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In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start frommatrices, limiting ourselves to the case of a squarematrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A ¼ A11 A12

A21 A22

 !
ð1:1Þ
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where Aij is a number called the ijth element of matrix A. The elements
Aii (j ¼ i) are called diagonal elements. We are interested mostly in
symmetric matrices, for which A21 ¼ A12. If A21 ¼ A12 ¼ 0, the matrix
is diagonal. Properties of a squarematrixA are its traceðtrA ¼A11þA22Þ;
the sum of its diagonal elements, and its determinant, denoted by
Aj j ¼ detA; a number that can be evaluated from its elements by the rule:

jAj ¼ A11A22�A12A21 ð1:2Þ
Two 2� 2 matrices can be multiplied rows by columns by the rule:

AB ¼ C ð1:3Þ

A11 A12

A21 A22

 !
B11 B12

B21 B22

 !
¼ C11 C12

C21 C22

 !
ð1:4Þ

the elements of the product matrix C being:

C11 ¼ A11B11 þA12B21; C12 ¼ A11B12 þA12B22;

C21 ¼ A21B11 þA22B21; C22 ¼ A21B12 þA22B22:

(
ð1:5Þ

So, we are led to the matrix multiplication rule:

Cij ¼
X2
k¼1

AikBkj ð1:6Þ

If matrixB is a simple number a, Equation (1.6) shows that all elements
of matrix Amust be multiplied by this number. Instead, for a|A|, we have
from Equation (1.2):

ajAj ¼ aðA11A22�A12A21Þ ¼
aA11 aA12

A21 A22

�����
����� ¼ aA11 A12

aA21 A22

�����
�����; ð1:7Þ

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.
We can have also rectangular matrices, where the number of rows is

different from the number of columns. Particularly important is the 2�1
column vector c:

c ¼ c11

c21

 !
¼ c1

c2

 !
ð1:8Þ

or the 1� 2 row vector ~c:
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~~c ¼ c11 c12ð Þ ¼ c1 c2ð Þ ð1:9Þ
where the tilde � means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

A11c1 þA12c2 ¼ b1

A21c1 þA22c2 ¼ b2

(
ð1:10Þ

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac ¼ b ð1:11Þ
where c and b are 2� 1 column vectors.
Equation (1.10) is a system of two algebraic equations linear in the

unknowns c1 and c2, the elements of matrixA being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to c through a number l:

Ac ¼ lc ð1:12Þ
which is known as the eigenvalue equation for matrix A. l is called an
eigenvalue and c an eigenvector of the squarematrixA. Equation (1.12) is
equally well written as the homogeneous system:

ðA�l1Þc ¼ 0 ð1:13Þ
where 1 is the 2� 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2� 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

ðA11�lÞc1 þA12c2 ¼ 0

A21c1þðA22�lÞc2 ¼ 0

(
ð1:14Þ

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

jA�l1j ¼ A11�l A12

A21 A22�l

�����
����� ¼ 0 ð1:15Þ

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain
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for a symmetric matrix A:

ðA11�lÞðA22�lÞ�A12
2 ¼ 0 ð1:16Þ

giving the quadratic equation in l:

l2�ðA11 þA22ÞlþA11A22�A12
2 ¼ 0 ð1:17Þ

which has the two real1 solutions (the eigenvalues, the roots of the
equation):

l1 ¼ A11 þA22

2
þ D

2

l2 ¼ A11 þA22

2
�D
2

8>>>><
>>>>:

ð1:18Þ

where D is the positive quantity:

D ¼ ðA22�A11Þ2 þ 4A12
2

h i1=2
> 0 ð1:19Þ

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

c11 ¼ DþðA22�A11Þ
2D

 !1=2
; c21 ¼ D�ðA22�A11Þ

2D

 !1=2

c12 ¼ � D�ðA22�A11Þ
2D

 !1=2
; c22 ¼ DþðA22�A11Þ

2D

 !1=2

8>>>>>><
>>>>>>:

ð1:20Þ

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2� 2 square matrices:

L ¼ l1 0

0 l2

 !
; C ¼ c1 c2ð Þ ¼ c11 c12

c21 c22

 !
ð1:21Þ

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the rowmatrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

~CAC ¼ L; ~CC ¼ C~C ¼ 1 ð1:22Þ

1This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18–20) simplify noticeably in the caseA22 ¼ A11 ¼ a. Then,
putting A12 ¼ A21 ¼ b, we obtain:

l1 ¼ aþb; l2 ¼ a�b

c1 ¼ 1=
ffiffiffi
2

p

1=
ffiffiffi
2

p
 !

; c2 ¼
�1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
 !8><

>: ð1:23Þ

Occasionally, we shall need to solve the so called pseudosecular
equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ac ¼ lScY jA�lSj ¼ A11�l A12�lS

A21�lS A22�l

�����
����� ¼ 0 ð1:24Þ

where S is the overlap matrix:

S ¼ S11 S12

S21 S22

 !
¼ 1 S

S 1

 !
ð1:25Þ

Solution of Equation (1.24) then gives:

l1 ¼ A11 þA22�2A12S

2ð1�S2Þ � D
2ð1�S2Þ

l2 ¼ A11 þA22�2A12S

2ð1�S2Þ þ D
2ð1�S2Þ

8>>>><
>>>>:

ð1:26Þ

D ¼ ðA22�A11Þ2 þ 4ðA12�A11SÞðA12�A22SÞ
h i1=2

> 0 ð1:27Þ

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:

2The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an

orthogonal matrix.
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l1 ¼ aþb

1þ S
; c11 ¼ ð2þ 2SÞ�1=2; c21 ¼ ð2þ 2SÞ�1=2

l2 ¼ a�b

1�S
; c12 ¼ �ð2�2SÞ�1=2; c22 ¼ ð2�2SÞ�1=2

8>>>><
>>>>:

ð1:28Þ

under these assumptions, these are the elements of the square matrices L
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

~CAC ¼ L; ~CSC ¼ CS~C ¼ 1 ð1:29Þ
so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.
All previous results can be extended to square symmetric matrices of

orderN, inwhich case the solution of the corresponding secular equations
must be foundby numericalmethods, unless use can bemade of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues

l1 l2ð Þ and eigenvectors
c1
c2

� �
, (Equations 1.23), of the symmetric

matrix A of order 2 with A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:
In fact, Equation (1.17) can be written:

ðl1�lÞðl2�lÞ ¼ l1l2�ðl1 þ l2Þlþ l2 ¼ 0 ð1:30Þ
so that:

l1l2 ¼ A11A22�A12
2 ¼ a2�b2 ¼ detA ð1:31Þ

l1þ l2 ¼ A11 þA22 ¼ 2a ¼ trA ð1:32Þ
In Equation (1.17), therefore, the coefficient of l0, the determinant of

matrix A, is expressible as the product of the two eigenvalues; the
coefficient of l, the trace of matrix A, is expressible as the sum of the
two eigenvalues.
From the eigenvectors of Equations (1.23) we can construct the two

square symmetric matrices of order 2:
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P1 ¼ c1~c1 ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ð1:33Þ

P2 ¼ c2~c2 ¼
� 1ffiffiffi

2
p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

� 1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ð1:34Þ

The two matrices P1 and P2 do not admit inverse (the determinants of
both are zero) and have the properties:

P1
2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ P1 ð1:35Þ

P2
2 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ P2 ð1:36Þ

P1P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:37Þ

P2P1 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:38Þ
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P1þ P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCAþ

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 1 0

0 1

 !
¼ 1 ð1:39Þ

Inmathematics,matrices having these properties (idempotency,mutual
exclusivity, completeness3) are called projectors. In fact, acting onmatrix
C of Equation (1.21)

P1C ¼ P1c1 þ P1c2 ¼ c1 ð1:40Þ

since:

P1c1 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ c1 ð1:41Þ

P1c2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

� 1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ 0

0

 !
¼ 0

ð1:42Þ

so that, acting on the complete matrix C of the eigenvectors, P1 selects its
eigenvector c1, at the same time annihilating c2. In the same way:

P2C ¼ P2c1 þ P2c2 ¼ c2 ð1:43Þ

This makes evident the projector properties of matrices P1 and P2.
Furthermore, matrices P1 and P2 allow one to write matrix A in the so-

called canonical form:

A ¼ l1P1 þ l2P2 ð1:44Þ

3Often referred to as resolution of the identity.
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Equation (1.44) is easily verified:

l1P1 þ l2P2 ¼ ðaþbÞ

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCAþða�bÞ

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

¼

aþb

2
þ a�b

2

aþb

2
�a�b

2

aþb

2
�a�b

2

aþb

2
þ a�b

2

0
BBBB@

1
CCCCA ¼ a b

b a

 !
¼ A

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð1:45Þ

The same holds true for any analytical function4F of matrix A:

FðAÞ ¼ Fðl1ÞP1 þ Fðl2ÞP2 ð1:46Þ
Therefore, it is easy to calculate, say, the inverse or the square root of

matrix A. For instance, we obtain for the inverse matrix ðF¼�1Þ:

l1
�1P1þl2

�1P2 ¼

1

2ðaþbÞ
1

2ðaþbÞ
1

2ðaþbÞ
1

2ðaþbÞ

0
BBBB@

1
CCCCAþ

1

2ða�bÞ � 1

2ða�bÞ

� 1

2ða�bÞ
1

2ða�bÞ

0
BBBB@

1
CCCCA

¼ 1

2ða2�b2Þ
ða�bÞþðaþbÞ ða�bÞ�ðaþbÞ
ða�bÞ�ðaþbÞ ða�bÞþðaþbÞ

 !
¼ 1

2ða2�b2Þ
2a �2b

�2b 2a

 !

¼ 1

a2�b2

a �b

�b a

 !
¼A�1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð1:47Þ
and we obtain the usual result for the inverse matrix ðA�1A¼AA�1 ¼1Þ:
In the same way, provided

ffiffiffiffiffi
l1

p
and

ffiffiffiffiffi
l2

p
are positive, we can calculate the

square root of matrix A F ¼ ffip� �
:ffiffiffiffi

A
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

aþb
p

P1 þ
ffiffiffiffiffiffiffiffiffiffi
a�b

p
P2

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p þ ffiffiffiffiffiffiffiffiffiffi
a�b

p ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p � ffiffiffiffiffiffiffiffiffiffi
a�b

p
ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p � ffiffiffiffiffiffiffiffiffiffi
a�b

p ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p þ ffiffiffiffiffiffiffiffiffiffi
a�b

p
 !

¼

AþB

2

A�B

2

A�B

2

AþB

2

0
BBBB@

1
CCCCA

8>>>>>>><
>>>>>>>:

ð1:48Þ

4Any function expressible as a power series, e.g. inverse, square root, exponential.
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where we have put:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aþb

p
; B ¼

ffiffiffiffiffiffiffiffiffiffi
a�b

p
ð1:49Þ

Then, we can easily check that:

ffiffiffiffi
A

p ffiffiffiffi
A

p ¼ 1

4

AþB A�B

A�B AþB

 !
AþB A�B

A�B AþB

 !

¼ 1

4

ðAþBÞ2 þðA�BÞ2 2ðA2�B2Þ
2ðA2�B2Þ ðA�BÞ2 þðAþBÞ2

 !

¼ 1

4

2ðA2 þB2Þ 2ðA2�B2Þ
2ðA2�B2Þ 2ðA2 þB2Þ

 !
¼ 1

4

4a 4b

4b 4a

 !
¼ A

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1:50Þ

as it must be. These examples show how far we can go when eigenvalues
and eigenvectors of a symmetric matrix are known.

1.3 VARIATIONAL APPROXIMATIONS

For our description of atoms andmolecules, we rely on the orbital model,
where atoms or molecules are described by one or more point-like
positively charged nuclei surrounded by a cloud of negatively charged
electrons, whose density is distributed in space in terms of atomic orbitals
(one-centre, AOs) or molecular orbitals (multicentre, MOs) cðrÞ, one-
electron wavefunctions, such that

jcðrÞj2dr ð1:51Þ
gives the probability of finding at dr an electron in statecðrÞ, providedcðrÞ
satisfies the normalization condition:ð

drjcðrÞj2 ¼ 1 ð1:52Þ

the integrationbeing extended over all space. TheAOsare functions of the
space point r in the three spherical coordinates ðr; u;wÞ that depend on the
three quantum numbers n; l;m and have radial and angular dependence.
Aswell known, they are classified as 1s, 2s, 2p, 3s, 3p, 3d, etc. andwe shall
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assume that they are real regular5 functions showing an exponential
(Slater-type, STO) or gaussian (GTO) radial decay. Figure 1.1 shows
schematically the polar diagrams of the angular parts of s, p, d, and fAOs
with l ¼ 0; 1; 2; 3, respectively, and m¼ 0.
Hybrid orbitals are AOs mixed on the same centre (e.g. s and p).

Figure 1.2 sketches the formation of an sp hybrid directed along the z axis
(right of the figure) from the mixing of a spherical 2s orbital with a 2pz
orbital (left of the figure). Because its form is nonsymmetricwith respect to
the nucleus on which it is centred, the hybrid AO acquires an intrinsic
dipolemoment, called by Coulson (1961) the atomic dipole, which is very
important in the theoretical interpretation of the observed dipolemoment
in themolecule (see the case of first-rowhydrides inChapter 2).Weare not
interested in further details about AOs here, but more can be learned
elsewhere (Magnasco, 2007, 2009a).
The AOs are obtained by solving some kind of differential Schr€odinger-

type eigenvalue equation, which for a single electron can be written:

Ĥc ¼ «c ð1:53Þ

Figure 1.2 Schematic drawing of the formation of an sp hybrid AO

Figure 1.1 Polar diagrams of the angular part of s, p, d, and f AOs with m¼ 0.
Reprinted from Magnasco, V., Methods of Molecular Quatum Mechanics: An
Introduction to Electronic Molecular Structure. Copyright (2009) with permission
from John Wiley and Sons

5A regular function is a mathematical function satisfying the three conditions of being: (i) single-
valued; (ii) continuous with its first derivatives; and (iii) quadratically integrable, i.e. vanishing at

infinity.
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where Ĥ ¼ T̂þV is the total (kinetic þ potential) energy orHamiltonian
operator6, c a wavefunction (the eigenfunction of Equation 1.53), and «

(the eigenvalue) an orbital energy. In our model, Ĥ will be replaced by a
symbol H, where we suppress the caret characterizing the operator.
Since equations as (1.53) are difficult to solve exactly, practically all

results in the applications of quantum mechanics to chemistry rely on a
general method of approximation due to Rayleigh and known as the
variational method (Magnasco, 2007, 2009a), which we summarize
briefly in the following.
Let w be a normalized7 regular trial (or variational) function.We define

the Rayleigh ratio as the functional:8

« w½ � ¼
Ð
dx w�ðxÞHwðxÞÐ
dx w�ðxÞwðxÞ ¼ hwjHjwi

hwjwi ð1:54Þ

where x are the electronic coordinates, w�ðxÞ the function complex
conjugate to wðxÞ, andH the Hamiltonian of the system. In the last term
on the right-hand side of the equation we have introduced the so-called
Dirac notation for the integrals. Then, the Rayleigh variational principle
states that, if E0 is the true energy of the ground state (the state of lowest
energy):

«½w� � E0 ð1:55Þ
In other words, any approximate energy must lie above the true energy

of the ground state, giving an upper bound to the electronic energy.
Variational approximations to energy and wavefunction can then be
simply worked out by introducing some variational parameters {c} in the
trial function w, then evaluating the integrals in the functional (1.54), in
order to obtain an ordinary function of the parameters {c} that can be
minimized against these parameters. Therefore, for a single parameter c:

« w½ � ¼
Ð
dx w�ðx; cÞHwðx; cÞÐ
dx w�ðx; cÞwðx; cÞ ¼ «ðcÞYmin ð1:56Þ

The necessary condition for the minimum of «ðcÞ will be:

d«

dc
¼ 0Y cmin ð1:57Þ

6An operator is a rule changing a regular function into another one, and is denoted by the caret

sign ^.
7A function satisfying Equation (1.52).
8A function of function w(x).
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analgebraic equationwhichmust be solved for thebest value of parameter
c, giving in this way the best variational energy and wavefunction.
The most interesting application for our purposes is to construct MOs

by the linear combination of atomic orbitals (LCAO) method, where the
variable parameters are the coefficients of the linear combination of some
basic orbitals {x}9 (Ritzmethod). It can be shown that, in this case, the best
orbitals are obtained by solving the eigenvalue equation for matrix H:

Hc ¼ «cY ðH�«1Þc ¼ 0 ð1:58Þ
where:

Hij ¼ hxijHjxji; Sij ¼ hxijxji ¼ dij ð1:59Þ
For molecules, all elements of matrix H are negative numbers.

The homogeneous system (Equation 1.58) has nontrivial solutions if and
only if:

H�«1j j ¼ 0 ð1:60Þ
The solution of the secular equation (1.60) for our simple case of a 2� 2

symmetric matrix H (a basis of two AOs) yields as best values for the
variational energy the two real roots (eigenvalues) «1 and «2, that are
usually written in ascending order, with the corresponding two eigen-
vectors c1 and c2 determining the two molecular orbitals w1 and w2

(Equations 18–20 with l ¼ «; or the simpler Equations 1.23 when the
diagonal elements are equal):

«1 � «2

c1; c2

w1;w2

8><
>: ð1:61Þ

« < 0 means bonding, « > 0 means antibonding, with a corresponding
notation for the resulting MOs.
The same procedure can be applied to find approximations to the

second-order energy E2 of Section 4.2 of Chapter 4 in the context of the
Hylleraas variational method (Magnasco, 2007, 2009a), as we shall
illustrate in the simple case of two functions. We start from a convenient
set of basis functions x written as the (1�2) row vector:

x ¼ ðx1 x2Þ ð1:62Þ

9Assumed normalized and orthogonal to each other, namely hxijxji ¼ dij; where d is the

Kronecker’ symbol (¼1 for j ¼ i;¼ 0 for j= iÞ:
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possibly orthonormal in themselves but necessarily orthogonal to c0. We
shall assume that:

x�x ¼ 1; x�c0 ¼ 0 ð1:63Þ
If the xs are not orthogonal they must first be orthogonalized by the

Schmidt method (Magnasco, 2007). Then, we construct the matrices:

M ¼ x�ðĤ0�E0Þx ð1:64Þ
the (2�2) Hermitian matrix of the excitation energies, and:

m ¼ x�ðĤ1c0Þ ð1:65Þ
the (2�1) column vector of the transition moments.
By expanding the first-order functionc1 in thefinite set of thexs,we can

write:

c1 ¼ xC ¼
X2
k¼1

xkCk ð1:66Þ

E2 ¼ C�MCþC�mþm�C ð1:67Þ
which is minimum for:

dE2

dC� ¼ MCþm ¼ 0YCðbestÞ ¼ �M�1m ð1:68Þ

giving as best variational approximation to the second-order energy E2:

E2ðbestÞ ¼ �m�M�1m ð1:69Þ
The symmetric matrixM can be reduced to diagonal form by a unitary

transfomation10U among its basis functions x:

c ¼ xU; U�MU ¼ «; U�m ¼ mc ð1:70Þ
where « is here the (2� 2) diagonal matrix of the (positive) excitation
energies:

« ¼ «1 0

0 «2

 !
ð1:71Þ

10A unitary matrix U satisfies U�1 ¼ U�, where U�1 is the inverse and U� ¼ ð~UÞ� the adjoint
matrix (Magnasco, 2007). A matrix is said Hermitian if U ¼ U�: For real elements, unitary and

orthogonal matrices coincide, so that we can use either of them indistinctly.

14 MATHEMATICAL FOUNDATIONS



The cs are called pseudostates, and give best E2 in the form:

E2ðbestÞ ¼ �m
�
c«

�1mc ¼ �
X2
k¼1

jhckjĤ1jc0ij2
«k

ð1:72Þ

which is known as sum-over-pseudostates expression. Equation (1.72)
has the same form as the analogous expression that would arise from the
discrete eigenstates of Ĥ0, but with definitely better convergence prop-
erties, reducing the infinite summation to a sum of a finite number of
terms, and avoiding the need of considering the contribution from the
continuous part of the spectrum (Magnasco, 2007).

1.4 ATOMIC UNITS

To get rid of all fundamental physical constants in our mathematical
formulae we shall introduce consistently a system of atomic units (au), by
putting:

e ¼ �h ¼ m ¼ 4p«0 ¼ 1 ð1:73Þ
The basic atomic units are obtained from the SI values of the

fundamental physical constants given in Table 1.1 (Mohr and Taylor,
2003).
The basic au of charge, length, energy and time are then expressed by:

Charge e ¼ 1:602 176� 10�19 C

Length; Bohr a0 ¼ 4p«0
�h2

me2
¼ 5:291 772� 10�11 m

Energy; Hartree Eh ¼ 1

4p«0

e2

a0
¼ 4:359 744� 10�18 J

Time t ¼ �h

Eh
¼ 2:418 884� 10�17 s

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1:74Þ

When the atomic unit of energy is referred to molar quantities, we have
the different SI equivalents:

NAEh ¼ 2625:499 kJ mol�1 ¼ 27:211 38 eVmol�1

¼ 219:474 6� 103 cm�1 mol�1 ¼ 315:774 6� 103 Kmol�1

(

ð1:75Þ
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with the submultiples:

10�3Eh ¼ mEh ½milliHartree� ð1:76Þ

10�6Eh ¼ mEh ½microHartree� ð1:77Þ
etc. The milliHartree is the characteristic unit for the energy of the
chemical bond, the microHartree is that for the energy of the Van der
Waals bond. The hydrogen bond has an intermediate energy, correspond-
ing to that of a weak chemical bond.
The basic au for dipole, quadrupole and octupole electric moments are

given as:

Dipole moment; ea0 ¼ 8:478� 10�30 C�m

¼ 2:542� 10�18 esu� cm ¼ 2:542D

Quadrupole moment; ea0
2 ¼ 4:486� 10�40 C�m2

¼ 1:345� 10�26 esu� cm2 ¼ 1:345 B

Octupole moment; ea0
3 ¼ 2:374� 10�50 C�m3

¼ 7:117� 10�35 esu� cm3

8>>>>>>>>>><
>>>>>>>>>>:

ð1:78Þ

In the expressions above, D is the Debye unit of electric dipolemoment,
and B the Buckingham unit for the electric quadrupole moment.
At the end of a calculation in atomic units, as we shall usually do,

the actual SI values can be obtained by taking into account the SI
equivalents (1.74) and (1.78). As an example, we give below the
calculation of the SI equivalent of the Hartree unit to seven significant
figures:

Table 1.1 Fundamental physical constants

Physical quantity Value in SI units

Elementary charge e ¼ 1:602 176� 10�19 C
Electron mass m ¼ 9:109 382� 10�31 kg
Reduced Planck’s constant �h ¼ 1:054 572� 10�34 J s
Vacuum permittivity 4p«0 ¼ 1:112 650 J�1 C2 m�1

Light velocity in vacuum c ¼ 2:997 925� 108 m s�1

Avogadro number NA ¼ 6:022 142� 1023 mol�1

Boltzmann constant k ¼ 1:380 650� 10�23 J K�1
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Eh ¼ 1

4p«0

e2

a0
¼ me4

ð4p«0Þ2�h2

¼ 9:109 382� 10�31 � ð1:602 176� 10�19Þ4
ð1:112 650� 10�10Þ2 � ð1:054 571� 10�34Þ2

kgC4

C4 m�2 J2 s2

¼ 4:359 744� 10�18 J:

8>>>>>>>><
>>>>>>>>:

ð1:79Þ

1.5 THE ELECTRON DISTRIBUTION IN MOLECULES

The one-electron spatial function P(r) describing the distribution of the
electrons (the electron density) in the doubly occupied MO f(r):

fðrÞ ¼ xAðrÞcA þ xBðrÞcB ¼ xAðrÞþ lxBðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2 þ2lS

p ð1:80Þ

where l ¼ cB=cA denotes here the polarity parameter of the bond orbital
and S ¼ hxAjxBi the overlap integral, is simply given by:

PðrÞ ¼ raðrÞþ rbðrÞ ¼ 2fðrÞf�ðrÞ ¼ 2jfðrÞj2 ð1:81Þ

the factor 2 comes from the equal contribution of electrons with either
spin (a¼ spin-up, b¼ spin-down).
The electron density can be further analysed in terms of elementary

contributions from the AOs, giving the so-called population analysis,11

which shows how the electrons are distributed between the different
atomic orbitals in the molecule. We obtain from Equation (1.81):

PðrÞ ¼ qAxA
2ðrÞþ qBxB

2ðrÞþqAB
xAðrÞxBðrÞ

S
þ qBA

xBðrÞxAðrÞ
S

ð1:82Þ

where x2
AðrÞ and x2

BðrÞ are atomic densities, xAðrÞxBðrÞ
S and xBðrÞxAðrÞ

S are
overlap densities, all normalized to 1, while the coefficients:

qA ¼ 2

1þ l2þ 2lS
; qB ¼ 2l2

1þ l2 þ2lS
ð1:83Þ

11The extension to N-electron LCAO-MO wave functions is due to Mulliken (1955).
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are atomic charges, and:

qAB ¼ qBA ¼ 2lS

1þ l2 þ2lS
ð1:84Þ

overlap charges. The charges are normalized so that:

qA þ qBþ qAB þ qBA ¼ 2þ 2l2þ 4lS

1þ l2þ 2lS
¼ 2 ð1:85Þ

the total number of electrons in the bond orbital fðrÞ.
For a homopolar bond, l ¼ 1:

qA ¼ qB ¼ 1

1þ S
qAB ¼ qBA ¼ S

1þ S
ð1:86Þ

so that for S > 0, in the bond, the charge on the atoms is decreased,
electrons being transferred to the region between nuclei to an extent
described by qAB and qBA. This reduces internuclear repulsion and means
bonding.
Foraheteropolarbond,l=1,andwedefinegrosschargesonAandBas:

QA ¼ qA þ qAB ¼ 2þ 2lS

1þ l2 þ 2lS
ð1:87Þ

QB ¼ qBþ qBA ¼ 2l2 þ2lS

1þ l2þ 2lS
ð1:88Þ

and formal charges on A and B as:

dA ¼ 1�QA ¼ l2�1

1þ l2 þ 2lS
ð1:89Þ

dB ¼ 1�QB ¼ � l2�1

1þ l2þ 2lS
ð1:90Þ

If l > 1, dA ¼ d > 0, dB ¼ �dA ¼ �d < 0, and we have the dipole
Aþ dB�d (e.g. the LiH molecule).
In our model, an essential role will be assigned to the exchange-overlap

densities (MagnascoandMcWeeny, 1991;Magnasco, 2007,2008,2009a):

xAðrÞxBðrÞ�Sx2
AðrÞ; xBðrÞxAðrÞ�Sx2

BðrÞ ð1:91Þ
which have the properties:ð

dr½xAðrÞxBðrÞ�Sx2
AðrÞ� ¼ 0;

ð
dr½xBðrÞxAðrÞ�Sx2

BðrÞ� ¼ 0 ð1:92Þ
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1.6 EXCHANGE-OVERLAP DENSITIES AND THE
CHEMICAL BOND

This section aims to illustrate the origin of the quantum mechanical
exchange-overlap densities and their different behaviour in the case of
the chemical bond in ground state H2 and the Pauli repulsion in He2.
We choose as starting point for the 1S þ

g ground state of the systems
the normalized Heitler–London (HL) wave functions (Magnasco,
2008):

CðH2Þ ¼ jja�bjj þ jjb�ajjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p ¼ aðr1Þbðr2Þþ bðr1Þaðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2S2

p aðs1Þbðs2Þ�bðs1Þaðs2Þffiffiffi
2

p

ð1:93Þ

CðHe2Þ ¼ jja�ab�bjj ¼ jjaðr1Þaðs1Þ aðr2Þbðs2Þ bðr3Þaðs3Þ bðr4Þbðs4Þjj
ð1:94Þ

where r and s are space and spin variables, the bar denotes b spin,
aðrÞ ¼ 1sAðrÞ and bðrÞ ¼ 1sBðrÞ are AOs centred at A and B, the
double bar standing for a normalized Slater determinant (Magnasco,
2007, 2009a)12.
If x ¼ rs denotes the space-spin variable, we recall from first principles

(Magnasco, 2007, 2009a) that, for a normalizedN-electronwavefunction
satisfying the Pauli antisymmetry principle, the one-electron density
function is defined as:

rðx; xÞ ¼ N

ð
dx2dx3 � � � dxNCðx; x2; � � � ;xNÞC�ðx; x2; � � � ;xNÞ

ð1:95Þ
where the first set of variables in r comes fromY, the second fromY�. The
physical meaning of r is:

rðx;xÞdx ¼ probability of finding an electron at dx ð1:96Þ
where dx ¼ drds is an elementary volume at a fixed point in space-spin
space. In this way, r determines the probability distribution in space of

12It should be remarked that, while the Heitler–London function (1.93) for H2 is a two-
determinant wave function, the Heitler–London function (1.94) for He2 is a single determinant

wave function, so that in this case HL and MO approaches coincide.
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electrons of either spin. If:

raðr; rÞdr ¼ probability of finding at dr an electron with spin a

rbðr; rÞdr ¼ probability of finding at dr an electron with spin b

(

ð1:97Þ
with raðr; rÞ ¼ raðrÞ and rbðr; rÞ ¼ rbðrÞ the (spatial) coefficients of
aðsÞa�ðsÞ and bðsÞb�ðsÞ in r, the (spatial) electron density, as observed
from experiment, is defined as:

Pðr; rÞ ¼ raðr; rÞþ rbðr; rÞ ð1:98Þ

The electron densities for the 1
S

þ
g states of H2 and He2 resulting from

these Heitler–London wave functions are then:

Pðr; rÞ ¼ raðr; rÞþ rbðr; rÞ

¼ aðrÞa�ðrÞþ bðrÞb�ðrÞþ S½aðrÞb�ðrÞþ bðrÞa�ðrÞ�
1þ S2

8><
>: ð1:99Þ

for the two-electron system H2, and:

Pðr; rÞ ¼ raðr; rÞ þ rbðr; rÞ

¼ 2
aðrÞa�ðrÞþ bðrÞb�ðrÞ�S½aðrÞb�ðrÞþ bðrÞa�ðrÞ�

1�S2

8><
>: ð1:100Þ

for the four-electron system He2.
We give in detail below the calculation of the electron density for the

Heitler–London wavefunction (1.93) of ground state H2, when a(r), b(r),
a(s), b(s) are all normalized to one:

rðx1;x1Þ¼2

ð
dx2

aðr1Þbðr2Þþbðr1Þaðr2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2S2

p aðs1Þbðs2Þ�bðs1Þaðs2Þffiffiffi
2

p

½aðr1Þbðr2Þþbðr1Þaðr2Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2S2

p ½aðs1Þbðs2Þ�bðs1Þaðs2Þ��ffiffiffi
2

p

¼ð2þ2S2Þ�1

ð
dr2

½aðr1Þbðr2Þþbðr1Þaðr2Þ�
½a�ðr1Þb�ðr2Þþb�ðr1Þa�ðr2Þ�

ð
ds2

½aðs1Þbðs2Þ�bðs1Þaðs2Þ�
½a�ðs1Þb�ðs2Þ�b�ðs1Þa�ðs2Þ�

¼aðr1Þa�ðr1Þþbðr1Þb�ðr1ÞþS½aðr1Þb�ðr1Þþbðr1Þa�ðr1Þ�
2þ2S2

aðs1Þa�ðs1Þþbðs1Þb�ðs1Þ½ �

20 MATHEMATICAL FOUNDATIONS



so that:

raðr1;r1Þ¼rbðr1;r1Þ¼aðr1Þa�ðr1Þþbðr1Þb�ðr1ÞþS½aðr1Þb�ðr1Þþbðr1Þa�ðr1Þ�
2þ2S2

ð1:101Þ
andwe obtain the result of Equation (1.99) if we leave out the now useless
suffix 1 on the space-spin variables.

(i) The 1S þ
g state of H2 (two-electron interaction)

The spinless 1-electron density (Equation 1.99) satisfies the conserva-
tion relation:

ð
drPðr; rÞ ¼ 2 ð1:102Þ

the total number of electrons in H2.
Using the identity:

ð1þ S2Þ�1 ¼ 1�S2ð1þ S2Þ�1 ð1:103Þ
we see that the electron density (real orbitals) can be partitioned into:

Pðr;rÞ¼ a2ðrÞþb2ðrÞ� �þ S

1þS2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼Pcbðr;rÞþPexch�ovðr;rÞ

8><
>:

ð1:104Þ
where:

Pcbðr;rÞ¼ a2ðrÞþb2ðrÞ¼Pclðr;rÞ ð1:105Þ
is the quasi-classical contribution to the molecular density, and:

Pexch�ovðr;rÞ¼ S

1þS2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o¼PIðr;rÞ

ð1:106Þ
the quantum mechanical exchange-overlap (or interference) density.
Equations (1.105) and (1.106) satisfy the relations:ð

drPclðr;rÞ¼
ð
dr½a2ðrÞþb2ðrÞ� ¼ 2 ð1:107Þ
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the number of electrons in the H2 molecule, and:ð
drPexch�ovðr;rÞ

¼ S

1þS2

ð
dr
n�

aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼ S

1þS2
ð2S�2SÞ¼0

8>>>>>>>>><
>>>>>>>>>:

ð1:108Þ

in agreement with Equations (1.92). However, the energy changes asso-
ciated with the quantum mechanical exchange-overlap component
(Equation 1.106) of the interaction energy are the greatest contributors
to the energy of the chemical bond (see Table 1.2).
Equations (1.105) and (1.106) are the Heitler–London counterpart of

the corresponding quantities (Equations 3.4 and 3.5 on page 340 of
Ruedenberg’s paper (1962), which refers to a LCAO-MOwave function.
Ruedenberg calls Equation (1.106) ‘themodification of the quasi-classical
density due to the interference effect’, while we, more literally, speak of
exchange½aðrÞbðrÞ�, ½bðrÞaðrÞ� and overlap½�Sa2ðrÞ�, ½�Sb2ðrÞ� densities.
Finally, it is worth noting that, while:

qA
cl ¼ qb

cl ¼ 1 ð1:109Þ
is the classical electron charge on separateAandB (one electron on eachH
atom),

q exch�ov
AB ¼ q exch�ov

BA ¼ S

1þS2
> 0 ð1:110Þ

is the fractionof electronic charge transferred in thebond region, due towhat
Ruedenberg calls the ‘constructive interference’, and which means bonding.

Table 1.2 Optimized bond energies and their components ð10�3EhÞ for ground
state H2

R/a0 DEcb DEexch�ov DEð1S þ
g Þ

1 15.85 �104.43 �88.58
1.2 �9.93 �119.03 �128.96
1.4 �19.42 �119.63 �139.05
1.6 �21.83 �112.54 �134.37
1.8 �21.08 �101.60 �122.68
2 �18.99 �89.02 �108.01
4 �1.68 �9.68 �11.36
6 �0.06 �0.45 �0.51
8 �0.002 �0.015 �0.017
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So, a complete equivalence exists between our notation (Magnasco and
McWeeny, 1991; Magnasco, 2004a, 2007, 2008, 2009a) and that of
Ruedenberg (1962).

(ii) The 1
S

þ
g state of He2 (four-electron interaction)

The same argument can be applied to the electron density (Equa-
tion 1.100), which satisfies the conservation relation:ð

dr Pðr; rÞ ¼ 4 ð1:111Þ

the total number of electrons in He2.
Using the identity:

ð1�S2Þ�1 ¼ 1þ S2ð1�S2Þ�1 ð1:112Þ
the electron density (real orbitals) can be partitioned into:

Pðr;rÞ¼2 a2ðrÞþb2ðrÞ� �� 2S

1�S2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o

¼Pcbðr;rÞþPexch�ovðr;rÞ;

8><
>:

ð1:113Þ
where:

Pcbðr;rÞ¼2½a2ðrÞþb2ðrÞ�¼Pclðr;rÞ ð1:114Þ
is the quasi-classical contribution to the molecular density, and:

Pexch�ovðr;rÞ¼

¼� 2S

1�S2

n�
aðrÞbðrÞ�Sa2ðrÞ�þ�bðrÞaðrÞ�Sb2ðrÞ�o¼PIðr;rÞ

8><
>: ð1:115Þ

the quantummechanical exchange-overlap (or interference) density.Even
in this case it is evident that:ð

drPclðr;rÞ¼4 ð1:116Þ

ð
drPexch�ovðr;rÞ¼0 ð1:117Þ

While the ‘exchange-overlap’ (or ‘interference’) density still does not
give any contribution to the electron population, it is now at the origin of
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the strong repulsion occurring at short range between two neutral He
atoms (Pauli repulsion, see Table 1.3), since in this case:

qexch�ov
AB ¼qexch�ov

BA ¼� 2S

1�S2
<0 ð1:118Þ

so that, now, electrons escape from the region between the nuclei, giving
what Ruedenberg calls ‘a destructive interference’. The same behaviour
occurs for the triplet 3

S
þ
u excited state of H2.

Hence, we conclude, first, that there is a complete equivalence between
Ruedenberg’s (1962) and our formulation (Magnasco and McWeeny,
1991;Magnasco,2004a,2007,2008,2009a)intermsofquantumdensities,
and, next, that the different behaviour of the quantum ‘exchange-overlap’
(or ‘interference’) density for the 1

S
þ

g states ofH2 (chemical bonding) and
He2 (Pauli repulsion) is evident fromtheopposite signs of theqexch�ov

AB terms
occurring in H2 and He2. The latter originate the main contribution to the
respective DEexch�ov components of the bond energy in H2 (attractive
contribution) and of the Pauli repulsion in He2 (repulsive contribution).
Numerical values of the interaction energies for these Heitler–London

wavefunctions, taken from Magnasco (2008), are given in Tables 1.2
and 1.3. The energies are optimized variationally with respect to the
values of the orbital exponents c0 of the atomic 1s STOs on A and B.
It can be seen from Table 1.2 that the optimized value resulting for the

bond energy of H2 at the equilibrium bond length,
DEeð1S þ

g Þ ¼ �139:05� 10�3Eh at Re ¼ 1:40a0, is within 80% of the
theoretical value DEeð1S þ

g Þ ¼ �174:45� 10�3Eh given by Wolniewicz
(1993) in his accurate calculation using a 279-term expansion in sphe-
roidal coordinates for the two electrons, including powers of the inter-
electronic distance. It must be admitted that our results are particularly
satisfying for such a simple wavefunction!

Table 1.3 Optimized Pauli repulsions and their components ð10�3EhÞ for theHe–He
interaction in the medium range

R/a0 DEcb DEexch�ov DEð1S þ
g Þ

2 �27.28 163.90 136.62
2.5 �7.55 50.22 42.67
3 �1.93 14.89 12.96
3.5 �0.47 4.27 3.80
4 �0.11 1.18 1.07
4.5 �0.02 0.32 0.30
5 �0.005 0.08 0.075
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The He–He optimized Pauli repulsion at medium range resulting from
Table 1.3 atR ¼ 3a0,DEð1S þ

g Þ ¼ 12:96� 10�3Eh, turns out to bewithin
96% of the accurate result DEð1S þ

g Þ ¼ 13:52� 10�3Eh, obtained by Liu
andMcLean (1973) fromanaccurate SCFHartree–Fock calculationusing
a4s3p2d1fbasis of STOson each centre.AtR ¼ 4a0, the optimized result,
DEð1S þ

g Þ ¼ 1:07� 10�3Eh, is still within 80% of the accurate value
given by the same authors, DEð1S þ

g Þ ¼ 1:35� 10�3Eh. Apparently, our
results would be even better when compared with experiment13 (Feltgen
et al., 1982), but in this case we must expect that our SCF values,
underestimating the interaction, compensate in part for the effect of the
attractive London forces not considered in the calculation.
These numerical results confirm the validity of our simple analysis

based on the exchange-overlap densities either for the chemical bond (H2)
or the Pauli repulsion (He–He). Even at the simple MO level, which we
know to behave correctly in the bond region (Magnasco, 2007, 2009a), a
model representing at its best such quantumdensities in terms of the single
one-electronH€uckel parameter ½ðb�aSÞ=ð1þ SÞ� < 0 (Magnasco, 2004a)
is expected to give a qualitatively correct representation of the chemical
bond and its properties. This is what we want to present in the next
chapter.

13Our calculated value at R ¼ 3:5a0 would exceed by less than 2% the experimental value of

DE ¼ 3:74� 10�3Eh.
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