
Part I
Basic Concepts and
Solution Techniques

CO
PYRIG

HTED
 M

ATERIA
L

1
Preliminaries

This chapter is primarily intended to familiarise the reader with the notation we have adopted
throughout this book and to refresh some of the required background in mathematics, especially
linear algebra, and applied mechanics. As regards notation, we remark that most developments
have been carried out using matrix-vector notation, and tensor notation is less often needed,
either in indicial form or in direct form. For the benefit of readers who are less familiar with
tensor notation, we have added a small section on this topic. But, first, we will give an example
of non-linearity in a structural member. This example involving a simple truss element can
be solved analytically, and serves well to illustrate the various procedures that are described
in this book for capturing non-linear phenomena in solids and structures, and for accurately
solving the ensuing initial/boundary-value problems.

1.1 A Simple Example of Non-linear Behaviour

Many features of solution techniques can be demonstrated for simple truss structures, pos-
sibly in combination with springs, where the non-linear structural behaviour can stem from
geometrical as well as from material non-linearities. In this section we shall assume that the
displacements and rotations can be arbitrarily large, but that the strains remain small, say less
than 5%. This limitation will be dropped in Part IV of this book, where the extension will be
made to large elastic and inelastic strains.

We consider the shallow truss structure of Figure 1.1. From elementary equilibrium consid-
erations in the deformed configuration, the following expression for the force can be deduced
that acts in a symmetric half of the shallow truss:

Fint = −Aσ sin φ − Fs (1.1)

where σ is the axial stress in the member, Fs is half of the force in the spring, and φ is the angle
of the truss member with the horizontal plane in the deformed configuration. Owing to the
small-strain assumption, the difference between the cross section in the current configuration,
A, and that in the original configuration, A0, is negligible. For the same reason, the difference

Non-linear Finite Element Analysis of Solids and Structures, Second Edition.
René de Borst, Mike A. Crisfield, Joris J.C. Remmers and Clemens V. Verhoosel.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

4 Non-linear Finite Element Analysis of Solids and Structures

v

2F

φ

h

2k

b

l0

EA0

Figure 1.1 Plane shallow truss structure

between the length of the bar in the original configuration,

�0 =
√

b2 + h2 (1.2)

and that in the current configuration,

� =
√

b2 + (h − v)2 (1.3)

can be neglected in the denominator of the expression for the strain:

ε = � − �0

�0
(1.4)

or when computing the inclination angle φ:

sin φ = h − v

�
≈ h − v

�0
(1.5)

The dimensions b and h are defined in Figure 1.1. The vertical displacement v is taken positive
in the downward sense. For half of the force in the spring we have

Fs = −kv (1.6)

with k the spring stiffness, and the axial stress in the bar reads:

σ = Eε (1.7)

with E the Young’s modulus. Substitution of the expressions for the stress σ, the force in the
spring Fs and the angle φ into the equilibrium condition (1.1) yields:

Fint(v) = −EA0 sin φ
� − �0

�0
+ kv (1.8)

Equation (1.8) expresses the internal force that acts in the structure as a non-linear function of
the vertical displacement v. Normally, the external force at time t + �t, Ft+�t

ext , is given. The
displacement v must then be computed such that

Ft+�t
ext − Ft+�t

int = 0 (1.9)

Preliminaries 5

The correct value of v is computed in an iterative manner, for instance using the Newton–
Raphson method:

Ft+�t
ext = Fint(vj) + dFint

dv
dv + 1

2

d2Fint

dv2 dv2 + O(dv3) (1.10)

with j the iteration counter. In a linear approximation we have for the iterative correction to
the displacement v:

dv =
(

dFint

dv

)−1

j

(
Ft+�t

ext − Fint(vj)
)

(1.11)

The iterative process is terminated when a convergence criterion has been met, ‖Ft+�t
ext −

Fint(vj)‖ < ε, with ε a small number. For the present case the derivative dFint
dv

, or in computa-
tional mechanics terminology, the tangential stiffness modulus, can be evaluated from Equation
(1.8) as:

dFint

dv
= A0 sin2 φ

�0

(
E + dE

d�
(� − �0)

)
+

(
k + dk

dv
v

)
+ A0σ

�0
(1.12)

where, for generality, it has been assumed that the stiffness of the truss as well as that of the
spring depend on how much they have been extended. If this so-called material non-linearity is
not present, the terms that involve dE

d�
and dk

dv
cancel. The last term in Equation (1.12) is due to

the inclusion of large displacement/rotation effects (geometrical non-linearity), and is linear in
the stress. This term is of crucial importance when computing the stability of slender structures.
Figure 1.2 shows the behaviour of the truss for different values of the spring stiffness k. The
graphs directly follow from application of the closed-form expression (1.8) for the internal
force, in combination with the equilibrium condition (1.9). The iterative procedure can only
be applied for larger values of the spring stiffness k, i.e. when there is no local maximum in
the load–displacement curve.

1.2 A Review of Concepts from Linear Algebra

In computer oriented methods in the mechanics of solids frequent use is made of the concepts
of a vector and a matrix. Herein, we shall denote by a vector a one-dimensional array of
scalars. A scalar is a physical quantity that has the same value, irrespective of the choice of the
reference frame. When we denote scalars by italic symbols and vectors by roman, bold-faced,
lower-case symbols, the vector v has n scalar entries v1, . . . , vn, so that:

v =

⎛
⎜⎜⎜⎝

v1

. . .

. . .

vn

⎞
⎟⎟⎟⎠ (1.13)

In Equation (1.13) the scalar entries are written in a column format. Alternatively, it is possible
to write the scalar quantities v1, . . . , vn as a row. This row of scalars is named the transpose

6 Non-linear Finite Element Analysis of Solids and Structures

1.0

0.5

0.5

1.0

1.5

Displacement (m)

Fo
rc

e
(k

N
)

k = 0

k =

k =

1000 N/m

500 N/m

Figure 1.2 Force–displacement diagram for the shallow truss structure for different values of the spring
stiffness k (b = 10 m, h = 0.5 m and EA0 = 5 MN/m2)

of the vector v and is written as:

vT = (v1, . . . , vn)

Addition of vectors is defined as the addition of their components, so that

w = u + v (1.14)

implies that wi = ui + vi for i = 1, . . . , n. The multiplication of a vector by a scalar, say λ, is
defined as:

w = λu (1.15)

with the components wi = λui.
An important operation between two vectors u and v, each with n entries, is the inner product,

also named scalar product:

uTv =
n∑

i=1

uivi (1.16)

The scalar product of two vectors possesses the commutativity property, i.e. uTv = vTu as
can be verified easily from the definition (1.16). The inner product can also be useful for the
definition of the norm of a vector. Several definitions of the norm of a vector are possible, but in

Preliminaries 7

theoretical and applied mechanics the most customary definition is the Euclidian or L2-norm:

‖v‖2 =
√

vTv (1.17)

where the subscript is often omitted. The cross product of two vectors a and b, also named the
vector product, forms a vector c:

c = a × b (1.18)

that is orthogonal to a and b in the three-dimensional space, and has a direction that is given by
the right-hand rule, and as a consequence, is anti-symmetric: b × a = −a × b. The components
of c = a × b read:

c =

⎛
⎜⎝

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎞
⎟⎠ (1.19)

The entries (or components) of a vector may be used to form a scalar function. Examples in
mechanics are the invariants of the stress and strain tensors, or the yield function in plasticity.
An operation that is often used is the calculation of the gradient of a function. Let the scalar-
valued function f be a function of the components ai of the vector a. Then, the gradient b is
obtained by differentiation of f with respect to a

b = ∂f

∂a
(1.20)

or in component form:

bi = ∂f

∂ai

(1.21)

The gradient operation is such that b is orthogonal to the hypersurface in the n-dimensional
vector space that is described by f = c, with c a constant that usually is taken equal to zero.

Matrices are another suitable mathematical vehicle that can be used in computational me-
chanics. While vectors in their most simple description are denoted as one-dimensional arrays
of scalars, matrices are two-dimensional arrays of scalars. A matrix is said to have m rows and
n columns. In general m does not have to be equal to n. If we think of vectors as matrices with
only one column, a vector with m components can be termed a m × 1 matrix. Similarly, a row
vector with n entries can be named an 1 × n matrix.

In this book we shall consistently denote a matrix by a bold-faced, upper-case symbol. The
entries or components of the matrix A are, in a similar fashion as the components of a vector,
denoted as aij , where, for an m × n matrix i = 1, . . . , m and j = 1, . . . , n. A vector b of length
n can be premultiplied by an m × n matrix A, as follows:

c = Ab (1.22)

The resulting vector c has m components:

ci =
n∑

j=1

aijbj (1.23)

8 Non-linear Finite Element Analysis of Solids and Structures

The addition of two m × n matrices A and B is exactly analogous to the addition of vectors,
as we have for each entry: cij = aij + bij , while the multiplication of a matrix by a scalar, say
λ, is also defined similarly: cij = λaij .

The product of two matrices is defined similar to the product of a matrix and a vector. Let
A be an m × k matrix and B be a k × n matrix. The result of multiplying A and B is an m × n

matrix C, with components:

cij =
k∑

e=1

aiebej (1.24)

A special matrix multiplication occurs when the number of columns of A, and consequently
also the number of rows of B, is set equal to 1 (k = 1). Now, A and B reduce to vectors, say a
and bT. The resulting product is still an m × n matrix,

C = abT (1.25)

with components cij = aibj . This operation is named the dyadic or outer product of two vectors
a and b. The transpose operation for matrices is identical to that for vectors, i.e. B = AT implies
that bij = aji. An operation that is frequently carried out in the derivation of finite element
equations is taking the transpose of a product of two matrices. For such a transpose the following
relationship holds:

(AB)T = BTAT (1.26)

The most common type of matrices are square matrices, for which m = n. Under certain
conditions, to be discussed in the following pages, an inverse B = A−1 can be defined, such
that

AB = I (1.27)

with I the unit matrix, i.e. all entries of I are zero with exception of the diagonal entries of I
which are equal to 1: I = diag[1, . . . , 1]. The inversion of matrices is required for the solution
of large systems of linear equations which arise as a result of finite element discretisation. Such
systems have the form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2 (1.28)

. . . + . . . + . . . = . . .

an1x1 + an2x2 + . . . + annxn = bn

When the known coefficients a11, . . . , ann are assembled in a matrix A, the known components
b1, . . . , bn in a vector b, and the unknowns x1, . . . , xn in a vector x, the system (1.28) can be
written in a compact fashion

Ax = b (1.29)

Formally, the vector of unknowns x can be obtained from

x = A−1b (1.30)

Preliminaries 9

provided, of course, that A−1 exists. In solid mechanics the matrix A is often symmetric,
i.e. aij = aji, which facilitates the computation of A−1. However, when non-linearities are
incorporated in computational models, symmetry can be lost.

An efficient manner to carry out the above operation is to decompose the matrix A as

A = LDU (1.31)

with L a lower triangular matrix

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

l21 1 0 . . . 0

l31 l32 1 . . . 0

.

ln1 ln2 ln3 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.32)

U an upper triangular matrix,

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 u12 u13 . . . u1n

0 1 u23 . . . u2n

0 0 1 . . . u3n

.

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.33)

and

D = diag[d11, . . . , dnn] (1.34)

a diagonal matrix. For symmetric matrices the identity U = LT holds.
This LDU decomposition is based on Gauss elimination, and can preserve bandedness in

the sense that if the matrix A has a band structure, as is normally the case in finite element
applications, the lower and upper triangular matrices L and U also have a banded structure.
Since

x = (LDU)−1b = U−1(LD)−1b = U−1D−1L−1b

we can now solve for x:

c = L−1b

d = D−1c (1.35)

x = U−1d

This equation reveals another interesting fact. While the operations L−1b and U−1d only
involve multiplications, and cannot result in arithmetic problems, the operation D−1c consists
of divisions, since D−1 = diag[d−1

11 , . . . , d−1
nn]. Hence, as soon as one of the diagonal entries,

named pivots, of D is zero, x can no longer be computed. In such a case the matrix A is said to be
singular and a unique decomposition no longer exists. We distinguish between three cases: all

10 Non-linear Finite Element Analysis of Solids and Structures

pivots of D are positive, one or more pivots of D are zero, and finally, one or more pivots of D are
negative. When the diagonal matrix D has only positive pivots, the matrix A is called positive
definite. An example is the stiffness matrix A which results from a displacement-method based
finite element discretisation of a linear-elastic body. For positive-definite matrices the LDU
decomposition is unique and round-off errors which arise are not amplified. When non-linear
effects are introduced, the tangential stiffness matrix A can become singular (one or more zero
pivots) during the loading process and eventually become indefinite (one or more negative
pivots). As argued above, a singular matrix cannot be decomposed and meaningful answers
cannot be obtained. However, a unique LDU decomposition can again be obtained if one
or more pivots have turned negative, but are non-zero. Nevertheless, for indefinite matrices it
cannot be ensured that round-off errors which arise during the decomposition are not amplified.
In a non-linear analysis this observation implies that the iterative process that is necessary to
solve the set of non-linear algebraic equations which then arises, can diverge.

Singularity of a matrix is also closely related to its determinant. The determinant of a matrix
is defined as (Golub and van Loan 1983; Noble and Daniel 1969; Ortega 1987; Saad 1996)

detA =
n∑

j=1

(−1)i+jaijdetAij (1.36)

where Aij is an (n − 1) × (n − 1) matrix obtained by deleting the ith row and the jth column
of A. This recursive relation is closed by detA = a11 for n = 1. A useful property is that
det(AB) = detA · detB. In view of Equation (1.31) we have detA = detL · detD · detU and
from definition (1.36) we deduce that detL = detU = 1. We thus obtain the useful result that

detA =
n∏

i=1

di (1.37)

which implies that the determinant of a matrix equals zero if one or more pivots are zero. In
view of the discussion on pivots the matrix is then singular.

A useful result on the inversion of a special type of matrices is the Sherman–Morrison
formula. Let A be a non-singular n × n matrix and let u and v be two vectors with n entries
each. Then, the following identity holds:

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(1.38)

A further useful result involving vectors is Gauss’ divergence theorem. Using this theorem a
volume integral can be transformed into a surface integral:∫

V

divvdV =
∫

S

nTvdS (1.39)

where n is the outward normal to the bounding surface of the body, and div is the divergence
operator:

divv = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(1.40)

Preliminaries 11

In the preceding, use has been made of the summation symbol
. A short-hand notation is
to omit the
 symbol and to suppose that a summation is implied whenever a subscript occurs
twice in an expression. For instance, we can replace the summation in Equation (1.24) by the
abbreviated notation (called the Einstein summation convention)

cij = aiebej (1.41)

where summation with respect to the repeated index e is implied. Such an index is often
called a ‘dummy’ index, since it is irrelevant which letter we take for this index. Indeed, the
expression cij = aiqbqj is identical. Of course, the indices i and j may not be replaced by other
letters unless it is done on both sides of the equation. When rewriting Gauss’ theorem in index
notation, the result is: ∫

V

∂vi

∂xi

dV =
∫

S

nividS

An important tensorial quantity is the Kronecker delta, defined as:{
δij = 1 if i = j

δij = 0 if i /= j
(1.42)

As an example we note that aij = aikδkj . Also useful is the permutation tensor eijk, which equals
+1 for e123 and for even permutations thereof (e.g. e231), and equals −1 for odd permutations
(e.g. e213). If two subscripts are identical, then eijk = 0.

In more recent years index notation has been gradually replaced by direct tensor notation,
which, at first sight, somewhat resembles the matrix-vector notation. Now, the multiplication
of Equation (1.24) is denoted as:

C = A · B (1.43)

where the central dot denotes a single contraction, i.e. the summation over the dummy index.
In a similar fashion, a double contraction is denoted as:

c = A : B (1.44)

or using index notation: c = aiebei. Taking the gradient of a quantity is done using the ∇
symbol, as follows,

b = ∇f (1.45)

which equals the gradient vector defined in Equation (1.20). This operator can also be used for
vectors, and Gauss’ theorem is now written as:∫

V

∇ · vdV =
∫

S

n · vdS

The dyadic product of two vectors a and b is now written as:

C = a ⊗ b (1.46)

12 Non-linear Finite Element Analysis of Solids and Structures

with components cij = aibj . Finally, we define for a second-order tensor A the divergence
operator

a = ∇ · A (1.47)

such that

aj = ∂Aij

∂xi

(1.48)

and its trace:

c = tr(A) (1.49)

through c = aii.

1.3 Vectors and Tensors

So far, vectors have been introduced and treated as mere mathematical tools, arrays which
contain a number of scalar quantities in an ordered fashion. Nonetheless, vectors can be given a
physical interpretation. Take for instance the concept of force. A force not only has a magnitude,
but also has a direction. It is often of interest to know how the components of a force change
if the force is represented in a different coordinate system. A translation only adds the same
number to all force components. A rotation of the reference frame, for instance from the x, y-
coordinate system to a x̄, ȳ-coordinate system, Figure 1.3, changes the components of a vector
in a more complicated manner.

The components of a vector n̄ in the x̄, ȳ-coordinate system can be obtained from those in
the x, y-coordinate system, assembled in n, by the transformation

n̄ = Rn (1.50)

with R a transformation matrix. Since a full three-dimensional treatment is quite cumbersome,
and hardly adds anything to the understanding, we will elaborate R only for planar conditions.
Let the angle from the x, y-coordinate system to the x̄, ȳ-coordinate be φ. For n = [1, 0]T

and n = [0, 1]T, respectively, the representations in the rotated coordinate system are n̄ =
[cos φ, − sin φ]T and n̄ = [sin φ, cos φ]T, respectively. It follows that in two dimensions the

φ

x

x

n1

n1

n2

y n2

y

–

–

–
–

Figure 1.3 Original x, y-coordinate system and rotated x̄, ȳ-coordinate system

Preliminaries 13

transformation matrix R is given by

R =
[

cos φ sin φ

− sin φ cos φ

]
(1.51)

The transformation, or rotation matrix R has a special structure. Inspection shows that

R−1 = RT (1.52)

which also holds true for the general three-dimensional case. Matrices that satisfy requirement
(1.52) are called orthogonal matrices, for which det(R) = 1.

With the aid of the transformation rules for vectors we can derive transformation rules for
tensors. Tensors, or here, more precisely, second-order tensors, are physical quantities that
relate two vectors. For instance, the stress tensor sets a relation between the force on a plane
and the normal vector of that plane, see also the next section. A natural representation of a
second-order tensor is a matrix. However, not all matrices are tensors: only matrices that obey
certain transformation rules can represent tensorial quantities. Suppose that the second-order
tensor C relates the vectors, or first-order tensors, t and n:

t = Cn (1.53)

In the x̄, ȳ frame the second-order tensor C̄ sets a similar relation between t̄ and n̄:

t̄ = C̄n̄ (1.54)

We next substitute Equation (1.50) and an identical relation for t, i.e. t̄ = Rt, into Equation
(1.54). Comparison with Equation (1.53) shows that any second-order tensor transforms ac-
cording to:

C̄ = RCRT (1.55)

Using Equation (1.51) this identity can be elaborated for two dimensions as

c̄11 = c11 cos2 φ + (c12 + c21) cos φ sin φ + c22 sin2 φ

c̄22 = c11 sin2 φ − (c12 + c21) cos φ sin φ + c22 cos2 φ (1.56)

c̄12 = −c11 cos φ sin φ + c12 cos2 φ − c21 sin2 φ + c22 cos φ sin φ

c̄21 = −c11 cos φ sin φ − c12 sin2 φ + c21 cos2 φ + c22 cos φ sin φ

For symmetric second-order tensors, which will be employed here exclusively, c21 = c12, and
consequently also: c̄21 = c̄12.

We observe that the components of a second-order tensor change from orientation to orien-
tation. It is often of interest to know the extremal values of the tensor components c̄11 and c̄22,
and on which plane they are attained, i.e. for which value of φ. For symmetric second-order
tensors, there exist two mutually orthogonal planes on which c̄11 and c̄22 have a maximum
and a minimum, respectively. The values in this coordinate system are commonly named the
principal values. Since c̄11 and c̄22 are functions of the inclination angle φ these extremal values

14 Non-linear Finite Element Analysis of Solids and Structures

c11 − c22

2φ

2 c12

Figure 1.4 Principal directions of a second-order tensor

are obtained by requiring that

∂c̄11

∂φ
= 0 or

∂c̄22

∂φ
= 0 (1.57)

Elaborating these identities for symmetric second-order tensors we obtain that the diagonal
tensor components attain extremal values for

tan 2φ = 2c12

c11 − c22
(1.58)

To derive the principal values we first rewrite the first two equations of (1.56) as

c̄11 = 1

2
(c11 + c22) + 1

2
(c11 − c22) cos 2φ + c12 sin 2φ (1.59)

From Figure 1.4, cf. Equation (1.58), we infer that

sin 2φ = ± 2c12√
(c11 − c22)2 + 4c2

12

cos 2φ = ± c11 − c22√
(c11 − c22)2 + 4c2

12

(1.60)

whence we obtain the following closed-form expression for the principal values:⎧⎨
⎩

c̄11 = 1
2 (c11 + c22) − 1

2

√
(c11 − c22)2 + 4c2

12

c̄22 = 1
2 (c11 + c22) + 1

2

√
(c11 − c22)2 + 4c2

12

(1.61)

It is a property of symmetric second-order tensors (to which the treatment will be limited) that
for this inclination angle also the off-diagonal tensor components are zero: c̄12 = 0. This is
shown most simply by rewriting the first equation of (1.56) as:

c̄12 = −1

2
(c11 − c22) sin 2φ + c12 cos 2φ (1.62)

whereupon substitution of the identities (1.60) proves the assertion.

Preliminaries 15

Another interpretation can be given to the coordinate system in which the principal values
of the diagonal tensor components attain a maximum. Let C be the matrix representation of a
symmetric second-order tensor. Let e be a vector. As a rule, the product Ce will not be parallel
with e. However, for every such tensor there exists a coordinate system for which the resulting
vector is indeed parallel with the original vector:

Ce = λe (1.63)

with λ the scalar-valued eigenvalue. We can rewrite Equation (1.63) as

(C − λI)e = 0 (1.64)

with I = diag[1, . . . , 1] the unit matrix. A non-trivial solution (e /= 0) then exists if and only
if the determinant of C − λI vanishes:

det[C − λI] = 0 (1.65)

Elaborating Equation (1.65) then yields exactly Equation (1.58). Thus, the coordinate system
in which c11 and c22 attain extremal values is the same coordinate system in which a vector
e multiplied by a tensor C results in a vector that is a multiple of e. Since the eigenvalues
λi correspond to the principal values, the eigenvectors ei point in the principal directions.
An elaboration for a symmetric second-order tensor is given in Box 1.1. Similar to pivots,
Equation (1.37), a direct relationship can be established between the product of all eigenvalues
and the determinant of a matrix:

detC =
n∏

i=1

λi (1.66)

which is known as Vieta’s rule, and is valid for symmetric and non-symmetric matrices. From
Equation (1.66) we infer that the singularity of a matrix not only implies that the determinant
and one or more pivots vanish, but also that at least one eigenvalue is equal to zero.

Inverting Equation (1.55) yields

C = RTC̄R (1.67)

with, in the principal axes,

C̄ =
[

c̄11 0

0 c̄22

]
(1.68)

and c̄11 = λ1 and c̄22 = λ2 the principal values or eigenvalues of C. Elaboration of
Equation (1.67) using expression (1.51) for R in two dimensions yields:

C = λ1

[
cos2 φ cos φ sin φ

cos φ sin φ sin2 φ

]
+ λ2

[
sin2 φ − cos φ sin φ

− cos φ sin φ cos2 φ

]

or

C = λ1

(
cos φ

sin φ

)
(cos φ, sin φ) + λ2

(
sin φ

− cos φ

)
(sin φ, − cos φ)

16 Non-linear Finite Element Analysis of Solids and Structures

Box 1.1 Eigenvalues of a symmetric second-order tensor

For a symmetric matrix C the condition det[C − λI] = 0 can be elaborated as follows:∣∣∣∣∣ c11 − λ c12

c12 c22 − λ

∣∣∣∣∣ = 0 or (c11 − λ)(c22 − λ) − c2
12 = 0

Solving for the eigenvalues λ yields: λ1,2 = 1
2 (c11 + c22) ± 1

2

√
(c11 − c22)2 + 4c2

12, which
are exactly the principal values of the tensor C, see Equation (1.61). The directions of e can
be computed by inserting the principal values of the tensor C in either

(c11 − λ)e1 + c12e2 = 0 or c12e1 + (c22 − λ)e2 = 0

with e1, e2 the components of e. Taking the first equation as an example, we can derive that
substitution of the principal values λ1,2 yields:(

1

2
(c11 − c22) ± r

)
e1 + c12e2 = 0 where r = 1

2

√
(c11 − c22)2 + 4c2

12

Bringing the re1 term to the right-hand side, and squaring gives:

e1e2

e2
1 − e2

2

= c12

c11 − c22

Simple goniometry shows that

tan 2φ = 2 tan φ

1 − tan2 φ
= 2e1e2

e2
1 − e2

2

which proves that Equation (1.58) also defines the directions of the eigenvectors e. The
notions of eigenvectors and principal directions, and of eigenvalues and principal values of
symmetric second-order tensors coincide.

Identifying eT
1 = (cos φ, sin φ) and eT

2 = (sin φ, − cos φ) as the eigenvectors, we can represent
C through the spectral decomposition

C =
n∑

i=1

λiei ⊗ ei (1.69)

where a generalisation to n dimensions has been made. Defining the eigenprojections

Ei = ei ⊗ ei (1.70)

the spectral decomposition of a symmetric, second-order tensor can also be written as:

C =
n∑

i=1

λiEi (1.71)

Preliminaries 17

∆S

∆f

Figure 1.5 Force acting on an imaginary cut in a solid body

1.4 Stress and Strain Tensors

The basic problem of solid mechanics is to determine the response of a body to forces that are
exerted onto that body. For instance, we want to know which forces act from one side of an
imaginary cut in the body on the other side (Figure 1.5). It has become customary to consider
a small area in that cut, say �S, and to investigate which force works on that area. This force
is called �f . When we take the limiting case that �S → 0 the stress vector t is obtained:

t = lim
�S→0

�f
�S

= df
dS

(1.72)

On each plane the stress vector t can be decomposed in a component that acts along the
normal to that plane and in two mutually orthogonal vectors which form a vectorial basis of
the plane. We now choose the normal vector of this plane to coincide with the x-axis. The
normal component of t is denoted by σxx, while the two components that lie in the plane are
labelled as σxy and σxz. σxy is the stress component which acts in the direction of the y-axis
and σxz is the stress component which acts in the direction of the z-axis. In accordance with
the sign convention in solid mechanics the normal stress component σxx is considered positive
when it points in the direction of the positive x-axis and works on a plane with a normal
vector that points in the positive x-direction. In a similar fashion the shear stress σxy is taken
positive when it points in the positive y-direction and acts on a plane with its normal in the
positive x-direction. The definition of the other shear stress, σxz, is analogous. Along this line
of reasoning the normal stress σxx is also called positive if it acts in the negative x-direction
on a plane with its normal in the negative x-direction, while a positive shear stress σxy is also
obtained when a shear stress acts on a plane with its normal in the negative x-direction and is
directed along the negative y-axis.

In three dimensions there are nine stress components (Figure 1.6). These nine stress compo-
nents fully determine the state of stress in a point of a body, and are components of the stress
tensor. The stress tensor σ is a second-order tensor. It can be naturally expressed in matrix
notation:

� =

⎡
⎢⎣

σxx σyx σzx

σxy σyy σzy

σxz σyz σzz

⎤
⎥⎦ (1.73)

18 Non-linear Finite Element Analysis of Solids and Structures

x

σzx

σyy

σzz

σxx

σyx

σyz

σzy

σxz

σxy

y

z

Figure 1.6 Stress components in a three-dimensional continuum

The stress tensor σ is related to the stress vector t which acts on a plane with normal n. In
matrix-vector notation, the relationship between �, t and n is:

�n = t (1.74)

The validity of this relationship can be verified easily if the normal vector is chosen to be par-
allel to the x-axis (nT = [1, 0, 0]), the y-axis (nT = [0, 1, 0]), and the z-axis (nT = [0, 0, 1]),
respectively. For future use the analogue of Equation (1.74) is also given in index notation:

niσij = tj

and in direct tensor notation:

n · σ = t (1.75)

For a non-polar or Boltzmann continuum, the balance of moment of momentum in the three
directions shows that not all the stress components are independent. In particular we find for
the shear stress components that

σxy = σyx

σyz = σzy (1.76)

σzx = σxz

(see Chapter 2 for a formal proof). Accordingly, there are six independent stress components
and the matrix representation of the symmetric stress tensor σ can be written as

� =

⎡
⎢⎣

σxx σxy σzx

σxy σyy σyz

σzx σyz σzz

⎤
⎥⎦ (1.77)

The observation that there are only six independent stress components makes it also feasible
to write the stress tensor in a vector form (the so-called Voigt notation):

σT = (σxx, σyy, σzz, σxy, σyz, σzx) (1.78)

Preliminaries 19

Note that for the vector representation the stress tensor is symbolically written as σ instead of
� which is used for the matrix representation.

Often, for instance in geotechnical applications, it is convenient to decompose the normal
stresses σxx, σyy and σzz into a deviatoric and a hydrostatic part. The deviatoric part then causes
changes in the shape of an elementary cube, while the hydrostatic pressure causes a change in
volume of the cube. The hydrostatic pressure is here defined as

p = 1

3
(σxx + σyy + σzz) (1.79)

With the aid of the definition of p we can define the deviatoric stress tensor. In matrix repre-
sentation we have

S = � − pI (1.80)

while in Voigt’s notation the following formula is obtained:

s = σ − pi (1.81)

where

sT = (sxx, syy, szz, sxy, syz, szx)

iT = (1, 1, 1, 0, 0, 0) (1.82)

Stress invariants are important quantities in non-linear constitutive theories. These are func-
tions of the stress components that are invariant with respect to the choice of the reference
frame. They arise naturally if the principal stresses in a three-dimensional continuum are com-
puted. From the previous section it is known that the principal values λ of a second-order tensor
are computed from the requirement that

det(� − λI) = 0 (1.83)

or, in component form: ∣∣∣∣∣∣∣
σxx − λ σxy σzx

σxy σyy − λ σyz

σzx σyz σzz − λ

∣∣∣∣∣∣∣ = 0 (1.84)

When we introduce the identities

I1 = σxx + σyy + σzz

I2 = σxxσyy + σyyσzz + σzzσxx − σ2
xy − σ2

yz − σ2
zx

I3 = σxxσyyσzz + 2σxyσyzσzx − σxxσ
2
yz − σyyσ

2
zx − σzzσ

2
xy

(1.85)

Equation (1.84) can be reformulated as:

λ3 − I1λ
2 + I2λ − I3 = 0 (1.86)

A crucial observation is that, since this equation has the same solution in each reference frame,
I1, I2 and I3 must have the same value irrespective of the choice of the reference frame. Thus,

20 Non-linear Finite Element Analysis of Solids and Structures

the coefficients I1, I2 and I3 must be invariant under a coordinate transformation. For this
reason, I1, I2 and I3 are called invariants of the stress tensor. The concept of principal values
and principal directions exists for any second-order tensor, and invariants can be defined for
any second-order tensor, also for the strain tensor to be treated next.

Any function of invariants is an invariant itself. Such modified invariants arise naturally if
the principal values of the deviatoric stress tensor are computed. These quantities are obtained
by solving the cubic equation:

λ3 − J2λ − J3 = 0 (1.87)

where

J2 = −sxxsyy − syyszz − szzsxx + s2
xy + s2

yz + s2
zx (1.88)

and

J3 = sxxsyyszz + 2σxyσyzσzx − sxxσ
2
yz − syyσ

2
zx − szzσ

2
xy (1.89)

The first invariant of the deviatoric stress tensor vanishes by definition. With the above defi-
nitions for the invariants of the stress tensor and the deviatoric stress tensor it can be shown
that (Fung 1965):

J2 = 1

3
I2

1 − I2

J3 = I3 − 1

3
I1I2 + 2

27
I3

1 (1.90)

We now consider an elementary cube which we deform only in the x, y-plane. The sides of
the cube are denoted by �x, �y and �z (�x = �y = �z). Suppose that point A undergoes
the displacements u and v and that points B and C displace as [u + �uB, v + �vB] and
[u + �uC, v + �vC], respectively (Figure 1.7). In the limiting case that �x → 0 and �y → 0

y

x

A B

DC

uu +∆u
B

v
v +∆v

B

v +∆v
D

v +∆v
C

u+∆u
C

u+∆u
D

Figure 1.7 Undeformed and deformed configuration of an elementary quadrilateral

Preliminaries 21

the strains in the x- and y-directions become (neglecting second-order terms):

εxx = lim
�x→0

�uB

�x
= ∂u

∂x

εyy = lim
�y→0

�vC

�y
= ∂v

∂y
(1.91)

The distortion of the elementary square in the x, y-plane is given by:

γxy = lim
�x→0,�y→0

�uC

�y
+ �vB

�x
= ∂u

∂y
+ ∂v

∂x
(1.92)

while its rotation is given by:

ωxy = lim
�x→0,�y→0

1

2

(
�vB

�x
− �uC

�y

)
= 1

2

(
∂v

∂x
− ∂u

∂y

)
(1.93)

Here γxy is the total angular distortion of the elementary cube in the x, y-plane. This measure
for the shear strain is often used in engineering applications. For theoretical investigations
it is more customary to adopt the tensorial shear strain component εxy = 1

2γxy. In a similar
fashion to which we have introduced the normal strains εxx, εyy and the engineering shear strain
γxy we can introduce the normal strain εzz and the shear strains γyz and γzx by considering
deformations of the elementary cube in the y, z- and the z, x-planes, respectively. In accordance
with the definitions (1.91) and (1.92) these strain components are defined as:

εzz = ∂w

∂z

γyz = ∂v

∂z
+ ∂w

∂y
(1.94)

γzx = ∂w

∂x
+ ∂u

∂z

where w is the displacement in the z-direction. The convention for subscripts in the strain
components is exactly the same as for stress components, e.g. εxx defines a normal strain
component in the x-direction and γxy represents a shear strain component in the x, y-plane.
Also the sign convention is identical: a strain component is called positive if it is related to
a positive displacement of a plane with normal in the positive direction, etc. This implies for
instance that elongation is considered positive.

Similar to the stress tensor we can now introduce the strain tensor. Again, matrix and
vector representations are possible. For the fully three-dimensional case we have the matrix
representation

E =

⎡
⎢⎣

εxx εyx εzx

εxy εyy εzy

εxz εyz εzz

⎤
⎥⎦ (1.95)

22 Non-linear Finite Element Analysis of Solids and Structures

or, noting that the strain tensor has been defined such that it is symmetric, we can write in Voigt
notation:

εT = (εxx, εyy, εzz, γxy, γyz, γzx) (1.96)

While the use of the total distortion γxy etc. is more common in the Voigt notation, the tensorial
shear strain εxy is normally used in the matrix representation. For future use we note that the
rate of the internal energy per unit volume can be expressed equivalently in Voigt notation,
direct tensor notation and index notation as:

Ẇint = ε̇Tσ = ε̇ : σ = ε̇ijσji (1.97)

In the treatment of the stress tensor the hydrostatic pressure p was introduced. Similarly, we
can introduce the volumetric strain εvol as the sum of the normal strains:

εvol = εxx + εyy + εzz (1.98)

With the aid of the volumetric strain εvol we can define the so-called deviatoric strain tensor
in a manner similar to the introduction of the deviatoric stresses:

E = E − 1

3
εvolI (1.99)

or using Voigt’s notation,

e = ε − 1

3
εvoli (1.100)

with

eT = (exx, eyy, ezz, γxy, γyz, γzx) (1.101)

In a preceding section the transformation rule for second-order tensors was derived, cf.
Equation (1.56). Using Voigt notation, these transformation rules can, for the two-dimensional
case, be written as:

σ̄ = Tσσ (1.102)

with

Tσ =

⎡
⎢⎣

cos2 φ sin2 φ 2 sin φ cos φ

sin2 φ cos2 φ −2 sin φ cos φ

− sin φ cos φ sin φ cos φ cos2 φ − sin2 φ

⎤
⎥⎦ (1.103)

with the stress tensor σT = [σxx, σyy, σxy] for plane-stress conditions. By substituting (−φ) in
the latter equation it is seen that T−1

σ = TT
σ , whence

σ = TT
σ σ̄ (1.104)

Since the engineering shear strain γxy is normally used in Voigt’s notation, we have for the
strain transformation:

ε̄ = Tεε (1.105)

Preliminaries 23

with

Tε =

⎡
⎢⎣

cos2 φ sin2 φ sin φ cos φ

sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ

⎤
⎥⎦ (1.106)

and εT = [εxx, εyy, γxy]. As for the stress transformation it holds that:

ε = TT
ε ε̄ (1.107)

1.5 Elasticity

So far, we have introduced the stress tensor and we have considered kinematic relations, i.e.
relations between displacements and strains. In Chapter 2 we will introduce the equations
of motion. To complete the field equations we need stress–strain relations, or constitutive
equations, which set a relation between the stress tensor and the strain tensor. For the simplest
constitutive model, namely isotropic, linear elasticity (Hooke’s law), the fourth-order elastic
compliance tensor Ce sets the relation between the strain tensor ε and the stress tensor σ:

ε = Ce : σ (1.108)

or in its inverse form:

σ = De : ε (1.109)

with De the elastic stiffness tensor. In Voigt notation the compliance relation can be elaborated
as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

γxy

γyz

γzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxy

σyz

σzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.110)

with E the Young’s modulus and ν the Poisson’s ratio. Equation (1.110) can be written com-
pactly as:

ε = Ceσ (1.111)

with Ce the elastic compliance matrix.

24 Non-linear Finite Element Analysis of Solids and Structures

Equation (1.110) gives the strain tensor ε as a function of the stress tensor σ. To obtain the
inverse relation we rewrite the first three equations of (1.110) as

εxx = 1 + ν

E
σxx − 3νEp

εyy = 1 + ν

E
σyy − 3νEp (1.112)

εzz = 1 + ν

E
σzz − 3νEp

Next, we add these equations and, using Equations (1.79) and (1.98) we obtain:

εvol = K−1p (1.113)

where the bulk modulus K, which sets the relation between the volumetric strain and the
hydrostatic pressure, has been introduced:

K = E

3(1 − 2ν)
(1.114)

Subsequent substitution of Equation (1.113) into Equations (1.112) and inversion yields the
elastic stiffness relation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxy

σyz

σzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

γxy

γyz

γzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.115)

where the two Lamé constants have been introduced:

λ = νE

(1 + ν)(1 − 2ν)

μ = E

2(1 + ν)
(1.116)

The latter quantity is conventionally defined as the shear modulus and is also often denoted by
the symbol G. The above stiffness relation can be written as

σ = Deε (1.117)

with De the elastic stiffness matrix. An alternative expression for this matrix in terms of the
Young’s modulus and the Poisson’s ratio can be obtained by inserting Equations (1.116) into

Preliminaries 25

Equation (1.115)

De = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.118)

1.6 The PyFEM Finite Element Library

A number of the models that are discussed in this book have been implemented in a small finite
element code named PyFEM, which is written in the programming language Python. In order
to demonstrate some features of this programming language in a numerical simulation, the
implementation of the simple non-linear calculation in Section 1.1 is discussed in this section.
The file is called ShallowTruss.py and can be found in the directory examples/ch01
of PyFEM.

Instead of giving complete code listings, we will use a notation that is inspired by literate
programming, see e.g. Ramsey (1994). A concise overview of this notation has been given
earlier in the book on page xix. Some specific details of the notation will be highlighted in this
section as well.

In literate programming the complete script can be represented as a collection of code
fragments:

〈Shallow truss example 〉≡
〈Initialisation of the calculation 25〉
〈Step-wise calculation of the equilibrium path 27〉
〈Print results 28〉

This defines a fragment 〈Shallow truss example〉. The fragment itself refers to three other
fragments, which are executed one after the other. Their function within the program can be
deduced from their names. At this moment, this is the appropriate abstraction level.

The number behind the name of the fragment indicates the page number in this book where
this fragment is discussed. Accordingly, the fragment 〈Initialisation of the calculation〉 is
discussed on page 25. The absence of a page number indicates that the fragment is not discussed
explicitly. One has to study the original source code to understand its functionality,

In the first fragment of this example, the variables that set the dimensions of the simulation
are declared:

〈Initialisation of the calculation 〉≡ 25

b = 10.
h = 0.5

26 Non-linear Finite Element Analysis of Solids and Structures

b and h represent the dimensions of the system, b and h, as specified in Figure 1.1. The number
in the right margin indicates the page number on which the fragment is mentioned before.

Obviously, the initialisation of the shallow truss example requires more than the sys-
tem dimensions. We therefore extend the fragment by defining the stiffnesses k and EA0,
Equation (1.8), by writing:

〈Initialisation of the calculation 〉+≡ 25

k = 1000.
EA0 = 5.0e6

The +≡ symbol after the fragment name indicates that this fragment augments a fragment
defined before. We can further extend the fragment by specifying the magnitude of the
incremental external force in the simulation, DF, the number of steps N, the convergence
tolerance tol, and the maximum number of iterations to reach convergence, iterMax.

〈Initialisation of the calculation 〉+≡ 26

DF = 50
N = 30
tol = 1e-6
iterMax = 5

The actual model is defined through use of the lambda function of Python:

〈Initialisation of the calculation 〉+≡ 26

from math import sqrt

l = lambda v : sqrt(b**2+(h-v)**2)
F = lambda v : -EA0*(h-v)/l(v)*(l(v)-l(0))/l(0)+k*v
dFdv= lambda v : (EA0/l(v))*((h-v)/l(v))**2+k+/

(EA0/l(v))*(l(v)-l(0))/l(0)

Please note that in this fragment we have used a function, namely the square root operator.
This function is imported from the math module. In PyFEM, we will often use functions
from the math, numpy and scipy modules. In order to limit the amount code listing in this
book, we will omit these import statements (from .. import ..) when possible. When
the origin of a function is not exactly clear, the import statement will be listed.

Subsequently, the length of the beam l and the reaction force F of the system are defined as
functions of the unknown v, see Equations (1.3) and (1.8). In the last line the derivative of the
force with respect to the unknown is given as a function of the unknown v, Equation (1.12).

Finally, the parameters that are needed during the simulation are initialised:

Preliminaries 27

〈Initialisation of the calculation 〉+≡ 26

v = 0.
Dv = 0.
Fext = 0.
output = [[0.,0.]]

The variables v, Dv and Fext represent the displacement v in the last converged solution,
the incremental displacement �v and the total external force Fext, respectively. A list of lists
output is created to store the variables that are plotted in the load–displacement curve, see
Figure 1.2.

The simulation consists of a loop over N load steps, where i is the current step number.
First a header is printed to denote the current load step. Then, the iterations are prepared in the
fragment〈Prepare iteration〉. Finally, the calculations are done in the fragment〈Iteration〉:

〈Step-wise calculation of the equilibrium path 〉≡ 25

for i in range(N):
print ’=================================’
print ’ Load step %i’ % i
print ’=================================’
print ’ NR iter : |Fext-F(v)|’

〈Prepare iteration 27〉
〈Iteration 28〉

An important feature of Python is that code blocks are defined by indentation. Code blocks
are collections of statements that are executed within an if statement, within a for statement,
or within a while loop. A block starts by indenting the code. A block ends by a reset to the
original indent. The specific Python indentation rules also apply in the literate programming
notation. In the above fragment, the new fragment 〈Prepare iteration〉 is executed within the
loop for i in range(N):, since the fragment name is indented with respect to the for
statement. The same holds for the fragment〈Iteration〉.

The preparation of the iteration consists of the update of the magnitude of the external force
Fext, and resetting the error and the iteration counter iiter:

〈Prepare iteration 〉≡ 27

Fext = Fext + DF
error = 1.
iiter = 0

The iteration itself is described in the following fragment:

28 Non-linear Finite Element Analysis of Solids and Structures

〈Iteration 〉≡ 27

while error > tol:
iiter += 1
dv = (1. / dFdv(v+Dv)) * (Fext - F(v+Dv))
Dv += dv
error = abs(Fext - F(v+Dv))
print ’ Iter’, iiter, ’:’, error

if iiter == iterMax:
raise RuntimeError(’Iterations did not converge!’)

print ’ Converged solution’
v += Dv
Dv = 0.
output.append([v, F(v)])

In this fragment, the iteration counter iiter is initially increased by 1. The new displacement
increment dv is calculated in the second line and added to the total increment of this step Dv.
The error is calculated and printed in the following lines. In order to prevent the program from
entering an infinite loop, a runtime error occurs when the number of iterations exceeds the
maximum number of iterations. When the error is smaller than a certain tolerance, a converged
solution has been found. The total displacement v is updated, and this displacement and the
current internal force are added to the output list.

The last fragment of the〈Shallow truss example〉 program prints the results:

〈Print results 〉≡ 25

from pylab import plot, show, xlabel, ylabel

plot([x[0] for x in output], [x[1] for x in output], ’ro’)

The output array is plotted using pylab (a part of the MatPlotLib package). In this
fragment, list comprehension has been used to create two new lists that contain the data for
the horizontal and the vertical axes, respectively.

For this example problem, the exact solution F is known and can be added to the plot:

〈Print results 〉+≡ 28

from numpy import arange

vrange = arange(0,1.2,0.01)
plot(vrange, [F(vval) for vval in vrange], ’b-’)
xlabel(’v [m]’)
ylabel(’F [N]’)

show()

Preliminaries 29

The exact solution has been calculated in the range 0.0 ≤ F ≤ 1.2, with increments of 0.01.
After printing the labels for the horizontal and vertical axes, the graph appears on the screen
by invoking the command show().

References

Fung YC 1965 Foundations of Solid Mechanics. Prentice-Hall.
Golub GH and van Loan CF 1983 Matrix Computations. The Johns Hopkins University Press.
Noble B and Daniel JW 1969 Applied Linear Algebra. Prentice-Hall.
Ortega JM 1987 Matrix Theory – A Second Course. Plenum Press.
Ramsey N 1994 Literate programming simplified. IEEE Software 11, 97–105.
Saad Y 1996 Iterative Methods for Sparse Linear Systems. International Thomson Publishing.

