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Acquiring, modeling, and synthesizing realistic 3D human faces and their dynamics have
emerged as an active research topic in the border area between the computer vision and
computer graphics fields of research. This has resulted in a plethora of different acquisition
systems and processing pipelines that share many fundamental concepts as well as specific
implementation details. The research community has investigated the possibility of targeting
either end-to-end consumer-level or professional-level applications, such as facial geometry
acquisition for 3D-based biometrics and its dynamics capturing for expression cloning or per-
formance capture and, more recently, for 4D expression analysis and recognition. Despite the
rich literature, reproducing realistic human faces remains a distant goal because the challenges
that face 3D face modeling are still open. These challenges include the motion speed of the
face when conveying expressions, the variabilities in lighting conditions, and pose. In addition,
human beings are very sensitive to facial appearance and quickly sense any anomalies in 3D
geometry or dynamics of faces. The techniques developed in this field attempt to recover facial
3D shapes from camera(s) and reproduce their actions. Consequently, they seek to answer the
following questions:

� How can one recover the facial shapes under pose and illumination variations?
� How can one synthesize realistic dynamics from the obtained 3D shape sequences?

This chapter provides a brief overview of the most successful existing methods in the
literature by first introducing basics and background material essential to understand them.
To this end, instead of the classical passive/active taxonomy of 3D reconstruction techniques,
we propose here to categorize approaches according to whether they are able to acquire faces
in action or they can only capture them in a static state. Thus, this chapter is preliminary to
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2 3D Face Modeling, Analysis and Recognition

the following chapters that use static or dynamic facial data for face analysis, recognition, and
expression recognition.

1.1 Challenges and Taxonomy of Techniques

Capturing and processing human geometry is at the core of several applications. To work on
3D faces, one must first be able to recover their shapes. In the literature, several acquisition
techniques exist that are either dedicated to specific objects or are general. Usually accom-
panied by geometric modeling tools and post-processing of 3D entities (3D point clouds, 3D
mesh, volume, etc.), these techniques provide complete solutions for 3D full object reconstruc-
tion. The acquisition quality is mainly linked to the accuracy of recovering the z-coordinate
(called depth information). It is characterized by loyalty reconstruction, in other words, by
data quality, the density of 3D face models, details preservation (regions showing changes in
shapes), etc. Other important criteria are the acquisition time, the ease of use, and the sensor’s
cost. In what follows, we report the main extrinsic and intrinsic factors which could influence
the modeling process.

� Extrinsic factors. They are related to the environmental conditions of the acquisition and the
face itself. In fact, human faces are globally similar in terms of the position of main features
(eyes, mouth, nose, etc.), but can vary considerably in details across (i) their variabilities
due to facial deformations (caused by expressions and mouth opening), subject aging
(wrinkles), etc, and (ii) their specific details as skin color, scar tissue, face asymmetry, etc.
The environmental factors refer to lighting conditions (controlled or ambient) and changes
in head pose.

� Intrinsic factors. They include sensor cost, its intrusiveness, manner of sensor use (cooper-
ative or not), spatial and/or temporal resolutions, measurement accuracy and the acquisition
time, which allows us to capture moving faces or simply faces in static state.

These challenges arise when acquiring static faces as well as when dealing with faces
in action. Different applications have different requirements. For instance, in the computer
graphics community, the results of performance capture should exhibit a great deal of spatial
fidelity and temporal accuracy to be an authentic reproduction of a real actors’ performance.
Facial recognition systems, on the other hand, require the accurate capture of person-specific
details. The movie industry, for instance, may afford a 3D modeling pipeline system with
special purpose hardware and highly specialized sensors that require manual calibration.
When deploying a 3D acquisition system for facial recognition at airports and in train stations,
however, cost, intrusiveness, and the need of user cooperation, among others, are important
factors to consider. In ambient intelligence applications where a user-specific interface is
required, facial expression recognition from 3D sequences emerges as a research trend instead
of 2D-based techniques, which are sensitive to changes and pose variations. Here, also,
sensor cost and its capability to capture facial dynamics are important issues. Figure 1.1
shows a new 3D face modeling-guided taxonomy of existing reconstruction approaches. This
taxonomy proposes two categories: The first category targets 3D static face modeling, while
the approaches belonging to the second category try to capture facial shapes in action (i.e., in
3D+t domain). In the level below, one finds different approaches based on concepts presented
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Figure 1.1 Taxonomy of 3D face modeling techniques

in section 1.2. In static face category, the multi-view stereo reconstruction uses the optical
triangulation principle to recover the depth information of a scene from two or more projections
(images). The same mechanism is unconsciously used by our brain to work out how far an
object is. The correspondence problem in multi-view approaches is solved by looking for
pixels that have the same appearance in the set of images. This is known as stereo-matching
problem. Laser scanners use the optical triangulation principle, this time called active by
replacing one camera with a laser source that emits a stripe in the direction of the object to
scan. A second camera from a different viewpoint captures the projected pattern. In addition
to one or several cameras, time-coded structured-light techniques use a light source to project
on the scene a set of light patterns that are used as codes for finding correspondences between
stereo images. Thus, they are also based on the optical triangulation principle.

The moving face modeling category, unlike the first one, needs fast processing for 3D
shape recovery, thus, it tolerates scene motion. The structured-light techniques using one
complex pattern is one solution. In the same direction, the work called Spacetime faces shows
remarkable results in dynamic 3D shape modeling, by employing random colored light on the
face to solve the stereo matching problem. Time-of-flight-based techniques could be used to
recover the dynamic of human body parts such as the faces but with a modest shape accuracy.
Recently, photometric stereo has been used to acquire 3D faces because it can recover a dense
normal field from a surface. In the following sections, this chapter first gives basic principles
shared by the techniques mentioned earlier, then addresses the details of each method.

1.2 Background

In the projective pinhole camera model, a point P in the 3D space is imaged into a point p on
the image plane. p is related to P with the following formula:

p = M P = K R[I |t]P, (1.1)

where p and P are represented in homogeneous coordinates, M is a 3 × 4 projection matrix,
and I is the 3 × 3 identity matrix. M can be decomposed into two components: the intrinsic
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parameters and the extrinsic parameters. Intrinsic parameters relate to the internal parameters
of the camera, such as the image coordinates of the principal point, the focal length, pixel
shape (its aspect ratio), and the skew. They are represented by the 3 × 3 upper triangular
matrix K . Extrinsic (or external) parameters relate to the pose of the camera, defined by the
3 × 3 rotation matrix R and its position t with respect to a global coordinate system. Camera
calibration is the process of estimating the intrinsic and extrinsic parameters of the cameras.

3D reconstruction can be roughly defined as the inverse of the imaging process; given a
pixel p on one image, 3D reconstruction seeks to find the 3D coordinates of the point P that
is imaged onto p. This is an ill-posed problem because with the inverse imaging process a
pixel p maps into a ray v that starts from the camera center and passes through the pixel p.
The ray direction �v can be computed from the camera pose R and its intrinsic parameters K
as follows;

�v = R−1 K −1 p

‖R−1 K −1 p‖ (1.2)

1.2.1 Depth from Triangulation

If q is the image of the same 3D point P taken by another camera from a different viewing
angle, then the 3D coordinates of P can be recovered by estimating the intersection of the two
rays, v1 and v2, that start from the camera centers passing, respectively, through p and q. This
is known as the optical triangulation principle. p and q are called corresponding or matching
pixels because they are the images of the same 3D point P .

A 3D point P is the intersection of n(n > 1) rays vi passing through the optical centers ci

of cameras {Ci } where i = 1, . . . , n. This can also be referred to passive optical triangulation.
As illustrated in Figure 1.2, all points on vi project to pi , given a set of corresponding pixels
pi captured by the cameras Ci , and their corresponding rays vi , the 3D location of P can
be found by intersecting the rays vi . In practice, however, these rays will often not intersect.

P

vi

vi

pi

Ci

Figure 1.2 Multiview stereo determines the position of a point in space by finding the intersection of
the rays vi passing through the center of projection ci of the i th camera and the projection of the point
P in each image, pi
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Instead, we look for the optimal value of P that lies closest to the rays vi . Mathematically, if
Ki , Ri , ti are the parameters of the camera Ci , where Ki is the 3 × 3 matrix that contains the
intrinsic parameters of the camera and Ri and ti are the pose of the i th camera with respect to
the world coordinate system, the rays vi originating at Ci and passing through pi are in the
direction of R−1

i K −1
i pi . The optimal value of P that lies closest to all the rays �vi , p minimizes

the distance:

‖c j + d j �v j − p‖2 (1.3)

Methods based on the optical triangulation need to solve two problems: (i) the matching
problem, and (ii) the reconstruction problem. The correspondence problem consists of finding
matching points across the different cameras. Given the corresponding points, the reconstruc-
tion problem consists of computing a 3D disparity map of the scene, which is equivalent
to the depth map (z-coordinate on each pixel). Consequently, the quality of the reconstruc-
tion depends crucially on the solution to the correspondence problem. For further reading on
stereo vision (cameras calibration, stereo matching algorithms, reconstruction, etc.), we refer
the reader to download the PDF of the Richard Szeliski’s Computer Vision: Algorithms and
Applications available at http://szeliski.org.1

Existing optical triangulation-based 3D reconstruction techniques, such as multi-view
stereo, structured-light techniques, and laser-based scanners, differ in the way the corre-
spondence problem is solved. Multiview stereo reconstruction uses the triangulation principle
to recover the depth map of a scene from two or more projections. The same mechanism
is unconsciously used by our brain to work out how far an object is. The correspondence
problem in stereo vision is solved by looking for pixels that have the same appearance in the
set of images. This is known as stereo matching. Structured-light techniques use, in addition to
camera(s), a light source to project on the scene a set of light patterns that are used as codes for
finding correspondences between stereo images. Laser scanners use the triangulation principle
by replacing one camera with a laser source that emits a laser ray in the direction of the object
to scan. A camera from a different viewpoint captures the projected pattern.

1.2.2 Shape from Shading

Artists have reproduced, in paintings, illusions of depth using lighting and shading. Shape From
Shading (SFS) addresses the shape recovery problem from a gradual variation of shading in the
image. Image formation is a key ingredient to solve the SFS problem. In the early 1970s, Horn
was the first to formulate the SFS problem as that of finding the solution of a nonlinear first-
order Partial Differential Equation (PDE) also called the brightness equation. In the 1980s, the
authors address the computational part of the problem, directly computing numerical solutions.
Bruss and Brooks asked questions about the existence and uniqueness of solutions. According
to the Lambertian model of image formation, the gray level at an image pixel depends on the
light source direction and surface normal. Thus, the aim is to recover the illumination source

1http://szeliski.org/Book/
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and the surface shape at each pixel. According to Horn’s formulation of SFS problem, the
brightness equation arises as:

I (x, y) = R(�n(x, y)), (1.4)

where, (x, y) are the coordinates of a pixel; R, the reflectance map and I the brightness
image. Usually, SFS approaches, particularly those dedicated to face shape recovery, adopt
the Lambartian property of the surface. In which case, the reflectance map is the cosine of the
angle between light vector �L(x, y) and the normal vector �n(x, y) to the surface:

R = cos( �L, �n) =
�L

| �L| · �n
|�n| , (1.5)

where R, �L and �n depends on (x, y). Since the first SFS technique developed by Horn, many
different approaches have emerged; active SFS which requires calibration to simplify the
solution finding has achieved impressive results.

1.2.3 Depth from Time of Flight (ToF)

Time of flight provides a direct way to acquire 3-D surface information of objects or scenes
outputting 2.5 D, or depth, images with a real-time capability. The main idea is to estimate the
time taken for the light projected by an illumination source to return from the scene or the object
surface. This approach usually requires nano-second timing to resolve surface measurements
to millimeter accuracy. The object or scene is actively illuminated with a nonvisible light
source whose spectrum is usually nonvisible infrared, e.g. 780 nm. The intensity of the active
signal is modulated by a cosine-shaped signal of frequency f . The light signal is assumed
to have a constant speed, c, and is reflected by the scene or object surface. The distance d
is estimated from the phase shift θ in radian between the emitted and the reflected signal,
respectively:

d = c

2 f

θ

2π
(1.6)

While conventional imaging sensors consists of multiple photo diodes, arranged within a
matrix to provide an image of, e.g., color or gray values, a ToF sensor, for instance a pho-
ton mixing device (PMD) sensor, simultaneously acquires a distance value for each pixel in
addition to the common intensity (gray) value. Compared with conventional imaging sensors,
a PMD sensor is a standard CMOS sensor that benefits from these functional improve-
ments. The chip includes all intelligence, which means that the distance is computed per
pixel. In addition, some ToF cameras are equipped with a special pixel-integrated circuit,
which guarantees the independence to sunlight influence by the suppression of background
illumination (SBI).
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1.3 Static 3D Face Modeling

1.3.1 Laser-stripe Scanning

Laser-stripe triangulation uses the well-known optical triangulation described in section 1.2.
A laser line is swept across the object where a CCD array camera captures the reflected light,
its shape gives the depth information. More formally, as illustrated in Figure 1.3, a slit laser
beam, generated by a light projecting optical system, is projected on the object to be measured,
and its reflected light is received by a CCD camera for triangulation. Then, 3D distance data
for one line of slit light are obtained. By scanning slit light with a galvanic mirror, 3D data
for the entire object to be measured are obtained. By measuring the angle 2π − θ , formed by
the baseline d (distance between the light-receiving optical system and the light-projecting
optical system) and by a laser beam to be projected, one can determine the z-coordinate
by triangulation. The angle θ is determined by an instruction value of the galvanic mirror.
Absolute coordinates for laser beam position on the surface of the object, denoted by p, are
obtained from congruence conditions of triangles, by

z

f0
= d − z. tan(θ )

p
. (1.7)

This gives the z-coordinate, by

z = d f0

p + f0 tan(θ )
. (1.8)

Solve question 1 in section 5.5.3 for the proof.

P 

Laser source

Mirror(deflector

Optical axis

)

Surface to 
be measured

Range point

Position in CCD

Imaging lens

baseline : d

f

z?

Θ

p

Laser beam

CCD sensor

Figure 1.3 Optical triangulation geometry for a laser-stripe based scanner
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Depth imageTexture image

Cloud of 3D points 3D mesh Textured surface

Figure 1.4 One example of 3D face acquisition based on laser stripe scanning (using Minolta VIVID
910). Different representations are given, from the left: texture image, depth image, cloud of 3D points,
3D mesh, and textured shape

The Charged Couple Device (CCD) is the widely used light-receiving optical system to
digitize the point laser image. CCD-based sensors avoid the beam spot reflection and stray
light effects and provide more accuracy because of the single-pixel resolution. Another factor
that affects the measurement accuracy is the difference in the surface characteristic of the
measured object from the calibration surface. Usually calibration should be performed on
similar surfaces to ensure measurement accuracy. Using laser as a light source, this method
has proven to be able to provide measurement at a much higher depth range than other passive
systems with good discrimination of noise factors. However, this line-by-line measurement
technique is relatively slow. The laser-based techniques can give very accurate 3D information
for a rigid body even with a large depth. However, this method is time consuming for real
measurement since it obtains 3D geometry on a line at a time. The area scanning-based
methods such as time-coded structured light (see section 1.3.2) are certainly faster.

An example of acquired face using these technique is given by Figure 1.4. It illustrates
the good quality of the reconstruction when office environment acquisition conditions are
considered, the subject is distant of 1 m from the sensor and remains stable for a few seconds.

1.3.2 Time-coded Structured Light

The most widely used acquisition systems for face are based on structured light by virtue of
reliability for recovering complex surface and accuracy. That consists in projecting a light
pattern and imaging the illuminated object, a face for instance, from one or more points of
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(a) (b)

Space

Time

Figure 1.5 (a) Binary-coded patterns projection for 3D acquisition, (b) n-ary-coded coded patterns
projection for 3D acquisition

view. Correspondences between image points and points of the projected pattern can be easily
found. Finally the decoded points can be triangulated, and depth is recovered. The patterns are
designed so that code words are assigned to a set of pixels.

A code word is assigned to a coded pixel to ensure a direct mapping from the code words to
the corresponding coordinates of the pixel in the pattern. The code words are numbers and they
are mapped in the pattern by using gray levels, color or geometrical representations. Pattern
projection techniques can be classified according to their coding strategy: time-multiplexing,
neighborhood codification, and direct codification. Time-multiplexing consists in projecting
code words as sequence of patterns along time, so the structure of every pattern can be very
simple. In spite of increased complexity, neighborhood codification represents the code words
in a unique pattern. Finally, direct codification defines a code word for every pixel; equal to
the pixel gray level or color.

One of the most commonly exploited strategies is based on temporal coding. In this case,
a set of patterns are successively projected onto the measuring surface. The code word for a
given pixel is usually formed by the sequence of illumination values for that pixel across the
projected patterns. Thus, the codification is called temporal because the bits of the code words
are multiplexed in time. This kind of pattern can achieve high accuracy in the measurements.
This is due to two factors: First, because multiple patterns are projected, the code word basis
tends to be small (usually binary) and hence a small set of primitives is used, being easily
distinguishable among each other. Second, a coarse-to-fine paradigm is followed, because the
position of a pixel is encoded more precisely while the patterns are successively projected.

During the three last decades, several techniques based on time-multiplexing have appeared.
These techniques can be classified into three categories: binary codes (Figure 1.5a), n-ary codes
(Fig. 1.5b), and phase-shifting techniques.

• Binary codes. In binary code, only two illumination levels are used. They are coded as
0 and 1. Each pixel of the pattern has its code word formed by the sequence of 0 and
1 corresponding to its value in every projected pattern. A code word is obtained once
the sequence is completed. In practice, illumination source and camera are assumed to be
strongly calibrated and hence only one of both pattern axes is encoded. Consequently, black
and white strips are used to compose patterns – black corresponding to 0 and white 1, m
patterns encode 2m stripes. The maximum number of patterns that can be projected is the
resolution in pixels of the projector device; however, because the camera cannot always
perceive such narrow stripes, reaching this value is not recommended. It should be noticed
that all pixels belonging to a similar stripe in the highest frequency pattern share the same
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code word. Therefore, before triangulating, it is necessary to calculate either the center of
every stripe or the edge between two consecutive stripes. The latter has been shown to be
the best choice.

• N-ary codes. The main drawback of binary codes is the large number of patterns to be
projected. However, the fact that only two intensities are projected eases the segmentation
of the imaged patterns. The number of patterns can be reduced by increasing the number of
intensity levels used to encode the stripes. A first mean is to use multilevel Gray code based
on color. This extension of Gray code is based on an alphabet of n symbols; each symbol is
associated with a certain RGB color. This extended alphabet makes it possible to reduce the
number of patterns. For instance, with binary Gray code, m patterns are necessary to encode
2m stripes. With an n-ary code, nm stripes can be coded using the same number of patterns.

• Phase shifting. Phase shifting is a well-know principle in the pattern projection approach
for 3D surface acquisition. Here, a set of sinusoidal patterns is used. The intensities of a
pixel p(x, y) in each pattern is given by:

I1 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) − θ ) ,

I2 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y)) , (1.9)

I3 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) + θ ) .

I0 (x, y) is the background or the texture information, Imod (x, y) is the signal modulation
amplitude, and I1 (x, y), I2 (x, y) and I3 (x, y) are the intensities of the three patterns. φ (x, y)
is the phase value and θ = 2π

3 is a constant. Three images of the object are used to estimate
a wrapped phase value φ̂ (x, y) by:

φ̂ (x, y) = arctan

{√
3

I1 (x, y) − I3 (x, y)

2 I2 (x, y) − I1 (x, y) − I3 (x, y)

}
(1.10)

The wrapped phase is periodic and needs to be unwrapped to obtain an absolute phase
value φ′ (x, y) = φ (x, y) + 2kπ , where k is an integer representing the period or the
number of the fringe. Finally the 3D information is recovered based on the projector-camera
system configuration. Other pattern configurations of these patterns have been proposed.
For instance, Zhang and Yau proposed a real-time 3D shape measurement based on a
modified three-step phase-shifting technique (Zhang et al., 2007) (Figure 1.6). They called
the modified patterns 2+1 phase shifting approach. According to this approach, the patterns
and phase estimation are given by

I1 (x, y) = I0 (x, y) + Imod (x, y) cos
(
φ (x, y) − π

2

)
,

I2 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y)) , (1.11)

I3 (x, y) = I0 (x, y) ,

φ̂ (x, y) = arctan

{
I1 (x, y) − I3 (x, y)

I2 (x, y) − I3 (x, y)

}
. (1.12)
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Figure 1.6 The high-resolution and real-time 3D shape measurement system proposed by Zhang and
Yau (2007) is based on the modified 2 + 1 phase-shifting algorithm and particularly adapted for face
acquisition. The data acquisition speed is as high as 60 frames per second while the image resolution is
640 × 480 pixels per frame. Here a photograph captured during the experiment is illustrated. The left
side of the image shows the subject, whereas the right side shows the real-time reconstructed geometry

A robust phase unwrapping approach called “multilevel quality-guided phase unwrapping
algorithm” is also proposed in Zhang et al. (2007).

Ouji et al. (2011) proposed a cost-effective 3D video acquisition solution with a 3D super-
resolution scheme, using three calibrated cameras coupled with a non-calibrated projector
device, which is particularly suited to 3D face scanning, that is, rapid, easily movable, and
robust to ambient lighting conditions. Their solution is a hybrid stereovision and phase-
shifting approach that not only takes advantage of the assets of stereovision and structured
light but also overcomes their weaknesses. First, a 3D sparse model is estimated from stereo
matching with a fringe-based resolution and a sub-pixel precision. Then projector parameters
are automatically estimated through an inline stage. A dense 3D model is recovered by the
intrafringe phase estimation, from the two sinusoidal fringe images and a texture image,
independently from the left, middle, and right cameras. Finally, the left, middle, and right
3D dense models are fused to produce the final 3D model, which constitutes a spatial
super-resolution. In contrast with previous methods, camera-projector calibration and phase-
unwrapping stages are avoided.

1.3.3 Multiview Static Reconstruction

The aim of multiview stereo (MVS) reconstruction is twofold. Firstly, it allows to reinforce con-
straints on stereo matching, discard false matches, and increase the precision of good matches.
Secondly, spatial arrangement of cameras allows covering the entire face. To reduce the com-
plexity, as well as achieve high quality reconstruction, multiview reconstruction approaches
usually proceed in a coarse-to-fine sequence. Finally, multiview approaches involve high res-
olution images captured in real time, whereas the processing stage requires tens of minutes.
MVS scene and object reconstruction approaches can be organized into four categories. The
first category operates first by estimating a cost function on a 3D volume and then extracting
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a surface from this volume. A simple example of this approach is the voxel-coloring algo-
rithm and its variants (Seitz and Dyer, 1997; Treuille et al., 2004). The second category of
approaches, based on voxels, level sets, and surface meshes, works by iteratively evolving a
surface to decrease or minimize a cost function. For example, from an initial volume, space
carving progressively removes inconsistent voxels. Other approaches represent the object as
an evolving mesh (Hernandez and Schmitt, 2004; Yu et al., 2006) moving as a function of
internal and external forces. In the third category are image-space methods that estimate a set
of depth maps. To ensure a single consistent 3D object interpretation, they enforce consistency
constraints between depth maps (Kolmogorov and Zabih, 2002; Gargallo and Sturm, 2005) or
merge the set of depth maps into a 3D object as a post process (Narayanan et al., 1998). The
final category groups approaches that first extract and matches a set of feature points. A surface
is then fitted to the reconstructed features (Morris and Kanade, 2000; Taylor, 2003). Seitz et al.
(2006) propose an excellent overview and categorization of MVS. 3D face reconstruction
approaches use a combination of methods from these categories.

Furukawa and Ponce (2009) proposed a MVS algorithm that outputs accurate models with a
fine surface. It implements multiview stereopsis as a simple match, expand, and filter procedure.
In the matching step, a set of features localized by Harris operator and difference-of-Gaussians
algorithms are matched across multiple views, giving a sparse set of patches associated with
salient image regions. From these initial matches, the two next steps are repeated n times
(n = 3 in experiments). In the expansion step, initial matches are spread to nearby pixels to
obtain a dense set of patches. Finally in the filtering step, the visibility constraints are used to
discard incorrect matches lying either in front of or behind the observed surface. The MVS
approach proposed by Bradley et al. (2010) is based on an iterative binocular stereo method
to reconstruct seven surface patches independently and to merge into a single high resolution
mesh. At this stage, face details and surface texture help guide the stereo algorithm. First,
depth maps are created from pairs of adjacent rectified viewpoints. Then the most prominent
distortions between the views are compensated by a scaled-window matching technique. The
resulted depth images are converted to 3D points and fused into a single dense point cloud. A
triangular mesh from the initial point cloud is reconstructed over three steps: down-sampling,
outliers removal, and triangle meshing. Sample reconstruction results of this approach are
shown in Figure 1.7.

The 3D face acquisition approach proposed by Beeler et al. (2010), which is built on the
survey paper, takes inspiration from Furukawa and Ponce (2010). The main difference lies in
a refinement formulation. The starting point is the established approach for refining recovered
3D data on the basis of a data-driven photo-consistency term and a surface-smoothing term,
which has been research topic. These approaches differ in the use of a second-order anisotropic
formulation of the smoothing term, and we argue that it is particularly suited to faces. Camera
calibration is achieved in a pre-processing stage.

The run-time system starts with a pyramidal pairwise stereo matching. Results from lower
resolutions guide the matching at higher-resolutions. The face is first segmented based on
cues of background subtraction and skin color. Images from each camera pair are rectified. An
image pyramid is then generated by factor of two downsampling using Gaussian convolution
and stopping at approximately 150 × 150 pixels for the lowest layer. Then a dense matching is
established between pairwise neighboring cameras, and each layer of the pyramid is processed
as follows: Matches are computed for all pixels on the basis of normalized cross correlation
(NCC) over a square window (3 × 3). The disparity is computed to sub-pixel accuracy and
used to constrain the search area in the following layer. For each pixel, smoothness, uniqueness,
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Figure 1.7 Sample results on 3D modeling algorithm for calibrated multiview stereopsis proposed by
Furukawa and Ponce (2010) that outputs a quasi-dense set of rectangular patches covering the surfaces
visible in the input images. In each case, one of the input images is shown on the left, along with two views
of textured-mapped reconstructed patches and shaded polygonal surfaces. Copyright C© 2007, IEEE

and ordering constraints are checked, and the pixels that do not fulfill these criteria are reached
using the disparity estimated at neighboring pixels. The limited search area ensures smoothness
and ordering constraints, but the uniqueness constraint is enforced again by disparity map
refinement. The refinement is defined as a linear combination of a photometric consistency
term, dp, and a surface consistency term, ds , balanced both by a user-specified smoothness
parameter, ws , and a data-driven parameter, w p, to ensure that the photometric term has the
greatest weight in regions with good feature localization. dp favors solutions with high NCC,
whereas ds favors smooth solutions. The refinement is performed on the disparity map and
later on the surface. Both are implemented as iterative processes.

The refinement results in surface geometry that is smooth across skin pores and fine wrinkles
because the disparity change across such a feature is too small to detect. The result is flatness
and lack of realism in synthesized views of the face. On the other hand, visual inspection
shows the obvious presence of pores and fine wrinkles in the images. This is due to the fact
that light reflected by a diffuse surface is related to the integral of the incoming light. In small
concavities, such as pores, part of the incoming light is blocked and the point thus appears
darker. This has been exploited by various authors (e.g., Glencross et al., 2008)) to infer local
geometry variation. In this section, we expose a method to embed this observation into the
surface refinement framework. It should be noticed that this refinement is qualitative, and the
geometry that is recovered is not metrically correct. However, augmenting the macroscopic
geometry with fine scale features does produce a significant improvement in the perceived
quality of the reconstructed face geometry.

For the mesoscopic augmentation, only features that are too small to be recovered by the
stereo algorithm are interesting. Therefore, first high pass filtered values are computed for all
points X using the projection of a Gaussian N :

μ (X) =
∑

cεν αc
(
Ic (X) − [

N∑
c

⊗
Ic

]
(X)

)
∑

cεν αc
(1.13)
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where V denotes the set of visible cameras,
∑

c the covariance matrix of the projection of
the Gaussian N into camera c, and the weighting term αc is the cosine of the foreshortening
angle observed at camera c. The variance of the Gaussian N is chosen such that high spatial
frequencies are attenuated. It can either be defined directly on the surface using the known
maximum size of the features or in dependence of the matching window m. The next steps
are based on the assumption that variation in mesoscopic intensity is linked to variation in the
geometry. For human skin, this is mostly the case. Spatially bigger skin features tend to be
smooth and are thus filtered out. The idea is thus to adapt the local high frequency geometry of
the mesh to the mesoscopic field (X). The geometry should locally form a concavity whenever
(X) decreases and a convexity when it increases.

1.4 Dynamic 3D Face Reconstruction

The objective now is to create dynamic models that accurately recover the facial shape and
acquire the time-varying behavior of a real person’s face. Modeling facial dynamics is essential
for several applications such as avatar animation, facial action analysis, and recognition.
Compared with a static or quasi-static object (or scene), this is more difficult to achieve
because of the required fast processing. Besides, it is the main limitation of the techniques
described in Section 1.3. In particular, laser-based scanners and time-coded structured light
shape capture techniques do not operate effectively on fast-moving scenes because of the
time required for scanning the object when moving or deforming. In this section, we present
appropriate techniques designed for moving/deforming face acquisition and post-processing
pipeline for performance capture or expression transfer.

1.4.1 Multiview Dynamic Reconstruction

Passive facial reconstruction has received particular attention because of its potential appli-
cations in facial animation. Recent research effort has focused on passive multi-view stereo
(PMVS) for animated face capture sans markers, makeup, active technology, and expensive
hardware. A key step toward effective performance capture is to model the structure and
motion of the face, which is a highly deformable surface. Furukawa and Ponce (2009) pro-
posed a motion capture approach from video stream that specifically aims at this challenge.
Assuming that the instantaneous geometry of the face is represented by a polyhedral mesh
with fixed topology, an initial mesh is constructed in the first frame using PMVS software
for MVS (Furukawa and Ponce, 2010) and Poisson surface reconstruction software (Kazhdan
et al., 2006) for meshing. Then its deformation is captured by tracking its vertices v1, . . . vn

over time. The goal of the algorithm is to estimate in each frame f the position v f
i of each

vertex vi (From now on, v f
i will be used to denote both the vertex and its position.) Each vertex

may or may not be tracked at a given frame, including the first one, allowing the system to
handle occlusion, fast motion, and parts of the surface that are not initially visible. The three
steps of the tracking algorithm refer to local motion parameters estimation, global surface
deformation, and filtering.

First, at each frame, an approximation of a local surface region around each vertex, by its
tangent plane, gives the corresponding local 3D rigid motion with six degrees of freedom.
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Three parameters encode normal information, while the remaining three contain tangential
motion information. Then, on the basis of the estimated local motion parameters, the whole
mesh is then deformed by minimizing the sum of the three energy terms.

∑
i

∣∣∣v f
i − v̂ f

i

∣∣∣2
+ η1

∣∣∣ [
ζ2


2 − ζ1

]

v f
i

∣∣∣2
+ η2 Er

(
v f

i

)
. (1.14)

The first data term measures the squared distance between the vertex position v f
i and the

position v̂ f
i estimated by the local estimation process. The second uses the discrete Laplacian

operator of a local parameterization of the surface in vi to enforce smoothness. [The values
ζ1 = 0.6 and ζ2 = 0.4 are used in all experiments (Furukawa and Ponce, 2009)]. This term
is very similar to the Laplacian regularizer used in many other algorithms (Ponce, 2008).
The third term is also used for regularization, and it enforces local tangential rigidity with
no stretch, shrink, or shear. The total energy is minimized with respect to the 3D positions
of all the vertices by a conjugate gradient method. In case of deformable surfaces such as
human faces, nonstatic target edge length is computed on the basis of non-rigid tangential
deformation from the reference frame to the current one at each vertex. The estimation of the
tangential deformation is performed at each frame before starting the motion estimation, and
the parameters are fixed within a frame. Thus, the tangential rigidity term Er (v f

i ) for a vertex
v f

i in the global mesh deformation is given by

∑
v j ∈ N (vi )

max

[
0,

(
e f

i j − ê f
i j

)2
− τ 2

]
, (1.15)

which is the sum of squared differences between the actual edge lengths and those predicted
from the reference frame to the current frame. The term τ is used to make the penalty zero
when the deviation is small so that this regularization term is enforced only when the data term
is unreliable and the error is large. In all our experiments, τ is set to be 0.2 times the average
edge length of the mesh at the first frame. Figure 1.8 shows some results of motion capture
approach proposed in Furukawa and Ponce (2009).

Finally after surface deformation, the residuals of the data and tangential terms are used
to filter out erroneous motion estimates. Concretely, these values are first smoothed, and a
smoothed local motion estimate is deemed an outlier if at least one of the two residuals exceeds
a given threshold. These three steps are iterated a couple of times to complete tracking in each
frame, the local motion estimation step only being applied to vertices whose parameters have
not already been estimated or filtered out.

The face capture framework proposed by Bradley et al. (2010) operates without use of
markers and consists of three main components: acquisition, multiview reconstruction and
geometry, and texture tracking. The acquisition stage uses 14 high definition video cameras
arranged in seven binocular stereo pairs. At the multiview reconstruction stage, each pair
captures a highly detailed small patch of the face surface under bright ambient light. This stage
uses on an iterative binocular stereo method to reconstruct seven surface patches independently
that are merged into a single high resolution mesh; the stereo algorithm is guided by face details
providing, roughly, 1 million polygons meshes. First, depth maps are created from pairs of
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Figure 1.8 The results of motion capture approach, proposed by Furukawa and Ponce (2009), form
multiple synchronized video streams based on regularization adapted to nonrigid tangential deformation.
From left to right, a sample input image, reconstructed mesh model, estimated notion and a texture
mapped model for one frame with interesting structure/motion for each dataset 1, 2, and 3. The right two
columns show the results in another interesting frame. Copyright C© 2009, IEEE

adjacent rectified viewpoints. Observing that the difference in projection between the views
causes distortions of the comparison windows, the most prominent distortions of this kind
are compensated by a scaled-window matching technique. The resulting depth images are
converted to 3D points and fused into a single dense point cloud. Then, a triangular mesh
from the initial point cloud is reconstructed through three steps: the original point cloud is
downsampled using hierarchical vertex clustering (Schaefer and Warren, 2003). Outliers and
small-scale high frequency noise are removed on the basis of the Plane Fit Criterion proposed
by Weyrich et al. (2004) and a point normal filtering inspired by Amenta and Kil (2004),
respectively. A triangle mesh is generated without introducing excessive smoothing using
lower dimensional triangulation methods Gopi et al. (2000).

At the last stage, in order to consistently track geometry and texture over time, a single
reference mesh from the sequence is chosen. A sequence of compatible meshes without holes is
explicitly computed. Given the initial per-frame reconstructions Gt , a set of compatible meshes
Mt is generated that has the same connectivity as well as explicit vertex correspondence. To
create high quality renderings, per-frame texture maps Tt that capture appearance changes,
such as wrinkles and sweating of the face, are required. Starting with a single reference mesh
M0, generated by manually cleaning up the first frame G0, dense optical flow on the video
images is computed and used in combination with the initial geometric reconstructions Gt to
automatically propagate M0 through time. At each time step, a high quality 2D face texture Tt
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from the video images is computed. Drift caused by inevitable optical flow error is detected
in the per-frame texture maps and corrected in the geometry. Also, the mapping is guided by
an edge-based mouth-tracking process to account the high speed motion while talking.

Beeler et al. (2011) extend their MVS face acquisition system, discussed in Section 1.3,
to facial motion capture. Their solution, as Bradley’s solution, requires no makeup; the tem-
porally varying texture can be derived directly from the captured video. The computation is
parallelizable so that long sequences can be reconstructed efficiently using a multicore imple-
mentation. The high quality results derive from two innovations. The first is a robust tracking
algorithm specifically adapted for short sequences that integrates tracking in image space and
uses the integrated result to propagate a single reference mesh to each target frame. The second
is to address long sequences, and it employs the “anchor frame” concept. The latter is based on
the observation that a lengthy facial performance contains many frames similar in appearance.
One frame is defined as the reference frame. Other frames similar to the reference frame are
marked as anchor frames. Finally, the tracker computes the flow from the reference to each
anchor independently with a high level of measurement accuracy. The proposed framework
operates in five stages:

1. Stage 1: Computation of Initial Meshes – Each frame is processed independently to generate
a first estimate of the mesh.

2. Stage 2: Anchoring – The reference frame is manually identified. Similar frames to the
reference frame are detected automatically and labeled as anchor frames.

3. Stage 3: Image–Space Tracking – Image pixels are tracked from the reference frame to
anchor frames and then sequentially between non-anchor frames and the nearest anchor
frame.

4. Stage 4: Mesh Propagation – On the basis tracking results from the previous stage, a
reference mesh is propagated to all frames in the sequence.

5. Stage 5: Mesh Refinement – The initial propagation from Stage 4 is refined to enforce
consistency with the image data.

1.4.2 Photometric Stereo

Photometric stereo is a technique in computer vision for estimating the surface normals of
objects by observing that object under different lighting conditions. Estimation of face surface
normals can be achieved on the basis of photometric stereo assuming that the face is observed
under different lighting conditions. For instance, in three-source photometric stereo, three
images of the face are given, taken from the same viewpoint and illuminated by three light
sources. These light sources emit usually the same light spectrum from three non-coplanar
directions. If an orthographic camera model is assumed, the word coordinate system can be
aligned so that the xy plane coincides with the image plane. Z axis corresponds to the viewing
direction. Hence, the surface in front of the camera can be defined as the height Z (x, y). Now,
assuming that ∇z is the gradient of this function with respect to x and y, the vector locally
normal to the surface at (x, y) can be defined as

n = 1√
1 + |∇Z |2

(∇Z
−1

)
. (1.16)
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Also, a 2d projection operator can be define P[x] = (x1/x3, x2/x3) so that it follows that
∇z = P[n]. The pixel intensity ci (x, y) in the i th image, for i = 1, . . . 3, can be defined as

ci (x, y) = (
lT
i n

) ∫
E (λ)R (x, y, λ) S (λ) dλ, (1.17)

where li is the direction of a light source with spectral distribution Ei (λ), illuminating the
surface point (x, y, z (x, y))T ; R (x, y, λ) reflectance function, and S (λ) the response of the
sensor camera. The value of this integral is known as Albedo ρ, so the pixel intensity can be
defined as

ci = lTi ρn. (1.18)

Using linear constraints of this equation to solve for ρn in a least squares sense. The
gradient of the height function ∇z = P[ρn] is obtained and integrated to produce the function
z. According to three source photometric stereo, when the point is not in shadow with respect
to all three lights, three positive intensities ci can be estimated each of which gives a constraint
on ρn. Thus the following system can be defined as

ρn=L−1c. (1.19)

If the point is in shadow, for instance in the 1st image, then the estimated of c1 cannot be
used as constraint. In this case, each equation describes a 3D plane, the intersection of the two
remaining constraints is a 3D line given by

(c3 l2 − c2 l3)Tn = 0. (1.20)

In a general case, if the point is in shadow in the ith image, this equation can be arranged as

[c] i
× L n = 0 (1.21)

This equation is derived by Wolff and Angelopoulou (1994) and used for stereo matching
in a two view photometric. Fan and Wolff (1997) also used this formulation to perform
uncalibrated photometric stereo. Hernandez et al. (2011) used that for the first time in a least
squares framework to perform three source photometric stereo in the presence of shadows.
Figures 1.9 and 1.10 illustrate some reconstruction results with their proposed shading and
shape regularization schemes.

1.4.3 Structured Light

Structured light–based techniques are reputed to be precise and rapid. However, 3D imaging
of moving objects as faces is a challenging task and usually need more sophisticated tools
in combination with the existing patterns projection principle. The first strategy consists in
patterns projecting and capturing with a synchronized projecting device and camera at a very
high rate. The second is to motion modeling and compensation. Finally, the third fuses several
3D models from one or more projector-camera couples to complete them and corrects sensor
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Figure 1.9 Two different frames out of a 1000-frame face video sequence Hernandez et al. (2011).
The left column shows the reconstruction when shadows are ignored. Middle and right columns show
the corresponding reconstructions after detecting and compensating for the shadow regions using the
shading regularization scheme (middle) and shape regularization scheme (right). Note the improvement
in the regions around the nose reconstruction where strong cast shadows appear (see arrows). Note also
how the shape regularization scheme fails to reconstruct some boundary regions (see circle). Copyright
C© 2011, IEEE

Figure 1.10 Face sequence. Acquisition of 3D facial expressions based on Hernandez et al. (2007) and
the shadow processing technique described in Hernandez et al. (2011). The shadows are processed with
the shading regularization scheme. The full video sequence has more than a 1000 frames reconstructed.
Copyright C© 2011, Springer
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Figure 1.11 (a) DLP projecting technology. (b) Single-chip DLP projection mechanism

errors. These three strategies are presented in the following sections. Pan et al. (2004) have
extensively studied the use of color pattern(s) (RGB) and 3-CCD camera. According to their
technique, one single color pattern is used, and the data acquisition is fast. If binary or gray-
level patterns are used, they must be switched and projected rapidly so that they are captured
in a short period. Rusinkiewicz et al. proposed to switch patterns by software (Rusinkiewicz
and Levoy, 2001; Rusinkiewicz et al., 2002). To reach fast image switching, Zhang and Yau
(2007) proposed to take advantage of the projection mechanism of the single-chip digital-
light-processing (DLP) technology. According to their approach, three primary color channels
are projected sequentially and repeatedly. This allows capture of three color channel images
separately using a synchronized DLP projector device with a digital camera.

A color wheel is a circular disk that spins rapidly. It is composed of R, G, and B filters that
color the white light once it passes from in front. Color lights are thus generated. The digital
micro-mirror synchronized with the color light, reflects it, and produces three R, G, and B
color channel images. Human perception cannot differentiate individual channels as a result
of the projection speed. Instead color images are seen. Three phase-shifted sinusoidal patterns
are encoded as three primary color channels, R, G, and B of a color image. Three patterns are
sent to the single-chip DLP projector from which color filters are removed. A CCD camera
is synchronized with the projector and captures each of the three color channels separately
into a computer. Unwrapping and phase-to-depth processing steps are applied to the sequence
of captured images to recover the depth information. Despite this high speed acquisition, fast
motion may still distort the reconstructed phase and hence the reconstructed 3D geometry.
Weise et al. (2007) proposed to estimate the error in phase shifting, which produces ripples
on the 3D reconstructed surface, and to compensate it. Also, this estimation can provide the
motion of the reconstructed 3D surface. Three-step phase shifting has been introduced in
Section 1.3 where a sinusoidal pattern is shifted by 2π

3 to produce three patterns, the minimum
required to recover depth information:

I1 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) − θ ) ,

I2 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y)) , and (1.22)

I3 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) + θ ) .
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I j , j = 1, . . . 3, are the recorded intensities, I0 is the background and Imod is the signal
amplitude. φ (x, y) is the recorded phase value, and θ is the constant phase shift. The phase
value corresponds to projector coordinates computed as φ = x p

ω
2π N , where x p is the projector

x-coordinate, ω the horizontal resolution of the projection pattern, and N the number of periods
of the sinusoidal pattern. The wrapped phase is estimated as

φ̂ (x, y) = arctan

{
tan

(
θ

2

)
I1 (x, y) − I3 (x, y)

2 I2 (x, y) − I1 (x, y) − I3 (x, y)

}
, (1.23)

I0 (x, y) = I1 (x, y) + I2 (x, y) + I3 (x, y)

3
, and (1.24)

Imod (x, y) =
√

(I3 (x, y) − I0 (x, y))2

3
+

(
2I2 (x, y) − I1(x, y) − I 3 (x, y)

)2

9
. (1.25)

Using the estimated phase, the depth is calculated on the basis of triangulation between
camera and projection device.

• Motion estimation: Figure 1.12 shows a planar surface and its effects on phase estimation.
P0 is the location observed by the camera at time t0 and P1 at t1. Assuming that 
t =
t0 − t−1 = t1 − t0, is a known constant value. If P0 and P−1 are known, the distance vector

P0
P1

t–1

t0

t1

n

P–1
Δc

Δs

Figure 1.12 A planar surface moving towards the camera and its effect on phase estimation (Weise
et al. (2007)). Here three images are captured at three time steps. The velocity of the surface along its
normal is estimated on the basis of the normal motion displacement δs as the projection of δc, the distance
vector, onto the surface normal n. Copyright C© 2007, IEEE
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c can be estimated, and thus, the normal motion displacement 
s as the projection of 
c
onto the surface normal n. From that, the velocity 
s


t of the surface along its normal can be
estimated.

• Error estimation and compensation: Now assume p0, p−1, and p1 are projector pixel coor-
dinates of P0, P−1, and P1. As the camera and projector are mounted horizontally, the pro-
jection pattern is invariant vertically, and only the x-coordinates are of importance. Hence,
the difference between the points in the projection pattern is 
x = px

−1 − px
0 ≈ px

0 − px
1 .

As shown earlier, the intensity of an observed pixel in each of the three images depends on
I0, amplitude Imod, phase φ (x, y), and shift θ . In case of a planar surface, uniform, and diffuse,
I0 and Imod are locally constant on the observed surface. The shift θ is constant. However, as
the observed surface is moving, the φ (x, y) changes between the three images at three different
moments in time. At time t−1, t0, and t1 camera observes the intensity as projected by p−1, p0,
and p1, respectively. By converting 
x into the phase difference we have 
θ = 2π N 
x

ω
; 
x

being the width of the projection pattern and N the number of projected wrapped phrase. The
true intensities are given by

I1 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) − θ + 
θ ) ,

I2 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y)) , and (1.26)

I3 (x, y) = I0 (x, y) + Imod (x, y) cos (φ (x, y) + θ − 
θ ) .

The corrupted shift phase is θ − 
θ. The relative phase error 
φ between observed distorted
phase φd and true phase φt is

φd = arctan

(
tan

(
θ − 
θ

2

)
g

)
, (1.27)

φt = arctan

(
tan

(
θ

2

)
g

)
, (1.28)


φ = φd − φt , and (1.29)

g = I1 (x, y) − I3 (x, y)

2 I2 (x, y) − I1 (x, y) − I3 (x, y)
. (1.30)

φt can be expressed as Taylor expansion of φd :

φt = φd + sin (2 φd ) y −
(

1

2
sin (2 φd ) − 1

4
sin (4 φd )

)
y2 + O

(
y3

)
, (1.31)

where y = 1
2

(
tan( θ−
θ

2 )
tan( θ

2 ) − 1
)

, 
θ = θ − 2 arctan
(
tan

(
θ
2

)
(2y + 1)

)
. For small motion,

only the first-term of the Taylor expansion is enough. In this case, the undistorted phase
values can be locally approximated to evolve linearly along a scanline of the camera:
φt (m) = φc + φm m, where m is the x-coordinate of the pixel. Then a linear least-square
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fit can be performed in this local neighborhood (7 pixels used in the author’s experiments) of
each pixel solving for φc, φm , and y:

min
φc, φm , y

∑
(φc (m) − (mφm (m) − sin (2ϕd (m)) y))2. (1.32)

For large motion, the first-order Taylor degrades, and instead of using the second-order
approximation, a faster solution is to use a simulation that estimates y for different values
of 
θ and to create a lookup-table (LUT), which is then used to retrieve the true 
θ from
an estimated biased y. In this case, a median filter is first applied for robustness. Despite
high speed acquisition and motion compensation, imperfections essentially due to sensor
noise, residual uncompensated motion and acquisition conditions as illumination may persist.
To deal with these problems, Ouji et al. (2011) proposed to apply a 3D temporal super-
resolution for each couple of successive 3D point sets Mt−1 and Mt at time t . First, a 3D
nonrigid registration is performed. The registration can be modeled as a maximum-likelihood
estimation problem because the deformation between two successive 3D faces is nonrigid in
general. The coherent point drift (CPD) algorithm, proposed in Andriy Myronenko (2006),
is used for the registration the of 3D points set Mt−1 with the 3D points set Mt . The CPD
algorithm considers the alignment of two point sets Msrc and Mdst as a probability density
estimation problem and fits the Gaussian Mixture Model (GMM) centroids representing Msrc

to the data points of Mdst by maximizing the likelihood as described in Andriy Myronenko
(2006). Nsrc is the number of points of msrc andMsrc = {sn|n = 1, . . . , Nsrc}. Ndst constitutes
the number of points of Mdst and Mdst = {dn|n = 1, . . . , Ndst}. To create the GMM for
Msrc, a multivariate Gaussian is centered on each point in Msrc. All gaussians share the same
isotropic covariance matrix σ 2 I , I being a 3 × 3 identity matrix and σ 2 the variance in all
directions Andriy Myronenko (2006). Hence the whole point set Msrc can be considered as a
GMM with the density p(d) as defined by

p (d) =
Ndst∑

m=1

1

Ndst
p (d | m) , d |m ∝ N

(
sm, σ 2I

)
(1.33)

The core of the CPD method is forcing GMM centroids to move coherently as a group, which
preserves the topological structure of the point sets as described in Andriy Myronenko (2006).
The coherence constraint is imposed by explicit re-parameterization of GMM centroids’
locations for rigid and affine transformations. For smooth nonrigid transformations such as
expression variation, the algorithm imposes the coherence constraint by regularization of the
displacement field Myronenko and Song (2010). Once registered, the 3D points sets Mt−1 and
Mt and also their corresponding 2D texture images are used as a low resolution data to create
a high resolution 3D point set and its corresponding texture. 2D super-resolution technique as
proposed in Farsiu et al. (2004) is applied, which solves an optimization problem of the form:

minimize Edata(H ) + Eregular(H ). (1.34)

The first term Edata(H ) measures agreement of the reconstruction H with the aligned low
resolution data. Eregular(H ) is a regularization or prior energy term that guides the optimizer
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Figure 1.13 Some 3D frames computed by the temporal 3D super resolution approach proposed by
Ouji et al. (2011)

towards plausible reconstruction H . The 3D model Mt cannot be represented by only one 2D
disparity image since the points situated on the fringe change-over have sub-pixel precision.
Also, pixels participate separately in the 3D model since the 3D coordinates of each pixel is
retrieved using only its phase information. Thus, for each camera three 2D maps are created,
defined by the x-, y- and z-coordinates of the 3D points. The optimization algorithm and the
deblurring are applied to compute high resolution images of x, y, and z and texture from the low
resolution images. The final high resolution 3D point cloud is retrieved by merging obtained
3D models that are already registered since all of them contain the 3D sparse point cloud. The
final result is illustrated in Figure 1.13.

1.4.4 Spacetime Faces

The vast majority of stereo research has focused on the problem of establishing spatial corre-
spondences between pixels in a single pair of images for a static moment in time. The works
presented in Davis et al. (2003) and Zhang et al. (2003), which presented nearly identical
ideas, proposed to introduce the temporal axis (available since they process video sequences)
to improve the stereo matching problem. They proposed spacetime stereo matching algo-
rithms based on similar ideas. The algorithm proposed in Davis et al. (2003) was tested on
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static objects when varying illuminations. The algorithm proposed in Zhang et al. (2003) was
tested on moving objects (faces when conveying arbitrary expressions). The following synthe-
sis is based on both works, but the reconstruction results are taken from Zhang et al. (2004)
because the object of interest in this chapter is human face. We note that in their experiments,
Zhang et al. (2004) used four cameras and two projectors. Each side of the face was acquired
by one binocular active stereo system (one projector associated to two cameras). By this way,
the authors tried to avoid self-occlusions, which can be a challenging problem in stereo vision
(even if a textured light were projected).

• Spatial stereo matching. The way in which traditional stereo systems determine the position
in space of P , is triangulation, that is by intersection the rays defined by the centers cl , cr of
cameras Cl, Cr and the projection of P in left and right images Il(xl, yl , t) and Ir (xr , yr , t),
respectively. Thus triangulation accuracy depends crucially on the solution of corresponding
problem. This kind of approaches, widely used in literature, operates entirely within the
spatial domain (the images). In fact, knowing the cameras positions ((R, t), the stereo
extrinsic parameters), one can first apply rectification transformation that projects left image
Il(xl, y, t) and right image Ir (xr , y, t) onto a common image plane, where yl = yr = y.
Thus, the establishing correspondence moves from a 2D search problem to a 1D search
problem and minimizes the matching 1D function F(xr ) 1.35, to find x∗

r ,

F(xr ) =
∑

Vs

(Il (Vs(xl)) − Ir (Vs(xr )))2, (1.35)

where Vs is a window of pixels in a spatial neighborhood close to xl (or xr ). The size of
Vs is a parameter, it is well-known that the smoothness/noisy reconstruction depends on
larger/smaller used window Vs . F(xr ) given in Equation 1.35 is simply the square difference
metric. Other metrics exist is the literature, we refer the reader to the review presented in
Scharstein and Szeliski (2002). Figure 1.15c shows the reconstructed facial surface from
passive stereo (left top frame is given Fig. 1.15a). Here, neither light pattern is projected
on the face. The reconstruction result is noisy due to the texture homogeneity on the skin
regions, which leads to matching ambiguities. In contract, an improved reconstruction is

Time Time

Vst(xl, t0) Vst(xr, t0)

Vs(xl) Vs(xr)

yl = yr = y yl = yr = y

xl xr

Il Ir

Figure 1.14 Spatial vs. Spacetime stereo matching. The spatial matching uses only spatial axis along
y, thus the Vs window to establish correspondence. The spacetime stereo matching extend the spatial
window to the time axis, thus the Vst is used to compute F(xr )
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(e)(d)(c) (f )

(a) (b)

Figure 1.15 Comparison of four different stereo matching algorithms. (a) Top left non-pattern frame,
captured in ambient lighting conditions. (b) Sequence of top left pattern frames, captured under patterns
projections. (c) Reconstructed face using traditional stereo matching with a [15 × 15] window achieved
on non-pattern left stereo frames. The result is noisy due to the lack of color variation on the face. (d)
Reconstructed face using pattern frames (examples are given in (b)) using stereo matching with a [15 ×
15] window. The result is much better because the projected stripes provide texture. However, certain face
details are smoothed out due to the need for a large spatial window. (e) Reconstructed face using local
spacetime stereo matching with a [9 × 5 × 5] window. (f) Reconstructed face using the global spacetime
stereo matching with a [9 × 5 × 5] window. Global spacetime stereo matching removes most of the
striping artifacts while preserving the shape details [from http://grail.cs.washington.edu/projects/stfaces/]

given in Figure 1.15d, where active stereo is used. The projected colored stripes generate
texture on the face, which helps the spatial matching process. However, certain facial shape
details are smoothed out because of the largeness of the used spatial window (15 × 15).
Frames shown in Figure 1.15b) illustrate pattern projections on the face across time.

• Temporal stereo matching. In this stereo-matching schema, establishing correspondence for
a pixel (xl , y, t0) in frame M is based, this time, on temporal neighborhood Vt = t0 ± 
t ,
instead of the spatial window Vs . Thus, one can define the matching function F(xr ) as
follows,

F(xr ) =
∑

Vt

(Il (Vt (xl , t0)) − Ir (Vt (xr , t0)))2 (1.36)

The previous equation is analogous to Equation 1.35 except that now instead of a spatial
neighborhood, one must consider a temporal neighborhood Vt around some central time t0.
Because of the changing of the light patterns over time, this temporal window works. This
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time, the size of Vt is a parameter, that is, the accuracy/noisy reconstruction depends on
larger/smaller of the used window. It should be also adapted to deforming objects speed.

• Spacetime stereo matching. This stereo-matching schema combines both spatial matching
and temporal one to limit the matching ambiguities. The function F(xr ) is analogous to
Equations 1.35 and 1.36 and is given by

F(xr ) =
∑
Vst

(Il(Vst (xl, t0)) − Ir (Vst (xr , t0)))2, (1.37)

Here Vst represents a spatiotemporal volume instead of a window in a spatial-based matching
or a vector in a temporal-based matching. Figure 1.14 illustrates the spatial and the spacetime
stereo matchings to establish correspondences between the pixels in Il and those in Ir .
The images are already rectified. Figure 1.15e shows the reconstruction result operated by
spatio-temporal stereo matching using a volume of size (9 × 5 × 5). This time, the spacetime
approach cover more shape details than in Fig. 1.15d, however, it also yields artifacts due
to the over-parametrization of the depth map. An improvement of this reconstruction using
a global spacetime stereo matching with the same volume size is given in Fig. 1.15f. (See2

for video illustrations of these reconstructions).

1.4.5 Template-based Post-processing

Recently, template-based approaches emerge due to its simplicity and robustness to noisy range
data. Outputs of shape recovery techniques present often imperfections like spikes, holes dues
to self-occlusions or the absorption of projected lights by dark regions of the face. The template
generic model provides a strong geometric prior and thus leads to high quality reconstructions
with automated hole-filling and noise removal. Correspondence estimation is often facilitated
by the use of tracked marker points or hand-selected landmarks correspondences. The template-
based literature consist on template-to-data registration then fitting and could allowing 3D
face tracking and expressions cloning. These stages are described in detail in the following
paragraphs. For the rest of this section, let M denotes the template model and P denotes the
target data.

Landmarks Detection

This step consists on manually or automatically facial keypoints detection (eyebrows, eyes,
nose, mouth contours, etc.). These facial keypoints are important in the following stages. In
particular, they could be used in coarse rigid registration to prepare the fine one, and they are
often used as control points in the warping/fitting procedure. Automatic 3D face landmarking
is one active research topic studied within the 3D face recognition and expression recognition
applications. Many approaches are designed and try to face the pose variation and external
occlusion problems (Segundo et al., 2010; Mehryar et al., 2010; Zhao et al., 2011).

2http://grail.cs.washington.edu/projects/stfaces/



JWST324-c01 JWST324-Daoudi Printer: Yet to Come May 10, 2013 7:38 Trim: 244mm × 170mm

28 3D Face Modeling, Analysis and Recognition

Rigid Registration

Registration of M and P involves estimating an optimal rigid transformation between them,
denoted T . Here, P is assumed to remain stationary (the reference data), whereas M (the
source data) is spatially transformed to match it. The Iterative Closet Point algorithm (ICP)
is the best-known technique for pairwise surface registration. Since the first paper of Besl
and McKay (1992) ICP has been widely used for geometric alignment of 3D models and
many variants of ICP have been proposed (Rusinkiewicz and Levoy, 2001). ICP is an iterative
procedure minimizing the error (deviation) between points in P and the closest points in M. It
is based one of the following two metrics: (i) the point-to-point, metric which is the earlier and
the classical one, by minimizing in the k-th iteration, the error Ek

reg(T k) = ∑
(T k .pi − q j );

q j = q| minq∈M(Ek
reg(T k)); (ii) the point-to-plane introduced later and minimizes Ek

reg(T k) =∑
n(q j )(T k .pi − q j ). For each used metrics, this ICP procedure is alternated and iterated

until convergence (i.e., stability of the error). Indeed, total transformation T is updated in an
incremental way as follows: for each iteration k of the algorithm: T = T k .T . One note that
ICP performs fine geometric registration assuming that a coarse registration transformation
T 0 is known. The final result depends on the initial registration. The initial registration could
be obtained when corresponding detected landmarks in M and P .

Template Warping/Fitting

A warping of M to P is defined as the function F such that F(M) = P . The function F
is called the warping function, which takes M to P . Given a pair of landmarks (detected as
described in Section 1.4.5) with known correspondences, UL = (ui )T

1<i<L and VL = (vi )T
1<i<L ,

in M and P , respectively. One needs to establish dense correspondence between other meshes
vertices; uk and vk denote the locations of the k-th corresponding pair and L is the total
number of corresponding landmarks. Thus, a warping function, F , that warps UL to VL

subject to perfect alignment is given by the conditions F(ui ) = vi for i = 1, 2, . . . , L .

• Thin Plate Spline (TPS). TPS Bookstein (1989) are a class of widely used non-rigid interpo-
lating (warping) functions. The thin plate spline algorithm specifies the mapping of points
for a reference, P , set to corresponding points on a source set, M. The TPS fits a mapping
function F(u) between corresponding point-sets {vi } ∈ M and {ui } ∈ P by minimizing the
following energy function:

Etps =
L∑

i=1

‖vi − F(ui )‖2 + LλJ (1.38)

For a fixed λ which provides trade-off of warp smoothness and interpolation.

J =
� [(

∂2 F

∂u2

)2

+ 2

(
∂2 F

∂u∂v

)2

+
(

∂2 F

∂v2

)2
]

du dv (1.39)
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The interpolation deformation model is given in terms of the warping function F(u), with

F(u) =
4×4︷︸︸︷
A u + W T︸︷︷︸

4×L

L×1︷ ︸︸ ︷
K (u), (1.40)

where A (affine transformation) and W (non-affine warping) are TPS parameters and K (u) =
(|u − u1|; |u − u2|; . . . ; |u − um |)T is the control point influence vector.

The warping coefficients A and W are computed by the equation:

(A|W )

(
U 0

K + LλI U T

)
= (V |0) (1.41)

In other words, any point on M close to a source landmark vk will be moved to a place
close to the corresponding target landmark uk in P . The points in between are interpolated
smoothly using Bookstein’s Thin Plate Spline algorithm Bookstein (1989).

• Non-rigid ICP. Register in a non-rigid way a template M and an input scan P by non-rigid
ICP requires estimating both correspondence and a suitable warping function that matches
the shape difference between them. In Allen et al. (2003) and Amberg et al. (2007) similar
ideas are presented for scan-template warping applied on human body in Allen et al. (2003)
and on human faces in Amberg et al. (2007). Both of them proposed an energy-minimization
framework, as given by

E = α

Edata(T )︷ ︸︸ ︷∑
vi ∈M

wi dist2(T i vi ,P) +β

Esmoothness︷ ︸︸ ︷∑
i, j |{vi,v j}∈edges(M)}

‖T i − T j‖2
F +γ

Elandmarks︷ ︸︸ ︷∑
i

‖T i vi − u j‖2,

(1.42)

where minimizing the term Edata guarantee that the distance between the deformed template
M and the target dataP is small. The term Esmoothness is used to regularize the deformation. In
other words, it penalizes large displacement differences between neighboring vertices. The
term Elandmarks is introduced to guide the deformation by using corresponding control points
that are simply the anthropometric markers in human body and facial landmarks in the case
of face fitting. Similar formulation are presented in Zhang et al. (2004) for template fitting.
The Figure 1.16 illustrates an example of template fitting results. A similar formulation is
used in Weise et al. (2009) for personalized template building.

Template Tracking

In Zhang et al. (2004), after the template fitting step, the authors proposed a tracking procedure
which yields point correspondence across the entire sequence. They obtained time-varying
face models (of the deformed template) without using markers. Once this template sequence
is acquired, they propose to interactively manipulate it to create new expressions. To achieve
template tracking, they first compute optical flow from the sequence. The flow represents
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(a)

(b)

(c)

(d)

(e)

(f )

Figure 1.16 Illustration of the template fitting process. (a) A face template with manual landmarks. (b)
Obtained mesh after fitting the warped template to the first two depth maps given in (e). (c) Facial region
limitation (red colored regions present unreliable depth or optical flow estimation). (d) A sequence of
texture image pairs. (e) A sequence of depth map pairs. (f) Selected meshes after tracking the initial
mesh through the whole sequence, using both depth maps and optical flows. The process is marker-less
and automatic [from http://grail.cs.washington.edu/projects/stfaces/]

vertices motion across the facial sequence and is used to enhance template tracking by estab-
lishing inter-frame correspondences with video data. Then, they measure the consistency of
the optical flow and the vertex inter-frame motion by minimizing the defined metric. Similar
ideas were presented in Weise et al. (2009) where a person-specific facial expression model is
constructed from the tracked sequences after non-rigid fitting and tracking. The authors tar-
geted real-time puppetry animation by transferring the conveyed expressions (of an actor) to
new persons. In Weise et al. (2011) the authors deal with two challenges of performance-driven
facial animation; accurately track the rigid and non-rigid motion of the user’s face, and map
the extracted tracking parameters to suitable animation controls that drive the virtual character.
The approach combines these two problems into a single optimization that estimates the most
likely parameters of a user- specific expression model given the observed 2D and 3D data.
They derive a suitable probabilistic prior for this optimization from pre-recorded animation
sequences that define the space of realistic facial expressions.

In Sun and Yin (2008), the authors propose to adapt and track a generic model to each
frame of 3D model sequences for dynamic 3D expression recognition. They establish the
vertex flow estimation as follows: First, they establish correspondences between 3D meshes
using a set of 83 pre-defined key points. This adaptation process is performed to establish
a matching between the generic model (or the source model) and the real face scan (or the
target model). Second, once the generic model is adapted to the real face model, it will be
considered as an intermediate tracking model for finding vertex correspondences. The vertex



JWST324-c01 JWST324-Daoudi Printer: Yet to Come May 10, 2013 7:38 Trim: 244mm × 170mm

3D Face Modeling 31

correspondence across 3D model sequences provides a set of motion trajectories (vertex flow)
of 3D face scans. The vertex flow can be depicted on the adapted generic model (tracking
model) through the estimation of the displacement vector from the tracked points of the current
frame to the corresponding points of the first frame with a neutral expression. The vertex flow is
described by the facial motion vector U = [u1, u2, . . . , un], where n is the number of vertices
of the adapted generic model. They used the Hidden Markov Model to model and train facial
dynamics.

Expression Transferring

Also known as expression cloning or performance capture when facial animation uses the
performance of an actor to animate virtual models. The steps discussed earlier, namely,
template fitting and tracking, allow expression transferring from real-time acquired 3D data
to a virtual model or puppetry. Several papers were published to transfer facial animation to
templates, puppetry or personalized models, yong Noh and Neumann (2001), Sumner and
Popović (2004), Vlasic et al. (2005), Pyun et al. (2003), Zhang et al. (2004), Weise et al.
(2009), Weise et al. (2011), etc.

1.5 Summary and Conclusions

Creating 3D face models that look and deform realistically in an important issue is many
applications such as person-specific facial animation, 3D-based face recognition, and 3D-
based expression recognition. This chapter is a survey of successful state-of-the-art techniques
that sometimes led to commercial systems. These techniques are within a static/dynamic
(moving) face modeling–guided taxonomy. Each of the presented techniques is based on one
of the following well-known concepts: (i) depth from triangulation, (ii) shape from shading,
and (iii) depth from ToF. Obviously, other approaches exist in the literature but we limited our
survey to those based on the aforementioned concepts. In this section, we will put forward,
a comparative study of the mentioned approaches according to the intrinsic and extrinsic
factors. The intrinsic factors are related to the sensor, such as its cost, its spatial (in the
case of static modeling) or spatio-temporal resolutions (in the case of dynamic modeling),
its measurement accuracy, and its intrusiveness/need user cooperation. The extrinsic factors
include variations due to illumination changes, motion speed of the observed face, and details
in the face (wrinkles, scars, etc.). Figure 1.17 gives an evaluation of approaches according to
these criteria.

� Laser-stripe scanning is intended for static faces due to the processing time required to
project the laser stripe on the whole face. The sensor is expensive and needs user cooperation
to perform face acquisition (a distance less than 1.5 m is required). Commercial systems
such as the Minolta Non-contact 3D Digitizer VIVID-9103 produced texture and depth
images of the same resolution 640 × 480. The system accurately measures the 3D object
with a depth-accuracy of around 0.1 mm. It takes 2.5 s for the fine mode and 0.5 s for the fast
mode to produce a scan, thus no motion during the scan is tolerated. Laser-based techniques

3http://www.konicaminolta.com/instruments/download/catalog/3d/pdf/vivid910 e9.pdf
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Figure 1.17 Evaluation of different 3D face modeling techniques according to Extrinsic factors (Motion
speed/illumination changes/intrusivity and need for user cooperation/face details) and Intrinsic factors
(spatial and temporal resolutions/accuracy measurement/sensor cost)

work in office environment lighting conditions. Most of the facial details (wrinkles, scars,
and other person-specific markers) are reproduced in the virtual model.

� Structured-light (SL) techniques provided an attractive alternative to the expensive laser-
stripe scanning technique. In fact, projected light(s) intend(s) to replace the laser scan. The
ARTEC MHT 3D scanner4 is one commercial system which projects a permanent light
pattern and produces 3D video of a rate around 15 fps. Frame resolution is about 500,000
points. The working distance should be in the interval of 0.4–1 m. Depth-measurement
accuracy is comparable to laser scanners and is about 0.1 mm. Texture channel is also
captured but only when needed. The sensor is cheaper than the laser digitizers.

� Structured-light (SL) consumer depth cameras (which are much cheeper) as MS Kinect5 and
Asus Xtion Pro Live6 have been recently developed and have been an attractive alternative
for expensive sensors. Kinect is based on the permanent projection of one infrared-laser
pattern. It was primarily designed for natural interaction in a computer game environment.
In fact, the sensor is less intrusive and only a near-frontal position of the user is needed.
However, the characteristics of the data captured by Kinect have attracted the attention of
researchers in the field of computer vision and computer graphics. The camera provides
depth and texture video with 300,000 points in every frame. The 2D and 3D videos have
got a rate of 30 fps. The depth measurement produced by the Kinect was not so accurate,
which means that it achieves a coarse reconstruction of the 3D face.

4http://www.artec3d.com/3d scanners/artec-mht
5http://www.xbox.com/fr-fr/kinect
6http://www.asus.com/Multimedia/Motion Sensor/Xtion PRO LIVE/
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� In photometric stereo approaches, only one image of the face is captured and used to recover
the depth information. The face is illuminated with three colored light sources from three
different directions. The capture can be made in real time enabling 3D and 4D acquisition.
By knowing the surface reflectance properties of the face, the local surface orientation at
points illuminated by all three light sources are computed. One of the important advantages
of the photometric stereo approaches is that the points do not need to be registered. Thus, this
category of approaches does not suffer from the correspondence problem, providing high
performance for featureless surfaces as the human skin. On the other hand, the disadvantages
of this category of approaches are that they are indirect and practical only for applications
in which the illumination is carefully controlled.

� Multiview-based approaches capture images instantly and provide high resolution 3D and
4D textured images. In addition, they have several advantages over active approaches. First
is the quality texture image. The acquisition phase does not require pattern projection, and,
so, there is a true one-to-one correspondence with every color pixel and every 3D point. The
original texture images are always of the highest quality. Second is the absence of holes in
the final 3D scans. Dimensional Imaging7 proposes systems designed specifically to capture
high definition 3D surface images of the human face with highly detailed 20-megapixel
texture maps using four 10-megapixel cameras and up to 32 cameras with a resolution of
up to 21 megapixels.

� ToF cameras are relatively new devices, as the semiconductor processes have only recently
become fast enough for such devices. The systems cover ranges of a few meters up to about
60 m. Another advantage of ToF systems is the high rate capture. In return, they have a
low resolution and a precision of 1 mm to 1 cm. The Mesa Imaging8 SwissRanger 4000
(SR4000) is probably the most well-known ToF camera. It has a range of 5–8 m, 176 × 144
pixel resolution over 43.6◦ × 34.6◦ field of view and operates at up to 54 fps.The PMD
Technologies9 CamCube 2.0 is a less popular one. It has a range of 7 m, 204 × 204 pixel
resolution with 40.0◦ × 40.0◦ field of view. It operates at 25 fps.

Exercises

1. From Figure 1.18 prove that
AB

A′ B ′ = AC

A′C ′ = BC

B ′C ′ = h ABC

h A′ B ′C ′
; retrieve the Z formula

given in Equation 1.8.

2. We need to study the 3D scanning prototype given in Figure 1.19. It consists of a laser
source that illuminates the object to be continuously scanned and two cameras that look
at the same object. The projected laser stripe is seen by both cameras. The global sensor
calculates the depth information, as illustrated in the figure. To capture the full geometry
of the object, a manual scan of the surface is required.
• Compute the Z1-coordinate together with Z2-coordinate.
• Explain the triangles considered to calculate Z1-coordinate.
• Why this prototype involves two sensors, each of them capable of measuring the depth.

Suggest a depth value Z as a function of Z1 and Z2; explain your choice.

7http://www.di3d.com
8http://www.mesa-imaging.ch/
9http://www.pmdtec.com/
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Figure 1.18 Optical triangulation geometry (laser stripe scanning)
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3. We aim to produce patterns associated with Equation 1.10. Assuming that the gray level 0
represents black and gray level 255 represents white, find the value of I0 and Imod. Solve
Equation 1.10 for I0, Imod, and Equation 1.10.

4. Extend Equation 1.10 to obtain N patterns. Solve these equations for I0, Imod, and Equa-
tion 1.10. What is the impact of using more than three patterns on the accuracy and delay?

5. Assuming that only one pattern from Equation 1.10 is used, resolve I0, Imod, and Equa-
tion 1.10 using Fourier Transfrom.

6. The approach presented in Section 1.4, Equations 1.27 to 1.32, overcomes the major problem
of fast phase-shift scanning, namely, motion artifacts. An analysis of the motion error has
been introduced to compensate for motion artifacts on the pixel level. Nevertheless, high-
frequency texture can still pose problems during motion, as the assumption of invariant
surface reflectance is violated. Investigate the possibility of adding a stereo module and
extending the motion compensation to stereo geometry to handle these cases.
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