also be assessed using pulse wave velocity

(PWV) measurement. This method measures the speed of transit of the

arterial pulse-pressure waveform through an artery, thus providing infor-

mation on arterial stiffness and endothelial function. A similar protocol to

that of FMD, with RH stimulus, has been devised by Naka et al. involving

placing one cuff at the wrist and one on the upper arm, with RH induced

following the occlusion of the wrist cuff. The subsequent NO release and

reduction in arterial tone cause a slowing in PWV, reflecting the magnitude

of endothelial NO release [35].

Although these newer methods, particularly RH-PAT, appear promising

in their use for assessing endothelial function, FMD currently remains the

technique of choice and has become widely used in clinical studies.
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Circulating Markers of Endothelial Dysfunction

In addition to invasive and noninvasive methods of assessing endothelial

function, such as coronary angiography or FMD, there are a number of

circulating biomarkers that reflect the degree of endothelial activation and

dysfunction (Table 1.1).

Given that endothelial activation and dysfunction are characterized by

the change in the balance of vasomotor factors released by the endothe-

lium, measuring circulating markers and mediators of this dysfunction

have been shown to provide important pathological insights into the

influence of the endothelium on atherosclerotic disease, although the

systemic levels of these markers may not necessarily represent their true

local effects on the vascular wall.

Endothelial activation results in vascular inflammation. Thus, an array

of inflammatory cytokines, adhesion molecules, regulators of thrombosis,

measures of NO biology, as well as markers of endothelial damage and

repair can be evaluated to inform on these processes. These measures can

be helpful markers of the severity of endothelial activation and dysfunction

in a population and can complement other physiological tests of measuring

endothelial function [36].

No precise circulating marker reflecting local and systemic generation of

NO is available, although levels of nitrite and nitrate have been suggested

as indirect measures. Asymmetric dimethylarginine (ADMA), an endoge-

nously derived competitive antagonist of eNOS, is quantifiable; higher lev-

els are typically present in those patients with cardiovascular risk factors,

such as dyslipidemia and diabetes, and may contribute to the endothelial

dysfunction. Higher levels of ADMA have been associated with reduced

NO bioavailability in animal and clinical studies [37, 38]. Logistical and

financial barriers currently preclude its use in routine clinical practice.

The inflammatory cytokines and adhesion molecules generated by

endothelial activation, reflecting the stimuli to leucocyte migration

into the subendothelium, can also be measured. Vascular cell adhesion

molecule 1, intracellular adhesion molecule 1, and E- and P-selectins are

examples, with E-selectin most specific for vascular endothelial activation.

Circulating levels of such molecules are typically associated with adverse

cardiovascular outcomes [39, 40].

In addition, MicroRNAs (miRNAs), a group of noncoding small RNAs,

are emerging as important molecules in endothelial dysfunction in dia-

betes and may indeed shed light on these underlying disease processes. In

the hyperglycemic environment, for example, miRNAs decrease endothe-

lial cell proliferation and migration, as well as causing cell cycle inhibition,
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Table 1.1 Circulating biomarkers of

endothelial function.

Biomarkers

Nitric oxide

Nitrite ion

Asymmetric dimethyl arginine

Endothelin-1

Interleukins

Chemokines

Adhesion molecules (VCAM-1, ICAM-1)

Selectins (E-selectin, P-selectin)

Plasminogen activator inhibitor- 1

Tissue plasminogen activator

Von Willebrand factor

Endothelial microparticles microRNAs

Circulating endothelial cells

Endothelial progenitor cells

Endothelial microparticles

resulting in vascular endothelial dysfunction [41]. As levels of miRNA in

the serum of humans have been shown to be stable, reproducible, and con-

sistent among healthy individuals, it is thought they may become clinically

useful biomarkers of vascular status in patients with diabetes [42, 43].

Similarly, markers of a prothrombotic state can be measured, which may

reflect endothelial damage and activation; for example, the change in the

balance of tissue plasminogen activator and its endogenous inhibitor, plas-

minogen activation inhibitor-1 [44].

As measures of endothelial cell injury and repair are a reflection of

endothelial activation and dysfunction in the disease process, assays have

been developed to examine the detachment of mature endothelial cells

and microparticles derived from activated endothelial cells, reflecting

damage, and the number and characteristics of circulating endothelial

progenitor cells (EPC), reflecting repair. Assessment of the relationships

between these populations can shed light on the balance between injury

and repair (in diabetes) that may have a future role in clinical practice and

in risk assessment of high-risk patients [45]. Endothelial microparticles

(EMP) result from endothelial plasma membrane blebbing and carry

endothelial proteins such as vascular endothelial cadherin, intercellular

cell adhesion molecule (ICAM)-1, E-selectin, and eNOS [46, 47, 48].

Their shedding from activated or apoptotic endothelial cells reflects their

role in coagulation, inflammation, endothelial function, and vascular

homeostasis. The exact role of EMP in vascular homeostasis remains

unclear. There is evidence that they can actually promote cell survival
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and induce endothelial regeneration [49] and, although promotion of

angiogenic processes by EMP may have beneficial effects in ischemia,

this could be detrimental for plaque stability and in proliferative diabetic

retinopathy [50]. In diabetes it has been shown that higher levels of EMP

are associated with endothelial activation and apoptosis [1, 51]. Further-

more, interventions to treat patients with type 2 diabetes with calcium

channel blockers have shown decreases in EMP, suggesting the latter’s

potential use as biomarkers of vascular endothelial dysfunction in diabetes,

although their specific clinical utility remains to be defined [52, 53].

Endothelial Cell Dysfunction

Endothelial dysfunction results from a loss of the homeostatic balance

between endothelial-derived relaxing factors, such as NO, and contracting

factors, such as ET-1. A number of cardiovascular risk factors have been

implicated including dyslipidemia, diabetes mellitus, hypertension, and

smoking. In these circumstances, the endothelium is activated, with an

increased expression of leucocyte adhesion molecules, release of cytokines,

and inflammatory molecules. The resulting inflammation and arterial

damage continue in a self-promoting fashion, contributing to the initiation

and development of atherosclerotic plaque formation and its clinical

consequences such as myocardial ischemia or infarction [54, 55].

One of the defining characteristics of endothelial activation is reduced

NO bioavailability. This largely occurs in the context of increased oxidative

stress, when the enzyme, eNOS, may switch to generate superoxide (reac-

tive oxygen species or ROS), a process known as “eNOS uncoupling.” This is

thought to occur when the key cofactor tetrahydrobiopterin is not present

or when the substrate, L-arginine, is deficient [56]. In addition, ROS, in

the presence of superoxide dismutase, leads to the production of hydro-

gen peroxide. These molecules can target cellular regulatory proteins, such

as NFκB and phosphatases, promoting inflammatory gene transcription

[1, 57]. The mitochondrion is thought to be an important source of ROS

in which the production of free radicals and mitochondrial superoxide dis-

mutase capacity is carefully regulated during physiological cellular home-

ostasis. During hypoxia, or in disease processes with increased substrate,

such as obesity and type 2 diabetes with hyperglycemia and increased free

fatty acids, this fine balance can be disturbed, resulting in increased free

radical generation. Xanthine oxidase and NADPH oxidase are other impor-

tant sources of oxidative stress in the endothelium, with xanthine oxidase

activity having been shown to be increased by over 200% in patients with

coronary artery disease compared with controls [58].
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A further effect of prolonged exposure to cardiovascular risk factors is

the effect on endothelial damage and repair. Normal endothelial integrity

depends on its ability to repair and on any degree of localized injury.

Endothelial cells are able to replicate locally to replace injured and lost

cells, but also EPC recruited from the bone marrow circulate and are

able to home to areas of injury and promote local repair processes in

the endothelium [59, 60, 61]. It is known that eNOS is important in the

regulation and function of EPC [62], that decreased levels of EPC are

correlated with increased risk of coronary artery disease [63, 64], and that

interventions, such as statin therapy, increase EPC in high-risk patients,

including those with coronary artery disease [65]. In diabetes it has been

shown that levels of EPC and circulating angiogenic cells (CAC) are

reduced in relation to smooth muscle progenitor cells (SMPC), reflecting

damage; this may therefore translate into reduced vascular repair capacity

and promote macrovascular disease in type 2 diabetes [66]. The reduction

in EPC in diabetes may also explain the pathogenesis of microangiopathy,

as clinically significant correlations have been found in nephropathy and

retinopathy [67, 68]. Furthermore, in diabetes EPC have functional defects

such as impaired proliferation and adhesion, which are also likely to be of

importance [69, 70]. Thus EPC are thought to play an important role in

maintaining normal vascular endothelial function in diabetes.

Endothelial Cell Dysfunction in Diabetes

Both micro- and macrovascular complications are the major causes of mor-

bidity and mortality in patients with diabetes, and endothelial cell dysfunc-

tion is believed to be pivotal in the development of associated vascular

injury. There are a number of factors specific to diabetes that contribute

to endothelial dysfunction (Figure 1.3).

Hyperglycemia
Hyperglycemia in both type I and type II diabetes has been implicated

in the pathogenesis of microvascular complications in large clinical trials

[71, 72, 73].

Oxidative stress in endothelial dysfunction in diabetes is chiefly driven

by hyperglycemia. The high glucose levels up-regulate the polypol

pathway, which usually converts excess intracellular glucose into sugar

alcohols by the enzyme aldose reductase. Normally, very little glucose

is utilized by this pathway. In diabetes, an overproduction of ROS by

the mitochondrion leads to increased aldose reductase activation, with

conversion of glucose to sorbitol and then oxidation to fructose. This

results in increased ROS production, subsequent inactivation of NO, and

inhibition of endothelium-dependent dilatation [74, 75, 76]. Intracellular
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Figure 1.3 Mechanisms increasing oxidative stress and resulting in endothelial

dysfunction in diabetes.

hyperglycemia also activates the hexosamine pathway, resulting in

increased expression of PAI-1 [77].

Furthermore, high levels of intracellular glucose activate the enzyme pro-

tein kinase C (PKC), which can result in overexpression of the fibrinolytic

inhibitor PAI-1 and activation of NFκB in endothelial cells, resulting in

an increased propensity to thrombotic and atherogenic occlusion and fur-

ther inflammation [78, 79]. In addition, PKC activation by hyperglycemia

can cause increased vascular permeability and angiogenesis via increased

expression of vascular endothelial growth factor (VEGF) in endothelial and

smooth muscle cells [80].

Hyperglycemia is also causally implicated in the production of AGE, the

circulating and intracellular proteins that have undergone nonenzymatic

glycation. AGE have been linked to vascular inflammation, dysfunction,

and injury through various mechanisms, including overproduction of ROS

[81]. The main mechanism is through the binding of AGE to their receptors

(RAGE), resulting in activation of NFκB and generation of ROS [76, 82, 83].

Raised plasma levels of endogenous RAGE have been noted in patients with

type 2 diabetes and nephropathy [84].

It is through increased oxidative stress, as well as increased intracellu-

lar calcium, mitochondrial dysfunction, and changes in intracellular fatty

acid metabolism, that hyperglycemia is thought to result in endothelial cell

apoptosis [12].

In addition to its influence on oxidative stress and AGE production,

hyperglycemia has also been associated with decreased NO bioavail-

abilty. Kawano et al. showed that hyperglycemia rapidly suppresses

flow-mediated endothelium-dependent vasodilatation of the brachial

artery [85]. Furthermore, in studies of human umbilical vein endothelial

cells, it has been shown that elevated glucose inhibits NO production [86].

In contrast, some studies have demonstrated that NO release is increased
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in hyperglycemic conditions, with eNOS activity increased in the cardiac

endothelium of rats with diabetes [87], leading to the suggestion that eNOS

uncoupling may actually occur secondary to hyperglycemia of diabetes

and explain endothelial dysfunction [88, 89]. Furthermore, endothelial

dysfunction in diabetes is also related to an increase of endothelial-derived

constricting factors (EDCFs), likely secondary to exposure of the endothe-

lial cells to high glucose, causing oxidative stress and overexpression of

COX-1 and COX-2, and thus involvement of COX-derived prostanoids

[90]. ET-1 is also known to be present in higher levels in patients with

type 2 diabetes compared with healthy subjects, and this is accompanied

by increased oxidative stress and proinflammatory markers [91].

Finally, it is worth noting that the severity of hyperglycemia, as measured

by HbA1c, in both type 1 and type 2 diabetes, correlates with lower levels

of circulating EPC, resulting from either impaired proliferation, reduced

mobilization from the bone marrow, or shorter circulating time [92, 93].

This has the potential consequence of reducing the vascular repair capacity

in diabetes.

It should be noted, however, that despite evidence for hyperglycemia

being responsible for these mechanisms leading to endothelial cell dys-

function, some evidence points toward endothelial dysfunction preced-

ing marked hyperglycemia in diabetes. For example, the nonobese dia-

betic (NOD) mouse model for type 1 diabetes has shown that endothelial

dysfunction is present, with evidence of vasoconstriction, prior to devel-

opment of hyperglycemia [88]. Therefore, the cause and consequence of

hyperglycemia and endothelial dysfunction may not be so obvious.

Insulin Resistance
Although hyperglycemia is common to all types of diabetes, insulin resis-

tance is more a characteristic of type 2 diabetes and its role in endothelial

cell dysfunction is important.

Endothelial cells express the cognate insulin receptor (IR) and insulin

plays a vital role in normal endothelial cell homeostasis. In normal health,

insulin stimulates NO release through activation of a cascade involving acti-

vation of the PI3K-Akt axis and phosphorylation of eNOS. It also has oppos-

ing actions that cause vasoconstriction through the endothelial release of

ET-1. In insulin-resistant vessels there is impairment in the expression

and activity of eNOS as well as impairment of the PI3K-dependent sig-

naling, with overexpression of adhesion molecules and an increased secre-

tion of ET-1. This results in an inflammatory endothelial microenviron-

ment with reduced blood supply and deteriorating insulin resistance. Phar-

macological blockade of ET-1 receptors improves endothelial function in

obese patients with insulin resistance and those with diabetes, but not in
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lean, insulin-sensitive patients. It also has been suggested that endothelial

dysfunction itself may be a direct causal factor in insulin resistance [88].

Insulin resistance has also been linked with reduced proliferation and

differentiation of EPC as a consequence of reduced production of NO and

stromal cell-derived factor (SDF)-1α, which plays a role in modulating EPC

mobilization and survival [94, 95, 96].

Dyslipidemia
Both type 1 and type 2 diabetes are associated with dyslipidemia and

increased levels of free fatty acids (FFA). The characteristic lipid profile

associated with obesity, insulin resistance, and diabetes is reduced levels

of high-density lipoprotein (HDL)-cholesterol, small dense low-density

lipoprotein (LDL) particles, hypertriglyceridemia, and increased postpran-

dial FFA flux. Both in vitro and clinical studies suggest that endothelial

dysfunction in noninsulin-dependent diabetes is in part due to diabetic

dyslipidemia, most specifically postprandial lipemia with associated

inflammation and oxidative stress [97, 98].

Clinical Relevance of Endothelial Dysfunction
in Diabetes

Endothelial dysfunction has been shown to be an earlier manifestation of

vascular disease in type 2 diabetes, but is later in the course of type 1 dia-

betes [99]. Various studies have emerged linking endothelial dysfunction

with adverse clinical outcomes of microvascular and macrovascular com-

plications in diabetes.

In patients with type 1 diabetes, endothelial dysfunction precedes and

may predict the development of microalbuminuria [100]. It has been

suggested that endothelial dysfunction in patients with diabetes and

normoalbuminuria could precede microalbuminuria as a risk marker for

cardiovascular disease [101]. Importantly, endothelial dysfunction predicts

the rate of decline in GFR in patients with nephropathy; and biomarkers of

inflammation and endothelial dysfunction are associated with an increased

risk of all-cause mortality and cardiovascular morbidity in patients with

nephropathy [102]. Furthermore, in a cohort of patients with type 2

diabetes and microalbuminuria, endothelial dysfunction was a predictor

of progression to diabetic nephropathy independent of traditional risk

factors [103]. A correlation between endothelial dysfunction and diabetic

retinopathy has also been made [104].

More recently, endothelial dysfunction has been shown to predict car-

diovascular and renal outcome in patients with type 1 diabetes, both inde-

pendently and synergistically with arterial stiffness [105]; it has also been
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Figure 1.4 Kaplan-Meier curves for the composite outcome of death, myocardial

infarction, or stroke comparing the upper tertile of baseline ADMA to the lower two

tertiles combined. At 24 months, the number of patients who had experienced an event

in the upper tertile was 21 (39.6%) compared with 23 (21.5%) in the lower two tertiles

combined (p = 0.0192). (Source: Cavusoglu et al. 2010 [107]. Reproduced with

permission of Elsevier.)

demonstrated that endothelial dysfunction is a determinant of aortic stiff-

ness in hypertensive diabetic patients but not in hypertensive patients with-

out diabetes [106].

The elevated levels of ADMA observed in patients with diabetes mel-

litus are implicated in the pathogenesis of endothelial dysfunction and

atherosclerosis, independently predict diabetes complications, and are a

strong and independent predictor of cardiovascular outcomes (including

all-cause mortality) in men [107] (Figure 1.4).

Therapeutic Interventions for Endothelial
Dysfunction in Diabetes

Given the importance of endothelial dysfunction in the pathogenesis of

diabetes and its vascular complications, the endothelium has emerged as a

compelling therapeutic target. Numerous interventions have been shown

to have an effect on the endothelium. When designing and evaluating

such interventional studies, aspects of the methodology used for measuring

endothelial function should be carefully considered. For example, when

employing FMD, external factors should be minimized (although the con-

tribution of environmental factors to its variability is relatively small), and

image acquisition quality should be considered, as well as probe position
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and cuff location and occlusion time, in order to standardize the method-

ology and analysis [108]. Such measures reduce inter- and intraobserver

variability, and have a beneficial impact on sample size in the clinical trial

setting [109]. The study should be large enough with adequate power to

demonstrate a meaningful effect. Several treatments that have been shown

to reduce cardiovascular risk also improve endothelial function both in the

general population and in diabetes.

Lifestyle Interventions
Both diet and exercise exert beneficial effects on the vascular endothe-

lium in diabetes. In those with type 2 diabetes mellitus, intervention of

exercise training and a hypocaloric diet for six months improves coronary

endothelial function, as assessed by acetylcholine-induced changes in coro-

nary artery blood flow [110]. Furthermore, in patients with type 2 diabetes,

eight weeks of exercise training resulted in an improvement in brachial

artery FMD and forearm blood flow responses to acetylcholine [111]. Cir-

culating markers of endothelial dysfunction have also shown an improve-

ment following a twice-weekly, six-month, progressive aerobic training

program, with decreased levels of P-selectin and ICAM-1 [112]. In those

with impaired glucose tolerance (IGT), a combination of exercise and a

low-calorie diet has been shown to reduce the plasma concentrations of

ET-1 and NO, potentially improving the endothelial dysfunction in this

“pre-diabetes” cohort [113].

Statins
The Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors have

been the subject of much research regarding their actions apart from

their LDL-lowering effects; that is, their so-called pleiotropic effects.

Particularly with regard to endothelial function, improvement has been

noted following administration of statin therapy in both adults with

coronary artery disease and asymptomatic adults with cardiovascular risk

factors. The effect on endothelial function was independent of the type,

dose, or duration of therapy and was not associated directly with lowering

of cholesterol [114]. It is suggested that eNOS levels and activity are

enhanced in statin therapy, resulting in increased NO bioavailability and

improved FMD. Furthermore, it has been demonstrated that statins reduce

inflammatory and pro-inflammatory cytokines and adhesion molecules,

reduce the production of endothelin and angiotensin 1, and inhibit

macrophage migration and smooth muscle cell proliferation [115, 116].

An improvement in FMD has been demonstrated in patients with diabetes

receiving statin therapy, although it is suggested that the reduction in

LDL cholesterol per se rather than therapeutic pleiotropy is likely to be a

more important determinant of the improvement in endothelial function
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[117, 118]. A recent meta-analysis showed that statins significantly

improved the FMD in patients with diabetes who had better endothelial

functions [119].

Insulin Sensitizers
Metformin is the principle insulin sensitizer used in the treatment of type

2 diabetes and has long been shown to have a beneficial impact on car-

diovascular outcomes in patients with diabetes. Patients receiving met-

formin therapy undergoing coronary intervention have decreased adverse

cardiovascular events, specifically death and myocardial infarction, com-

pared with those patients not treated with insulin sensitizers [120]. Met-

formin is thought to improve endothelial function by reducing leukocyte

interactions with human endothelial cells, and has also been shown to

increase endothelium-dependent vasodilatation in subjects, independent

of glycemic control [121, 122].

Thiazolidinediones, another class of insulin sensitizers, are also rec-

ognized to have beneficial effects on the endothelium via activating

peroxisome proliferator receptor-gamma (PPARγ). This can result in

decreased activation of transcription factors such as NFκB, which can

reduce free radical generation and prevent arterial inflammation [123].

Troglitazone inhibited the expression of vascular cell adhesion molecule-1

and ICAM-1 in endothelial cells in vitro, and also reduced the migration

of inflammatory cells to atherosclerotic plaques [124]. Newer thiazolidne-

diones, such as rosiglitazone and pioglitazone, have also been shown to

improve the number and migration of EPC and the re-endothelization

capacity of EPC in patients with type 2 diabetes [125]. Although the

addition of rosiglitazone in patients with advanced type 2 diabetes treated

with insulin appears to have a beneficial effect on endothelial function

[126], it has also been associated with an increased incidence of myocardial

infarction in patients with type 2 diabetes. Thus, the beneficial effects of

treatments on the endothelium cannot be considered in isolation, and fur-

ther research is needed to investigate why a beneficial effect on endothelial

function with this class of drug does not translate into better cardiovascular

prognosis.

Renin-Angiotensin-Aldosterone System Antagonists,
Calcium Channel Blockers, and Beta Blockers
In patients with both type 1 and type 2 diabetes, studies have shown that

angiotensin-converting enzyme (ACE) inhibitors and angiotensin II recep-

tor antagonists improve endothelial function [127, 128, 129, 130, 131]

(Figure 1.5). Initially the results of TREND (Trial on Reversing ENdothe-

lial Dysfunction) showed that in patients with coronary artery disease,
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Figure 1.5 Flow-mediated dilatation (FMD) of the brachial artery was increased after 4

weeks’ treatment with losartan compared to atenolol (*p = 0.01). (Source: Flammer

et al. 2007 [130]. Reproduced with permission of Lippincott, Williams & Wilkins.)

including those with type 2 diabetes, quinapril improved endothelial dys-

function, as demonstrated by a significant net improvement in response to

acetylcholine using quantitative coronary angiography after six months of

treatment [132]. Other studies have since strengthened these findings. It

is thought that inhibition of angiotensin II-mediated vasoconstricton, ET-1

release, ROS production, and stimulation of cytokine and growth factor

expression all contribute to the benefits of these drugs [133, 134, 135].

Furthermore, a combination of angiotensin II receptor antagonist valsartan

and the calcium channel blocker amlodipine improves FMD, as well as nor-

malizing proteinuria and other markers of endothelial function in diabetic

patients with stage I chronic kidney disease (CKD) and hypertension [136].

The use of beta blockers in diabetes has been cautioned against, as they

can impair glycemic control. However, carvedilol possesses antioxidant

properties that might provide vascular protection. In a head-to-head trial

with metoprolol, carvedilol significantly improved endothelial function in

patients with type 2 diabetes. Changes in glycemic control and oxidative

stress did not appear fully to explain the relative improvement in FMD,

suggesting other mechanisms of action [137]. A further study showed that

metoprolol compared to carvedilol impairs insulin-stimulated endothelial

vasomotion in patients with type 2 diabetes [138]. Therefore, the role,

effects, and mechanisms of beta blockade on endothelial function in type

2 diabetes warrant further clinical evaluation.

Insulin
It has been demonstrated that insulin therapy partly restores insulin-stimu-

lated endothelial function in patients with type 2 diabetes and ischemic
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heart disease [139], and that intensive insulin therapy improves endothe-

lial function in young people with type 1 diabetes, with significantly

greater improvements in E-selectin and vascular responses to acetylcholine

compared with a conventional insulin therapy group [140]. Moreover,

a three-and-a-half-year-study of insulin therapy with insulin glargine

improved in-vivo endothelial function in patients with type 2 diabetes,

improving endothelial-dependent and endothelial-independent dilatation

[141]. However, the large, recently completed ORIGIN trial did not

demonstrate improved clinical outcomes with early initiation of insulin

glargine in patients with insulin resistance or early type 2 diabetes, despite

better glycemic control and reduced progression to diabetes [142].

Other Novel Agents
The use of antioxidants as interventions in patients with diabetes have

yielded conflicting results regarding their effect on endothelial function

and clinical outcomes, despite early promise [143, 144]. For example, in

patients with uncomplicated type 2 diabetes, endothelial dysfunction was

not shown to be improved by treatment with vitamin E [145], and in those

receiving vitamin C therapy, there was a lack of effect on oxidative stress

and endothelial function [146].

However, other more novel agents, acting as antioxidants, are in develop-

ment. Inhibition of ROS production may well be a valid mechanism target-

ing endothelial dysfunction in diabetes. New drugs, such as Nox inhibitors,

superoxide dismutase mimetics, and glutathione peroxidise (GPx1; antiox-

idant enzyme) are all potential therapeutic approaches to reduce oxidative

stress. Therapies that modulate and regulate eNOS are also under develop-

ment [147].

The mitogen-activated protein kinase (MAPK) pathway that reduces NO

production, EPC proliferation, and differentiation, as well as inducing the

pro-inflammatory effects of endothelial cells, may be a further novel target

for intervention [148]. Blockade of the pro-inflammatory vasoconstrictor

endothelin is a further potential therapeutic approach. Indeed, it has been

shown that treatment with an endothelin receptor antagonist results in

improved peripheral endothelial function in patients with type 2 diabetes

and microalbuminuria [149].

Although many of these drugs, including statin therapy and ACE

inhibitors, have clearly demonstrated clinical benefits, questions remain

regarding at what stage to intervene and with what agents in those

with diabetes and subclinical endothelial dysfunction. Further studies are

needed that can translate an improvement in endothelial function into a

direct improvement in clinical outcomes.
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Conclusions

The vascular endothelium in diabetes is the key regulator of blood vessel

health and normal functioning. A loss of NO bioavailability and increased

oxidative stress in diabetes, caused by factors including hyperglycemia,

insulin resistance, and dyslipidemia, can cause activation of the endothe-

lium. The resulting cascade of inflammation leads to the development of

atherosclerosis and subsequent micro- and macrovascular complications.

Various therapies have been associated with an improvement in endothe-

lial function in diabetes, and a number of therapies appear promising in

preventing the progression of endothelial dysfunction.

It is important to remember that endothelial dysfunction, although

important, is only a component of the pathophysiological process of

atherogenesis. Inflammatory, proliferative, and thrombotic pathways also

act independently of the endothelium and have important influences

on plaque development, destabilization, and resultant clinical sequelae.

Given the physiological sensitivity of the endothelium coupled with the

complexity of some of the techniques for assessing its function, it is

unlikely that assessment of endothelium-dependent vasomotion will ever

become a routine tool used to guide clinical decision-making outside of

specialist centers. However, it will remain a core component of the clinical

vascular research assessment portfolio.

Case Study 1

A 25-year-old male smoker with poorly controlled type 1 diabetes for the past five years is
found to have evidence of persistent microalbuminuria at his clinic review. His blood pres-
sure is 140/90 mmHg on no antihypertensive treatment and his cholesterol is 3.7 mmol/L
(normal).

Multiple-Choice Questions
1 The most significant cause of his microalbuminuria is:

A Hypertension

B Hyperglycemia

C Insulin resistance

D Dyslipidemia

E Smoking

2 The most appropriate option for measuring his vascular endothelial

function would be:

A Invasive coronary angiography

B Venous occlusion strain-gauge plethysmography
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C Circulating markers

D Flow-mediated dilatation

3 The most suitable first-line drug to improve endothelial function and

microalbuminuria is:

A Statin

B Metformin

C ACE inhibitor

D Thiazolidnedione

E Antioxidant

Answers provided after the References

Case Study 2

A 57-year-old woman with a 15-year history of type 2 diabetes, with HbA1c 7.5%
(58 mmol/mol) and no evidence of nephropathy or retinopathy, has excellent blood pres-
sure control (135/65 mmHg) on an ACE inhibitor alone. Her cholesterol is 3.6 mmol/L
(normal). She has a BMI of 34 kg/m2 (obese).

Multiple-Choice Questions
1 A conventional drug that is likely to have the most beneficial effect on

endothelial function and in reducing cardiovascular events in this

patient is:

A Insulin

B Doxazosin

C Vitamin E

D Metformin

E Gliclazide

2 A novel drug to improve her endothelial dysfunction to assess in an

RCT would:

A Block the action of eNOS

B Block ET-1 receptors

C Stimulate ROS production

D Reduce EPC proliferation

E Stimulate the MAPK pathway

Answers provided after the References

Guidelines and Web Links

http://journals.lww.com/jhypertension/pages/articleviewer.aspx?year=2005&issue=
01000&article=00004&type=abstract

http://www.sciencedirect.com/science/article/pii/S0735109701017466
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Endothelial function and dysfunction. Part I: Methodological issues for assessment in

the different vascular beds: A statement by the Working Group on Endothelin and

Endothelial Factors of the European Society of Hypertension.
Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated dilata-

tion of the brachial artery: A report of the International Brachial Artery Reactivity Task

Force.
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