
The focus of this chapter is on the statistical techniques used for analyzing prices and
returns in financial markets. The concept of a stock market index is defined followed by
a discussion of prices, returns and volatilities. Volatility clusters, the fat-tailed property
of financial returns and observed sharp increases in correlations between assets during
periods of financial turmoil (i.e., nonlinear dependence) will also be explored.
Various statistical techniques are introduced and used in this chapter for the analysis

of financial returns. While readers may have seen these techniques before, Appendix A
contains an introduction to basic statistics and time series methods for financial applica-
tions. The most common statistical methods presented in this chapter are implemented
in the two programming languages discussed in this book: R and Matlab. These
languages are discussed in more detail in Appendix B for R and Appendix C for Matlab.
We illustrate the application of statistical methods by using observed stock market

data, the S&P 500 for univariate methods and a portfolio of US stocks for multivariate
methods. The data can be downloaded from sources such as finance.yahoo.com
directly within R and Matlab, as demonstrated by the source code in this chapter.
A key conclusion from this chapter is that we are likely to measure risk incorrectly by

using volatility because of the presence of volatility clusters, fat tails and nonlinear
dependence. This impacts on many financial applications, such as portfolio manage-
ment, asset allocation, derivatives pricing, risk management, economic capital and
financial stability.
The specific notation used in this chapter is:

T Sample size

t ¼ 1; . . . ;T A particular observation period (e.g., a dayÞ
Pt Price at time t

Rt ¼
Pt � Pt�1

Pt�1
Simple return

Yt ¼ log
Pt

Pt�1
Continuously compounded return

yt A sample realization of Yt

� Unconditional volatility

�t Conditional volatility

K Number of assets

� Degrees of freedom of the Student-t

t Tail index
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1.1 PRICES, RETURNS AND STOCK INDICES

1.1.1 Stock indices

A stock market index shows how a specified portfolio of share prices changes over time,
giving an indication of market trends. If an index goes up by 1%, that means the total
value of the securities which make up the index has also increased by 1% in value.

Usually, the index value is described in terms of ‘‘points’’—we frequently hear
statements like ‘‘the Dow dropped 500 points today’’. The points by themselves do
not tell us much that is interesting; the correct way to interpret the value of an index is to
compare it with a previous value. One key reason so much attention is paid to indices
today is that they are widely used as benchmarks to evaluate the performance of
professionally managed portfolios such as mutual funds.

There are two main ways to calculate an index. A price-weighted index is an index
where the constituent stocks are weighted based on their price. For example, a stock
trading at $100 will make up 10 times more of the total index than a stock trading at $10.
However, such an index will not accurately reflect the evolution of underlying market
values because the $100 stock might be that of a small company and the $10 stock that of
a large company. A change in the price quote of the small company will thus drive the
price-weighted index while combined market values will remain relatively constant
without changes in the price of the large company. The Dow Jones Industrial Average
(DJIA) and the Nikkei 225 are examples of price-weighted stock market indices.

By contrast, the components of a value-weighted index are weighted according to the
total market value of their outstanding shares. The impact of a component’s price
change is therefore proportional to the issue’s overall market value, which is the product
of the share price and the number of shares outstanding. The weight of each stock
constantly shifts with changes in a stock’s price and the number of shares outstanding,
implying such indices are more informative than price-weighted indices.

Perhaps the most widely used index in the world is the Standard & Poor 500 (S&P
500) which captures the top-500 traded companies in the United States, representing
about 75% of US market capitalization. No asset called S&P 500 is traded on financial
markets, but it is possible to buy derivatives on the index and its volatility VIX. For the
Japanese market the most widely used value-weighted index is the TOPIX, while in the
UK it is the FTSE.

1.1.2 Prices and returns

We denote asset prices by Pt, where the t usually refers to a day, but can indicate any
frequency (e.g., yearly, weekly, hourly). If there are many assets, each asset is indicated
by Pt;k ¼ Ptime;asset, and when referring to portfolios we use the subscript ‘‘port’’.
Normally however, we are more interested in the return we make on an investment—
not the price itself.

Definition 1.1 (Returns) The relative change in the price of a financial asset over a
given time interval, often expressed as a percentage.
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Returns also have more attractive statistical properties than prices, such as stationarity
and ergodicity. There are two types of returns: simple and compound. We ignore the
dividend component for simplicity.

Definition 1.2 (Simple returns) A simple return is the percentage change in prices,
indicated by R:

Rt ¼
Pt � Pt�1

Pt�1
:

Often, we need to convert daily returns to monthly or annual returns, or vice versa.
A multiperiod (n-period) return is given by:

Rt nð Þ ¼ 1þ Rtð Þ 1þ Rt�1ð Þ 1þ Rt�2ð Þ � � � 1þ Rt�nþ1ð Þ � 1

¼ Pt

Pt�1

Pt�1
Pt�2

� � �Pt�nþ1
Pt�n

� 1 ¼ Pt

Pt�n
� 1

where Rt nð Þ is the return over the most recent n-periods from date t� n to t.
A convenient advantage of simple returns is that the return on a portfolio, Rt;port, is

simply the weighted sum of the returns of individual assets:

Rt;port ¼
XK

k¼1
wkRt;k

where K is the number of assets; and wk is the portfolio weight of asset i. An alternative
return measure is continuously compounded returns.

Definition 1.3 (Continuously compounded returns) The logarithm of gross return,
indicated by Yt:

Yt ¼ log 1þ Rtð Þ ¼ log
Pt

Pt�1

� �
¼ logPt � logPt�1:

The advantages of compound returns become clear when considering multiperiod
returns:

Yt nð Þ ¼ log 1þ Rt nð Þð Þ ¼ log 1þ Rtð Þ 1þ Rt�1ð Þ 1þ Rt�2ð Þ � � � 1þ Rt�nþ1ð Þð Þ

¼ log 1þ Rtð Þ þ log 1þ Rt�1ð Þ þ � � � þ log 1þ Rt�nþ1ð Þ

¼ Yt þ Yt�1 þ � � � þ Yt�nþ1:

Continuously compounded multiperiod returns are the sum of continuously com-
pounded single-period returns. In contrast to simple returns, it is much easier to derive
the time series properties of sums than of products.
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The situation is different for portfolio returns since the log of a sum does not equal the
sum of logs:

Yt;port ¼ log
Pt;port

Pt�1;port

� �
6¼
XK

k¼1
wk log

Pt;k

Pt�1;k

� �
:

where Pt;port is the portfolio value on day t; and Yt;port is the corresponding return.
The difference between compound and simple returns may not be very significant for
small returns (e.g., daily),

Yport �
XK

k¼1
wkRk

and as the time between observations goes to zero, so does the difference between the
two return measures:

lim
�t!0

Yport ¼ Rport:

It will not usually matter much which measure we choose to use. For example, suppose
Pt ¼ 1,000 and Pt�1 ¼ 950 then:

Rt ¼
1,000

950
� 1 ¼ 0:0526

Yt ¼ log
1,000

950

� �
¼ 0:0513:

The discrepancy between them becomes significant only when percent changes are
high—for example, if Pt ¼ 1,000 and Pt�1 ¼ 700, then:

Rt ¼
1,000

700
� 1 ¼ 0:429

Yt ¼ log
1,000

700

� �
¼ 0:357:

In some situations, such as accounting, simple returns need to be used.
Another common type of returns is excess returns (i.e., returns in excess of some

reference rate, often the risk free rate).
We should think of simple returns and compound returns as two different definitions

of returns. They are also known as arithmetic and logarithmic returns, respectively.
Simple returns are of course correct; investors are primarily interested in simple returns.
But there are reasons for continuously compounded returns being preferable.

A key advantage is that they are symmetric, while simple returns are not. This means
an investment of $100 that yields a simple return of 50% followed by a simple return of
�50% will result in $75, while an investment of $100 that yields a continuously
compounded return of 50% followed by a continuously compounded return of
�50% will remain at $100.
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Continuously compounded returns also play an important role in the background of
many financial calculations. They are a discrete form of continuous time Brownian
motion,1 which is the foundation for derivatives pricing and is used to model the changes
in stock prices in the Black–Scholes model.

1.2 S&P 500 RETURNS

The S&P 500 index has been published since 1957 but Global Financial Data, a
commercial vendor, go back as far as 1791. The log of the monthly close of the S&P
500 from 1791 until 2009 can be seen in Figure 1.1. One needs to be careful when looking
at a long time series of prices as it is easy to reach misleading conclusions.
The first observation is on 1791/08/31 when the index had a value of $2.67, while the

value on the last day of the sample, 2009/12/31, was $1,115.1. This implies that the index
has risen in value by 41,660%, or 2% per year. This analysis, however, overlooks
depreciation in the value of the dollar (i.e., inflation). We can calculate how much
one dollar has increased in value from 1791 to 2009 using the five different techniques
shown in Table 1.1.
Using the CPI, the real increase in the value of the index has actually been a measly

1.4% per year. This does not, however, represent the total returns of an investor as it
ignores dividend yield.
We show the compound returns in Figure 1.2. There is high volatility during the

American Civil War in the 1860s, the Great Depression in the 1930s, the stagflation of
the 1970s and the Asian crisis in 1997, among others. Prolonged periods of high
volatility are generally associated with great uncertainty in the real economy.

Financial Risk Forecasting 5

Figure 1.1. S&P 500 index August 1791 to December 2009, log scale.
Data source: Global Financial Data.

1 Brownian motion, also called Wiener process, is a centered, zero mean Gaussian process fWt; tg.



1.2.1 S&P 500 statistics

A selection of summary statistics for daily S&P 500 returns from 1928 to 2009 is
presented in Table 1.2. The daily mean is very small at 0.019% while daily volatility
is around 1.2%. The fact that the daily mean is only one-fiftieth of daily volatility will
simplify the construction of risk measures as we can effectively assume it is zero, without
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Table 1.1. Increase in value of one dollar from 1791 to

2009 using five different techniques.

$23.66 Consumer price index

$22.73 GDP deflator

$397.91 Unskilled wage

$942.48 Nominal GDP per capita

$70,902.74 Relative share of GDP

Calculated from http://www.measuringworth.com/uscompare

Figure 1.2. Returns on the monthly S&P 500 index from August 1791 to December 2009.

Table 1.2. S&P 500 daily return summary statistics, 1928–2009

Mean 0.019%

Standard deviation 1.16%

Min �22.9%
Max 15.4%

Skewness �0.4
Kurtosis 22.5

Autocorrelation (one lag) of returns 3.4%

Autocorrelation (one lag) of squared returns 21.7%

Jarque–Bera ( p-value) 0.0%

Ljung–Box 20 lags ( p-value) 0.0%

Ljung–Box squared returns 20 lags ( p-value) 0.0%



loss of generality. Furthermore, the mean grows at a linear rate while volatility grows
approximately at a square root rate, so over time the mean dominates volatility.
The lowest daily return of�23% corresponds to the stock market crash of 1987, while

the best day in the index, 15%, was at the end of the Great Depression. The returns have
a small negative skewness and, more importantly, quite high kurtosis.
Finally, the returns have a daily autocorrelation of about 3% while squared returns

have an autocorrelation of 22%. Squared returns are a proxy for volatility. The 22%
autocorrelation of squared returns provides very strong evidence of the predictability of
volatility and volatility clusters.
The table also shows a test for normality, the Jarque–Bera (JB) test, first-order

autocorrelations of returns and returns squared, and finally a test for the presence of
an autocorrelation up to 20 lags, a Ljung–Box (LB) test.

1.2.2 S&P 500 statistics in R and Matlab

The results in Table 1.2 can be easily generated using R or Matlab. It is possible to
directly download stock prices into R or Matlab from several websites, such as
finance.yahoo.com. In some of the examples in this chapter we use data going back
to the 1700s; data that old were obtained from Global Financial Data.
The following two R and Matlab code listings demonstrate how S&P 500 daily prices

from 2000 until 2009 can be downloaded from finance.yahoo.com, where the stock
market symbol for the S&P 500 is ˆ gspc. An active internet connection is required for
this code to work, but it is straightforward to save the returns after downloading them.
One issue that comes up is which data field from finance.yahoo.com to use. One
might think it best to use closing prices, but that is usually not correct, because over time
we observe actions that change the prices of equities such as stock splits and stock
buybacks, without affecting the value of the firm. We therefore need to use the adjusted
closing prices which automatically take this into account. For the S&P 500 this makes no
difference, but for most stock prices it does. Therefore, it is good practice to use adjusted
closing prices by default.
We use the R function get.hist.quote()from the tseries library. We then

convert the prices into returns, and plot the returns. By default, get.hist.quote()
returns a four-column matrix with open and closing prices, as well as the high and low
of prices. To get adjusted closing prices in R we need to include quote="AdjClose"
in the get.hist.quote() statement. Note that prices and returns in R are
represented as a time series object while in Matlab they are simply vectors. The function
{\tt coredata} is discussed on p. 94.

Listing 1.1. Download S&P 500 data in R

library("tseries") # load the tseries library

price = get.hist.quote(instrument = "^gspc", start = "

2000-01-01", quote="AdjClose") # download the prices,

from January 1, 2000 until today

y=diff(log(price)) # convert the prices into returns

plot(y) # plot the returns

y=coredata(y) # strip date information from returns
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In Matlab it is equally straightforward to download prices. It is possible to use the
GUI function, FTSTool from the financial and data feed toolboxes; however, it may be
easier to use the Matlab function urlread() which can directly read web pages, such
as finance.yahoo.com. Several free user-contributed functions are available to ease
the process, such as hist_stock_data().2 finance.yahoo.com returns the data
sorted from the newest date to the oldest date, so that the first observation is the newest.
We want it sorted from the oldest to newest, and the R procedure does it automatically;
unfortunately, the Matlab procedure does not, so we have to do it manually by using a
sequence like end:-1:1. Of course, it would be most expedient to just modify the
hist_stock_data() function.

Listing 1.2. Download S&P 500 data in Matlab

price = hist_stock_data(’01012000’,’31122000’,’^gspc’);

% download the prices, from

January 1, 2000 until

December 31, 2009

y=diff(log(price.Close(end:-1:1))) % convert the prices into

returns

plot(y) % plot the returns

After having obtained the returns, y, we can calculate some sample statistics; they are
given in Listing 1.3.

Listing 1.3. Sample statistics in R

library(moments)

sd(y)

min(y)

max(y)

skewness(y)

kurtosis(y)

acf(y,1)

acf(y^2,1)

jarque.bera.test(y)

Box.test(y, lag = 20, type = c("Ljung-Box"))

Box.test(y^2, lag = 20, type = c("Ljung-Box"))
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2 It can be obtained directly from the webpage of the Matlab vendor http://www.mathworks.com/matlabcentral/
fileexchange/18458-historical-stock-data-downloader.



Listing 1.4. Sample statistics in Matlab

% JPL and MFE toolboxes

mean(y)

std(y)

min(y)

max(y)

skewness(y)

kurtosis(y)

sacf(y,1,[],0)

sacf(y.^2,1,[],0)

jarquebera(y)

[q, pval]=ljungbox(y,20)

[q, pval]=ljungbox(y.^2,20)

1.3 THE STYLIZED FACTS OF FINANCIAL RETURNS

Extensive research on the properties of financial returns has demonstrated that returns
exhibit three statistical properties that are present in most, if not all, financial returns.
These are often called the three stylized facts of financial returns:

Volatility clusters

Fat tails

Nonlinear dependence

The first property, volatility clusters, relates to the observation that the magnitudes of
the volatilities of financial returns tend to cluster together, so that we observe many days
of high volatility, followed by many days of low volatility.
The second property, fat tails, points to the fact that financial returns occasionally

have very large positive or negative returns, which are very unlikely to be observed, if
returns were normally distributed.
Finally, nonlinear dependence (NLD) addresses how multivariate returns relate to

each other. If returns are linearly dependent, the correlation coefficient describes how
they move together. If they are nonlinearly dependent, the correlation between different
returns depends on the magnitudes of outcomes. For example, it is often observed that
correlations are lower in bull markets than in bear markets, while in a financial crisis
they tend to reach 100%.
Each of those stylized facts is discussed in turn in the following sections.

1.4 VOLATILITY

The most common measure of market uncertainty is volatility.

Definition 1.4 (Volatility) The standard deviation of returns.
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We further explore the nature of volatility in the S&P 500 index by calculating volatility
in subperiods of the data. This calculation is repeated for daily returns over decades,
years and months (see Figure 1.3).

Panel (a) of Figure 1.1 shows volatility per decade from 1928 to 2009; we can see
clear evidence of cyclical patterns in volatility from one decade to the next. Volatility is
lowest in the 1960s and highest during the Great Depression in the 1930s. Note that
1920s’ values only contain a part of 1929 and that the Great Depression started in
1929.

Focusing on more recent events, panel (b) shows volatility per year from 1980. The
most volatile year is 2008, during the 2007–2009 crisis, followed by the stock market

10 Financial markets, prices and risk

(a) Annualized volatility per decade

(b) Annual volatility

(c) Annualized monthly volatility

Figure 1.3. Volatility cycles.



crash year of 1987. The calmest year is 1995, right before the Asian crisis; 2004–2006 are
also quite relaxed.
However, the fact that volatility was very low in 1995 and 2005 does not imply that

risk in financial markets was low in those years, since volatility can be low while the tails
are fat. In other words, it is possible for a variable with a low volatility to have much
more extreme outcomes than another variable with a higher volatility. This is why
volatility is a misleading measure of risk.
Finally, panel (c) shows average daily volatility per month from 1995. Again, it is clear

that volatility has been trending downwards, and has been very low from 2004. This is
changing as a result of the 2007–2009 crisis.
Taken together, the figures provide substantial evidence that there are both long-run

cycles in volatility spanning decades, and short cycles spanning weeks or months. In
this case, we are observing cycles within cycles within cycles. However, given we have
many fewer observations at lower frequencies—such as monthly—there is much more
statistical uncertainty in that case, and hence the plots are much more jagged.
The crude methods employed here to calculate volatility (i.e., sampling standard

errors) are generally considered unreliable, especially at the highest frequencies; more
sophisticated methods will be introduced in the next chapter.

1.4.1 Volatility clusters

We use two concepts of volatility: unconditional and conditional. While these concepts
are made precise later, for our immediate discussion unconditional volatility is defined
as volatility over an entire time period, while conditional volatility is defined as volatility
in a given time period, conditional on what happened before. Unconditional volatility is
denoted by � and conditional volatility by �t.
Looking at volatility in Figure 1.3, it is evident that it changes over time.

Furthermore, given the apparent cycles, volatility is partially predictable. These
phenomena are known as volatility clusters.
We illustrate volatility clusters by simulations in Figure 1.4, which shows exaggerated

simulated volatility clusters. Panel (a) shows returns and panel (b) shows volatility. In
the beginning, volatility increases and we are in a high-volatility cluster, then around day
180 volatility decreases only to increase again after a while and so on.
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(a) Returns (b) Volatility

Figure 1.4. Exaggerated simulated volatility clusters.



Almost all financial returns exhibit volatility clusters (i.e., the market goes through
periods when volatility is high and other periods when volatility is low). For example, in
the mid-1990s volatility was low, while at the beginning and end of the decade it was
much higher. This feature of financial time series gained widespread recognition with
the publication of Engle (1982) and is now one of the accepted stylized facts about
asset returns. If we can capture predictability in volatility, it may be possible to
improve portfolio decisions, risk management and option pricing, among other
applications.

1.4.2 Volatility clusters and the ACF

A standard graphical method for exploring predictability in statistical data is the
autocorrelation function (ACF). The ACF measures how returns on one day are corre-
lated with returns on previous days. If such correlations are statistically significant, we
have strong evidence for predictability.

Panel (a) of Figure 1.5 shows the ACF of S&P 500 returns along with a 95%
confidence interval, where most autocorrelations lie within the interval. Contrast this
with the ACF of squared returns in panel (b) where it is significant even at long lags,
providing strong evidence for the predictability of volatility.

We can test for the joint significance of autocorrelation coefficients over several lags
by using the Ljung–Box (LB) test. We do the LB test using 21 lags of daily S&P 500
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(a) Returns

(b) Squared returns

Figure 1.5. Autocorrelation plots of daily S&P 500 returns, 1929–2009, along with a �95%
confidence interval.



returns (i.e., approximately the number of trading days in a calendar month). The test is
performed using the full sample size, as well as the most recent 2,500 and 100 observa-
tions; the results are given in Table 1.3. We can also use the Engle LM test to test for
volatility clusters.
Table 1.3 shows there is significant return predictability for the full sample, but not

for the most recent observations. This does not mean a violation of market efficiency,
since we would need to adjust the returns for risk, the risk-free rate and transaction
costs.
The same procedure is repeated for squared returns; the results are shown in Table

1.4. The reason for focusing on squared returns is that they are proxies for volatilities;
most forecast procedures for volatilities, like those in the next chapter, use squared
returns as their main input. The p-value for the smallest sample size of squared returns is
much lower than the corresponding value for returns. Tables 1.3 and 1.4 demonstrate
that it is easier to predict volatility than the mean.
The code necessary to carry out ACF plots and the Ljung–Box test in R andMatlab is

given in the following listings.

Listing 1.5. ACF plots and the Ljung–Box test in R

library(MASS,stats) # load stats and MASS package

q = acf(y,20)

plot(q[2:20])

q = acf(y^2,20)

plot(q[2:20])

b = Box.test(y,lag=21,type="Ljung-Box")
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Table 1.3. Ljung–Box test for daily S&P 500 returns, 1929–2009

T Ljung–Box test, 21 lags p-value

21,334 147.7 <2.2e�16

2,500 110.0 4.763e�14

100 14.5 0.846

Table 1.4. Ljung–Box test for squared S&P 500 returns, 1929–2009

T Ljung–Box test, 21 lags p-value

21,334 9,158.1 <2.2e�16

2,500 3,812.1 <2.2e�16

100 33.2 0.0438



Listing 1.6. ACF plots and the Ljung–Box test in Matlab

sacf(y,20)

sacf(y.^2,20)

ljungbox(y,20)

1.5 NONNORMALITY AND FAT TAILS

Many applications assume that S&P 500 index returns are normally distributed. Table
1.5 shows some return outcomes and probabilities based on this assumption (e.g., where
the probability of a return less than �2% is 3.5%).

Table 1.2 shows that the biggest one-day drop in the index was 23%. If S&P 500 index
returns were indeed normally distributed, then the probability of that one-day crash
would be 2:23� 10�97 according to Table 1.5. In other words, the crash is supposed to
happen once every 1095 years (accounting for weekends and holidays). To put this into
context, scientists generally assume that the earth is about 107 years old and the universe

1013 years old. Assuming normality this
equates to believing that the crash of
1987 only happens in one out of every
12 universes. We are doing slightly better
on the best day of the index which only
has a probability of occurrence once every
1041 years under normality.

However, it can argued that the crash
of 1987 was an anomaly, so assuming
normality for all the other days would
be relatively innocuous. But is this really
the case? Figures 1.6(a, b) show the most
extreme daily returns per decade and year,
respectively. It is clear that there are
still many more extremes than Table 1.5
predicts.

An alternative way of analyzing the distribution of the S&P 500 index is shown in
Figure 1.7. Panel (a) plots the histogram of the returns and superimposes the normal
distribution with the same mean and variance. Panel (b) shows both the normal dis-
tribution and the empirical distribution of the returns, while panel (c) blows up the left
tail of the distributions. We can observe from these three figures that

1. The peak of the return distribution is much higher than for the normal distribution.
2. The sides of the return distribution are lower than for the normal distribution.
3. The tails of the return distribution are much thicker (fatter) than for the normal

distribution.

In other words, there are more days when very little happens in the market than
predicted by the normal and more days when market prices change considerably.
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Table 1.5. Outcomes and probabilities of

daily S&P 500 returns assuming normality,

1929–2009

Returns above or below Probability

1% 0.865

2% 0.035

3% 0.00393

5% 2:74� 10�06

15% 2:70� 10�43

23% 2:23� 10�97
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(a) Per decade

(b) Per year

Figure 1.6. Maximum and minimum daily S&P 500 returns.

(a) Density, tails cut off at �4% (b) Distribution, tails cut off at �4%

(c) A part of the left tail

Figure 1.7. Empirical density and distribution of S&P 500 index returns for 2000–2009 compared

with the normal distribution.



1.6 IDENTIFICATION OF FAT TAILS

There are two main approaches for identifying and analyzing the tails of financial
returns: statistical tests and graphical methods. Statistical tests compare observed
returns with some base distribution, typically but not always the normal. Graphical
methods relate observed returns with values predicted from some distribution, often the
normal.

1.6.1 Statistical tests for fat tails

From the above we can see that one important feature of financial returns is that they
exhibit what is known as fat tails. We give an informal definition of fat tails below, while
the formal definition can be found in Definition 9.1.

Definition 1.5 (Fat tails) A random variable is said to have fat tails if it exhibits more
extreme outcomes than a normally distributed random variable with the same mean
and variance.

This implies that the market has more relatively large and small outcomes than one
would expect under the normal distribution, and conversely fewer returns of an inter-
mediate magnitude. In particular, the probability of large outcomes is much higher than
the normal would predict. The fat-tailed property of returns has been known since
Mandelbrot (1963) and Fama (1963, 1965).

A basic property of normally distributed observations is that they are completely
described statistically by the mean and the variance (i.e., the first and second moments).
This means that both skewness and kurtosis are the same for all normally distributed
variables (i.e., 0 and 3, respectively). Skewness is a measure of the asymmetry of the
probability distribution of a random variable and kurtosis measures the degree of
peakedness of a distribution relative to the tails. High kurtosis generally means that
more of the variance is due to infrequent extreme deviations than predicted by the
normal, and is a strong, but not perfect, signal that a return series has fat tails. Excess
kurtosis is defined as kurtosis over and above 3.

This suggests that a quick and dirty (makeshift) test for fat tails is to see if kurtosis
exceeds 3. Recall that in Table 1.2 we found excess kurtosis to be 20, which is pretty
strong evidence against normality.

Consequently, one can test for normality by seeing if skewness and excess kurtosis are
significantly different from zero. A well-known test in this category is the Jarque–Bera
(JB) test. Another common test for normality is the Kolmogorov–Smirnov test (KS)
which is based on minimum distance estimation comparing a sample with a reference
probability distribution (e.g., the normal distribution).

The KS test has the advantage of making no assumptions about the data distribution
except the continuity of both distribution functions (i.e., technically speaking it is
nonparametric and distribution free). It is sometimes claimed that the KS test is more
powerful than the JB test because it considers the entire distribution. The KS test is
sensitive to differences in both the location and shape of the cumulative distribution
function, and a relatively large number of observations are required to reject the null in
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practice. However, in most cases the KS and JB tests coincide. The KS test is done in R
using the function ks.test(), while in Matlab one can use kstest() from the
statistics toolbox.

1.6.2 Graphical methods for fat tail analysis

A number of graphical methods exist to detect the presence of fat tails. While such
graphical methods cannot provide a precise statistical description of data, they can
indicate if tails are fat or thin and can reveal information about the nature of how data
deviate from normality. We have seen an example of this already in Figure 1.6(a) but
better techniques exist.

QQ plots

Perhaps the most commonly used graphical method for analyzing the tails of
distributions is the QQ plot (quantile–quantile plot). It is similar to the comparison
of distributions in Figure 1.6(a), but is more accurate. QQ plots are used to assess
whether a set of observations have a particular distribution, or whether two datasets
have the same distribution. The QQ plot compares the quantiles of the sample data
against the quantiles of a reference distribution. The code to draw QQ plots in R and
Matlab is given in the following listings.

Listing 1.7. QQ plots in R

library(car)

qq.plot(y, envelope=F) # normal

qq.plot(y,distribution="t", df=5, envelope=F) # Student-t

Listing 1.8. QQ plots in Matlab

% Statistics toolbox

qqplot(y) % only normal available

The QQ plot for the S&P 500 against the normal is shown in Figure 1.8(a).
The x-axis shows the standard normal while the y-axis measures outcomes from the

data. The straight line is the normal prediction. We see that many observations seem to
deviate from normality, both on the downside and on the upside, as the QQ plot has a
clear S shape. The returns seem to have fatter tails than the normal but can we discover
how fat the tails are?
Some idea of tail fatness can be obtained by comparing the data with a fat-tailed

distribution. For example, the Student-t has fat tails, where the degrees of freedom
indicate how fat the tails actually are.
In Figure 1.8(b) the Student-t with 5 degrees of freedom—that is, tð5Þ—is chosen as

the reference distribution. The returns clearly seem to be fat relative to the tð5Þ both on
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the downside and the upside. Next we try the tð4Þ in panel (c)—the data seem to be
getting closer, the upside approximately matches the tð4Þ while the downside is still quite
fat. However, in looking at the tð3Þ in panel (d), the data appear thin relative to the tð3Þ
both on the upside and downside. The conclusion is that S&P 500 returns have tails that
are approximately equal to a tð4Þ, where the lower tail seems to be a tad thicker than the
upper tail. We discuss later how we can estimate the degrees of freedom.

Sequential moments

An alternative graphical technique for detecting fat tails is a sequential moments plot.
It is based on the formal definition of fat tails discussed in Chapter 9, which focuses
on extreme value theory. There, the thickness of the tail of a distribution is measured
by the tail index, indicated by �. The lower the tail index the thicker the tails. In the
special case of the Student-t distribution, the tail index corresponds to the degrees of
freedom.

This suggests a simple graphical method of testing for tail thickness by using sample
moments of data. The mth centered moment is given by:

E ðX � �Þm½ � ¼
Z 1

�1
x� �ð Þmf xð Þdx: ð1:1Þ

This integral does not have a finite solution for all m and all distributions. In particular,
if the distribution is fat tailed, we can only compute the moments for m < �. The
implication is that if the number of bounded moments is finite (i.e., we cannot calculate
the moments in (1.1) for allm > 0), the data must have fat tails. In the case of the normal
distribution we have � ¼ 1, so we can compute all moments in this case.
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(a) Normal (b) Student tð5Þ

(c) Student tð4Þ (d) Student tð3Þ

Figure 1.8. QQ plots for daily S&P 500 returns, 1989–2009.



We can therefore measure tail thickness by graphically plotting the moments of a
dataset as we add more and more observations:

1

t

Xt

i¼1
xmt :

Such sequential moment plots are shown in Figure 1.9, where panels (a) and (b) show
the fifth and third sequential moments for simulated data from a Student-t(4) distribu-
tion. As expected, the third moment converges but the fifth does not. Panel (c) shows the
third and fifth sequential moments for returns on oil prices. Here too we find that the
fifth moment does not converge while the third does, indicating that the tail index of oil
returns is between 3 and 5. More formal methods for estimating the tail index are
presented in Chapter 9.

Financial Risk Forecasting 19

(a) Sequential moments from a tð4Þ

Figure 1.9. Sequential moments.
Data source: Datastream.

(b) A few more . . .

(c) Oil price returns 02/01/1990–13/08/2002



1.6.3 Implications of fat tails in finance

The fact that returns are non-normal has important consequences in finance. Many
methods in portfolio theory and derivative pricing assume normality of returns, and
break down in the absence of normality. It is, however, in the field of risk management
where the normality of returns is crucially important. An assumption of normal dis-
tribution for risk calculations leads to a gross underestimation of risk. This has been
widely recognized:

‘‘. . . as you well know, the biggest problems we now have with the whole evolution of
risk is the fat-tail problem, which is really creating very large conceptual difficulties.
Because as we all know, the assumption of normality enables us to drop off the huge
amount of complexity in our equations . . . Because once you start putting in non-
normality assumptions, which is unfortunately what characterizes the real world, then
these issues become extremely difficult.’’

Alan Greenspan (1997)

Financial risk modeling is usually concerned with obtaining the probability of important
but infrequent events, such as market crashes or how much money we may expect to lose
in a worst case scenario. For such applications, the main concern is on the far left tail of
the return distribution. Assuming normality will therefore lead to an underestimation of
risk and may induce the wrong investment choice and perhaps leaving us underhedged,
or overexposed.

Risk managers are in a difficult situation. If they assume normality, they are under-
estimating risk, often with dire consequences. However, the use of non-normal tech-
niques is highly complicated, and unless correctly used, may lead to incorrect outcomes.

Option pricing is also crucially dependent on the underlying distribution. If the return
distribution is indeed fat tailed, then using the Black–Scholes model will lead to
underpricing.

The presence of fat tails has caused problems for many financial institutions. For
example, in the beginning of the 2007–2009 crisis, several banks lost large amounts of
money on their quantitative trading funds, such as Goldman Sachs as reported by the
Financial Times:

‘‘For reasons that are still unclear, shares began tomove in ways that were the opposite
of those predicted by computer models. These moves triggered selling by the funds as
they attempted to cover their losses and meet margin calls from banks. This in turn
exacerbated the share price movements.’’

Financial Times (2007)

This had a strong negative impact on Goldmans. Its GEO fund was down more than
30% and its flagship Global Alpha fund, a quant fund, lost 27% by that point in 2007.

‘‘We were seeing things that were 25-standard deviation moves, several days in a row,’’
said David Viniar, Goldman’s chief financial officer. ‘‘There have been issues in some
of the other quantitative spaces. But nothing like what we saw last week.’’

Financial Times (2007)
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The Wall Street Journal notes the problems facing Lehmans, quoting Mr. Rothman, a
University of Chicago Ph.D,

‘‘Wednesday is the type of day people will remember in quant-land for a very long
time . . . Events that models only predicted would happen once in 10,000 years
happened every day for three days.’’

Wall Street Journal (2007)

1.7 NONLINEAR DEPENDENCE

The final stylized fact of financial returns is nonlinear dependence (i.e., the observation
that the dependence between different return series changes according to market
conditions). For example, most of the time, the prices of assets move relatively
independently of each other, but in a crisis they all drop together.
In practice, joint extreme outcomes are more likely to occur than predicted by

multivariate normality and linear correlations. For example, the probability of the
joint FTSE and S&P 500 crash in 1987 is 10�69 if measured by historical data and
assumptions of bivariate normality.
Most statistical models assume that the relationship between different returns is

linear. Suppose X and Y denote returns on two assets, then—if they are linearly
dependent—the conditional expectation EðY jXÞ is a linear function of X . If this is true,
we can measure the strength of their linear dependence by using correlations, such as
Pearson’s correlation coefficient �.
It is important to keep in mind that if E½Y jX � cannot be expressed as a linear function

of X , then � does not adequately capture the dependence structure between the two
variables.
While it is tempting to conclude that the two data series are independent if the

correlation coefficient is zero, in general this is not true, as illustrated by a simple
example.

Example 1.1 Consider a random variable X which is symmetrically distributed about
zero, such as the normal, and let Y be another random variable defined as Y ¼ X2. In
this case, Y is completely dependent on X while the correlation coefficient between
them is zero, because the correlation coefficient only detects linear dependencies
between two variables.

Considerable recent research has shown that the assumption of linear dependence
does not generally hold for asset returns, where correlations are usually lower in bull
markets than in bear markets. Furthermore, if financial data were jointly normally
distributed, correlations would decrease for extreme events whereas empirically we
see that correlations tend to increase to one in a crisis, as demonstrated by the example
in Section 1.7.1.
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To capture such phenomena, models of nonlinear dependence allow the dependence
structure to change according to market conditions. In this case, linear correlations
overestimate dependence in non-crisis periods and underestimate correlations during
crises.

Research such as Ang et al. (2001) and Patton (2002) has found that these nonlinear
dependence structures command a premium in the market as investors require higher
expected returns for portfolios where assets are highly correlated under bad market
conditions. Aside from asset allocation, applications in risk analysis, economic capital
and financial stability also focus on large outcomes. In such applications it is essential to
address nonlinear dependence.

1.7.1 Sample evidence of nonlinear dependence

We illustrate nonlinear dependence with long-run correlations between the returns of
three (former) investment banks, Morgan Stanley, Goldman Sachs and Bear Stearns,
and one nonfinancial firm, Microsoft, for the time period May 5, 1999–September 12,
2007 (see Table 1.6). Unsurprisingly, financials are relatively highly correlated, while
Microsoft is less correlated with financials at around 40%.

During the first round of the 2007–2009 crisis (August 2007), the correlations of all
stocks increased dramatically. For example, Table 1.6(b) shows the correlations between
Morgan Stanley and Goldman Sachs increasing from 81% to 94%. Such a high correla-
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Table 1.6. Return correlations andmeans forMicrosoft (MSFT),Morgan Stanley (MS), Goldman

Sachs (GS) and Bear Stearns (BSC)

(a) Daily return correlations (May 5, 1999–September 12, 2007)

MSFT MS GS

MS 44%

GS 44% 81%

BSC 38% 74% 71%

(b) Daily return correlations (1 August 2007–15 August 2007)

during the opening events of the 2007 crisis

MSFT MS GS

MS 93%

GS 82% 94%

BSC 82% 92% 89%

(c) Daily mean returns

MSFT MS GS BSC

1999/5/5–2007/9/12 �0.007% 0.028% 0.049% 0.050%

2007/8/1–2007/8/15 �0.252% �1.094% �1.208% �1.468%

Data source: CRSP.



tion indicates that the two stocks almost move in lockstep. Even Microsoft was affected
by this and its correlation with financials increased substantially.
Furthermore, Table 1.6(c) shows how actual stock prices were affected by the crisis.

The effect on Microsoft is relatively insignificant, but all the financials saw their mean
daily return of about 0.05% fall to �1:5%. It is an empirical fact that very high
correlations are usually associated with very negative returns.
It is straightforward to write an R or Matlab program to download stock prices

automatically and calculate correlations. We start by modifying Listings 1.1 and 1.2. We
want to calculate correlations during the period of the financial crisis (i.e., from 2007/6/1
to 2009/12/31). Bear Stearns went into bankruptcy in 2008 so we exclude it from the
sample. First, we show the R code in Listing 1.9, which is then followed by the Matlab
code in Listing 1.10.

Listing 1.9. Download stock prices in R

price1 = get.hist.quote(instrument = "msft",start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

price2 = get.hist.quote(instrument = "ms", start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

price3 = get.hist.quote(instrument = "GS", start = "2007-06-01",

end = "2009-12-31",quote="AdjClose")

p=cbind(price1,price2,price3) # combine price vectors into a

matrix

y=diff(log(p))

cor(y) # calculate correlation matrix

Listing 1.10. Download stock prices in Matlab

price = hist_stock_data(’01062007’,’31122009’,’msft’,’ms’,’gs’);

price=[price(1).AdjClose(end:-1:1),price(2).AdjClose(end:-1:1),

price(3).AdjClose(end:-1:1)]

y=diff(log(price))

corr(y) % calculate correlation matrix

1.7.2 Exceedance correlations

One method for documenting the presence of nonlinear dependence is by using
exceedance correlations as proposed by Longin and Solnik (2001) and Ang and Chen
(2002).
Consider two stock returns X and Y which have been standardized (mean zero and

variance one). Exceedance correlations show the correlations of the two stocks as being
conditional on exceeding some threshold, that is:

~�� pð Þ �
Corr X ;Y jX 	 QX pð Þ and Y 	 QY pð Þ½ �; for p 	 0:5

Corr X ;Y jX > QX pð Þ and Y > QY pð Þ½ �; for p > 0:5,

�
ð1:2Þ
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where QX pð Þ and QY pð Þ are the pth quantiles of X and Y , respectively, given a
distributional assumption. The shape of the exceedance correlation plot depends on
the underlying distribution of data.

Exceedance correlations for the standard bivariate normal and the Student-t
distributions are shown in Figure 1.10. The horizontal axis shows the probability (we
go from 0 to 0.5, and then from 1 to 0.5) and the vertical axis shows the correlation
between the two returns given that both exceed that quantile (i.e., exceedance correla-
tions). The plot is nonlinear in p but symmetric. Exceedance correlations decrease for
the normal as we go out towards extreme quantiles, while they increase for the
Student-t.

Figure 1.11 shows the empirical exceedance correlations for daily returns on Disney
and IBM over 24 years, superimposed with exceedance correlations for the bivariate
normal and the bivariate Student-t(3) distributions with the same correlation coefficient.
The exceedance correlations exhibit substantial asymmetry. The stock returns become
highly correlated at the left extreme, with correlations steadily decreasing when we move
to the right of the distribution. This is precisely the type of dependence structure that
risk-averse investors dislike.
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Normal � ¼ 0:5

Normal � ¼ 0:7

Student-tð3Þ � ¼ 0:5

Figure 1.10. Exceedance plot for the bivariate normal and the Student-t.

Data

Normal

Student-tð3Þ

Figure 1.11. Exceedance plot for Disney and IBM returns (January 1, 1986–November 3, 2009).
Data source: Yahoo Finance.



1.8 COPULAS

The correlation analysis shown in Table 1.6 along with the exceedance plots help in
identifying the nature of nonlinear dependence (NLD). However, this still leaves the
question of how to model NLD more formally. One approach is discussed in Chapter 3
(i.e., multivariate volatility models), but an alternative method is to use copulas. For
more on the application of copulas in finance, see, for example, Patton (2009).
Copulas provide the means to create a multivariate distribution with a range of types

of dependence. We start by taking the returns on each return series separately (called
marginal returns), and transform them to the uniform distribution using the probability
integral transformation discussed below.
Armed with returns transformed to a uniform random variable, we then proceed by

modeling the dependence structure between these uniforms using a copula. Since the
probability integral transform is invertible, the copula also describes the dependence
between the original variables (returns).
In other words, we separate out the distribution of individual assets from the

distribution that links them together. For example, each asset can have a normally
distributed return, but taken jointly the portfolio is much more correlated in adverse
market situations than in bull markets. The copula provides information about how
assets behave together.

1.8.1 The Gaussian copula

Recall the normal (or Gaussian) distribution, where �ð�Þ is the normal distribution, and
��1ð�Þ is the inverse normal distribution. U and V are uniform (U;V 2 ½0; 1�) random
variables, and ��ð�Þ is the bivariate normal distribution with correlation coefficient �.
The function Cð�Þ in

Cðu; vÞ ¼ ��ð��1ðuÞ;��1ðvÞÞÞ

is then known as the Gaussian copula function, made famous by Li (2000), whose work
on the Gaussian copula enabled the pricing of structured credit products (like subprime
CDOs) which subsequently got blamed for the 2007–2009 crisis. The copula provides the
information that links the two univariate (also known as marginal) random variables
together.
For an example of a Gaussian copula see Figure 1.12(a), which shows a cross plot

(scatter plot) from a bivariate normal distribution, while panel (c) shows the joint
distribution and panel (e) the contours.

1.8.2 The theory of copulas

The joint distribution of multiple random variables is composed of information about
each variable separately, as well as information about how the various random variables
are linked together. Suppose X and Y are two random variables representing the returns
of two different stocks,

X 
 f

Y 
 g:
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Together, the joint distribution and the marginal distributions are represented by the
joint density:

ðX ;YÞ 
 h:

The idea behind the copula approach is that that we focus separately on marginal
distributions ðF ;GÞ and the function that combines them into the joint distribution,
H. That function is the copula. In other words, the copula extracts information on the
dependence structure from the joint distribution.
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(a) Gaussian scatterplot (b) Crossplot of Disney against IBM

(c) Fitted Gaussian copula (d) Fitted Student-t copula

(e) Contour of the Gaussian copula (f ) Contour of the Student-t copula

Figure 1.12. Copula plots for daily Disney and IBM returns, 1986–2009.



The probability integral transformation

The first step in applying copulas is to transform X and Y into random variables that are
distributed uniformly between zero and one, which removes individual information from
the bivariate density h. The probability integral transformation due to Fisher (1925) states
that:

Theorem 1.1 Let a random variable X have a continuous distribution F, and define a new
random variable U as:

U ¼ FðXÞ:
Then, regardless of the original distribution F, U 
 Uniformð0; 1Þ.

The theorem says that any continuous distribution can be transformed into a uniform
variable; therefore, knowing the distribution of the uniform random variable does not
imply anything about the original distribution. The probability integral transformation
is a strictly increasing transformation hence it is invertible. This means that we can
identify the dependence between two variables with the dependence between their
transforms.

On to copulas

Apply Theorem 1.1 to the two returns, X and Y , to obtain two uniform variables:

U ¼ FðXÞ
V ¼ GðYÞ:

A copula is a probability distribution on a unit cube for which every marginal
distribution is uniform on the interval ½0; 1�. The copula contains all the dependence
information in the original bivariate density h, but none of the individual information.
Sklar (1959) provides the main theory for copulas.

Theorem 1.2 Let F be the distribution of X, G the distribution of Y and H the joint
distribution of X ;Yð Þ. Assume that F and G are continuous. Then there exists a unique
copula C such that:

HðX ;YÞ ¼ CðFðXÞ;GðYÞÞ: ð1:3Þ
In applications we are more likely to use densities; Sklar’s theorem allows us to
decompose joint density by:

h X ;Yð Þ ¼ f Xð Þ � g Yð Þ � c F Xð Þ;G Yð Þð Þ:
Nelsen (1999) provides a corollary to the above theorem that allows us to extract the
copula from any given multivariate distribution and use it independently of the original
marginal distributions. In other words, we can construct a joint distribution from any
two marginal distributions and any copula, and extract the implied copula and the
marginal distributions from any joint distribution.

1.8.3 An application of copulas

We illustrate the application of copulas using the same Disney and IBM data as in
Figure 1.11. Recall that the data showed greater dependence in the negative quadrant.
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The results are shown in Figure 1.12. Panel (b) shows a cross plot of stock returns along
with their 0.05% and 99.95% quantiles. The vast majority of data points seem to be
centered around zero, but there are a few outliers from both stocks that lie outside their
sample quantiles.

We can analyze the dependence by comparing simulated data from the bivariate
normal distribution with stock returns where both have the same covariance matrix.
Panel (a) shows that simulated bivariate normal data do not have the same joint
extremes as stock returns.

We estimated both a Gaussian and a Student-t copula for the data. The estimated
parameter for the normal copula is the correlation coefficient, �, while for Student-t, the
estimated parameters are the correlation coefficient and the degrees of freedom, �. Fitted
copula densities are shown in panels (c) and (d). It is hard to compare distributions from
three-dimensional graphs, and the corresponding contour plots in panels (e) and (f )
provide a clearer picture. The t-copula clearly has more correlated extremes, on both the
upside and downside, as the plot is more stretched towards the top right and bottom left
corners.

There are a number of copulas available; we present here the Clayton copula, which is
often used in financial applications of return dependence (see Figure 1.13). The Clayton
copula is from the Archimedean class of copulas and, unlike the normal and the
Student-t, is asymmetric, exhibiting greater dependence in the negative tail than in
the positive tail, with parameter � a measure of the strength of dependence. Panel (a)
shows the Clayton copula with � ¼ 1, while panel (b) shows the estimated copula with
the same Disney and IBM data as above.

1.8.4 Some challenges in using copulas

The main problem with copulas—demonstrated in the example to an extent—is that we
can specify any type of dependence structure we want, where the copula need not be
affected by the marginal densities we choose. In the example above, marginal densities
were assumed to be the normal distribution. Currently, goodness-of-fit tests for copulas
are not common and it is unclear whether a copula that has a good fit yields a good fit
for the distribution of data.
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(a) Clayton’s copula, � ¼ 1 (b) Fitted Clayton’s copula, � ¼ 0:483

Figure 1.13. More examples of copulas, same data as in Figure 1.12.



One example of the possible misuse of copulas is when the rating agencies used
Gaussian copulas to estimate the default correlation in a pool of mortgages, with
damaging consequences, as shown in the 2007–2009 crisis.
No economic theory of copulas exists; hence, there is little guidance in choosing

copulas. In turn, this means we have the freedom to choose any type of dependence
structure we want.

1.9 SUMMARY

Many applications in finance are based on the assumption that returns on financial
assets are IID normally distributed. This assumption has been analyzed in detail in
this chapter. By using a sample of stocks of the most important stock market index in
the world, the S&P 500, as well as a selection of stocks on the New York Stock
Exchange, we have demonstrated that IID normality does not hold. Furthermore, it
is straightforward to show similar results for most financial assets.
It is well known that financial returns follow a complicated and ever-changing

probability distribution function where we can only hope to statistically model a
very small part of the distribution of returns at any one time. Often, the underlying
application dictates which part of the statistical distribution of returns we focus on.
The stylized facts of financial markets we have examined are

Volatility clusters

Fat tails

Nonlinear dependence

These stylized facts seem to hold for most if not all basic (i.e., non-derived) financial
assets regardless of asset type, sampling frequency, observation period or market.
Other empirical results only hold some of the time. For example, return distributions

are usually skewed either to the left or to the right. Returns often have a strong positive
autocorrelation over long periods of time during bull markets such as the internet
bubble, or negative autocorrelation during prolonged bear markets such as the Japanese
stock market since 1990. At the highest frequencies, returns tend to have negative
autocorrelations, but positive autocorrelations at the lowest frequencies. However,
no regular first-moment or third-moment patterns about returns exist and the
overwhelming conclusion is that we cannot profitably forecast prices in a systematic
way using simple methods.
The focus in this chapter has been on empirically identifying these stylized facts using a

range of statistical techniques. In subsequent chapters we focus on statistically modeling
financial returns, primarily for the purpose of forecasting risk.
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