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In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start from matrices, limiting ourselves to the case of a square matrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A A
A_ 11 An (1)
Ay Axp
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2 MATHEMATICAL FOUNDATIONS

where A;; is a number called the ijth element of matrix A. The elements
Aji (j =) are called diagonal elements. We are interested mostly in
symmetric matrices, for which A,y = Aqy. If Ay = Ayp = 0, the matrix
is diagonal. Properties of a square matrix A are its trace(tr A = A1 + Az2),
the sum of its diagonal elements, and its determinant, denoted by
|A| = det A, a number that can be evaluated from its elements by the rule:

|A| = A11A22—A12A21 (12)
Two 2 x 2 matrices can be multiplied rows by columns by the rule:
AB=C (1.3)
Ann A\ (B Bn _ Cii Ci (1.4)
A Az )\ Bai Bxn G Cn

the elements of the product matrix C being;:

Cit = AuB11+A1By, Cia=AnBi+A1By, (1.5)
Cy1 = Ay1B11 +AnByi, Cup =ABia+A»B)n. '
So, we are led to the matrix multiplication rule:
2
Cij = ZAiKBKf (16)
k=1

If matrix B is a simple number a, Equation (1.6) shows that all elements
of matrix A must be multiplied by this number. Instead, for alAl, we have
from Equation (1.2):

a1 A
alry An

aA11 aA12

alA| = a(A11Apn—AnAyn) =
Ay An

,  (1.7)

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.

We can have also rectangular matrices, where the number of rows is
different from the number of columns. Particularly important is the 2 x 1

column vector c:
c c
c= (") =1(" (1.8)
1 1)

or the 1 x 2 row vector ¢:
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5:(611 612):(61 Cz) (19)

where the tilde ~ means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

{A1161 +Apc =b

(1.10)
Axici +Anc =b,

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac=b (1.11)

where ¢ and b are 2 x 1 column vectors.

Equation (1.10) is a system of two algebraic equations linear in the
unknowns c1 and ¢,, the elements of matrix A being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to ¢ through a number A:

Ac=ic (1.12)

which is known as the eigenvalue equation for matrix A. A is called an
eigenvalue and c an eigenvector of the square matrix A. Equation (1.12) is
equally well written as the homogeneous system:

(A—i1)c=0 (1.13)

where 1 is the 2 x 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2 x 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

{ (A11—/1)C1 +A1¢c, =0 (1.14)

Az + (Azz—l)(:z =0

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

An—4  An

A—J1| =
Ay Axp—A

=0 (1.15)

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain
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for a symmetric matrix A:
(Aj1=2)(Ap—2)—Ap* =0 (1.16)
giving the quadratic equation in A:
P—(An+Ap)i+ AnAn—Ap* =0 (1.17)

which has the two real' solutions (the eigenvalues, the roots of the
equation):

_An+An A
A A )
(1.18)
_AutAn A
B 2 2
where A is the positive quantity:
2 2112
A= [(AZZ—AH) F4AL, } >0 (1.19)

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

1/2 1/2
B <A+(A22—A11)> _ (A—(AZZ—A11)>
m=|——, a=|—FF""-

2A 2A
(1.20)
12 12
[ A-(An—An) (A +(An—An)
il e B

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2 x 2 square matrices:

A O c c
A= 7) c=(a )= " " (1.21)
0 A4 €1 €22

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the row matrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

CAC=A, CC=CC=1 (1.22)

This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18-20) simplify noticeably in the case Ay, = A1 = a. Then,
putting A = Ay = B, we obtain:

/11 :a—i—B, )Q:a—ﬁ
1/v2 —1/V2 (1.23)
C1 = , C =
1/V2 1/V2
Occasionally, we shall need to solve the so called pseudosecular
equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ap1—24 Ap—AS

Ac = Sc= |A—AS| =
Ay =S Axp—J

=0 (1.24)

where S is the overlap matrix:

Sit S 1 S
R el (1.25)
S$21 S S 1
Solution of Equation (1.24) then gives:

P A +An-2ApS A
b 2(1-82) 2(1-82)

P A1 +A»n—2A,S8 n A
2 2(1-82) 2(1-82)

(1.26)

1/2
A= [(AZZ—AM)Z +4(A12—A118)(A12—A228)} >0 (1.27)

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for Ay = Aj; = @ and Ay; = Ay = B:

>The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an
orthogonal matrix.
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a+p “12 ~12
M 118’ C11 (2 + ZS) , €21 ( + S)
(1.28)
ly = —(1[_’[;7 e =—(2-28)""7 cy=(2-287"?

under these assumptions, these are the elements of the square matrices A
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

CAC=A, CSC=CSC=1 (1.29)

so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.

All previous results can be extended to square symmetric matrices of
order N, in which case the solution of the corresponding secular equations
must be found by numerical methods, unless use can be made of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues
\ . c . .
(41 42) and eigenvectors <c1 ), (Equations 1.23), of the symmetric

2

matrix A of order 2 with Ay = Ajy = a and Ay; = A, = B.
In fact, Equation (1.17) can be written:

(A=2)(Ja—=2) = Ada—(h1+22)i+ 12 =0 (1.30)

so that:
Iy = Al1Ap—Ap® = a?—p* = detA (1.31)
M+l =A11+A»n =2a=trA (132)

In Equation (1.17), therefore, the coefficient of 1°, the determinant of
matrix A, is expressible as the product of the two eigenvalues; the
coefficient of 2, the trace of matrix A, is expressible as the sum of the
two eigenvalues.

From the eigenvectors of Equations (1.23) we can construct the two
square symmetric matrices of order 2:
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S 11
V2 1 1 2 2
Pi=c¢ = 1 (72 \/_§> = 11 (133)
/2 2 2
1 1
V2 1 1 2 2
P2 =CC = 1 ( \/z \/Z) = B 1 1 (1.34)
N 2

The two matrices P; and P, do not admit inverse (the determinants of
both are zero) and have the properties:

1 1y /11 11
2 212 2 2 2
P’ = = =P 1.35
RN EUEE I FEEE il FUET I
2 2 2 2
1 1 1 1 1 1
2
P2 = = =P 1.36
2 11 1 1 1 1 > (1.36)
2 2
11 1 1
2 2 2 2 0 0
PP — - —0 1.37
S P | I 7
2 2 2 2

P,P; = (1.38)

|
| —
| —
(NS
N = N =
o =
Il
/N
oS O
~_
Il
(=)

N =
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o] =
N =
o
[\

P, +P Oy (1.39)
+P, = + = = .
1 2 0 1

N =
—_
N =
—_

In mathematics, matrices having these properties (idempotency, mutual
exclusivity, completeness®) are called projectors. In fact, acting on matrix
C of Equation (1.21)

Pi;C =Pic1 +Pica = ¢4 (140)
since:
D[ (1 11y 1
2 20| v2 22 2V2 V2
P = = = = 1.41
DU T B 11 11 1 ¢ (141)
22 )\va) \2at2a]
1 1 1 11 +1 1
13| v 22 va | g,
Pic, = = = =0
1 1 1 11 +1 1 0
2 V2 22 22

(1.42)

so that, acting on the complete matrix C of the eigenvectors, Py selects its
eigenvector ¢y, at the same time annihilating c,. In the same way:

P,C =Pyc1 +Prcp = ¢ (1.43)

This makes evident the projector properties of matrices Py and P,.
Furthermore, matrices P; and P, allow one to write matrix A in the so-
called canonical form:

A = }\,1]_)1 +12P2 (144)

3Often referred to as resolution of the identity.



PROPERTIES OF EIGENVALUES AND EIGENVECTORS 9

Equation (1.44) is easily verified:

11 11

2 2 2 2
P+ 2,P; = (a —|—B) 11 + (OZ—B) 1 1

2 2 2 2

(1.45)
a+fB n a—pB a—l—B_a—B

2 2 2 2 a B
- a+B a-p a+B+a—B :<B a>:A
2 2 2 2

The same holds true for any analytical function*F of matrix A:
F(A) = F(71)P1 + F(72)P, (1.46)

Therefore, it is easy to calculate, say, the inverse or the square root of
matrix A. For instance, we obtain for the inverse matrix (F="1):

1 1 1 B 1
2(a+B) 2(a+p) 2(a—B)  2(a—p)

TP AP = . 1 + . .
2(a+B) 2(a+p) " 2(a—B) 2(a—P)

1 ((a—ﬁ)+(a+l3) (a—B)—(a+B)>: 1 <2a —2/3>
2(a2=B*) \ (a—B)—(a+B) (a—B)+(a+B)) 2(2-B)\-28 2a

o 1 a 76 a1
22 (ﬁ o ) =A

and we obtain the usual result for the inverse matrix (A"'A=AA"'=1).
In the same way, provided /7; and v/2; are positive, we can calculate the
square root of matrix A(F =/ ):

VA = Ja+BP; +a—BP,

(1.47)

A+B A-B
1 (VaTB+vaB Vaip-vap)_| * 2 (1.48)
2\ VatB-va—B VatB+ap A-B A+B

2

4 . . . . .
Any function expressible as a power series, e.g. inverse, square root, exponential.
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where we have put:

A=y/a+B, B= /a-P (1.49)

Then, we can easily check that:

\/K\/K:1<A+B A—B><A+B A—B)

4\ A-B A+B)\ A-B A+B
1{(A+B)*+(A-B)* 2(A2—B?)
_Z< 2(A2—B?) (A—B)2+(A+B)2>
1(2(A2+BZ) 2(A2—B2)) 1 <4a 4,8) a
4\ 2(A*-B?) 2(A*+B?) 4\ 48 4a

(1.50)

as it must be. These examples show how far we can go when eigenvalues
and eigenvectors of a symmetric matrix are known.

1.3 VARIATIONAL APPROXIMATIONS

For our description of atoms and molecules, we rely on the orbital model,
where atoms or molecules are described by one or more point-like
positively charged nuclei surrounded by a cloud of negatively charged
electrons, whose density is distributed in space in terms of atomic orbitals
(one-centre, AOs) or molecular orbitals (multicentre, MOs) #(r), one-
electron wavefunctions, such that

|yp(r)[*dr (1.51)

gives the probability of finding at dr an electron in state {s(r), provided ¥(r)
satisfies the normalization condition:

Jdr|lp(r)|2 —1 (1.52)

the integration being extended over all space. The AOs are functions of the
space point r in the three spherical coordinates (7, 0, ¢) that depend on the
three quantum numbers 7, [, 7 and have radial and angular dependence.
As well known, they are classified as 1s, 2s, 2p, 3s, 3p, 3d, etc. and we shall
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olNee]

f=0 f=1

PN ST e
LXJ \X,ﬁ

Figure 1.1 Polar diagrams of the angular part of s, p, d, and f AOs with m=0.
Reprinted from Magnasco, V., Methods of Molecular Quatum Mechanics: An
Introduction to Electronic Molecular Structure. Copyright (2009) with permission
from John Wiley and Sons
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Figure 1.2 Schematic drawing of the formation of an sp hybrid AO

assume that they are real regular’ functions showing an exponential
(Slater-type, STO) or gaussian (GTO) radial decay. Figure 1.1 shows
schematically the polar diagrams of the angular parts of s, p, d, and f AOs
with [ = 0,1, 2, 3, respectively, and m =0.

Hybrid orbitals are AOs mixed on the same centre (e.g. s and p).
Figure 1.2 sketches the formation of an sp hybrid directed along the z axis
(right of the figure) from the mixing of a spherical 2s orbital with a 2p.
orbital (left of the figure). Because its form is nonsymmetric with respect to
the nucleus on which it is centred, the hybrid AO acquires an intrinsic
dipole moment, called by Coulson (1961) the atomic dipole, which is very
important in the theoretical interpretation of the observed dipole moment
in the molecule (see the case of first-row hydrides in Chapter 2). We are not
interested in further details about AOs here, but more can be learned
elsewhere (Magnasco, 2007, 2009a).

The AOs are obtained by solving some kind of differential Schrodinger-
type eigenvalue equation, which for a single electron can be written:

Hy = sy (1.53)

3 A regular function is a mathematical function satisfying the three conditions of being: (i) single-
valued; (ii) continuous with its first derivatives; and (iii) quadratically integrable, i.e. vanishing at
infinity.
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where H = T + Vs the total (kinetic + potential) energy or Hamiltonian
operator®, i a wavefunction (the eigenfunction of Equation 1.53), and &
(the eigenvalue) an orbital energy. In our model, H will be replaced by a
symbol H, where we suppress the caret characterizing the operator.

Since equations as (1.53) are difficult to solve exactly, practically all
results in the applications of quantum mechanics to chemistry rely on a
general method of approximation due to Rayleigh and known as the
variational method (Magnasco, 2007, 2009a), which we summarize
briefly in the following.

Let ¢ be a normalized” regular trial (or variational) function. We define
the Rayleigh ratio as the functional:®

oo =[x @@ He(x) _ (¢|Hlo)
Jdxe*(x)e(x)  (¢le)

where x are the electronic coordinates, ¢*(x) the function complex
conjugate to ¢(x), and H the Hamiltonian of the system. In the last term
on the right-hand side of the equation we have introduced the so-called
Dirac notation for the integrals. Then, the Rayleigh variational principle
states that, if E is the #rue energy of the ground state (the state of lowest

energy):

(1.54)

ele] > Eo (1.55)

In other words, any approximate energy must lie above the true energy
of the ground state, giving an upper bound to the electronic energy.
Variational approximations to energy and wavefunction can then be
simply worked out by introducing some variational parameters {c} in the
trial function ¢, then evaluating the integrals in the functional (1.54), in
order to obtain an ordinary function of the parameters {c} that can be
minimized against these parameters. Therefore, for a single parameter c:

“aetne 0T

The necessary condition for the minimum of &(c) will be:

de
EZ 0= cmin (1.57)

&le]

®An operator is a rule changing a regular function into another one, and is denoted by the caret
sign M.

7A function satisfying Equation (1.52).

8A function of function ¢(x).
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an algebraic equation which must be solved for the best value of parameter
¢, giving in this way the best variational energy and wavefunction.

The most interesting application for our purposes is to construct MOs
by the linear combination of atomic orbitals (LCAO) method, where the
variable parameters are the coefficients of the linear combination of some
basic orbitals {y}’ (Ritz method). It can be shown that, in this case, the best
orbitals are obtained by solving the eigenvalue equation for mairix H:

Hc=ec= (H-£l)c=0 (1.58)
where:
H; = (xilHIx;), Si= xilx;) =8 (1.59)

For molecules, all elements of matrix H are negative numbers.
The homogeneous system (Equation 1.58) has nontrivial solutions if and
only if:

H-e1| =0 (1.60)

The solution of the secular equation (1.60) for our simple case of a2 x 2
symmetric matrix H (a basis of two AOs) yields as best values for the
variational energy the fwo real roots (eigenvalues) €1 and &;, that are
usually written in ascending order, with the corresponding #two eigen-
vectors ¢; and ¢, determining the #wo molecular orbitals ¢; and ¢,
(Equations 18-20 with 1 = &, or the simpler Equations 1.23 when the
diagonal elements are equal):

1< &
C1,C (1.61)
L1, P2

& < 0 means bonding, ¢ > 0 means antibonding, with a corresponding
notation for the resulting MOs.

The same procedure can be applied to find approximations to the
second-order energy E, of Section 4.2 of Chapter 4 in the context of the
Hylleraas variational method (Magnasco, 2007, 2009a), as we shall
illustrate in the simple case of two functions. We start from a convenient
set of basis functions y written as the (1 x 2) row vector:

x=0M x2) (1.62)

°Assumed normalized and orthogonal to each other, namely (xilx;) = 8ij, where & is the
Kronecker’ symbol (=1 for j = i,= 0 forj # i).
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possibly orthonormal in themselves but necessarily orthogonal to . We
shall assume that:

x'x=1, x'¢py=0 (1.63)

If the xs are not orthogonal they must first be orthogonalized by the
Schmidt method (Magnasco, 2007). Then, we construct the matrices:

M = x(Ho—Eo)x (1.64)
the (2 x 2) Hermitian matrix of the excitation energies, and:
b= x (Eio) (1.65)

the (2 x 1) column vector of the transition moments.
By expanding the first-order function ¢, in the finite set of the ys, we can
write:

2
¥ =xC =) x.C (1.66)
k=1
E; =C'MC+Clp+p'C (1.67)
which is minimum for:

SEZ -1
ﬁ:MC+u:0=>C(best) =-M'n (1.68)
giving as best variational approximation to the second-order energy E,:
E;(best) = —p M (1.69)

The symmetric matrix M can be reduced to diagonal form by a unitary
transfomation'’U among its basis functions x:

y=xU, UMU=¢e U'p=y, (1.70)

where € is here the (2 x 2) diagonal matrix of the (positive) excitation

energies:
&1 0
€= (1.71)
0 &)

1A unitary matrix U satisfies U™! = U, where U™! is the inverse and UT = (U)* the adjoint
matrix (Magnasco, 2007). A matrix is said Hermitian if U = U". For real elements, unitary and
orthogonal matrices coincide, so that we can use either of them indistinctly.
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The s are called pseudostates, and give best E, in the form:

2 a 2
Ez(best) _ _p‘;};silp‘l[/ _ Z |<¢’K|I_f)1|¢’0>| (172)
k=1

K

which is known as sum-over-pseudostates expression. Equation (1.72)
has the same form as the analogous expression that would arise from the
discrete eigenstates of Hy, but with definitely better convergence prop-
erties, reducing the infinite summation to a sum of a finite number of
terms, and avoiding the need of considering the contribution from the
continuous part of the spectrum (Magnasco, 2007).

1.4 ATOMIC UNITS

To get rid of all fundamental physical constants in our mathematical
formulae we shall introduce consistently a system of atomic units (au), by
putting:

e=h=m=4ng) =1 (1.73)

The basic atomic units are obtained from the SI values of the
fundamental physical constants given in Table 1.1 (Mohr and Taylor,
2003).

The basic au of charge, length, energy and time are then expressed by:

Charge e=1.602176 x 107" C

hz
Length, Bobr  ag=4neg—— = 5291772 x10""'m
me

1 &2 18 (1.74)
Energy, Hartree Ej, = —=4.359744 x107°°]
47'[80 ao
. b _17
Time T=—=2418884 x10"""s
Ej,

When the atomic unit of energy is referred to molar quantities, we have
the different SI equivalents:

N4E), = 2625.499k] mol ' =27.21138 eV mol
—219.4746 x 10> cm~ ! mol ™' = 315.774 6 x 10° K mol !
(1.75)
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Table 1.1 Fundamental physical constants

Physical quantity Value in SI units
Elementary charge e=1.602176 x 107 C
Electron mass m=9.109382 x 103! kg
Reduced Planck’s constant h=1.054572x1073*]s
Vacuum permittivity 4meg =1.112650] 1 C* m™!
Light velocity in vacuum €=2.997925 x 108 ms~!
Avogadro number Ny = 6.022 142 x 10** mol !
Boltzmann constant k=1.380650x 1072 JK!

with the submultiples:

107°E;, = mE, [milliHartree] (1.76)

107°E;, = uE, [microHartree] (1.77)

etc. The milliHartree is the characteristic unit for the energy of the
chemical bond, the microHartree is that for the energy of the Van der
Waals bond. The hydrogen bond has an intermediate energy, correspond-
ing to that of a weak chemical bond.

The basic au for dipole, quadrupole and octupole electric moments are
given as:

Dipole moment, eag =8478x1073°C xm

=2.542 x 10 "® esu x cm = 2.542D
Quadrupole moment, eao? = 4.486 x 107" C x m?

= 1.345 x 10 * esu x cm? = 1.345 B
Octupole moment, eap> = 2.374 x 107°°C x m?

= 7117 x 107 esu x cm?®

(1.78)

In the expressions above, D is the Debye unit of electric dipole moment,
and B the Buckingham unit for the electric quadrupole moment.

At the end of a calculation in atomic units, as we shall usually do,
the actual SI values can be obtained by taking into account the SI
equivalents (1.74) and (1.78). As an example, we give below the
calculation of the SI equivalent of the Hartree unit to seven significant
figures:
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1 &2 me*

B 4neo ag - (47‘680)2h2

E),

9.109 382 x 1073! x (1.602176 x 10~ %)* kg C*
(1.112 650 x 1071%)% x (1.054 571 x 1073*)* C* m~2 J* s2

= 4359744 x 10718 .
(1.79)

1.5 THE ELECTRON DISTRIBUTION IN MOLECULES

The one-electron spatial function P(r) describing the distribution of the
electrons (the electron density) in the doubly occupied MO ¢ (r):

(1) + 7xp (1)
(r) = xa(r)ea+ xp(r)cs = Xﬂﬂ—zﬁ (1.80)

where A = cp/ca denotes here the polarity parameter of the bond orbital
and S = (x4|xg) the overlap integral, is simply given by:

P(r) = p*(r) + P (x) = 2 ()" (1) = 2| (x)[* (1.81)

the factor 2 comes from the equal contribution of electrons with either
spin (@ = spin-up, 8 =spin-down).

The electron density can be further analysed in terms of elementary
contributions from the AOs, giving the so-called population analysis,'!
which shows how the electrons are distributed between the different
atomic orbitals in the molecule. We obtain from Equation (1.81):

P(E) = qaxa () + @i (0) + qap ANy g XA )

(r)xp(r) and XB(T)SXA(T) are

where x4(r) and x3(r) are atomic densities, X4
overlap densities, all normalized to 1, while the coefficients:

2 272

I 1.83
12+ PPT1i2rus (1.83)

qa

" The extension to N-electron LCAO-MO wave functions is due to Mulliken (1955).
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are atomic charges, and:

228
= = - 1.84
9dAB = qBA 142128 ( )
overlap charges. The charges are normalized so that:
2422 +4I8
dA T4B T qAB T 4BA 142128 ( )
the total number of electrons in the bond orbital ¢(r).
For a homopolar bond, /. = 1:
1 S
= —_— p— = 1.
90 =98 =7 g 94 =9qBA =g (1.86)

so that for § > 0, in the bond, the charge on the atoms is decreased,
electrons being transferred to the region between nuclei to an extent
described by g4z and qpa. This reduces internuclear repulsion and means

bonding.
Forabeteropolarbond, /. # 1,and we define gross chargeson A and B as:
24278
—gidauap = 2T 1.87
Q4 =datdas = 7008 (1.87)
277 +218
gt qps = T 1.88
OB = qB+qsa T 212 (1.88)
and formal charges on A and B as:
8a=1-0a = r1 (1.89)
AT AT 2 ws '
’\2
A—1
op=1-Qp=—— "~ 1.90
=10 = T s (1.90)

If 2>1,84=86>0, 6g=—-84= -6 <0, and we have the dipole
AT°B™® (e.g. the LiH molecule).

In our model, an essential role will be assigned to the exchange-overlap
densities (Magnasco and McWeeny, 1991; Magnasco, 2007,2008,2009a):

Xa(Oxp()=Sxa(r),  xp(r)xa(r)—Sxz(r) (1.91)

which have the properties:

jdrm<r>xB<r>—SXi<r>1 o0, jdrmu)“(r)—s»(%(r)] —0 (1.92)
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1.6 EXCHANGE-OVERLAP DENSITIES AND THE
CHEMICAL BOND

This section aims to illustrate the origin of the quantum mechanical
exchange-overlap densities and their different behaviour in the case of
the chemical bond in ground state H, and the Pauli repulsion in He,.
We choose as starting point for the 12; ground state of the systems
the normalized Heitler-London (HL) wave functions (Magnasco,
2008):

W(H,) = llabl| +|bal| _ a(r1)b(rz) +b(r1)a(rs) a(s1)B(s2)—Blst)als2)

V24282 V24282 V2

(1.93)

W(Hey) = |laabbl|| = ||a(r1)a(si) a(r2)B(s2) b(r3)a(s3) b(rs)B(sa)l|
(1.94)

where r and s are space and spin variables, the bar denotes 8 spin,
a(r) = 1sa(r) and b(r) = 1sg(r) are AOs centred at A and B, the
double bar standing for a normalized Slater determinant (Magnasco,
2007, 2009a)'?.

If x = rs denotes the space-spin variable, we recall from first principles
(Magnasco,2007,2009a) that, for a normalized N-electron wavefunction
satisfying the Pauli antisymmetry principle, the one-electron density
function is defined as:

p(x;x) = Ndede3 e dxnP(x, X2, L xXN)PT(X, X2, 0, XN)

(1.95)

where the first set of variables in p comes from W, the second from P*. The
physical meaning of p is:

p(x;x)dx = probability of finding an electron at dx (1.96)

where dx = drds is an elementary volume at a fixed point in space-spin
space. In this way, p determines the probability distribution in space of

21t should be remarked that, while the Heitler-London function (1.93) for H, is a two-
determinant wave function, the Heitler—-London function (1.94) for He; is a single determinant
wave function, so that in this case HL and MO approaches coincide.



20 MATHEMATICAL FOUNDATIONS

electrons of either spin. If:
p“(r;)dr = probability of finding at dr an electron with spin &
{ pP(r;r)dr = probability of finding at dr az electron with spin 8
(1.97)
with p%(r;1) = p%(r) and pP(r;r) = pP(r) the (spatial) coefficients of

a(s)a*(s) and B(s)B*(s) in p, the (spatial) electron density, as observed
from experiment, is defined as:

P(r;r) = p*(r;1) + P (1;1) (1.98)

The electron densities for the 12g+ states of H, and He; resulting from
these Heitler-London wave functions are then:

P(rsr) = p(r57) + pP (1)
_a(r)a*(r) + b(r)b*(r) + Sla(r)b*(r) + b(r)a*(r)]  (1.99)
B 1+82

for the two-electron system H,, and:

P(r;r) = p®(r;1) + pP(r;1)
a(r)a*(r) + b(r)b* (r)—S[a(r)b*(r) + b(r)a*(r)] (1.100)

=2 1-82

for the four-electron system He,.

We give in detail below the calculation of the electron density for the
Heitler-London wavefunction (1.93) of ground state H,, when a(r), b(r),
a(s), B(s) are all normalized to one:

a(r)b(r2)+b(r1)a(r2)  a(s1)B(s2)—B(s1)a(s2)
2+282 V2

[a(r1)b(r2) +b(r1)a(r2)]" [a(s1)B(s2)—B(s1)a(s2)]”

V24282 V2
la(r1)b(r2)+b(r1)a(r)] Jd [a(s1)B(s2)—B(s1)e(s2)]
[a* (r1)b" (r2) +b*(r1)a* (r2)] 2[01*(51)B*(SZ)*ﬁ*(Sl)a*(SZ)]

_a(ry)a’(ry) +b(r1)b*(rliiigzz(rl)b*(rl)—i—b(n)a* (r1)] (s )ar (51) 4808 ()]

p(X1§X1):2JdX2

:(2+2$2)_1Jdr2
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so that:

a(ry)a”(r1) +b(r1)b* (r1) +S[a(r1)b" (r1) +b(r1)a" (r1)]
24282

p®(risry)=pP(rysry)=
(1.101)

and we obtain the result of Equation (1.99) if we leave out the now useless
suffix 1 on the space-spin variables.

(i) The 12g+ state of H, (two-electron interaction)
The spinless 1-electron density (Equation 1.99) satisfies the conserva-
tion relation:

JdrP(r; M) =2 (1.102)

the total number of electrons in Ho.
Using the identity:
(1+8) "' =1-82(1+8)"! (1.103)

we see that the electron density (real orbitals) can be partitioned into:

S

P(r;r) = [a*(r) + b2 (r)]| + s { [a(r)b(r)—Sa*(r)] + [b(r)a(r)—Sb*(r)] }

— Pcb (1‘;1‘) +P€xch—ov(r;r)
(1.104)

where:

P (r;r) = a*(r) + b*(r) = P(r;r) (1.105)
is the quasi-classical contribution to the molecular density, and:

FSSZ { [a(r)b(r)—Sa* ()] + [b(r)a(r) —Sb* (r)] } =P'(r;r)

(1.106)

Pexch—ov (I‘; 1‘) —

the quantum mechanical exchange-overlap (or interference) density.
Equations (1.105) and (1.106) satisfy the relations:

JdrPCl (r;1) = Jdr[az(r) B2 (r)] =2 (1.107)
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the number of electrons in the H, molecule, and:

[arpe-or(es)

s | ar{ b -2 O] + b0a-5220]} (1 108)
S

= (25-29)=0

in agreement with Equations (1.92). However, the energy changes asso-
ciated with the quantum mechanical exchange-overlap component
(Equation 1.106) of the interaction energy are the greatest contributors
to the energy of the chemical bond (see Table 1.2).

Equations (1.105) and (1.106) are the Heitler-London counterpart of
the corresponding quantities (Equations 3.4 and 3.5 on page 340 of
Ruedenberg’s paper (1962), which refers to a LCAO-MO wave function.
Ruedenberg calls Equation (1.106) ‘the modification of the quasi-classical
density due to the interference effect’, while we, more literally, speak of
exchangela(r)b(r)], [b(r)a(r)] and overlap[—Sa*(r)], [-Sb?(r)] densities.

Finally, it is worth noting that, while:

qa’=q," =1 (1.109)

is the classical electron charge on separate A and B (one electron on each H
atom),

exch—ov __ S

Ipa 1482

is the fraction of electronic charge transferred in the bond region, due to what
Ruedenberg calls the ‘constructive interference’, and which means bonding.

exch—ov __

o >0 (1.110)

Table 1.2 Optimized bond energies and their components (10~°E,) for ground
state H,

R/ag AE AEexch—ov AE('S,)
1 15.85 —104.43 ~88.58
1.2 -9.93 —119.03 —128.96
1.4 ~19.42 ~119.63 ~139.05
1.6 —21.83 —112.54 —134.37
1.8 ~21.08 ~101.60 ~122.68
2 ~18.99 ~89.02 ~108.01
4 ~1.68 ~9.68 ~11.36
6 —0.06 —-0.45 -0.51
8 ~0.00, ~0.01; ~0.01,
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So, a complete equivalence exists between our notation (Magnasco and
McWeeny, 1991; Magnasco, 2004a, 2007, 2008, 2009a) and that of
Ruedenberg (1962).

(i1) The 12; state of He, (four-electron interaction)
The same argument can be applied to the electron density (Equa-
tion 1.100), which satisfies the conservation relation:

JdrP(r;r):4 (1.111)
the total number of electrons in He,.
Using the identity:
(1-8*)"' =1+ 82(1-8*)" (1.112)
the electron density (real orbitals) can be partitioned into:

P(r;r) =2 [a(r) + b2(r)] - ﬁSSZ {[a(e)b(r)—Sa(5)] + [b(r)a(r) ~Sb(x)] }

— peb (I‘;l‘) _'_Pexchfov (1‘;1‘),
(1.113)

where:
P (r;r) =2[a?(r)+b*(r)] =P (r;r) (1.114)
is the quasi-classical contribution to the molecular density, and:

pexch—ov (I" I‘) —
Y

28

= _1——82{ [d(r)b(r)—saz(r)] + [b(r)a(r)_Sbl(r)] } — Pl(r;r) (1.115)

the quantum mechanical exchange-overlap (or interference) density.Even
in this case it is evident that:

Jdrpd(r;r):4 (1.116)

JdrPebe_OU(r;r) =0 (1.117)

While the ‘exchange-overlap’ (or ‘interference’) density still does not
give any contribution to the electron population, it is now at the origin of
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Table1.3 Optimized Pauli repulsions and their components (10~>E,,) for the He-He
interaction in the medium range

Rla, AE® AEexch=ov AE('S,")
2 ~27.28 163.90 136.62
2.5 ~7.55 50.22 42.67
3 -1.93 14.89 12.96
3.5 ~0.47 4.27 3.80
4 ~0.11 1.18 1.07
4.5 —0.02 0.32 0.30
5 ~0.005 0.08 0.075

the strong repulsion occurring at short range between two neutral He
atoms (Pauli repulsion, see Table 1.3), since in this case:

exch—ov __ _exch—ov _ 28

dap ~ =49pax = 1—Sz<0 (1.118)

so that, now, electrons escape from the region between the nuclei, giving
what Ruedenberg calls ‘a destructive interference’. The same behaviour
occurs for the triplet °3," excited state of H,.

Hence, we conclude, first, that there is a complete equivalence between
Ruedenberg’s (1962) and our formulation (Magnasco and McWeeny,
1991; Magnasco,2004a,2007,2008,2009a) in terms of quantum densities,
and, next, that the different behaviour of the quantum ‘exchange-overlap’
(or ‘interference’) density for the '3 g+ states of H, (chemical bonding) and
He, (Pauli repulsion) is evident from the opposite signs of the g5i#~°* terms
occurring in H, and He,. The latter originate the main contribution to the
respective AE®*=°” components of the bond energy in H, (attractive
contribution) and of the Pauli repulsion in He, (repulsive contribution).

Numerical values of the interaction energies for these Heitler—-London
wavefunctions, taken from Magnasco (2008), are given in Tables 1.2
and 1.3. The energies are optimized variationally with respect to the
values of the orbital exponents ¢ of the atomic 1s STOs on A and B.

It can be seen from Table 1.2 that the optimized value resulting for the
bond energy of H, at the equilibrium bond length,
AE('S,") = —139.05 x 10°E, at R, = 1.40ay, is within 80% of the
theoretical value AE6(1§g+) = —174.45 x 1073E,, given by Wolniewicz
(1993) in his accurate calculation using a 279-term expansion in sphe-
roidal coordinates for the two electrons, including powers of the inter-
electronic distance. It must be admitted that our results are particularly
satisfying for such a simple wavefunction!



EXCHANGE-OVERLAP DENSITIES AND THE CHEMICAL BOND 25

The He-He optimized Pauli repulsion at medium range resulting from
Table1.3atR = 3ao,AE(12 ) = 12.96 x 1073E,, turns out to be within
96 % of the accurate result AE(12 ) = 13.52 x 107 °E,, obtained by Liu
and McLean (1973) from an accurate SCF Hartree—Fock calculation using
a 453p2d 1fbasis of STOs on each centre. At R = 44y, the optimized result,
AE(12 ) =1.07 x 1073E,,, is still within 80% of the accurate value
given by the same authors, AE(12 ) =1.35 x 1073E,,. Apparently, our
results would be even better when compared with experiment'? (Feltgen
et al., 1982), but in this case we must expect that our SCF values,
underestimating the interaction, compensate in part for the effect of the
attractive London forces not considered in the calculation.

These numerical results confirm the validity of our simple analysis
based on the exchange-overlap densities either for the chemical bond (H,)
or the Pauli repulsion (He-He). Even at the simple MO level, which we
know to behave correctly in the bond region (Magnasco, 2007, 2009a), a
model representing at its best such quantum densities in terms of the single
one-electron Hiickel parameter [(8—aS) /(1 + S)] < 0 (Magnasco, 2004a)
is expected to give a qualitatively correct representation of the chemical
bond and its properties. This is what we want to present in the next
chapter.

30ur calculated value at R = 3.5a9 would exceed by less than 2% the experimental value of
AE = 3.74 x 1073E,.






