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Mathematical foundations

1.1 Set theory

The language of naı̈ve set theory is ubiquitous in geometry and even more so in stochastic
geometry. The reader will find a thorough introduction in specialised textbooks. The following
briefly summarises notation and defines important sets and operations which will often be
employed later.

A set is a collection of mathematical objects taken from a suitable domain of discourse. If
x is an element of a set S this is written as x ∈ S. All sets appearing in this book are constructed
from two fundamental sets, which are the set of the natural numbers {1, 2, . . .} and the set of
the real numbers (the real line)R = (−∞, ∞). All the constructions here are suitably regular,
and the more profound aspects of mathematical logic and set theory are ignored.

The notation for the sets of natural and real numbers illustrates two useful conventions for
the description of sets. The braces { } in the example above enclose a description of the set of
natural numbers by (implicit, infinite) enumeration. The notation (u, v) for two real numbers,
perhaps equal to −∞ or +∞, describes the set of all real numbers x such that u < x < v.
This set (u, v) is an open interval of the real line R. Closed and half-open intervals are
given by

(u, v] = {x ∈ R : u < x ≤ v} (half-open),

[u, v) = {x ∈ R : u ≤ x < v} (half-open),

[u, v] = {x ∈ R : u ≤ x ≤ v} (closed).

Here the braces { } enclose a description of a set as the collection of elements of another set
satisfying some property. Contraction of this notation is often used, as for example:

{x ∈ R : x = y + z with 0 < y < 1 and 0 < z < 1}
= {x : x = y + z with 0 < y < 1 and 0 < z < 1}
= {y + z : 0 < y < 1 and 0 < z < 1}.
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2 STOCHASTIC GEOMETRY AND ITS APPLICATIONS

Note that this set is actually the open interval (0, 2). Call A a subset of a set S (and S a superset
of A), and write A ⊂ S, if all elements of A are also elements of S. (This book does not use
the symbol ⊆, thus ⊂ includes also the case that A = S.) If A, B ⊂ S for some set S then
their union, intersection, and difference are

union A ∪ B = {x ∈ S : x ∈ A or x ∈ B},
intersection A ∩ B = {x ∈ S : x ∈ A and x ∈ B},
difference A \ B = {x ∈ S : x ∈ A and x /∈ B}.

Also define the complement Ac of A in S as

Ac = {x ∈ S : x /∈ A}
= S \ A.

Notice that the definition of Ac depends on the – usually implicit – choice of superset S. The
empty set ∅ is the set that contains no elements. Formally, it is

∅ = S \ S = A \ A

for any A.
Special collections of sets (σ-algebras) are considered in Section 1.9.
Two sets A and B can be used to form the Cartesian product A × B given by the ordered

pairs (a, b), that is,

A × B = {(a, b) : a ∈ A and b ∈ B}.
More generally, the Cartesian product of n sets A1, . . . , An is

A1 × · · · × An = {(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}.
An important example is given by

R2 = R× R
= {(x1, x2) : x1, x2 ∈ R}

which is the Cartesian plane. The higher-dimensional counterparts are

R3 = R× R× R
and

Rd = {(x1, . . . , xd) : x1, . . . , xd ∈ R}.
The spacesR2 andR3 are often referred to as the plane and space, respectively, andRd as the d-
dimensional space. Because of additional structures such as topology (see Section 1.2) and lin-
earity (Section 1.3), the term Euclidean space is used. An element x = (x1, x2, . . . , xd) ∈ Rd

is usually referred to as a point in geometry. However, in stochastic geometry a distinction
must be drawn. The study of stochastic geometry frequently concerns random collections
of points, referred to as point processes. It is convenient to refer to members of such pro-
cesses as points of the process, or simply points. Therefore points that are merely locations
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in Rd with no membership presumed of some special collection of points are referred to as
location points or locations. A particular case of a location point is the origin

o = (0, . . . , 0).

Here this book makes a notational difference between a real number (0) and a point of Rd ,
while otherwise normal italic letters are used both for points and numbers, with one exception:

r is always a real number and r a point of Rd of distance r from the origin o.

1.2 Topology in Euclidean spaces

A concept of distance is associated with Euclidean spaces. The Euclidean metric measures
the distance between two location points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) as

‖x − y‖ =
√

(x1 − y1)2 + · · · + (xd − yd)2. (1.1)

This distance is used to define the closed ball B(a, r) of centre a and of radius r

B(a, r) = {x ∈ Rd : ‖x − a‖ ≤ r}. (1.2)

Here r is a positive real number and a is a location point. The open ball Bint(a, r) is defined
similarly but with strict rather than weak inequality, that is,

Bint(a, r) = {x ∈ Rd : ‖x − a‖ < r}.

This means that the boundary of the ball, that is, the sphere, does not belong to the set.
The metric (or equivalently the closed and open balls) can be used to define special

properties that might be possessed by subsets A of Euclidean space. The set A is said to be
bounded if there is a ball B(a, r) such that

A ⊂ B(a, r).

A sequence x1, x2, . . . is said to converge to x if

lim
n→∞ ‖xn − x‖ = 0.

A set A is said to be open if for each x ∈ A a positive number ε can be found (depending on
x) such that B(x, ε) ⊂ A. The system of open sets of Rd is denoted by O. (In this and other
similar notations the exponent ‘d’ is omitted whenever the actual dimension is clear in the
context.) Examples of open sets in the one-dimensional case of d = 1 are the open intervals
(u, v). In the general case of Rd examples include the open balls Bint(a, r) described above,
and the open hypercubes

(u1, v1) × · · · × (ud, vd).

Finite intersections and arbitrary unions of open sets are again open.
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A set A is said to be closed if its complement Ac in Rd is open. The system of closed sets
ofRd is denoted by F. Examples of closed sets in the case d = 1 are the closed intervals [a, b].
In the general case ofRd examples include the closed balls B(a, r) and the closed hypercubes

[u1, v1] × · · · × [ud, vd]

and the hyperplanes

{
x = (x1, . . . , xd) ∈ Rd :

d∑
i=1

aixi = b

}

for some constants b and a1, . . . , ad with a1, . . . , ad not all zero. Finite unions of closed sets
and arbitrary intersections of closed sets are again closed.

The interior Aint of a general set A is the union of all open sets contained in A. The closure
Acl of A is the intersection of all closed sets containing A. Thus Aint is the largest open set
contained in A, while Acl is the smallest closed set containing A. Hence

Aint ⊂ A ⊂ Acl.

Moreover Aint = (
(Ac)cl

)c. A set A is open precisely when Aint = A, and closed precisely
when Acl = A. If A = (Aint)cl then A is said to be regular closed.

The difference ∂A = Acl \ Aint is the boundary of A. An important example is the sphere
of centre a and radius r, which is the boundary of B(a, r) and is given by

∂B(a, r) = {x ∈ Rd : ‖a − x‖ = r}.

The particular case ∂B(o, 1) is the unit sphere of Rd , and is denoted by Sd−1.
A set K ⊂ Rd is said to be compact if it is both closed and bounded. The system of all

compact subsets of Rd is denoted by K. Moreover denote the system of non-empty compact
sets by

K′ = K \ {∅}.

Examples of compact sets include the closed balls and the closed hypercubes.
The distance between a point x and a closed set F is denoted by d(x, F ) and defined as

d(x, F ) = inf{‖x − y‖ : y ∈ F }.

In image analysis one speaks of the Euclidean distance function (or transform) which
assigns to each x ∈ F c the value d(x, F ). The signed Euclidean distance function is defined
for all x ∈ Rd and takes for x ∈ F the value −d(x, ∂F ). Ohser and Schladitz (2009) discuss
algorithms for efficient calculations of the Euclidean distance function and give examples for
its use.
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1.3 Operations on subsets of Euclidean space

Euclidean space is a vector space since it allows the vector space operations of

addition x + y = (x1 + y1, . . . , xd + yd),

scalar multiplication c · x = cx = (cx1, . . . , cxd)

for location points x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd and real numbers c. This
vector structure allows for the definition of set operations special to Euclidean space as follows:

Multiplication by real numbers

cA = {c · x : x ∈ A}
for real numbers c and A ⊂ Rd . The case c = −1 leads to the particular case of reflection

Ǎ = −A = {−x : x ∈ A} for A ⊂ Rd.

If A = Ǎ then A is said to be symmetric.

Translation

Ax = A + x = {y + x : y ∈ A} for x ∈ Rd and A ⊂ Rd .

Minkowski-addition

A ⊕ B = {x + y : x ∈ A, y ∈ B} for A, B ⊂ Rd. (1.3)

Applying to a set A the operation of Minkowski-addition by a set B enlarges, translates,
and deforms the set A; see Figure 1.1 on p. 9. Minkowski-addition is both associative and
commutative. Other properties are summarised in the following formulae:

Ax = A ⊕ {x}, (1.4)

A ⊕ B =
⋃
y∈B

Ay =
⋃
x∈A

Bx, (1.5)

A ⊕ B = {x : A ∩ (B̌)x /= ∅}, (1.6)

A ⊕ (B1 ∪ B2) = (A ⊕ B1) ∪ (A ⊕ B2). (1.7)

If A1 ⊂ A2 then A1 ⊕ B ⊂ A2 ⊕ B. Formula (1.5) shows that Minkowski-addition can be
represented as the union of the translates Bx as x runs through A. In the special case of
B = Bint(o, r) the Minkowski-sum A ⊕ B is the union of all location points that are of distance
smaller than r from A.

Minkowski-subtraction

A � B =
⋂
y∈B

Ay. (1.8)
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Equivalent forms are

A � B = (Ac ⊕ B)c (1.9)

and

A � B = {x : (B̌)x ⊂ A}, (1.10)

where the complement is with respect to the superset Rd . From the definition it is easy to
show that

Ax � B = A � Bx for all x ∈ Rd. (1.11)

In general, the Minkowski-subtraction is not an inverse for Minkowski-addition, but the
following relationship holds

(A � B̌) ⊕ B ⊂ A ⊂ (A ⊕ B̌) � B.

Note that {o} ⊂ B � B̌, and equality holds if B is bounded.
If B is the ball B(o, r) then A � B is the union of all location points lying within A and

such that balls centred at them and of radius r are completely contained in A.
Sometimes the notation

A⊕r = A ⊕ B(o, r)

and

A�r = A � B(o, r)

is used, where r is a positive number.
The family K′ of non-empty compact subsets of Rd can be made into a metric space by

using the Hausdorff metric:

δ(K1, K2) = inf{r : K1 ⊂ K2 ⊕ B(o, r) and K2 ⊂ K1 ⊕ B(o, r)} for K1, K2 ∈ K′.

This δ defines distances between compact sets which are positive even when the sets have a
non-empty intersection. It is easy to see that δ is compatible with the Euclidean metric in the
sense that

δ({x1}, {x2}) = ‖x1 − x2‖ for x1, x2 ∈ Rd.

And the distance between a point x and a compact K as defined in Section 1.2 satisfies

d(x, K) = δ({x}, K).

Furthermore, the family K′ equipped with the metric δ is complete: if K1, K2, . . . ∈ K′ with
δ(Km, Kn) → 0 as m, n → ∞ then there is a K∞ ∈ K′ with δ(Km, K∞) → 0 as m → ∞.
The metric is also countably separated: there is a sequence K1, K2, . . . ∈ K′ such that for
any K ∈ K′ and any ε > 0 there is a Kn with δ(Kn, K) < ε. (A possible choice of such
a sequence K1, K2, . . . are the finite subsets of Qd , where Q denotes the set of rational
numbers. These finite subsets can be enumerated, as every mathematician knows.) So K′ is a
complete separable metric space when endowed with the Hausdorff metric: that is to say, it
is a Polish space.



MATHEMATICAL FOUNDATIONS 7

1.4 Mathematical morphology and image analysis

In many fields of technology and science there is a great need for methods of analysis for large
quantities of data in the form of images. Examples are satellite photographs, geological maps,
microscope images of sections of metals, minerals, cellular tissue, and data coming from com-
puterised tomography. The sheer quantity of data requires the use of automatic and quantitative
methods. This section describes briefly some ideas of mathematical morphology applied in
this context. In particular, the reader will get an idea how statistical procedures on random
sets (such as described throughout the rest of this book) can be performed automatically.

Technical equipment yields image data which usually have the form of two- or three-
dimensional arrays of pixels with grey values. Such a greyscale image can be reduced to a
binary image by operations like thresholding, in which grey-tone values lower than a chosen
threshold are set to white, and the others to black. The following discussion considers only
such binary images, which correspond to random sets, where for example the black pixels
stand for some set and the white for its complement.

Once the image is reduced to such an array of pixels then it is possible (with suitable
equipment and software) to determine important image characteristics automatically. These
quantities are represented by numbers of pixels in specific subsets of the image. Examples
are the areas or volumes of the white and black parts of the image, the length or area content
of the boundary between these parts, and the number of components of the black part. If one
conceives of the image as a realisation of a random structure then these measurements lead to
statistical estimates of various characteristics of the random structure. For example, the area
fraction p is estimated by the proportion of area covered by black pixels (see Sections 3.4
and 6.4.2), while the specific length of boundary is estimated by the proportion of length of
boundary between black and white to unit area in the image (see Sections 7.3 and 8.3).

However, more is possible. A powerful idea is to subject a given image to repeated trans-
formations and to perform measurements on the transformed images (Serra, 1982). On the
one hand, automatic operations can be applied to the image to free it from the inevitable image
defects and artifacts of the image-processing procedure. This is often done as a preliminary
step before visual inspection. On the other hand, important functions can be measured quickly
and easily. Examples of these functions are the set covariance, chord length distribution func-
tion and contact distribution functions, which will be explained in Section 6.3.

Important image transformations have their origin in mathematical morphology, as intro-
duced by Matheron and Serra. Many of its transformations employ ‘structuring elements’.
This theory is a direct application of the Euclidean set operations discussed in the previous
section and it is a useful technical aid in the analysis of images. For thorough discussions, see
Heijmans (1994), Goutsias and Heijmans (2000), Serra (1982) and Soille (1999), and for the
three-dimensional case, see Ohser and Schladitz (2009).

In the following A will denote the set which is of interest, also called the image: in practical
applications this is often the set of black pixels. The structuring element B will often be a ball,
a disc, a line segment, or a two-point set. In practice, when images are pixel sets, balls or discs
are approximated by also pixel sets and the set operations are approximated by operations on
lattices, see for example Goutsias and Heijmans (2000). However, the following description
follows Euclidean geometry.

The free R package spatstat can perform these operations when B is a disc, whilst
the commercial Image Processing Toolbox of MATLAB allows users to create and
manipulate the structuring element.
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Dilation

This is the operation

A �→ A ⊕ B̌. (1.12)

The set A is enlarged (but not scaled) and, at least in the case where the structuring element B

is a ball, smoothed. In particular the action of dilation fills in cavities, repairs fissures, and joins
together a fragmented image. If A is a realisation of a random closed set, then dilation by rB

followed by measurement of the area of A ⊕ rB̌ allows estimation of the contact distribution
function HB(r) of the random set (see Sections 6.3.3 and 6.4.5).

Erosion

This is in some sense dual to the operation of dilation, and is given by

A �→ A � B̌. (1.13)

Erosion shrinks the set A, tending to produce smaller fragments, even separating connected
sets into several subsets. This can be helpful in the estimation of the number of particles
composing an image, where some particles are in contact. The erosion operation is of great
importance for the quantitative estimation of various summary characteristics of random sets.
For example, if one takes for the structuring element B a two-point set {x, y} with ‖x − y‖ = r,
then the normalised area of the eroded set A � B̌ is an estimate for the set covariance C(r)
(see Section 6.3.2).

If A is a union of non-overlapping discs, then an estimate of the diameter distribution
can be obtained by means of successive erosions of A by discs B(o, r1), B(o, r2), . . . with
r1 < r2 < · · · , and counting the numbers of components of the eroded A.

Ohser and Schladitz (2009, pp. 86–7) show how the coordination number of sinter particles
can be determined by erosion.

Opening

The opening of A by B can be viewed as an attempt to reverse an erosion by a dilation. It is
given by

A �→ A ◦ B = (A � B̌) ⊕ B. (1.14)

The opening A ◦ B of a set A by B has an appearance similar to that of the original set A,
but is built only on the portions of the image that survive the initial erosion. Thus A ◦ B ⊂ A;
small disconnected fragments of the image disappear under opening and this is useful in
systematically eliminating possible image defects or noise.

A set A is (morphologically) B-open if A = A ◦ B. For example, in the plane a union of
discs with radii larger than or equal to r is B(o, r)-open.

Closing

This is dual to opening and can be viewed as an attempt to reverse a dilation by an erosion.
It is given by

A �→ A • B = (A ⊕ B̌) � B. (1.15)
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Figure 1.1 (a) The operations of erosion and opening with discs applied to a planar set A.
Components that overlap are separated while small components and roughnesses vanish or
are reduced. (b) The operations of dilation and closing applied to a set. Gaps are closed up,
concavities vanish or are reduced, and clusters of small particles are merged.

The same as the opening A ◦ B, the closing A • B bears an approximate resemblance to A,
but now A ⊂ A • B. As in the case of opening, the closing operation is useful in cleaning up
an image. The action of closing tends to close up small holes, to join up close but separated
subsets, and to smooth out the boundaries of an image. Opening and closing are simple
examples of morphological filtration operations.

A set A is (morphologically) B-closed if A = A • B. For example, in the plane a union
of non-intersecting discs with radii smaller than r and with inter-centre distance larger than
4r is B(o, r)-open.

Figure 1.1 displays typical results of the application of these transformations. The exam-
ple discussed there shows how repeated application of the transformations of mathematical
morphology with perhaps different structuring elements leads to composite image transfor-
mations; see Ohser and Schladitz (2009, p. 88) for a three-dimensional example.

1.5 Euclidean isometries

A transformation x �→ mx is said to be a Euclidean isometry if it leaves invariant the distance
between points x and y for all x and y. That is to say,

‖x − y‖ = ‖mx − my‖ for all x, y ∈ Rd.

It can be shown that every isometry of Euclidean space can be represented in the form

mxk = bk +
d∑

l=1

akl · xl (1.16)



10 STOCHASTIC GEOMETRY AND ITS APPLICATIONS

for k = 1, . . . , d, b = (b1, . . . , bd) ∈ Rd , and A = (akl) an orthogonal matrix. Such a matrix
has the determinant det A = ±1. The isometry is said to be a proper isometry if det A = +1.
So reflections are not proper isometries.

If A is the unit matrix then the isometry is said to be a translation and sometimes
denoted by

Tbx = x − b. (1.17)

The set Ax in (1.4) is the translated set of A and can be written as

T−xA = Ax.

Note the composition formula

TxTy = Tx+y. (1.18)

Rotations about the origin are proper isometries given by (1.16) for which b = o and are
denoted by rx or Ax, where A is an orthogonal matrix with det A = 1. A further composition
formula is

rTxy = Trxry. (1.19)

Formula (1.16) makes it plain that every proper isometry is the composition of a rotation about
the origin with a translation.

An alternative term for a proper isometry is (rigid) motion.

1.6 Convex sets in Euclidean spaces

A subset K of Rd is called convex if for every pair of points x, y in K the intervening line
segment also lies in K. That is to say

cx + (1 − c)y ∈ K whenever x, y ∈ K and 0 ≤ c ≤ 1.

Important examples of convex sets include the affine linear subspaces, which are subsets
L of Rd with the property that for every x, y in L the whole line {cx + (1 − c)y : c ∈ R}
through x and y also lies in L. The origin o does not necessarily belong to such an L.

The dimension of an affine linear subspace is the smallest integer k such that L can be
given by the formula

L =
{

c1z1 + · · · + ck+1zk+1 : c1, . . . , ck+1 ∈ R,

k+1∑
i=1

ci = 1

}
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for some points z1, . . . , zk+1 in Rd . Affine linear subspaces of dimension k are called k-flats
or k-planes; if a k-flat contains o then it is called a k-subspace. The (d − 1)-flats are called
hyperflats or hyperplanes. The 1-flats are called lines. In the spatial case d = 3 the term 2-flat
is abbreviated to flat and the term 2-plane to plane. Note that the hyperflats of the plane R2

are its lines.
The k-flats are closed sets but are not bounded and therefore not compact. Convex sets

which are also compact are sometimes called convex bodies. Examples are the closed balls,
the closed and bounded hypercubes, and the closed discs (intersections of closed balls with
2-flats). The system of all convex bodies is denoted by C(K). In the case d = 1 the system
C(K) coincides with the system of all closed and bounded intervals. Open balls and open
hypercubes are not convex bodies, though they are convex. The sphere

∂B(o, r) = {x ∈ Rd : ‖x − a‖ = r}

and the torus are of course not convex.
The smallest convex set which contains a given set A is called the convex hull of A and

denoted by convA. For example, the convex hull of a sphere is the corresponding closed ball.
An important functional characteristic for a convex body K is the support function

defined by

s(K, u) = max
x∈K

〈
u, x

〉
for u ∈ Rd, (1.20)

where 〈u, x〉 = u1x1 + · · · + udxd is the scalar product of u = (u1, . . . , ud) and x =
(x1, . . . , xd). The support function is convex and positively homogeneous (i.e., s(K, αu) =
α · s(K, u) for all α > 0). It determines K uniquely.

For u ∈ Sd−1, s(K, u) is the signed distance from the origin of the support hyperplane
to K with exterior normal vector u; the distance is negative if and only if u points into the
open half space containing the origin o. The function s(K, ·) is completely determined by its
values on Sd−1 because of positive homogeneity. Therefore in this book sometimes s(K, u) is
considered as a function on Sd−1, given by (1.20) with Rd replaced by Sd−1. See Schneider
(1993, Section 1.7) for more information on the support function.

If K is symmetric (so Ǩ = K), then the support function is uniquely determined by its
values on one hemisphere of the sphere Sd−1. In this case the modified support function
sm(K, ·) is defined on the set L1 of all lines through the origin. For � ∈ L1 let e(�) be the point
on � ∩ Sd−1 in the upper hemisphere (xd ≥ 0). Then

sm(K, �) = s
(
K, e(�)

)
for � ∈ L1. (1.21)

In the planar case (d = 2) the line � is uniquely given by the angle α formed by �

and the x1-axis in the upper half-plane, and hence sm(K, ·) becomes a function defined
on (0, π].

Some set operations preserve the class C(K). In particular if K1, K2 belong to C(K) then
so do the sets c · K1 for real c, Ǩ1, K1 ∩ K2 and K1 ⊕ K2.
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A convex body functional h(K), defined on C(K), assigns a real value h(K) to each
K ∈ C(K). Of particular interest are those nonnegative convex body functionals which possess
the following properties:

isometry-invariance h(mK) = h(K) if K ∈ C(K) and m is an isometry,

monotonicity if K1 ⊂ K2 then h(K1) ≤ h(K2),

C-additivity h(K1) + h(K2) = h(K1 ∪ K2) + h(K1 ∩ K2)

for K1, K2 ∈ C(K), if K1 ∪ K2 ∈ C(K).

Important examples of convex body functionals for the cases d = 1, 2, 3 are

the length l(K) if d = 1,

the area A(K) if d = 2,

the volume V (K) if d = 3,

the boundary length L(K) if d = 2,

the surface area S(K) if d = 3.

In the case d = 2, if K is a line segment then L(K) is defined as twice the length of K. Likewise
in the case d = 3 if K is actually a subset of a flat then S(K) is twice the area of K.

The parallel set of distance r of a set A ⊂ Rd is the set A⊕r = A ⊕ B(o, r). The operation
of taking a parallel set preserves the properties of convexity, of compactness, and of being a
ball.

Expressing the length (d = 1), area (d = 2) and volume (d = 3) of the parallel set as
functions of the distance r is of particular interest. For the case d = 1 this is given simply by

l
(
K ⊕ B(o, r)

) = l(K) + 2r. (1.22)

In the cases d = 2 and d = 3 the Steiner formula holds

A
(
K ⊕ B(o, r)

) = A(K) + L(K) r + πr2, (1.23)

V
(
K ⊕ B(o, r)

) = V (K) + S(K) r + 2πb(K)r2 + 4πr3

3
. (1.24)

Here b(K) is yet another convex body functional, called the average breadth or average width.
The average breadth can be defined as follows. For each line � through the origin let b�(K)

be the least distance between two parallel hyperplanes perpendicular to � and enclosing K

entirely between them. Then b(K) is defined to be the mean value of b�(K) averaging over
all lines � through the origin using the uniform direction distribution. This can be given in an
explicit formula as

b(K) = 1

2π

∫ π/2

0

∫ 2π

0
l(K|Sβ,λ

) sin β dλ dβ, (1.25)

where l(K|Sβ,λ
) is the length of the orthogonal projection of K on Sβ,λ, the line which passes

through the origin and through the point (sin β cos λ, sin β sin λ, cos β).
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In the special case of polyhedra the following formula holds (see Santaló, 1976, p. 226):

b(K) = 1

4π

∑
i

liαi, (1.26)

where li is the length of the ith edge and αi is the angle between the normals of the faces which
meet at the ith side, where 0 < αi ≤ π.

Table 1.1 displays average breadths, together with volumes and surface areas, for various
convex bodies K ⊂ R3. Other formulae for average breadths can be found in Hadwiger (1957,
p. 215) and Santaló (1976, pp. 226, 229, 230).

Table 1.1 Volumes, surface areas, and average breadths for convex bodies K in R3.

K V S b

Ball of radius r 4
3πr3 4πr2 2r

Cylinder, radius r,
height h

πr2h 2πr(r + h) h+πr
2

Disc, radius r 0 2πr2 πr
2

Square plate,
side a

0 2a2 a

Convex flat
(a planar convex
subset in R3), 0 2A L

4
area A and
perimeter L

Segment, length l 0 0 l
2

Spheroid,
equator radius a, 2πλa2( 1

λ
+ λ

β
sin−1 β

λ
), a{λ + 1

β
ln(β + λ)},

half axes of if λ > 1 if λ > 1
meridian ellipse 4

3πλa3

a and λa, 2πλa2( 1
λ

− λ
α

ln 1−α
λ

), a(λ + 1
α

sin−1 α),
α = √

1 − λ2, if λ < 1 if λ < 1
β = √

λ2 − 1

Cube, side a a3 6a2 3
2a

Rectangular
parallelepiped, abc 2(ab + bc + ca) a+b+c

2
sides a, b, c

Tetrahedron,
side a

√
2

12 a3
√

3 a2 3a
2π

cos−1(− 1
3 )

Octahedron,
side a

√
2

3 a3 2
√

3 a2 3a
π

cos−1 1
3
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The average breadth b is closely related to M, the integral of mean curvature, by

b = M

2π
. (1.27)

The integral of mean curvature M is the surface integral over ∂K, the boundary of K, of the
mean of the two principal curvatures 1/r1(x) and 1/r2(x) of the surface

M =
∫

∂K

m(x) dS,

where

m(x) = 1

2

(
1

r1(x)
+ 1

r2(x)

)

is the mean curvature of ∂K in the surface point x and dS is the surface element. For M to be
well-defined by this integral the surface ∂K must satisfy suitable regularity conditions, though
of course the average breadth makes sense for any convex body.

Formulae (1.23) and (1.24) given above can be generalised to the case of dimension d.
Suppose K is in C(K). Then the volume νd

(
K ⊕ B(o, r)

)
of a parallel body for K is given by

the Steiner formula:

νd

(
K ⊕ B(o, r)

) =
d∑

k=0

(
d

k

)
Wk(K)rk. (1.28)

This formula introduces the important quermassintegrals or Minkowski functionals Wk(K).
They are isometry-invariant, monotone, C-additive convex body functionals, defined directly
by the formula

Wk(K) = bd

bd−k

∫
Lk

νd−k(K|E⊥ )Uk(dE), (1.29)

in which

νk is the k-dimensional Lebesgue measure (see p. 30),

Lk is the set of all k-subspaces,

K|E⊥ is the orthogonal projection of K on E⊥,

E⊥ is the (d − k)-subspace orthogonal to E ∈ Lk,

Uk is the uniform probability distribution on Lk.

Furthermore

bk =
√

πk

�(1 + k/2)
(1.30)

is the volume of the unit ball in Rk. Important special cases are

b0 = 1, b1 = 2, b2 = π, b3 = 4π/3.
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If K is the unit ball, then

Wk

(
B(o, 1)

) = bd for k = 0, 1, . . . , d. (1.31)

For a general convex body K, the quantity W0(K) is equal to the volume νd(K); the quantity
dW1(K) is the (d − 1)-dimensional measure of area of the boundary ∂K; Wd(K) is con-
stant (independent of K) and equal to bd , and (2/bd)Wd−1(K) is the average breadth. In the
particular cases of d = 1, 2, 3 this gives

d = 1 : W0(K) = l(K), W1(K) = 2, (1.32)

d = 2 : W0(K) = A(K), W1(K) = L(K)

2
, W2(K) = π, (1.33)

d = 3 : W0(K) = V (K), W1(K) = S(K)

3
,

W2(K) = 2π

3
b(K) = M(K)

3
, W3(K) = 4π

3
. (1.34)

The Minkowski functionals Wk are closely related to the so-called intrinsic volumes Vk:

bd−kVk(K) =
(

d

k

)
Wd−k(K) for k = 0, 1, . . . , d. (1.35)

Which functional should be used is merely a matter of mathematical convention. The Vk can
be considered more natural and depend only on K but not the dimension of its surrounding
space (Schneider and Weil, 2008, p. 600). Therefore this book prefers the Vk. Substituting
W0, W1, Wd and Wd−1 into Formula (1.35) gives, for example,

V0(K) = 1, (1.36)

Vd−1(K) = 1

2
Sd(K), (1.37)

Vd(K) = νd(K), (1.38)

where Sd(K) is the (d − 1)-dimensional area of ∂K. The relationships corresponding to For-
mulae (1.28) and (1.31)–(1.34), respectively, are

νd

(
K ⊕ B(o, r)

) =
d∑

k=0

bd−kVk(K)rd−k, (Steiner formula) (1.39)

Vk

(
B(o, 1)

) =
(

d

k

)
bd

bd−k

for k = 0, 1, . . . , d, (1.40)

d = 1 : V0(K) = 1, V1(K) = l(K), (1.41)

d = 2 : V0(K) = 1, V1(K) = L(K)

2
, V2(K) = A(K), (1.42)
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d = 3 : V0(K) = 1, V1(K) = 2b(K) = M(K)

π
,

V2(K) = S(K)

2
, V3(K) = V (K). (1.43)

Hadwiger’s characterisation theorem states that every nonnegative, motion-invariant,
monotone, C-additive convex body functional h can be written in the form

h(K) =
d∑

k=0

akVk(K), (1.44)

where the ak are nonnegative constants depending on h. Here ‘nonnegative monotone’ can
be replaced by ‘continuous’ (using Hausdorff metric) if the ak are allowed to be general real
constants. For a modern proof see Schneider and Weil (2008, pp. 628–30), the idea of which
can be traced back to Klain (1995).

The volume itself is an intrinsic volume as noted above. Formula (1.39) can be generalised
to apply not only to the volume νd = Vd but to the other intrinsic volumes. The generalised
Steiner formula is

Vk

(
K ⊕ B(o, r)

) =
k∑

j=0

(
d − j

d − k

)
bd−j

bd−k

Vj(K)rk−j for k = 0, 1, . . . , d. (1.45)

In particular, Formula (1.45) gives

d = 2 : L
(
K ⊕ B(o, r)

) = L(K) + 2πr (1.46)

d = 3 : S
(
K ⊕ B(o, r)

) = S(K) + 4πb(K) r + 4πr2, (1.47)

b
(
K ⊕ B(o, r)

) = b(K) + 2r. (1.48)

Matheron (1978), Miles (1974b) and Weil (1982b) give similar formulae for V
(
K � B(o, r)

)
under suitable smoothness conditions on ∂K.

The intrinsic volumes for intersections of convex bodies with flats satisfy the Crofton
formula

∫
Lk

∫
E⊥

Vj(K ∩ Ex)νd−k(dx)Uk(dE) =
(

k
k−j

)
bk

bj(
d

k−j

)
bd

bd−k+j

Vd−k+j(K) (1.49)

for 0 ≤ j ≤ k ≤ d − 1 and K ∈ C(K). (Recall that Ex is the translate of E by x.) The Lebesgue
measure νd−k on E⊥ and the intrinsic volume Vj on Ex are defined by identifying E⊥ and
Ex with Rd−k and Rk, respectively.

If j = 0 then (1.49) gives

Vk(K) =
(

d
d−k

)
bd

bk

bd−k

∫
Ld−k

νk(K|E⊥ )Ud−k(dE), (1.50)
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which, after substituting into (1.35), is equivalent to Formula (1.29). The intrinsic volumes of
intersections of a given convex body with another moved convex body are given by the so-
called principal kinematic formula (see Schneider and Weil, 2008, Theorems 5.1.3 and 5.1.5).

The results of this and Section 1.8 belong to the fields of convex geometry and integral
geometry. References to these branches of mathematics are Gruber and Wills (1993), Schnei-
der (1993), Klain and Rota (1997) and Schneider and Weil (2008). Modern integral geometry
studies generalisations of intrinsic volumes known as curvature measures; see Schneider
(1993), Schneider and Weil (2008) and Section 7.3.4.

1.7 Functions describing convex sets

1.7.1 General

This section presents some functions that describe size and shape of deterministic convex
bodies in Rd , additionally to the support function already mentioned in Section 1.6. This
includes the set covariance, the chord length probability density function and the erosion–
dilation functions. All these functions serve as descriptors of sets, for example in statistical
analysis, where functional data are simpler to handle than set-valued data. They also appear
in formulae for other characteristics or can be directly obtained by statistical analysis.

All these functions are independent of the positions and orientations of the sets in space,
thus they coincide for congruent sets; it is not necessary to define ‘centres’ in the sets. That
is why these functions are also well suited to shape statistics; see Stoyan and Stoyan (1994).
However, they do not uniquely characterise the corresponding convex bodies, that is, there
may be different sets with the same function.

In the planar case, both the erosion–dilation function and the chord length probability
density function can be easily determined by image analysis.

1.7.2 Set covariance

The set covariance γK(r), geometric covariogram or distance probability, introduced by
Porod (1951), of a convex body K is defined by

γK(r) = νd

(
K ∩ (K − r)

)
, (1.51)

where r is a vector of Rd with ‖r‖ = r.
In integral form, the set covariance function γK(r) can be written as

γK(r) =
∫
Rd

1K(x)1K(x − r)dx for r ∈ Rd, (1.52)

where 1K(x) is the indicator function of K, defined by

1K(x) =
{

1 for x ∈ K

0 otherwise.
(1.53)
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A physicist would perhaps write the integral as

∫
K

dv1

∫
K

dv2δ(r1 + r − r2),

using the Dirac delta function δ (see Section 1.9).
It is natural to conjecture that the set covariance γK(r) is able to characterise the set

K uniquely, up to translations and reflections. This has been proved for planar convex K

(Averkov and Bianchi, 2009) and for convex polyhedra in R3 (Bianchi, 2009), but in general
it is not true for convex polytopes in Rd , d ≥ 4 (Bianchi, 2005).

Frequently, the isotropised set covariance γK(r) is used, the average of γK(r) over all
possible directions of r, assuming uniform directions:

γK(r) =
∫

Sd−1
γK(ru)U1(du). (1.54)

Here r is a positive number, and u is a unit vector representing a point on the unit sphere Sd−1

and is identified with the line containing the vector u, so that with slight abuse of notation,
the distribution U1, defined on p. 14, also denotes the uniform distribution on Sd−1.

In physics γK(r) is usually normalised such that it has the value 1 for r = 0. This function
can be measured directly by scattering methods.

Important analytical properties of the function γK are known; see Matheron (1975). In
particular, the derivative can be found: if r > 0 and u is a unit vector then γK(ru) has

d

dr
γK(ru) = −

(
νd−1

((
K ∩ (K + ru)

)|u⊥
))

.

Here A|u⊥ is the orthogonal projection of A on the hyperplane that has u as normal vector.
The geometric configuration is illustrated in Figure 1.2.

It is also the case that γK(ru) is convex in r. This follows from the observation that
−dγK(ru)/dr is decreasing in r. Thus also γK(r) is decreasing and convex in r.

The isotropised set covariance γK(r) is closely related to the so-called distance distri-
bution P(r), which is the probability density function of the random distance between two

0

0
+ru

Figure 1.2 The orthogonal projection
(
K ∩ (K + ru)|u⊥

)
in the case d = 2. It is the shaded

interval on the hyperplane (which in this two-dimensional case is a line) perpendicular to the
vector u.
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independent random points that are uniformly distributed in K. In the spatial case (d = 3)

P(r) = 4πr2γK(r)(
V (K)

)2
, (1.55)

and for general dimension d

P(r) = 2πd/2

�(d/2)

rd−1γK(r)

νd(K)2
for r ≥ 0. (1.56)

There is also a relation to the chord length distribution function; see below. The function
P(r) can be easily determined based on physical data, but it is not very sensitive with respect
to shape variation of K; see Glatter (1979).

In general, γK(r) is not an easy function to calculate. The following are the formulae of
the positive part of γK(r) for some particular bodies K:

(a) K = a ball of radius R in R3,

γK(r) = 4

3
πR3

(
1 − 3r

4R
+ r3

16R3

)
for 0 ≤ r ≤ 2R; (1.57)

(b) K = a disc of radius R in R2,

γK(r) = 2R2 cos−1
( r

2R

)
− r

√
4R2 − r2

2
for 0 ≤ r ≤ 2R; (1.58)

(c) K = a rectangle of area A and side-length ratio β (≥ 1) in R2,

γK(r) = A

π
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π − 2x − 2x

β
+ x2

β
for 0 ≤ x ≤ 1,

2 sin−1
(1

x

)
− 1

β
− 2(x − u) for 1 < x ≤ β,

2 sin−1
(β − uv

x2

)
+ 2u + 2v

β
− β − 1 + x2

β
for β < x <

√
β2 + 1,

0 for x ≥
√

β2 + 1,

(1.59)

where

x = r√
A/β

, u =
√

x2 − 1, v =
√

x2 − β2. (1.60)

The formula for a parallelepiped and formulae for other bodies can be found in Gille
(1988) and Gille (2014).
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A good approximation for d = 3 and for small r is

γK(r) ≈ V (K) − S(K)

4
r, (1.61)

and for d = 2

γK(r) ≈ A(K) − L(K)

π
r. (1.62)

Better but more complicated approximations are given in Ciccariello (1995).
The set covariance plays an important rôle in small-angle scattering experiments, since

the intensity collected there is the Fourier transform of the autocorrelation function of the
scattering density in the sample, see Guinier and Fournet (1995). A particular case is that of a
monodisperse, isotropic and dilute ‘particulate sample’, where the sample can be understood
as a system of homogeneous particles of the same shape and size, random orientation and
small number density. In this case the sample autocorrelation is proportional to γK(r).

1.7.3 Chord length distribution

Random lines generate chords of random length in intersected convex sets. The standard case is
that where the lines are uniform random in the sense of the motion-invariant measure discussed
in Section 8.2.2, restricted to the set of lines which actually hit the convex body K. (Note
that there are many other ways of defining random chords; see for example Solomon, 1978;
Coleman, 1989; Chiu and Larson, 2009, and other literature on the so-called Bertrand paradox
(e.g. M. G. Kendall and Moran, 1963, pp. 9–10).) To each random chord there corresponds its
length, and its distribution function is called the chord length distribution function. For any K

with inner points there exists the corresponding probability density function, which is denoted
here by fK(l). Many formulae for fK(l) and its moments can be found in the literature, in
particular in Gille (2014). Some of them will be given here.

Planar case

The mean chord length �K is given by

�K = πA(K)

L(K)
. (1.63)

The third moment of the chord length is

�3
K =

∫ ∞

0
l3fK(l)dl = 3

(
A(K)

)2

L(K)
(1.64)

(Santaló, 1976).
For the second moment of the chord length there exists no general formula comparable

to (1.63) or (1.64). Of course, for many examples of planar convex sets formulae for �2 are
known; see for example Voss (1982).
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For a disc of radius R it holds

�n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 · 3 · . . . · n

2 · 4 · . . . · (n + 1)

π

2
(2R)n for odd n,

2 · 4 · . . . · n

3 · 5 · . . . · (n + 1)
(2R)n for even n.

(1.65)

The chord length density function fK(l) is known for many sets K. The following formulae
give it for some K:

(a) K = a disc of radius R,

fK(l) = l

2R
√

4R2 − l2
for 0 ≤ l ≤ 2R; (1.66)

(b) K = an ellipse with semiaxis lengths a and b (a ≥ b),

fK(l) = 3abl�

∫ 2a

max{�, 2b}
1

x3
√

x2 − 4b2
√

x2 − l2
√

4a2 − x2
dx; (1.67)

the integral can be evaluated numerically;

(c) K = a rectangle with side lengths a and b (a ≥ b) (Gille, 1988, 2014),

fK(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a + b
for 0 ≤ l ≤ b,

ab2

l2(a + b)
√

l2 − b2
for b < l ≤ a,

ab

l2(a + b)

( a√
l2 − a2

+ b√
l2 − b2

)
− 1

a + b
for a < l ≤ √

a2 + b2 ;

(1.68)

(d) K = an equilateral triangle of side length a (Sulanke, 1961, Gille, 2014),

fK(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a

(
1

2
+ π

3

√
1

3

)
for 0 ≤ l ≤

√
3a

2
,

−1

l

√
1 − 3a2

4l2
+ 1

a

(
1

2
− 2π

3
√

3
+ 2√

3
sin−1

(√
3a

2l

))
for

√
3a

2
< l ≤ a.

(1.69)

The case of a general triangle is considered in Ciccariello (2010).
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Figure 1.3 Chord length density functions for ellipses with a = 2 and b = 1, 1.5 and 2.

Figure 1.3 shows chord length density functions for two ellipses and a disc, and Figure 1.4
those for a square and a rectangle.

The form of the chord length density function is related to certain features of the corre-
sponding body K. For example, algebraic singularities of this function correspond to parallel
pieces of the contour and the form of fK(l) for l close to its maximum is essentially related
to smaller details of the contour.

Spatial case

The mean chord length �K is given by

�K = 4V (K)

S(K)
. (1.70)
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Figure 1.4 Chord length density functions for (a) a square with side length 1 and (b) a
rectangle with side lengths 2 and 1.
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The fourth moment is

�4
K = 12

(
V (K)

)2

πS(K)
. (1.71)

Clearly, for particular bodies also the second and third moment of the chord length are known.
For a ball of radius R it holds

�n
K = 2n+1

n + 2
Rn. (1.72)

Note that there is a close relationship between the isotropised set covariance γK(r) and
the chord length density function fK(l): for d = 2

fK(l) = π

L(K)

d2γK(l)

dl2
, (1.73)

and for d = 3

fK(l) = 4

S(K)

d2γK(l)

dl2
for l ≥ 0 (1.74)

(see Kingman, 1969; Gille, 2014).

These formulae are frequently used to determine chord length density functions. The case
of K being a ball is treated in Section 10.4 in the context of stereology and Figure 10.4 shows
the chord length density function for a parallelepiped.

In the literature further formulae can be found for γK(r) and fK(l) for various bodies K.
Among the bodies for which calculations have been made are: ellipsoids, cylinders (finite and
infinite), hemispheres, tetrahedra, prisms, parallelepipeds and for various isotropic random
sets such as the typical cells of the Voronoi, Poisson plane and dead leaves tessellation. The
results are scattered in many different journals and collected in Gille (2014). Gille asserts that
there are around ten different mathematical techniques that have been applied to determine
chord length distributions, which depend on the geometry of the bodies of interest.

Chords also play a rôle for nonconvex sets. There an intersecting line may produce a
sequence of segments, which are best analysed together as a totality. Miles (1972a, 1985)
shows how the segments can be related together so as to obtain useful formulae, for example,
for moments of length. Ciccariello (2009) determines chord length distributions for planar
butterfly-shaped objects, considering all section segments as single chords. There d2γK(r)/dr2

can be negative.
Many physical experimental techniques indirectly measure chord length distributions.

One of the physical principles is the interference of two monochromatic waves, originating
at the endpoints of a chord: scattering investigations of electromagnetic waves (light, X-rays)
or neutrons yield a scattering intensity curve, also called ‘diffraction pattern’. The scattering
intensity I is recorded as a function of the scattering vector q, I(q). Such patterns describe
order ranges from nanometers to micrometers. Finally, chord length distributions result from
I(q) by integral transformations; see Wu and Schmidt (1973) and Burger and Ruland (2001).
The series of formulae for chord length distribution functions above and in Gille (2014) may
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be of value in finding suitable models when empirical distribution functions are given. Another
example of the application of chord length distribution is in the classification of microscopic
images of for example starch grains (Tong et al., 2008).

While these applications are related to small-scale objects, chords also play a rôle in the
geometrical investigation of very large objects, in astronomy in the context of occultations,
for example of asteroids, which yield chord length information, see Hestroffer et al. (2002).

1.7.4 Erosion–dilation functions

The erosion–dilation function EK(r) of the convex body K is defined as

EK(r) =
{

νd

(
K ⊕ B(o, r)

)
for r > 0,

νd

(
K � B(o, |r|)) for r ≤ 0.

(1.75)

That is, EK(r) is the volume of the inner (r ≤ 0) and outer (r > 0) parallel set of K.
While for r > 0 the value of EK(r) is simply given by the Steiner formula (1.28) or (1.39),
the function is more complicated for negative r. The erosion–dilation function can be easily
generalised for the case of nonconvex sets — nothing in Formula (1.75) need change. In
Section 6.3.3 an analogous function for unbounded sets will be used.

A normalised version of the erosion function is the spherical erosion function QK(r),
which has the nature of a distribution function:

QK(r) = 1 − νd

(
K � B(o, r)

)
νd(K)

for r ≥ 0. (1.76)

It is the distribution function of the distance of a uniform random point in K to the boundary
of K.

Like the erosion-based function, also functions that include morphologically ‘opened’ or
‘closed’ sets can be used, for example

GK(r) = 1 − νd

(
K ◦ B(o, r)

)
νd(K)

for r ≥ 0. (1.77)

See Serra (1982, p. 333ff) and Ripley (1988, Chapter 6).
Note that other test sets, for example point pairs or segments, can be used instead of balls

B(o, r).

1.8 Polyconvex sets

Some of the results concerning convex sets can be generalised for sets in a wider class known
as the convex ring R; see Klain and Rota (1997) and Schneider and Weil (2008). The convex
ring R is the system of all subsets A of Rd which can be expressed as finite unions of convex
bodies:

A =
n⋃

i=1

Ki for Ki ∈ C(K).
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If A1 and A2 both belong to R then so do A1 ∪ A2 and A1 ∩ A2. The elements of the convex
ring are called polyconvex sets.

The extended convex ring is the system

S = {K : K ∩ K′ ∈ R for all convex bodies K′}.
Each element of S, which may be a union of infinitely many convex sets, yields a polyconvex
set when intersected with a convex body. The elements of S are called locally polyconvex.

An additive functional h on R is a map h : R → R with the properties

h(∅) = 0

and

h(A1 ∪ A2) + h(A1 ∩ A2) = h(A1) + h(A2)

for A1, A2 ∈ R.
Isometry-invariance of functionals on R is defined as for convex body functionals.
A very important example of an additive and isometry-invariant functional onR is the con-

nectivity number or Euler–Poincaré characteristic χ. It can be understood as a generalisation
of convex object count. Indeed, for a convex non-empty K it takes the value

χ(K) = 1

and

χ(A) = n,

if A is the union of n disjoint convex bodies. And it holds χ(∅) = 0. This together with the
additivity property defines χ(A) for general A in R. If A is a union of convex bodies

A =
n⋃

i=1

Ki for Ki ∈ C(K),

then the additivity property gives the ‘inclusion–exclusion’ formula

χ(A) =
∑

i

χ(Ki) −
∑

1≤i1<i2≤n

χ(Ki1 ∩ Ki2 ) + · · · + (−1)n−1χ(K1 ∩ · · · ∩ Kn). (1.78)

It can be shown that χ(A) is independent of the representation of A as a finite union of convex
bodies. Figure 1.5 shows four planar sets of connectivity numbers +1, 0 and −1 respectively.

The connectivity number can, the same as volume and surface content, be defined also for
closed sets outside the extended convex ring; see for example Wilder (1963) and Richeson
(2008). For such cases the following informal rules hold:

• In the two-dimensional case χ(A) equals the number of outer boundaries minus the
number of inner boundaries. An outer boundary is a boundary such that an observer
moving along it anticlockwise sees the set on his left hand.

• In the three-dimensional case χ(A) equals the number of connected components of
A, minus the number of independent two-dimensional holes or tunnels, and plus the
number of three-dimensional holes or voids.
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(a) (b) (c) (d)

Figure 1.5 Four planar sets with various connectivity numbers: (a) +1, (b) 0, (c) −1,
(d) +1.

A reader who wants to get some feeling of the three-dimensional connectivity number
should note that the connectivity number of a solid torus as well as a tea cup is 0, that of a
closed ball is 1 and that of a sphere as well as the surface of any convex body is 2. The set A

formed by the edges of a cube has χ(A) = −4.
The connectivity number makes it possible to generalise the intrinsic volumes, still denoted

by Vk, to act on R by means of additivity, as shown by Schneider (1980) and Schneider and
Weil (2008, p. 190). The term νk(K|E⊥ ) in Formula (1.50) comes from the inner integral of
the left-hand side of Formula (1.49) and must be replaced by∫

E⊥
χ(K ∩ Ex)νk(dx)

so that V0 coincides with χ on R, and hence for a polyconvex set A ∈ R, the (generalised)
intrinsic volumes are defined as

Vk(A) =
(

d
d−k

)
bd

bk

bd−k

∫
Ld−k

∫
E⊥

V0(A ∩ Ex)νk(dx)Ud−k(dE) (1.79)

for k = 1, . . . , d. These functionals are additive and isometry-invariant, but not continuous
and may be negative for k ≤ d − 1. The quantity Vd(A) is the d-dimensional volume of A,
Vd−1(A) is half of the area of ∂A, and V0(A) is the connectivity number of A.

Minkowski functionals of polyconvex sets, still denoted by Wk(A) and connected with
the Vk(A) by Formula (1.35), may also be used.

The intrinsic volumes can be generalised also in another way, to the positive extension
introduced by Matheron (1975) and Schneider (1980) and referred to in Section 7.3.4. This
generalisation yields nonnegative functionals and loses additivity. A quantity that arises by
this route of generalisation is M+(A), the integral of mean positive curvature; see also p. 294.
A further positive characteristic which is a counterpart to the connectivity number is the
convexity number χ+. The following gives an account of its definition after Matheron (1975,
pp. 122–3), but using the notation developed in this chapter.

First define the convexity number of A ∈ R with respect to the unit vector u. Let Su,r

for real r be the hyperplane through the point ru and perpendicular to u. For A in R let
K1, K2, . . . , Kn be the connected components of A ∩ Su,r. The connected component Ki is
said to be an entering set for A (with respect to u and Su,r) if there is an open and connected
set G containing Ki such that G ∩ Kj is empty for j /= i and A ∩ G ∩ Su,r−ε is empty for all
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sufficiently small positive ε. Let n(r) denote the number of entering sets associated with Su,r.
If u is a fixed unit vector then this number n(r) is nonzero for only a finite number of real
numbers r, so that it is possible to put

χ+(A, u) =
∑

r

n(r).

This is the convexity number of A with respect to the unit vector u. Figure 7.2 on p. 295
demonstrates an application of the convexity number in the planar case with u = (0, 1) and
u = (0, −1).

The (mean) convexity number χ+ is then simply the rotation average of χ+(A, u) with
respect to the invariant probability measure U1 on the unit sphere Sd−1:

χ+(A) =
∫

Sd−1
χ+(A, u) U1(du).

One might ask whether the various integral-geometric formulae (the Steiner formula,
Hadwiger’s characterisation theorem, the principal kinematic formula, and the Crofton
formula) hold in the convex ring if the standard intrinsic volumes are systematically replaced
by their additive generalisations. This is indeed the case; see Schneider and Weil (2008).
In particular,

νd

(
A ⊕ B(o, r)

) = νd(A) + S(A)r + o(r), (1.80)

for regular closed A; see Schneider (1993, Theorem 4.4.1). More general sets are considered
in Kiderlen and Rataj (2006).

Still more is possible: the theory can be extended to sets of positive reach and sets which
are finite unions of such sets; see Zähle (1984a, 1987a) and Rother and Zähle (1990). For
A ⊂ Rd , reach(A) is defined to be

reach(A) = sup{r : for all x ∈ A ⊕ B(o, r) there exists a unique point of
A nearest to x}.

If A is of positive reach, then A is closed. If A is convex, then reach(A) = ∞. An example
of a set which is of positive reach but not in the convex ring is the sphere ∂B(o, R). Its reach
is R.

1.9 Measure and integration theory

In modern probability theory and geometry the concept of measure plays a central rôle.
Consequently these ideas play a large part in the present book. However, the authors expect
that many of the readers of this book are not familiar with this theory, and have therefore
written the book so that most of it can be understood without a deeper knowledge of these
mathematical theories.

The following introduction is of course too short for a thorough understanding of measure
and integration theory. The aim is to remind mathematicians of what they have learned before
and to help non-mathematicians understand the notation.

Measures are real-valued functions, defined on families of sets and enjoying properties of
additivity and positivity.
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To introduce the idea of a measure, the following three simple and linked examples may be
helpful. Consider the contents of a body K in space that is made up of some material. Suppose
that the mass of this body is not necessarily homogeneously distributed in it. Associated with
each portion A of K (A ⊂ K) are the quantities α1(A), the volume of A, and α2(A), the mass
of K that is contained in A. Suppose that in the body K there are also small grains of another
material. Let the number of these grains lying in A be given by α3(A). Thus there are three
set functions α1, α2 and α3 defined on the portions of K. If a portion A is divided into disjoint
parts A1 and A2 then

αk(A) = αk(A1 ∪ A2) = αk(A1) + αk(A2) for k = 1, 2, 3.

Set functions with this property are called additive.
For mathematical reasons, it is useful to stipulate that such functions should have the

stronger property of σ-additivity. That is to say, if a set can be divided into a countable
disjoint union of subsets then the value of the set function on the whole set should equal
the sum of the values of the set function on the subsets. Together with various mathematical
technicalities, this consideration leads to the idea that set functions of the kind given above
are naturally defined on systems of sets that are closed under the basic set operations of union,
intersection, and complementation, and also under the operations of taking countably infinite
unions and intersections.

Such systems of sets are called σ-algebras. Technically a σ-algebra is a system X of
subsets of some ground set X satisfying three conditions:

(S1) X ∈ X;

(S2) if A ∈ X, then Ac ∈ X;

(S3) if A1, A2, . . . ∈ X, then
∞⋃

k=1

Ak ∈ X.

From these properties others follow immediately:

∅ ∈ X;

if A, B ∈ X, then A \ B ∈ X;

if A1, A2, . . . ∈ X, then
∞⋂

k=1

Ak ∈ X.

Trivial examples of σ-algebras are given by the ‘minimal’ σ-algebra {∅, X} and the
‘maximal’ σ-algebra, the power set P(X), that is, the system of all subsets of X.

Often one has to consider the trace XA of the σ-algebra X on A ⊂ X, defined by

XA = {B ∩ A : B ∈ X},
which is also a σ-algebra.

A very important example of a σ-algebra is given by the family Bd of Borel sets of Rd .
This is the smallest σ-algebra on Rd that contains all the open subsets of Rd . It can be shown
that Bd is strictly smaller than the power set P(Rd), that is, there are subsets of Bd which are
not Borel.
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Loosely speaking all ‘reasonable’ sets are Borel sets; it is difficult to give examples of
non-Borel sets. The σ-algebra Bd contains all the subsets of Rd that can be constructed from
the open subsets by the basic set operations and by limits. Since these operations can be
iterated this is an exceedingly large class of sets. It certainly includes all closed sets, and thus
all compact sets, and thus all elementary geometrical bodies discussed in this book. Denote
the subclass of all bounded Borel sets of Rd by Bd

o .
The pair [X,X], formed by a set X and a σ-algebraX of subsets of X, is called a measurable

space and the A in X are called measurable sets.
A function f : X → R is said to be X-measurable if for each Borel set B ∈ B1 the inverse

image f−1(B) = {x ∈ X : f (x) ∈ B} belongs to the σ-algebra X associated with X. Elemen-
tary algebraic operations and operations such as the taking of absolute values, and the taking
of limits when applied to measurable functions all yield measurable functions. A particular
example of a measurable function is the indicator function 1A(x) of a measurable set A as
defined in (1.53) on p. 17.

The coordinate functions x = (x1, . . . , xd) �→ xi are special examples of Borel-
measurable functions from Rd to R.

All continuous functions and hence all differentiable functions on Rd are Borel-
measurable.

If R is replaced by a general set Y with associated σ-algebra Y in the definition of a
measurable function then a transformation

f : X → Y

is said to be (X, Y)-measurable if f−1(B) ∈ X for each B ∈ Y.
Suppose that [X,X] is a measurable space. A measure on [X,X] is a function μ : X →

[0, ∞] with the following two properties:

(M1) μ(∅) = 0,

(M2) μ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

μ(Ak)

for all A1, A2, . . . ∈ X with Ai ∩ Aj = ∅ whenever i /= j. Note that μ(A) may equal ∞.
Property (M2) is referred to as the property of σ-additivity. A particular case of this property
is finite additivity:

μ(A1 ∪ · · · ∪ An) = μ(A1) + · · · + μ(An)

if A1, . . . , An are pairwise disjoint. Another important consequence is that if A, B ∈ X and
B ⊂ A then

μ(A \ B) = μ(A) − μ(B).

The measures which occur in this book generally have two other important properties.
They are defined on the Borel σ-algebra of Rd for some d, and they are locally finite, that is,
finite on bounded sets; such measures are referred to as Radon measures. (If μ(X) < ∞ then
μ is called finite. The set X can be nevertheless an unbounded subset ofRd .) The relationship
between measure theory and the topology of the ground space is an important and extensive
theory; however, the two definitions above will suffice for the discussions below.
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Simple examples of measures on measurable spaces are given by the Dirac measures δx

for x in X. They are defined by

δx(A) =
{

1 if x ∈ A,

0 otherwise.
(1.81)

On [Rd,Bd] the Dirac measures are Radon measures.
A further and most important example is that of Lebesgue measure νd on [Rd,Bd]. A

fundamental theorem of measure theory has as a special case the result that locally finite mea-
sures on [Rd,Bd] are unambiguously characterised by their values on hypercubes. Lebesgue
measure is characterised by

νd(Q) = (v1 − u1) · . . . · (vd − ud)

if Q = [u1, v1] × . . . × [ud, vd]. This implies that the values of the νd-measure of geometrical
objects such as balls, cylinders, solid toruses, and so forth, coincide with the volumes in
elementary geometry. Indeed, in the case d = 3 the Lebesgue measure ν3 is equal to the
volume measure V . Some of such values are given in Table 1.1 on p. 13. In the cases d = 1
and d = 2, it is ν1 = l the length measure and ν2 = A the area measure.

If B is a bounded Borel set then νd(B) < ∞. This follows from the positivity of νd and
its finiteness on all hypercubes including those which contain the bounded set B. Thus νd is
indeed a Radon measure.

Lebesgue measure has the property of being isometry-invariant:

νd(mA) = νd(A) (1.82)

for all isometries m and Borel sets A. Another important theorem states that every isometry-
invariant Radon measure μ (indeed every translation-invariant Radon measure) on [Rd,Bd]
is a constant multiple of the Lebesgue measure,

μ = cνd for some c ≥ 0. (1.83)

Further measures of geometrical interest are the k-dimensional Hausdorff measures hk,

hk(B) = 2−kbk lim
δ→0+

inf

{ ∞∑
i=1

(
diam(Mj)

)k : B ⊂
∞⋃
i=1

Mj, diam(Mj) ≤ δ

}

for B ∈ Bd, k = 0, 1, . . . , d, (1.84)

where diam denotes the diameter, the Mi are compact subsets of Rd , and bk, defined in
Formula (1.30), denotes the volume of the k-dimensional unit ball. For k = d the measure
coincides with the Lebesgue measure, for k = 0 it is the counting measure assigning to a set
the number of its elements. Further, hk(B) for a k-dimensional submanifold B ofRd coincides
with its usual k-dimensional Lebesgue measure: for example, if B is a curve inRd , then h1(B)
is its length; see Morgan (2009) for more details.

Dirac measures and Lebesgue measure are quite different in that Dirac measures are con-
centrated on single points while Lebesgue measure gives zero mass to every point. Measures
μ on [Rd,Bd] that are concentrated on a countably infinite collection of points x1, x2, . . . (so
that μ(Rd \ {x1, x2, . . .}) = 0) are called atomic measures, and are called counting measures
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if in addition they give each point a mass of one or zero. A measure is called a diffuse measure
if, like Lebesgue measure, it gives zero mass to each single point. Property (M2) then ensures
that every countable set has also Lebesgue measure zero. Since the set of all rational numbers
in R is countable, it has Lebesgue measure zero, while the set I of all irrational numbers in
[0, 1] has Lebesgue measure 1.

A measure μ on a measurable space [X,X] defines a triplet [X,X, μ], which is called a
measure space. Associated with each measure space is the integral with respect to μ. For a
measurable real-valued function f (x), x ∈ X, the integral is written as∫

f (x) μ(dx).

Such integrals appear at many places in this book, where the variable x is often not a real
number or a point of Rd but, for example, a compact set or a point pattern.

The construction of this general integral starts with the particular case of an indicator
function f (x) = 1A(x) where∫

1A(x) μ(dx) = μ(A) for A ∈ X. (1.85)

Remember that for the classical Riemann integral and A = [a, b]∫ +∞

−∞
1A(x) dx =

∫ b

a

dx = b − a,

which can be seen as a particular case of (1.85) since ν1(A) = b − a.
Further steps of the construction are∫ (
c1f1(x) + c2f2(x)

)
μ(dx) = c1

∫
f1(x) μ(dx) + c2

∫
f2(x) μ(dx) for c1, c2 ≥ 0

(1.86)

and ∫ ∞∑
k=1

fk(x) μ(dx) =
∞∑

k=1

∫
fk(x) μ(dx) (1.87)

for nonnegative functions f1(x), f2(x), . . . . For such functions an integral value of +∞ is an
accepted convention.

For an arbitrary measurable function f (x) the positive and negative part are considered
separately to obtain∫

f (x) μ(dx) =
∫

f (x)1B(x) μ(dx) −
∫ (−f (x)

)
1Bc (x) μ(dx), (1.88)

where

B = {x ∈ X : f (x) > 0}.
Here one says that the integral exists if∫

|f (x)| μ(dx) =
∫

f (x)1B(x) μ(dx) +
∫ (−f (x)

)
1Bc (x) μ(dx) < ∞.
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Occasionally such integrals are written as∫
f dμ =

∫
f (x) μ(dx) =

∫
f (t) μ(dt),

where the dummy variables x and t of integration can be chosen arbitrarily from previously
undefined symbols.

The integral derived from the measure space [Rd,Bd, νd] is called the Lebesgue integral.
In the case d = 2 this integral can be interpreted graphically. A nonnegative function f :
R2 → [0, ∞) can be considered as giving the height f (x) at each point x of a surface lying
over the plane (x3 = 0) inR3. Then the integral

∫
f (x)ν2(dx) can be interpreted as the volume

lying between the surface and the plane (x3 = 0). A similar interpretation is possible for the
case d = 1.

The Lebesgue integral can be applied to functions where the Riemann integral does not
exist. Consider the case d = 1 and f (x) the Dirichlet function, which is the indicator function
of the set I of all irrational numbers in [0, 1]:

1I (x) =
{

1 for x irrational and 0 ≤ x ≤ 1,

0 otherwise.
(1.89)

Here the Riemann integral does not exist, since the upper and lower Riemann sums are
always 1 and 0, respectively. In contrast, Formula (1.85) yields the Lebesgue integral value 1
since ν1(I) = 1.

A frequent contraction of notation involves removing indicator functions from the inte-
grand and inserting the corresponding sets as domain of integration or range of integration.
In the case d = 1 ∫

1[a,b](x)f (x) ν1(dx) =
∫

[a,b]
f (x) ν1(dx),

and in the general case ∫
1A(x)f (x) μ(dx) =

∫
A

f (x) μ(dx).

Where no domain of integration is given for the integral it is to be understood that the domain
of integration is the whole of the appropriate space.

For elementary functionsf (x) onR the expression
∫

[a,b] f (x)ν1(dx) equals the well-known
elementary Riemann integral ∫ b

a

f (x) dx.

The Lebesgue integral simply fits better to many theoretical calculations in stochastic geom-
etry.

If two measures μ1 and μ2 are given on the same measurable space [X,X] then sometimes
one can be given in terms of the other by an integral formula involving a density g : X →
[0, ∞):

μ2(A) =
∫

A

g(x) μ1(dx) for all A ∈ X.
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In this case μ2 is said to be absolutely continuous with respect to μ1, and written as

μ2 � μ1.

The Radon–Nikodym theorem gives a necessary and sufficient condition for one Radon
measure μ2 to be absolutely continuous with respect to another Radon measure μ1:

if μ1(A) = 0 implies μ2(A) = 0 for all A in X, then μ2 � μ1.

In practice the actual calculation of the density function g(x) for given μ1 and μ2 may be
difficult; see Rao (1993).

Probability theory makes much use of the ideas of measure theory. If a measure space
[�,A, P] is such that P(�) = 1 then it is called a probability (measure) space and the measure
P is called a probability measure. Then � is called the sample space and A is the σ-algebra
of events; the elements of � are called sample points; the subsets of � that belong to A are
called events. Real-valued A-measurable functions defined on � are called random variables.
By tradition they are usually not denoted by f , g or h but by X, Y or Z. They assign real
numbers to sample points. The measurability condition ensures that for a random variable X

it is possible to define probabilities such as

P(X ≤ x) = P({ω ∈ � : X(ω) ≤ x}) = F (x). (1.90)

The function F (x) is called the distribution function of X.
The definition of more general random variables is analogous. They are also measurable

mappings, but then the image space is not R but a suitable other space. In the case of random
sets, for example, the image space is F, the space of all closed subsets of Rd ; and for defining
measurability, it is necessary to introduce a σ-algebra of subsets of F.

If X is a real-valued random variable with
∫ |X(ω)|P(dω) < ∞ then E(X) denotes its

expectation or mean,

E(X) =
∫

X(ω)P(dω) =
∫ ∞

−∞
x dF (x). (1.91)

where the last expression is a so-called Riemann–Stieltjes integral.
If P is a probability measure on [R1,B1] and absolutely continuous with respect to ν1,

then X is said to be an absolutely continuous random variable and there exists a nonnegative
function f (x), the probability density function, satisfying

f (x) = F ′(x)

and the integral given in (1.91) is rewritten as∫ ∞

−∞
x f (x)dx.

If P is atomic, then X is a discrete random variable and the integral in (1.91) is equal to∑
i

xipi,



34 STOCHASTIC GEOMETRY AND ITS APPLICATIONS

where xi are the atoms with weights pi. In physics literature, the latter would be written as∫ ∞

−∞
x f (x) dx

with

f (x) =
∑

i

δxi (x) =
∑

i

δ(x − xi)

using Dirac delta functions.
Analogously, the notation

E
(
g(X)

) =
∫ ∞

−∞
g(x) dF (x) (1.92)

is used for a measurable function g(x).
Furthermore, cov(X, Y ) is the covariance of two random variables X and Y ,

cov(X, Y ) = E
((

X − E(X)
)(

Y − E(Y )
))

, (1.93)

and in particular

var(X) = cov(X, X) = E
((

X − E(X)
)2

)
(1.94)

is the variance of X.
Thorough introductions to the theory of measure, integration and probability can be

found in many textbooks; for example, Billingsley (1995), Kallenberg (2002), Pollard (2002),
Capiński and Kopp (2004), Rosenthal (2006), Yeh (2006), Bogachev (2007), Athreya and
Lahiri (2010), Durrett (2010) and Gut (2013).


