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Estimating Credit Scores with Logit

Typically, several factors can affect a borrower’s default probability. In the retail segment,
one would consider salary, occupation and other characteristics of the loan applicant; when
dealing with corporate clients, one would examine the firm’s leverage, profitability or cash
flows, to name but a few items. A scoring model specifies how to combine the different pieces
of information in order to get an accurate assessment of default probability, thus serving to
automate and standardize the evaluation of default risk within a financial institution.

In this chapter, we show how to specify a scoring model using a statistical technique called
logistic regression or simply logit. Essentially, this amounts to coding information into a
specific value (e.g., measuring leverage as debt/assets) and then finding the combination of
factors that does the best job in explaining historical default behavior.

After clarifying the link between scores and default probability, we show how to estimate
and interpret a logit model. We then discuss important issues that arise in practical applications,
namely the treatment of outliers and the choice of functional relationship between variables
and default.

An important step in building and running a successful scoring model is its validation. Since
validation techniques are applied not just to scoring models but also to agency ratings and
other measures of default risk, they are described separately in Chapter 8.

LINKING SCORES, DEFAULT PROBABILITIES AND OBSERVED
DEFAULT BEHAVIOR

A score summarizes the information contained in factors that affect default probability. Stan-
dard scoring models take the most straightforward approach by linearly combining those
factors. Let x denote the factors (their number is K) and b the weights (or coefficients) attached
to them; we can represent the score that we get in scoring instance i as

Scorei = b1xi1 + b2xi2 + . . . + bK xi K (1.1)

It is convenient to have a shortcut for this expression. Collecting the bs and the xs in column
vectors b and x we can rewrite (1.1) to

Scorei = b1xi1 + b2xi2 + . . . + bK xi K = b′xi , xi =

⎡
⎢⎢⎣

xi1

xi2

. . .

xi K

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

b1

b2

. . .

bK

⎤
⎥⎥⎦ (1.2)

If the model is to include a constant b1, we set xi1 = 1 for each i.
Assume for simplicity that we have already agreed on the choice of the factors x – what is

then left to determine is the weight vector b. Usually, it is estimated based on observed default
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2 Credit Risk Modeling Using Excel and VBA with DVD

Table 1.1 Factor values and default behavior

Default indicator for year +1
Factor values from the end of

year

Scoring instance i Firm Year yi xi1 xi2 xiK

1 XAX 2001 0 0.12 0.35 . . . 0.14
2 YOX 2001 0 0.15 0.51 . . . 0.04
3 TUR 2001 0 −0.10 0.63 . . . 0.06
4 BOK 2001 1 0.16 0.21 . . . 0.12
. . . . . . . . . . . . . . . . . . . . . . . .
912 XAX 2002 0 −0.01 0.02 . . . 0.09
913 YOX 2002 0 0.15 0.54 . . . 0.08
914 TUR 2002 1 0.08 0.64 . . . 0.04
. . . . . . . . . . . . . . . . . . . . . . . .
N VRA 2005 0 0.04 0.76 . . . 0.03

behavior.1 Imagine that we have collected annual data on firms with factor values and default
behavior. We show such a data set in Table 1.1.2

Note that the same firm can show up more than once if there is information on this firm for
several years. Upon defaulting, firms often stay in default for several years; in such cases, we
would not use the observations following the year in which default occurred. If a firm moves
out of default, we would again include it in the data set.

The default information is stored in the variable yi. It takes the value 1 if the firm defaulted
in the year following the one for which we have collected the factor values, and zero otherwise.
N denotes the overall number of observations.

The scoring model should predict a high default probability for those observations that
defaulted and a low default probability for those that did not. In order to choose the appropriate
weights b, we first need to link scores to default probabilities. This can be done by representing
default probabilities as a function F of scores:

Prob(Defaulti ) = Prob(yi = 1) = F(Scorei ) (1.3)

Like default probabilities, the function F should be constrained to the interval from zero to
one; it should also yield a default probability for each possible score. The requirements can be
fulfilled by a cumulative probability distribution function, and a distribution often considered
for this purpose is the logistic distribution. The logistic distribution function �(z) is defined
as �(z) = exp(z)/(1 + exp(z)). Applied to (1.3) we get

Prob(Defaulti ) = �(Scorei ) = exp(b′xi )

1 + exp(b′xi )
= 1

1 + exp(−b′xi )
(1.4)

Models that link information to probabilities using the logistic distribution function are called
logit models.

1 In qualitative scoring models, however, experts determine the weights.
2 Data used for scoring are usually on an annual basis, but one can also choose other frequencies for data collection as well as other
horizons for the default horizon.
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Table 1.2 Scores and default probabilities in the logit model

A B C D E F G H

1 Score Prob(Default)

2 -8 0.03% =1/(1+EXP(-A2))   

3 -7 0.09% (can be copied into B3:B18) 

4   %52.0 6-

5   %76.0 5-

6   %08.1 4-

7   %47.4 3-

8   %29.11 2-

9   %98.62 1-

10   %00.05 0

11   %11.37 1

12   %80.88 2

13   %62.59 3

14   %02.89 4

15   %33.99 5

16   %57.99 6

17   %19.99 7

18   %79.99 8
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In Table 1.2, we list the default probabilities associated with some score values and illustrate
the relationship with a graph. As can be seen, higher scores correspond to a higher default
probability. In many financial institutions, credit scores have the opposite property: they are
higher for borrowers with a lower credit risk. In addition, they are often constrained to some
set interval, e.g., zero to 100. Preferences for such characteristics can easily be met. If we use
(1.4) to define a scoring system with scores from −9 to 1, but want to work with scores from
0 to 100 instead (100 being the best), we could transform the original score to myscore =
−10 × score + 10.

Having collected the factors x and chosen the distribution function F, a natural way of
estimating the weights b is the maximum likelihood (ML) method. According to the ML
principle, the weights are chosen such that the probability (=likelihood) of observing the
given default behavior is maximized (see Appendix A3 for further details on ML estimation).

The first step in maximum likelihood estimation is to set up the likelihood function. For a
borrower that defaulted, the likelihood of observing this is

Prob(Defaulti ) = Prob(yi = 1) = �(b′xi ) (1.5)

For a borrower that did not default, we get the likelihood

Prob(No defaulti ) = Prob(yi = 0) = 1 − �(b′xi ) (1.6)

Using a little trick, we can combine the two formulae into one that automatically gives
the correct likelihood, be it a defaulter or not. Since any number raised to the power of zero
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evaluates to one, the likelihood for observation i can be written as

Li = (�(b′xi ))
yi (1 − �(b′xi ))

1−yi (1.7)

Assuming that defaults are independent, the likelihood of a set of observations is just the
product of the individual likelihoods:3

L =
N∏

i=1

Li =
N∏

i=1

(�(b′xi ))
yi (1 − �(b′xi ))

1−yi (1.8)

For the purpose of maximization, it is more convenient to examine ln L, the logarithm of
the likelihood:

ln L =
N∑

i=1

yi ln(�(b′xi )) + (1 − yi ) ln(1 − �(b′xi )) (1.9)

It can be maximized by setting its first derivative with respect to b to zero. This derivative
(like b, it is a vector) is given by

∂ ln L

∂b
=

N∑
i=1

(yi − �(b′xi ))xi (1.10)

Newton’s method (see Appendix A3) does a very good job in solving equation (1.10) with
respect to b. To apply this method, we also need the second derivative, which we obtain as

∂2 ln L

∂b∂b′ = −
N∑

i=1

�(b′xi )(1 − �(b′xi ))xi x′
i (1.11)

ESTIMATING LOGIT COEFFICIENTS IN EXCEL

Excel does not contain a function for estimating logit models, and so we sketch how to
construct a user-defined function that performs the task. Our complete function is called
LOGIT. The syntax of the LOGIT command is equivalent to the LINEST command:
LOGIT(y,x,[const],[statistics]), where [] denotes an optional argument.

The first argument specifies the range of the dependent variable, which in our case is the
default indicator y; the second parameter specifies the range of the explanatory variable(s).
The third and fourth parameters are logical values for the inclusion of a constant (1 or omitted
if a constant is included, 0 otherwise) and the calculation of regression statistics (1 if statistics
are to be computed, 0 or omitted otherwise). The function returns an array, therefore, it has to
be executed on a range of cells and entered by [ctrl]+[shift]+[enter].

3 Given that there are years in which default rates are high, and others in which they are low, one may wonder whether the independence
assumption is appropriate. It will be if the factors that we input into the score capture fluctuations in average default risk. In many
applications, this is a reasonable assumption.
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Table 1.3 Application of the LOGIT command to a data set with information on defaults and five
financial ratios

A B C D E F G H I J K L M N O

1
Firm 
ID

Year De-
fault

WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA CONST 

WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

2 1 1999 0 0.50 0.31 0.04 0.96 0.33 b -2.543 0.414 -1.454 -7.999 -1.594 0.620
3 1 2000 0 0.55 0.32 0.05 1.06 0.33 {=LOGIT(C2:C4001,D2:H4001,1,0)} 

4 1 2001 0 0.45 0.23 0.03 0.80 0.25 (applies to J2:O2) 

5 1 2002 0 0.31 0.19 0.03 0.39 0.25
6 1 2003 0 0.45 0.22 0.03 0.79 0.28
7 1 2004 0 0.46 0.22 0.03 1.29 0.32
8 2 1999 0 0.01 -0.03 0.01 0.11 0.25
9 2 2000 0 -0.11 -0.12 0.03 0.15 0.32
…     

108 21 1996 1 0.36 0.06 0.03 3.20 0.28
…    

4001 830 2002 1 0.07 -0.11 0.04 0.04 0.12

Before delving into the code, let us look at how the function works on an example data
set.4 We have collected default information and five variables for default prediction; Working
Capital (WC), Retained Earnings (RE), Earnings Before Interest and Taxes (EBIT) and Sales
(S), each divided by Total Assets (TA); and Market Value of Equity (ME) divided by Total
Liabilities (TL). Except for the market value, all these items are found in the balance sheet
and income statement of the company. The market value is given by the number of shares
outstanding multiplied by the stock price. The five ratios are the ones from the widely known
Z-score developed by Altman (1968). WC/TA captures the short-term liquidity of a firm,
RE/TA and EBIT/TA measure historic and current profitability, respectively. S/TA further
proxies for the competitive situation of the company and ME/TL is a market-based measure
of leverage.

Of course, one could consider other variables as well; to mention only a few, these could be:
cash flows over debt service, sales or total assets (as a proxy for size), earnings volatility, stock
price volatility. In addition, there are often several ways of capturing one underlying factor.
Current profits, for instance, can be measured using EBIT, EBITDA (=EBIT plus depreciation
and amortization) or net income.

In Table 1.3, the data is assembled in columns A to H. Firm ID and year are not required
for estimation. The LOGIT function is applied to range J2:O2. The default variable that the
LOGIT function uses is in the range C2:C4001, while the factors x are in the range D2:H4001.
Note that (unlike in Excel’s LINEST function) coefficients are returned in the same order
as the variables are entered; the constant (if included) appears as the leftmost variable. To
interpret the sign of the coefficient b, recall that a higher score corresponds to a higher default
probability. The negative sign of the coefficient for EBIT/TA, for example, means that default
probability goes down as profitability increases.

Now let us have a close look at important parts of the LOGIT code. In the first lines
of the function, we analyze the input data to define the data dimensions: the total number
of observations N and the number of explanatory variables (including the constant) K. If a

4 The data is hypothetical, but mirrors the structure of data for listed US corporates.
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constant is to be included (which should be done routinely) we have to add a vector of 1s to
the matrix of explanatory variables. This is why we call the read-in factors xraw, and use
them to construct the matrix x we work with in the function by adding a vector of 1s. For this,
we could use an If-condition, but here we just write a 1 in the first column and then overwrite
it if necessary (i.e., if constant is zero):

Function LOGIT(y As Range, xraw As Range, _

Optional constant As Byte, Optional stats As Byte)

If IsMissing(constant) Then constant = 1

If IsMissing(stats) Then stats = 0

'Count variables

Dim i As long, j As long, jj As long

'Read data dimensions

Dim K As Long, N As Long

N = y.Rows.Count

K = xraw.Columns.Count + constant

'Adding a vector of ones to the x matrix if constant=1,
'name xraw=x from now on

Dim x() As Double

ReDim x(1 To N, 1 To K)

For i = 1 To N

x(i, 1) = 1

For j = 1 + constant To K

x(i, j) = xraw(i, j - constant)

Next j

Next i

. . .

The logical value for the constant and the statistics are read in as variables of type byte,
meaning that they can take integer values between 0 and 255. In the function, we could
therefore check whether the user has indeed input either zero or 1, and return an error message
if this is not the case. Both variables are optional, if their input is omitted the constant is
set to 1 and the statistics to 0. Similarly, we might want to send other error messages, e.g.,
if the dimension of the dependent variable y and the one of the independent variables x do
not match.

The way we present it, the LOGIT function requires the input data to be organized in
columns, not in rows. For the estimation of scoring models, this will be standard, because the
number of observations is typically very large. However, we could modify the function in such
a way that it recognizes the organization of the data. The LOGIT function maximizes the log-
likelihood by setting its first derivative to zero, and uses Newton’s method (see Appendix A3)
to solve this problem. Required for this process are: a set of starting values for the unknown
parameter vector b; the first derivative of the log-likelihood (the gradient vector g() given in
(1.10)); the second derivative (the Hessian matrix H() given in (1.11)). Newton’s method then
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leads to the following rule:

b1 = b0 −
[

∂2 ln L

∂b0∂b′
0

]−1
∂ ln L

∂b0
= b0 − H (b0)−1g(b0) (1.12)

The logit model has the nice feature that the log-likelihood function is globally concave.
Once we have found the root to the first derivative, we can be sure that we have found the
global maximum of the likelihood function.

When initializing the coefficient vector (denoted by b in the function), we can already
initialize the score b′x (denoted by bx), which will be needed later on:

'Initializing the coefficient vector (b) and the score (bx)

Dim b() As Double, bx() As Double

ReDim b(1 To K): ReDim bx(1 To N)

Since we only declare the coefficients and the score, their starting values are implicitly
set to zero. Now we are ready to start Newton’s method. The iteration is conducted within a
Do-while loop. We exit once the change in the log-likelihood from one iteration to the next
does not exceed a certain small value (like 10−11). Iterations are indexed by the variable iter.
Focusing on the important steps, once we have declared the arrays dlnl (gradient), Lambda
(prediction �(b′x)), hesse (Hessian matrix) and lnl (log-likelihood), we compute their
values for a given set of coefficients, and therefore for a given score bx. For your convenience,
we summarize the key formulae below the code:

'Compute prediction Lambda, gradient dlnl,

'Hessian hesse, and log likelihood lnl

For i = 1 To N

Lambda(i) = 1 / (1 + Exp(-bx(i)))

For j = 1 To K

dlnL(j) = dlnL(j) + (y(i) - Lambda(i)) * x(i, j)

For jj = 1 To K

hesse(jj, j) = hesse(jj, j) - Lambda(i) * (1 - Lambda(i)) _
* x(i, jj) * x(i, j)

Next jj

Next j

lnL(iter) = lnL(iter) + y(i) * Log(Lambda(i)) + (1 - y(i)) _
* Log(1 - Lambda(i))

Next i

Lambda = �(b′xi ) = 1/(1 + exp(−b′xi ))

dlnl =
N∑

i=1

(yi − �(b′xi ))xi

hesse = −
N∑

i=1

�(b′xi )(1 − �(b′xi ))xi x′
i

lnl =
N∑

i=1

yi ln(�(b′xi )) + (1 − yi ) ln(1 − �(b′xi ))
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We have to go through three loops. The function for the gradient, the Hessian and the
likelihood each contain a sum for i=1 to N. We use a loop from i=1 to N to evaluate
those sums. Within this loop, we loop through j=1 to K for each element of the gradient
vector; for the Hessian, we need to loop twice, and so there is a second loop jj=1 to K.
Note that the gradient and the Hessian have to be reset to zero before we redo the calculation
in the next step of the iteration.

With the gradient and the Hessian at hand, we can apply Newton’s rule. We take the inverse
of the Hessian using the worksheet-Function MINVERSE, and multiply it with the gradient
using the worksheet-Function MMULT:

'Compute inverse Hessian (=hinv) and multiply hinv with gradient dlnl

hinv = Application.WorksheetFunction.MInverse(hesse)

hinvg = Application.WorksheetFunction.MMult(dlnL, hinv)

If Abs(change) <= sens Then Exit Do

' Apply Newton’s scheme for updating coefficients b

For j = 1 To K

b(j) = b(j) - hinvg(j)

Next j

As outlined above, this procedure of updating the coefficient vector b is ended when the
change in the likelihood, abs(ln(iter)-ln(iter-1)), is sufficiently small. We can
then forward b to the output of the function LOGIT.

COMPUTING STATISTICS AFTER MODEL ESTIMATION

In this section, we show how the regression statistics are computed in the LOGIT func-
tion. Readers wanting to know more about the statistical background may want to consult
Appendix A4.

To assess whether a variable helps explain the default event or not, one can examine a t-ratio
for the hypothesis that the variable’s coefficient is zero. For the jth coefficient, such a t-ratio is
constructed as

t j = b j/SE(b j ) (1.13)

where SE is the estimated standard error of the coefficient. We take b from the last iteration
of the Newton scheme and the standard errors of estimated parameters are derived from the
Hessian matrix. Specifically, the variance of the parameter vector is the main diagonal of the
negative inverse of the Hessian at the last iteration step. In the LOGIT function, we have
already computed the Hessian hinv for the Newton iteration, and so we can quickly calculate
the standard errors. We simply set the standard error of the jth coefficient to Sqr(-hinv(j,
j). t-ratios are then computed using Equation (1.13).

In the logit model, the t-ratio does not follow a t-distribution as in the classical linear
regression. Rather, it is compared to a standard normal distribution. To get the p-value of a
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two-sided test, we exploit the symmetry of the normal distribution:

p-value = 2∗(1-NORMSDIST(ABS(t))) (1.14)

The LOGIT function returns standard errors, t-ratios and p-values in lines two to four of the
output if the logical value statistics is set to 1.

In a linear regression, we would report an R2 as a measure of the overall goodness of fit.
In nonlinear models estimated with maximum likelihood, one usually reports the Pseudo-R2

suggested by McFadden (1974). It is calculated as 1 minus the ratio of the log-likelihood of
the estimated model (ln L) and the one of a restricted model that has only a constant (ln L0):

Pseudo-R2 = 1 − ln L/ ln L0 (1.15)

Like the standard R2, this measure is bounded by zero and one. Higher values indicate a
better fit. The log-likelihood ln L is given by the log-likelihood function of the last iteration of
the Newton procedure, and is thus already available. Left to determine is the log-likelihood of
the restricted model. With a constant only, the likelihood is maximized if the predicted default
probability is equal to the mean default rate ȳ. This can be achieved by setting the constant
equal to the logit of the default rate, i.e., b1 = ln(ȳ/(1 − ȳ)). For the restricted log-likelihood,
we then obtain:

ln L0 =
N∑

i=1

yi ln(�(b′xi )) + (1 − yi ) ln(1 − �(b′xi ))

=
N∑

i=1

yi ln(ȳ) + (1 − yi ) ln(1 − ȳ) (1.16)

= N · [ȳ ln(ȳ) + (1 − ȳ) ln(1 − ȳ)]

In the LOGIT function, this is implemented as follows:

'ln Likelihood of model with just a constant(lnL0)

Dim lnL0 As Double, ybar as Double

ybar = Application.WorksheetFunction.Average(y)

lnL0 = N * (ybar * Log(ybar) + (1 - ybar) * Log(1 - ybar))

The two likelihoods used for the Pseudo-R2 can also be used to conduct a statistical test of
the entire model, i.e., test the null hypothesis that all coefficients except for the constant are
zero. The test is structured as a likelihood ratio test:

LR = 2(ln L − ln L0) (1.17)

The more likelihood is lost by imposing the restriction, the larger the LR-statistic will be.
The test statistic is distributed asymptotically chi-squared with the degrees of freedom equal to
the number of restrictions imposed. When testing the significance of the entire regression, the
number of restrictions equals the number of variables K minus 1. The function CHIDIST(test
statistic, restrictions) gives the p-value of the LR test. The LOGIT command returns both the
LR and its p-value.
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Table 1.4 Output of the user-defined function LOGIT

b1 b2 . . . bK

SE(b1) SE(b2) . . . SE(bK)
t1 = b1/SE(b1) t2 = b2/SE(b2) . . . tK = bK/SE(bK)
p-value(t1) p-value(t2) . . . p-value(tK)
Pseudo-R2 # iterations #N/A #N/A
LR-test p-value (LR) #N/A #N/A
log-likelihood (model) log-likelihood(restricted) #N/A #N/A

The likelihoods ln L and ln L0 are also reported, as is the number of iterations that was
needed to achieve convergence. As a summary, the output of the LOGIT function is organized
as shown in Table 1.4.

INTERPRETING REGRESSION STATISTICS

Applying the LOGIT function to our data from Table 1.3 with the logical values for constant
and statistics both set to 1, we obtain the results reported in Table 1.5. Let us start with the
statistics on the overall fit. The LR test (in J7, p-value in K7) implies that the logit regression is
highly significant. The hypothesis ‘the five ratios add nothing to the prediction’ can be rejected
with high confidence. From the three decimal points displayed in Table 1.5, we can deduce
that the significance is better than 0.1%, but in fact it is almost indistinguishable from zero
(being smaller than 10−36). So we can trust that the regression model helps explain the default
events.

Knowing that the model does predict defaults, we would like to know how well it does so.
One usually turns to the R2 for answering this question, but as in linear regression, setting up
general quality standards in terms of a Pseudo-R2 is difficult to impossible. A simple but often
effective way of assessing the Pseudo-R2 is to compare it with the ones from other models

Table 1.5 Application of the LOGIT command to a data set with information on defaults and five
financial ratios (with statistics)

C D E F G H I J K L M N O

1
De-

fault y 
WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA CONST

WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

2 0 0.50 0.31 0.04 0.96 0.33 b -2.543 0.414 -1.454 -7.999 -1.594 0.620
3 0 0.55 0.32 0.05 1.06 0.33 SE(b) 0.266 0.572 0.229 2.702 0.323 0.349
4 0 0.45 0.23 0.03 0.80 0.25 t -9.56 0.72 -6.34 -2.96 -4.93 1.77
5 0 0.31 0.19 0.03 0.39 0.25 p-value 0.000 0.469 0.000 0.003 0.000 0.076
6 0 0.45 0.22 0.03 0.79 0.28 Pseudo R² / # iter 0.222 12 #N/A #N/A #N/A #N/A
7 0 0.46 0.22 0.03 1.29 0.32 LR-test / p-value 160.1 0.000 #N/A #N/A #N/A #N/A
8 0 0.01 -0.03 0.01 0.11 0.25 lnL / lnL 0 -280.5 -360.6 #N/A #N/A #N/A #N/A
9 0 -0.11 -0.12 0.03 0.15 0.32 {=LOGIT(C2:C4001,D2:H4001,1,1)} 

… … … … … … … (applies to J2:O8) 
108 1 0.36 0.06 0.03 3.20 0.28
… … … … … … …

4001 1 0.07 -0.11 0.04 0.04 0.12
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estimated on similar data sets. From the literature, we know that scoring models for listed US
corporates can achieve a Pseudo-R2 of 35% and more.5 This indicates that the way we have
set up the model may not be ideal. In the final two sections of this chapter, we will show that
the Pseudo-R2 can indeed be increased by changing the way in which the five ratios enter the
analysis.

When interpreting the Pseudo-R2, it is useful to note that it does not measure whether the
model correctly predicted default probabilities – this is infeasible because we do not know
the true default probabilities. Instead, the Pseudo-R2 (to a certain degree) measures whether
we correctly predicted the defaults. These two aspects are related, but not identical. Take a
borrower that defaulted although it had a low default probability: If the model was correct about
this low default probability, it has fulfilled its goal, but the outcome happened to be out of line
with this, thus reducing the Pseudo-R2. In a typical loan portfolio, most default probabilities
are in the range 0.05–5%. Even if we get each single default probability right, there will be
many cases in which the observed data (=default) is not in line with the prediction (low default
probability) and we therefore cannot hope to get a Pseudo-R2 close to 1. A situation in which
the Pseudo-R2 would be close to 1 would look as follows: Borrowers fall into one of two
groups; the first group is characterized by very low default probabilities (0.1% and less), the
second group by very high ones (99.9% or more). This is clearly unrealistic for typical credit
portfolios.

Turning to the regression coefficients, we can summarize that three out of the five ratios
have coefficients b that are significant on the 1% level or better, i.e., their p-value is below 0.01.
If we reject the hypothesis that one of these coefficients is zero, we can expect to err with a
probability of less than 1%. Each of the three variables has a negative coefficient, meaning that
increasing values of the variables reduce default probability. This is what we would expect:
by economic reasoning, retained earnings, EBIT and market value of equity over liabilities
should be inversely related to default probabilities. The constant is also highly significant.
Note that we cannot derive the average default rate from the constant directly (this would only
be possible if the constant were the only regression variable).

Coefficients on working capital over total assets and sales over total assets, by contrast,
exhibit significance of only 46.9% and 7.6%, respectively. By conventional standards of
statistical significance (5% is most common) we would conclude that these two variables
are not or only marginally significant, and we would probably consider not using them for
prediction.

If we simultaneously remove two or more variables based on their t-ratios, we should be
aware of the possibility that variables might jointly explain defaults even though they are
insignificant individually. To test this possibility statistically, we can run a second regression
in which we exclude variables that were insignificant in the first run, and then conduct a
likelihood ratio test.

This is shown in Table 1.6. Model 1 is the one we estimated in Table 1.5. In model 2, we
remove the variables WC/TA and S/TA, i.e., we impose the restriction that the coefficients on
these two variables are zero. The likelihood ratio test for the hypothesis bWC/TA = bS/TA = 0 is
based on a comparison of the log-likelihoods ln L of the two models. It is constructed as

LR = 2[ln L(model 1) − ln L(model 2)]

5 See, e.g., Altman and Rijken (2004).
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Table 1.6 Testing joint restrictions with a likelihood ratio test

C D E F G H I J K L M N O

1
De-

fault y 
WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

Model 1 
CONST 

WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

2 0 0.50 0.31 0.04 0.96 0.33 b -2.543 0.414 -1.454 -7.999 -1.594 0.620
3 0 0.55 0.32 0.05 1.06 0.33 SE(b) 0.266 0.572 0.229 2.702 0.323 0.349
4 0 0.45 0.23 0.03 0.80 0.25 t -9.56 0.72 -6.34 -2.96 -4.93 1.77
5 0 0.31 0.19 0.03 0.39 0.25 p-value 0.000 0.469 0.000 0.003 0.000 0.076
6 0 0.45 0.22 0.03 0.79 0.28 Pseudo R² / # iter 0.222 12 #N/A #N/A #N/A #N/A
7 0 0.46 0.22 0.03 1.29 0.32 LR-test / p-value 160.1 0.000 #N/A #N/A #N/A #N/A
8 0 0.01 -0.03 0.01 0.11 0.25 lnL / lnL 0 -280.5 -360.6 #N/A #N/A #N/A #N/A
9 0 -0.11 -0.12 0.03 0.15 0.32 {=LOGIT(C2:C4001,D2:H4001,1,1)} 

10 0 0.06 -0.11 0.04 0.41 0.29 (applies to J2:O8) 

11 0 0.05 -0.09 0.05 0.25 0.34
Model 2 

CONST 
RE/
TA

EBIT/
TA

ME/
TL

12 0 0.12 -0.11 0.04 0.46 0.31 b -2.318 -1.420 -7.179 -1.616
13 0 -0.04 0.27 0.05 0.59 0.21 SE(b) 0.236 0.229 2.725 0.325
14 0 -0.04 0.25 0.03 0.33 0.21 t -9.84 -6.21 -2.63 -4.97
15 0 0.00 0.15 0.00 0.16 0.16 p-value 0.000 0.000 0.008 0.000
16 0 -0.05 0.02 0.01 0.07 0.16 Pseudo R² / # iter 0.217 11 #N/A #N/A
17 0 -0.03 -0.01 0.02 0.10 0.18 LR-test / p-value 156.8 0.000 #N/A #N/A
18 0 -0.03 -0.04 0.02 0.09 0.19 lnL / lnL0 -282.2 -360.6 #N/A #N/A
19 0 0.02 0.05 0.05 0.55 0.07 {=LOGIT(C2:C4001,E2:G4001,1,1)} 

20 0 0.02 0.08 0.03 0.60 0.09 (applies to J12:M18)

21 0 0.03 0.11 0.04 0.79 0.10     

22 0 0.00 0.12 0.04 0.82 0.09 LR- Test for b(WC/TA)=b (S/TA)=0 in model 1

23 0 0.04 0.14 0.02 0.63 0.12 LR 3.39 =2*(J8-J18) 
24 0 -0.05 0.15 0.04 0.89 0.15 DF 2    

25 0 -0.01 0.14 0.04 0.68 0.11 p-value 18.39% =CHIDIST(J23,J24) 
… … ... ... ... ... ...

4001 1 0.07 -0.11 0.04 0.04 0.12

and referred to a chi-squared distribution with two degrees of freedom because we impose two
restrictions. In Table 1.6 the LR test leads to a value of 3.39 with a p-value of 18.39%. This
means that if we add the two variables WC/TA and S/TA to model 2, there is a probability
of 18.39% that we do not add explanatory power. The LR test thus confirms the results of
the individual tests: individually and jointly, the two variables would be considered only
marginally significant.

Where do we go from there? In model building, one often follows simple rules based
on stringent standards of statistical significance, such as ‘remove all variables that are not
significant on a 5% level or better’. Such a rule would call to favor model 2. However, it is
advisable to complement such rules with other tests. Notably, we might want to conduct an
out-of-sample test of predictive performance as described in Chapter 8.

PREDICTION AND SCENARIO ANALYSIS

Having specified a scoring model, we want to use it for predicting probabilities of default.
In order to do so, we calculate the score and then translate it into a default probability (see
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Table 1.7 Predicting the probability of default

C D E F G H I J K L M N O P Q

1

De-
fault

y

WC/
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

CONST

WC/
TA

RE/
TA

EBIT
TA

ME/
TL

S/
TA

 Default 
probability

2 0 0.50 0.31 0.04 0.96 0.33 b -2.543 0.414 -1.454 -7.999 -1.594 0.620 1.16%
3 0 0.55 0.32 0.05 1.06 0.33 {=LOGIT(C2:C4001,D2:H4001,1,0)} 0.91%
4 0 0.45 0.23 0.03 0.80 0.25 (applies to J2:O2) 1.75%

%42.3  52.093.0 30.0 91.013.0 0 5
6 0 0.45 0.22 0.03 0.79 0.28     1.76%
7 0 0.46 0.22 0.03 1.29 0.32     0.82%
8 0 0.01 -0.03 0.01 0.11 0.25     7.10%

9 0 -0.11 -0.12 0.03 0.15 0.32
=1/(1+EXP(-

(J$2+SUMPRODUCT(K$2:O$2,D9:H9)))) 6.25%
.,, … … … … … … (can be copied into Q2:Q4001) …

108 1 0.36 0.06 0.03 3.20 0.28 0.05%

… … … … … … … …

4001 1 0.07 -0.11 0.04 0.04 0.12 6.74%

Equations (1.1) and (1.4)):6

Prob(Defaulti ) = �(Scorei ) = �(b′xi ) = 1

1 + exp(−b′xi )
(1.18)

In Table 1.7, we calculate default probabilities based on the model with all five ratios.
For prediction, we just need the coefficients, so we can suppress the statistics by setting the
associated logical value in the LOGIT function to zero.

We need to evaluate the score b′xi. Our coefficient vector b is in J2:O2, and the ratio values
contained in xi can be found in columns D to H, with each row corresponding to one value
of i. However, columns D to H do not contain a column of 1s that we had assumed when
formulating Score = b′x. This is just a minor problem, though, as we can multiply the ratio
values from columns D to H with the coefficients for those ratios (in K2:O2) and then add the
constant given in J2. The default probability can thus be computed via (here for row 9)

=1/(1 + EXP(−(J$2 + SUMPRODUCT(K$2:O$2, D9:H9))))

The formula can be copied into the range Q2:Q4001 because we have fixed the reference
to the coefficients with a dollar sign. The observations shown in the table contain just two
defaulters (in row 108 and 4001), for the first of which we predict a default probability of
0.05%. This should not be cause for alarm though, for two reasons. First, a borrower can
default even if its default probability is very low; second, even though a model may do a good
job in predicting defaults on the whole (as evidenced by the LR-test of the entire model, for
example) it can nevertheless fail at predicting some individual default probabilities.

6 Note that in applying Equation (1.18) we assume that the sample’s mean default probability is representative of the population’s
expected average default probability. If the sample upon which the scoring model is estimated is choice-based or stratified (e.g.,
overpopulated with defaulting firms) we would need to correct the constant b0 before estimating the PDs; see Anderson (1972) or
Scott and Wilde (1997).
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Of course, the prediction of default probabilities is not confined to borrowers that are
included in the sample used for estimation. On the contrary, scoring models are usually
estimated with past data and then applied to current data.

As already used in a previous section, the sign of the coefficient directly reveals the direc-
tional effect of a variable. If the coefficient is positive, default probability increases if the value
of the variable increases, and vice versa. If we want to say something about the magnitude of
an effect, things get somewhat more complicated. Since the default probability is a nonlinear
function of all variables and the coefficients, we cannot directly infer a statement such as ‘if
the coefficient is 1, the default probability will increase by 10% if the value of the variable
increases by 10%’.

One way of gauging a variable’s impact is to examine an individual borrower and then to
compute the change in its default probability that is associated with variable changes. The
easiest form of such a scenario analysis is a ceteris paribus (c.p.) analysis, in which we measure
the impact of changing one variable while keeping the values of the other variables constant.
Technically, what we do is change the variables, insert the changed values into the default
probability formula (1.18) and compare the result to the default probability before the change.

In Table 1.8, we show how to build such a scenario analysis for one borrower. The estimated
coefficients are in row 4 and the ratios of the borrower in row 7. For convenience, we include
a 1 for the constant. We calculate the default probability (cell C9) very similarly to the way
we did in Table 1.7.

Table 1.8 Scenario analysis – how default probability changes with changes in explanatory variables

A B C D E F G H

1  CONST WC/TA RE/TA EBIT/TA ME/TL S/TA 

2
3 Estimated model 

4 Coefficients -2.543 0.414 -1.454 -7.999 -1.594 0.620 
5
6 Data for borrower under analysis 

7 Ratio values 1 0.50 0.31 0.04 0.96 0.33 
8
9 => Default prob: 1.16% =1/(1+EXP(-SUMPRODUCT(B4:G4,B7:G7))) 

10
11 Scenario analysis: Default prob’s for c.p. changes of individual variables 

12   selbairav rof seulav oiranecS

13 better 0.40 0.40 0.08 1.00 0.20 
14 worse 0.60 0.20 -0.02 0.50 0.40 
15
16   ytilibaborp tluafed oiranecS

17 better 1.11% 1.01% 0.87% 1.08% 1.07% 
18 worse 1.21% 1.35% 1.91% 2.37% 1.21% 

19

C18: =1/(1+EXP(-(SUMPRODUCT($B$4:$G$4,$B$7:$G$7)+ 
C$4*(C14-C$7))))

20  (can be copied into C17:B18) 



P1: TIX
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In rows 13 and 14, we state scenario values for the five variables, and in rows 17 and 18
we compute the associated default probabilities. Recall that we change just the value of one
variable. When calculating the score b′xi by multiplying b and xi, there is only one element in
xi affected. We can handle this by computing the score b′xi based on the status quo, and then
correcting it for the change assumed for a particular scenario. When changing the value of the
second variable from xi2 to x∗

i2, for example, the new default probability is obtained as

Prob(Defaulti ) = �(b′x∗
i ) = �(b′xi + b2(x∗

i2 − xi2)) (1.19)

In cell C18, this is implemented via

=1/(1+EXP(−(SUMPRODUCT($B$4:$G$4,$B$7:$G$7)+C$4∗(C14-C$7))))

We can directly copy this formula to the other cells C17:G17. For example, if the firm
manages to increase its profitability EBIT/TA from −2% to 8%, its default probability will
move from 1.91% to 0.87%. We could also use the Goal seek functionality or the Solver to
find answers to questions such as ‘what change in the variable ME/TL is required to produce
a default probability of 1%?’.

An analysis like the one conducted here can therefore be very useful for firms that want to
reduce their default probability to some target level, and would like to know how to achieve this
goal. It can also be helpful in dealing with extraordinary items. For example, if an extraordinary
event has reduced the profitability from its long-run mean to a very low level, the estimated
default probability will increase. If we believe that this reduction is only temporary, we could
base our assessment on the default probability that results from replacing the currently low
EBIT/TA by its assumed long-run average. For a discussion of the predictive quality of scoring
models during the financial crisis, see Box 1.1.

Box 1.1 Credit scores and the subprime crisis

The 2007–2008 financial crisis started when losses on defaulted US mortgage loans
mounted. Since credit scores play a major role in mortgage loan application decisions,
it is important to examine whether credit scoring systems failed to reveal the true risk
of borrowers.

Research by Demyanyk and Van Hemert (2010) shows that a statistical analysis
of default rates would have revealed that loan quality decreased from 2002 onwards.
This decrease, however, was not reflected in the credit scores that were used in the
industry. So why did the market not react to the warning signals, and why did credit
scores fail to send out such signals? To some extent, mortgage financers seem to have
been aware of the increased risk because mortgage rates became more sensitive to risk
characteristics. On the other hand, overall mortgage rates were too low, especially
for high-risk, subprime borrowers. Although the data showed that riskiness increased
over time, the true magnitude of the risks was concealed by rising house prices. As
long as house prices were rising, borrowers with financial difficulties could resell
their house or refinance themselves because the increase in the value of their houses
increased their borrowing capacity.

This does not answer the question of why credit scores failed to indicate the
increased risk. Rajan, Seru and Vig (2009) put forward the following explanation: In
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Box 1.1 (Continued)

the years before 2007, more and more mortgage loans were securitized, i.e., mortgage
financers did not keep the loans on their books but sold them to the capital market.
In order to better communicate the risks of the loans to potential investors, mortgage
financers increasingly relied on verifiable hard information summarized by credit
scores. Soft information, e.g., obtained through an assessment of an applicant’s
future expenses or his/her probability of job loss, played a lesser and lesser role. This
decreased the probability that applicants with negative soft information were declined.
Such a structural change can severely affect the performance of scoring models.
Scoring functions were estimated based on past data in which soft information played
an important role. They were then applied to loan applications for which this was no
longer the case. Though their scores remained stable or even improved, average risk
of high-risk borrowers increased because they included more and more borrowers
with negative soft information. The lesson to be learned is not so much that scoring
models performed badly because they missed some pieces of information. Inevitably,
models will miss some information. Missing information becomes dangerous if the
importance of this information changes over time. A similar effect arises if fraudulent
behavior proliferates. If the percentage of applicants who manage to conceal negative
information increases, scores may fail to capture an increase of risk. (For an analysis
of fraud in mortgage applications, see for example Fitch (2007).)

Several other factors may have been at work in keeping scores high (see Hughes
(2008) for an overview). Here, we only want to point out that it does not require fraud
to boost one’s credit score. Retail scores (see www.myfico.com for information on
a score widely used in the US) often include information on the payment history and
the proportion of credit lines used. Several actions that do not improve credit quality
can lead to an improvement of the score: Increase your credit card limit even though
there is no need for it, have an extra credit card that you do not use or ask another
person to be added as user to that person’s credit card. Again, it is conceivable that
the increased use of credit scores increased the number of people who legally gamed
the system.

To conclude, it is important to note that the meaning and quality of a score can
change over time. It can change with the cycle, i.e., when rising house prices mask
low credit quality. It can also change because the use of a scoring system changes
people’s behavior.

TREATING OUTLIERS IN INPUT VARIABLES

Explanatory variables in scoring models often contain a few extreme values. They can re-
flect genuinely exceptional situations of borrowers, but they can also be due to data errors,
conceptual problems in defining a variable or accounting discretion.

In any case, extreme values can have a large influence on coefficient estimates, which
could impair the overall quality of the scoring model. A first step in approaching the problem
is to examine the distribution of the variables. In Table 1.9, we present several descriptive
statistics for our five ratios. Excel provides the functions for the statistics we are interested
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Table 1.9 Descriptive statistics for the explanatory variables in the logit model

H I J K L M N O P

1
S/
TA

  WC/ 
TA

RE/
TA

EBIT/
TA

ME/
TL

S/
TA

Formulae for column O, can be copied 
in columns K to L 

2 0.33  Average 0.14 0.21 0.05 1.95 0.30 =AVERAGE(H$2:H$4001) 

3 0.33  Median 0.12 0.22 0.05 1.14 0.26 =MEDIAN(H$2:H$4001) 

4 0.25  Stdev 0.17 0.33 0.03 2.99 0.21 =STDEV(H$2:H$4001) 

5 0.25  Skewness -1.01 -2.55 -4.84 7.75 4.48 =SKEW(H$2:H$4001) 

6 0.28  Kurtosis 17.68 17.44 86.00 103.13 71.22 =KURT(H$2:H$4001) 

7 0.32  Extreme values / Percentiles 

8 0.25  Min -2.24 -3.31 -0.59 0.02 0.04 =MIN(H$2:H$4001) 

9 0.32  0.50% -0.33 -1.72 -0.05 0.05 0.06 =PERCENTILE(H$2:H$4001,$J9) 

10 0.29  1% -0.17 -0.92 -0.02 0.08 0.07
11 0.34  5% -0.06 -0.25 0.02 0.22 0.10
12 0.31  95% 0.44 0.65 0.09 5.60 0.68
13 0.21  99% 0.58 0.90 0.12 14.44 1.05
14 0.21  99.50% 0.63 0.94 0.13 18.94 1.13
15 0.16  Max 0.77 1.64 0.20 60.61 5.01 =MAX(H$2:H$4001) 

in: arithmetic means (AVERAGE) and medians (MEDIAN), standard deviations (STDEV),
skewness (SKEW) and excess kurtosis (KURT),7 percentiles (PERCENTILE) along with
minima (MIN) and maxima (MAX).

A common benchmark for judging an empirical distribution is the normal distribution. The
reason is not that there is a priori a reason why the variables we use should follow a normal
distribution but rather that the normal serves as a good point of reference because it describes
a distribution in which extreme events have been averaged out.8

A good indicator for the existence of outliers is the excess kurtosis. The normal distribution
has excess kurtosis of zero, but the variables used here have very high values ranging from
17.4 to 103.1. A positive excess kurtosis indicates that, compared to the normal, there are
relatively many observations far away from the mean. The variables are also skewed, meaning
that extreme observations are concentrated on the left (if skewness is negative) or on the right
(if skewness is positive) of the distribution.

In addition, we can look at percentiles. For example, a normal distribution has the property
that 99% of all observations are within ±2.58 standard deviations of the mean. For the variable
ME/TL, this would lead to the interval [−5.77, 9.68]. The empirical 99% confidence interval,
however, is [0.05, 18.94], i.e., wider and shifted to the right, confirming the information we
acquire by looking at the skewness and kurtosis of ME/TL. Looking at WC/TA, we see that
99% of all values are in the interval [−0.33, 0.63], which is roughly in line with what we
would expect under a normal distribution, namely [−0.30, 0.58]. In the case of WC/TA, the
outlier problem is thus confined to a small subset of observations. This is most evident by
looking at the minimum of WC/TA: it is −2.24, which is very far away from the bulk of the
observations (it is 14 standard deviations away from the mean, and 11.2 standard deviations
away from the 0.5% percentile).

7 Excess kurtosis is defined as kurtosis minus 3.
8 The relevant theorem from statistics is the central limit theorem, which says that if we sample from any probability distribution with
finite mean and finite variance, the sample mean will tend to the normal distribution as we increase the number of observations to
infinity.
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Table 1.10 Exemplifying winsorization for the variable WC/TA

A B C D E F

1
WC/TA WC/TA 

winsorized 
2 0.501 0.501 Level 2%
3 0.548 0.521 Lower bound -0.113 =PERCENTILE(A2:A4001,E2) 
4 0.451 0.451 Upper bound 0.521 =PERCENTILE(A2:A4001,1-E2) 

5 0.307 0.307 
6 0.447 0.447 =MAX(MIN(A6,E$4),E$3) 

7 0.458 0.458  (can be copied to B2:B4001) 

8 0.006 0.006 
9 -0.115 -0.113 
10 0.061 0.061 
11 0.051 0.051 
… ... …. 

4001 0.066 0.066 

Having identified the existence of extreme observations, a clinical inspection of the data is
advisable because it can lead to the discovery of correctable data errors. In many applications,
however, this will not lead to a complete elimination of outliers; even data sets that are 100%
correct can exhibit bizarre distributions. Accordingly, it is useful to have a procedure that
controls the influence of outliers in an automated and objective way.

A commonly used technique applied for this purpose is winsorization, which means that
extreme values are pulled to less extreme ones. One specifies a certain winsorization level α;
values below the α-percentile of the variable’s distribution are set equal to the α-percentile,
values above the 1 − α percentile are set equal to the 1 − α percentile. Common values
for alpha are 0.5%, 1%, 2% or 5%. The winsorization level can be set separately for each
variable in accordance with its distributional characteristics, providing a flexible and easy way
of dealing with outliers without discarding observations.

Table 1.10 exemplifies the technique by applying it to the variable WC/TA. We start with
a blank worksheet containing only the variable WC/TA in column A. The winsorization level
is entered in cell E2. The lower percentile associated with this level is found by applying the
PERCENTILE() function to the range of the variable, which is done in E3. Analogously, we
get the upper percentile for one minus the winsorization level.

The winsorization itself is carried out in column B. We compare the original value of column
A with the estimated percentile values; if the original value is between the percentile values,
we keep it. If it is below the lower percentile, we set it to this percentile’s value; likewise for
the upper percentile. This can be achieved by combining a maximum function with a minimum
function. For cell B6, we would write

=MAX(MIN(A6, E$4), E$3)

The maximum condition pulls low values up, the minimum function pulls large values
down.
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We can also write a function that performs winsorization and requires as arguments the
variable range and the winsorization level. It might look as follows:

Function WINSOR(x As Range, level As Double)

Dim N As Integer, i As Integer

N = x.Rows.Count

'Obtain percentiles

Dim low, up

low = Application.WorksheetFunction.Percentile(x, level)

up = Application.WorksheetFunction.Percentile(x, 1 - level)

'Pull x to percentiles

Dim result

ReDim result(1 To N, 1 To 1)

For i = 1 To N

result(i, 1) = Application.WorksheetFunction.Max(x(i), low)

result(i, 1) = Application.WorksheetFunction.Min(result(i, 1), up)

Next i

WINSOR = result

End Function

The function works in much the same way as the spreadsheet calculations in Table 1.10.
After reading the number of observations N from the input range x, we calculate lower and
upper percentiles and then use a loop to winsorize each entry of the data range. WINSOR is an
array function that has as many output cells as the data range that is inputted into the function.
The winsorized values in column B of Table 1.10 would be obtained by entering

=WINSOR(A2:A4002,0.02)

in B2:B4001 and confirming with [ctrl]+[shift]+[enter].
If there are several variables as in our example, we would winsorize each variable separately.

In doing so, we could consider different winsorization levels for different variables. As we
saw above, there seem to be fewer outliers in WC/TA than in ME/TA, and so we could use
a higher winsorization level for ME/TA. We could also choose to winsorize asymmetrically,
i.e., apply different levels to the lower and the upper side.

Below we present skewness and kurtosis of our five variables after applying a 1% win-
sorization level to all variables:

WC/TA RE/TA EBIT/TA ME/TL S/TA

Skewness 0.63 −0.95 0.14 3.30 1.68
Kurt 0.01 3.20 1.10 13.48 3.42
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Table 1.11 Pseudo-R2s for different data treatments

Pseudo-R2 (%)

Original data 22.2
Winsorized at 1% 25.5
Winsorized at 1% + log of ME/TL 34.0
Original but log of ME/TL 34.9

Both skewness and kurtosis are now much closer to zero. Note that both statistical charac-
teristics are still unusually high for ME/TL. This might motivate a higher winsorization level
for ME/TL, but there is an alternative: ME/TL has many extreme values to the right of the
distribution. If we take the logarithm of ME/TL, we also pull them to the left, but we do not
blur the differences between those beyond a certain threshold as we do in winsorization. The
logarithm of ME/TL (after winsorization at the 1% level) has skewness of −0.11 and kurtosis
of 0.18, suggesting that the logarithmic transformation works for ME/TL in terms of outliers.

The proof of the pudding is in the regression. Examine in Table 1.11 how the Pseudo-R2 of
our logit regression depends on the type of data treatment.

For our data, winsorizing increases the Pseudo-R2 by three percentage points from 22.2%
to 25.5%. This is a handsome improvement, but taking logarithms of ME/TL is much more
important: the Pseudo-R2 subsequently jumps to around 34%. And one can do even better by
using the original data and taking the logarithm of ME/TL rather than winsorizing first and
then taking the logarithm.

We could go on and take the logarithm of the other variables. We will not present details here,
but instead just mention how this could be accomplished. If a variable takes negative values
(this is the case with EBIT/TL, for example), we cannot directly apply the logarithm as we did
in the case of ME/TL. Also, a variable might exhibit negative skewness (an example is again
EBIT/TL). Applying the logarithm would increase the negative skewness rather than reduce
it, which may not be what we want to achieve. There are ways around these problems. We
could, for example, transform EBIT/TA by computing −ln(1 − EBIT/TA) and then proceed
similarly for the other variables.

As a final word of caution, note that one should guard against data mining. If we fish long
enough for a good winsorization or similar treatment, we might end up with a set of treatments
that works very well for the historical data on which we optimized it. It may not, however, serve
to improve the prediction of future defaults. A simple strategy against data mining is to be
restrictive in the choice of treatments. Instead of experimenting with all possible combinations
of individual winsorization levels and functional transformations (logarithmic or other), we
might restrict ourselves to a few choices that are common in the literature or that seem sensible
based on a descriptive analysis of the data.

CHOOSING THE FUNCTIONAL RELATIONSHIP BETWEEN THE
SCORE AND EXPLANATORY VARIABLES

In the scoring model (1.1), we assume that the score is linear in each explanatory variable
x : Scorei = b′xi . In the previous section, however, we have already seen that a logarith-
mic transformation of a variable can greatly improve the fit. There, the transformation was
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motivated as an effective way of treating extreme observations, but it may also be the right
one from a conceptual perspective. For example, consider the case where one of our variables
is a default probability assessment, denoted by pi. It could be a historical default rate for the
segment of borrower i, or it could originate from models like the ones we discuss in Chapters
2 and 4. In such a case, the appropriate way of entering the variable would be the logit of pi,
which is the inverse of the logistic distribution function:

x = �−1(p) = ln(p/(1 − p)) ⇒ �(x) = p (1.20)

because this guarantees that the default prediction equals the default probability we input into
the regression.

With logarithmic or logit transformations, the relationship between a variable and the default
probability is still monotonic: for a positive coefficient, a higher value of the variable leads
to a higher default probability. In practice, however, we can also encounter non-monotonic
relationships. A good example is sales growth: Low sales growth may be due to high compe-
tition or an unsuccessful product policy, and correspondingly indicate high default risk. High
sales growth is often associated with high cash requirements (for advertising and inventories),
or may have been bought at the expense of low margins; thus, high sales growth can be
symptomatic of high default risk, too. All combined, there might be a U-shaped relationship
between default risk and sales growth. To capture this non-monotonicity, one could enter the
square of sales growth together with sales growth itself:

Prob(Defaulti ) = �
(
b1 + b2 Sales growthi + b3(Sales growthi )

2 + . . . + bK xi K
)

(1.21)

Similarly, we could try to find appropriate functional representations for variables where
we suspect that a linear relation is not sufficient. But how can we guarantee that we detect
all relevant cases and then find an appropriate transformation? One way is to examine the
relationships between default rates and explanatory variables separately for each variable.
Now, how can we go about visualizing these relationships? We can classify the variables into
ranges, and then examine the average default rate within a single range. Ranges could be
defined by splitting the domain of a variable into parts of equal length. With this procedure,
we are likely to get a very uneven distribution of observations across ranges, which could
impair the analysis. A better classification would be to define the ranges such that they contain
an equal number of observations. This can easily be achieved by defining the ranges through
percentiles. We first define the number of ranges M that we want to examine. The first range
includes all observations with values below the (1/M) percentile; the second includes all
observations with values above the (1/M) percentile but below the (2/M) percentile and so
forth.

For the variable ME/TL, the procedure is exemplified in Table 1.12. We fix the number
of ranges in F1, and then use this number to define the alpha values for the percentiles (in
D5:D24). In column E, we use this information and the function PERCENTILE(x, alpha) to
determine the associated percentile value of our variable. In doing so, we use a minimum
condition to ascertain that the alpha value is not above 1. This is necessary because the
summation process in column L can yield values slightly above 1 (Excel rounds to 15 digit
precision).

The number of defaults within a current range is found recursively. We count the number
of defaults up to (and including) the current range, and then subtract the number of defaults
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Table 1.12 Default rate for percentiles of ME/TL

A B C D E F G H I

1 Default ME/TL  Number of ranges: 20

2 0 0.96    

3 0 1.06 
 alpha Range 

bound 
Defaults  Obs Default 

rate
4 0 0.80    

5 0 0.39 5% 0.22 46 200 23.0%
6 0 0.79 10% 0.33 9 200 4.5%
7 0 1.29 15% 0.44 5 200 2.5%
8 0 0.11 20% 0.54 0 200 0.0%
9 0 0.15 25% 0.62 0 200 0.0%

10 0 0.41 30% 0.71 0 200 0.0%
11 0 0.25 35% 0.80 0 200 0.0%
12 0 0.46 40% 0.90 1 200 0.5%
13 0 0.59 45% 1.02 0 200 0.0%
14 0 0.33 50% 1.14 0 200 0.0%
15 0 0.16 55% 1.32 2 200 1.0%
16 0 0.07 60% 1.50 1 200 0.5%
17 0 0.10 65% 1.71 0 200 0.0%
18 0 0.09 70% 1.95 4 200 2.0%
19 0 0.55 75% 2.24 2 200 1.0%
20 0 0.60 80% 2.65 0 200 0.0%
21 0 0.79 85% 3.21 1 200 0.5%
22 0 0.82 90% 3.89 0 200 0.0%
23 0 0.63 95% 5.60 0 200 0.0%
24 0 0.89 100% 60.61 1 200 0.5%
25 0 0.68    

26 0 0.58    

… … …    

4001 1 0.04    

D5: =D4+1/F$1 

E5: =PERCENTILE(B$2:B$4001,MIN(1,D5)) 

F5: =SUMIF(B$2:B$4001,"<="&E5,A$2:A$4001)-SUM(F4:F$4) 

G5: =COUNTIF(B$2:B$4001,"<="&E5)-SUM(G4:G$4) 

H5: =F5/G5 

Can be copied down into range J5:N24 
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that are contained in the ranges below. For cell F5, this can be achieved through

= SUMIF(B$2:B$4001, “<=”& E5, A$2:A$4001) − SUM(F4:F$4)

where E5 contains the upper bound of the current range; defaults are in column A, and the
variable ME/TL in column B. Summing over the default variable yields the number of defaults
because defaults are coded as 1. In an analogous way, we determine the number of observations.
We just replace SUMIF by COUNTIF.

What does the graph tell us? Apparently, it is only for very low values of ME/TL that a
change in this variable impacts default risk. Above the 20% percentile, there are many ranges
with zero default rates, and the ones that see defaults are scattered in a way that does not
suggest any systematic relationship. Moving from the 20% percentile upward has virtually no
effect on default risk, even though the variable moves largely from 0.5 to 60. This is perfectly
in line with the results of the previous section where we saw that taking the logarithm of
ME/TL greatly improves the fit relative to a regression in which ME/TL entered linearly. If
we enter ME/TL linearly, a change from ME/TL = 60 to ME/TL = 59.5 has the same effect
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on the score as a change from ME/TL = 0.51 to ME/TL = 0.01 − contrary to what we see
in the data. The logarithmic transformation performs better because it reduces the effect of a
given absolute change in ME/TL for high levels of ME/TL.

Thus, the examination of univariate relationships between default rates and explanatory
variables can give us valuable hints as to which transformation is appropriate. In the case of
ML/TE, it supports the logarithmic one; in others it may support a polynomial representation
like the one we mentioned above in the sales growth example.

Often, however, which transformation to choose may not be clear, and we may want to have
an automated procedure that can be run without us having to look carefully at a set of graphs
first. To such end, we can employ the following procedure. We first run an analysis like in
Table 1.12. Instead of entering the original values of the variable into the logit analysis, we
use the default rate of the range to which they are assigned. That is, we use a data-driven, non-
parametric transformation. Note that before entering the default rate in the logit regression,
we would apply the logit transformation (1.20) to it.

We will not show how to implement this transformation in a spreadsheet. With many
variables, it would involve a lot of similar calculations, making it a better idea to set up a
user-defined function that maps a variable into a default rate for a chosen number of ranges.
Such a function might look like this:

Function XTRANS(defaultdata As Range, x As Range, numranges As Integer)

Dim bound, numdefaults, obs, defrate, N, j, defsum, obssum, i

ReDim bound(1 To numranges), numdefaults(1 To numranges)

ReDim obs(1 To numranges), defrate(1 To numranges)

N = x.Rows.Count

'Determining number of defaults, observations and default rates for

ranges

For j = 1 To numranges

bound(j) = Application.WorksheetFunction.Percentile(x, j / numranges)

numdefaults(j) = Application.WorksheetFunction.SumIf(x, "<=" & _

bound(j), defaultdata) - defsum

defsum = defsum + numdefaults(j)

obs(j) = Application.WorksheetFunction.CountIf(x, "<=" & bound(j)) _

- obssum

obssum = obssum + obs(j)

defrate(j) = numdefaults(j) / obs(j)

Next j

'Assigning range default rates in logistic transformation

Dim transform

ReDim transform(1 To N, 1 To 1)
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For i = 1 To N

j = 1

While x(i) - bound(j) > 0

j = j + 1

Wend

transform(i, 1) = Application.WorksheetFunction.Max(defrate(j), _

0.0000001)

transform(i, 1) = Log(transform(i, 1) / (1 - transform(i, 1)))

Next i

XTRANS = transform

End Function

After dimensioning the variables, we loop through each range, j=1 to numranges. It
is the analog of what we did in range D5:H24 of Table 1.12. That is why we see the same
commands: SUMIF to get the number of defaults below a certain percentile, and COUNTIF
to get the number of observations below a certain percentile.

In the second loop over i = 1 to N, we perform the data transformation. For each observation,
we search through the percentiles until we have the one that corresponds to our current
observation (Do While . . . Loop) and then assign the default rate. In the process, we set
the minimum default rate to an arbitrarily small value of 0.0000001. Otherwise, we could not
apply the logit transformation in cases where the default rate is zero.

To illustrate the effects of the transformation, we set the number of ranges to 20, apply the
function XTRANS to each of our five ratios and run a logit analysis with the transformed
ratios. This leads to a Pseudo-R2 of 47.8% – much higher than we received with the original
data, winsorization or logarithmic transformation (see Table 1.13).

The number of ranges that we choose will depend on the size of the data set and the average
default rate. For a given number of ranges, the precision with which we can measure their
default rates will tend to increase with the number of defaults contained in the data set. For
large data sets, we might end up choosing 50 ranges while smaller ones may require only 10
or less.

Note that the transformation also deals with outliers. If we choose M ranges, the distribution
of a variable beyond its 1/M and 1 − 1/M percentiles does not matter. As in the case of outlier
treatments, we should also be aware of potential data mining problems. The transformation
introduces a data-driven flexibility in our analysis, and so we may end up fitting the data without
really explaining the underlying default probabilities. The higher the number of ranges, the
more careful we should be about this.

Table 1.13 Pseudo-R2s for different data treatments and transformations

Pseudo-R2 (%)

Original data 22.2
Winsorized at 1% 25.5
Winsorized at 1% + log of ME/TL 34.0
Original but log of ME/TL 34.3
Transformation based on default rates 47.8
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CONCLUDING REMARKS

In this chapter, we addressed several steps in building a scoring model. The order in which we
presented these steps was chosen for reasons of exposition; it is not necessarily the order in
which we would approach a problem. A possible frame for building a model might look like
as follows:

1. From economic reasoning, compile a set of variables that you believe to capture factors
that might be relevant for default prediction. To give an example: the Factor ‘Profitability’
might be captured by EBIT/TA, EBITDA/TA or Net Income/Equity.

2. Examine the univariate distribution of these variables (skewness, kurtosis, quantiles. . .)
and their univariate relationship to default rates.

3. From step 2, determine whether there is a need to treat outliers and nonlinear functional
forms. If yes, choose one or several ways of treating them (winsorization, transformation
to default rates. . .)

4. Based on steps 1 to 3, run regressions in which each of the factors you believe to be relevant
is represented by at least one variable. To select just one variable out of a group that
represents the same factor, first consider the one with the highest Pseudo-R2 in univariate
logit regressions.9 Run regressions with the original data and with the treatments applied
in step 3 to see what differences they make.

5. Rerun the regression with insignificant variables from step 4 removed; test the joint signif-
icance of the removed variables.

Of course, there is more to model building than going through a small number of steps.
Having finished step 5, we may want to fine-tune some decisions that were made in between
(e.g., the way in which a variable was defined). We may also reconsider major decisions (such
as the treatment of outliers). In the end, model building is an art as much as a science.

NOTES AND LITERATURE

In the econometrics literature, the logit models we looked at are subsumed under the heading of ‘binary
response or qualitative response models’. Statisticians, on the other hand, often speak of generalized
linear models. Expositions can be found in most econometrics textbooks, e.g., Greene, W.H., 2003,
Econometric Analysis, Prentice Hall. For corrections when the sample’s mean probability of default
differs from the population’s expected average default probability, see Anderson, J.A., 1972, Separate
sample logistic discrimination, Biometrika 59, 19–35, and Scott, A.J. and Wild, C.J., 1997, Fitting
regression models to case-control data by maximum likelihood, Biometrika 84, 57–71.

For detailed descriptions of scoring models developed by a rating agency, see: Falkenstein, E., 2000,
RiskCalc for private companies. Moody’ default model. Moody’s Investor Service; Sobehart, J., Stein,
R., Mikityanskaya, V. and Li, L., 2000, Moody’s public firm risk model: A hybrid approach to modeling
short term default risk. Moody’s Investor Service; Dwyer, D., Kocagil, A. and Stein, R., 2004, Moody’s
KMV RiskCalc v3.1 model, Moody’s KMV.

Two academic papers that describe the estimation of a logit scoring model are Shumway, T. 2001,
Forecasting bankruptcy more accurately: A simple hazard model, Journal of Business 74, 101–124 and
Altman, R. and Rijken, H., 2004, How rating agencies achieve rating stability, Journal of Banking and

9 For each variable, run a univariate logit regression in which default is explained by only this variable; the Pseudo-R2s from these
regressions give a good indication on the relative explanatory power of individual variables.
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Finance 28, 2679–2714. Both papers make use of the financial ratios proposed by Altman, E., 1968,
Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance
23, 589–609.

Details on the relationship between scoring models and the subprime crisis are given by Demyanyk, Y.
and Van Hemert, O., 2010, Understanding the subprime mortgage crisis, The Review of Financial Studies,
forthcoming, as well as Rajan, U., Seru, A. and Vig, V., 2009, The failure of models that predict failure:
Distance, incentives and defaults, Working Paper. In 2007, Fitch published an analysis by Pendley, M.,
Costello, G. and Kelsch, M., 2007, The impact of poor underwriting practices and fraud in subprime
RMBS performance, Fitch Special Report.

For more details on McFadden’s Pseudo-R2, see McFadden, D., 1974, The measurement of urban
travel demand, Journal of Public Economics 3, 303–328.

APPENDIX

Logit and probit

We have described the estimation of scoring model with logit. A common alternative choice
is the probit model, which replaces the logistic distribution in (1.4) by the standard normal
distribution. Experience suggests that the choice of the distribution is not crucial in most
settings; predicted default probabilities are fairly close. Note, however, that the estimated
coefficients differ significantly because the two distributions have different variances. When
comparing logit and probit models estimated on the same data set, you should compare default
probability estimates or other information that is not affected by scaling.

Marginal effects

Scenario analysis is an intuitive way of understanding the impact of individual variables. An
analytical approach would be to calculate the marginal effect of a variable. In linear models
the marginal effect is equal to the coefficient. In the logit model, however, life is more difficult.
The marginal effect is given by the coefficient multiplied by a scale factor:

Marginal effecti = Scale factori × bi = �(b′xi )(1 − �(b′xi )) × bi (1.22)

This scale factor varies with each observation – that is, for each row of our data set we have
a different scale factor. To make a statement about average marginal effects, we can use the
mean of the x variables to calculate (1.22). Alternatively, we can calculate the scale factor for
every observation and then take the average of that.




