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Chapter 1

Design and Analysis in Benthic
Surveys in Environmental Sampling

Antony J. Underwood and Maura G. Chapman
Centre for Research on Ecological Impacts of Coastal Cities,
University of Sydney, Sydney, Australia

Abstract

Measuring environmental impacts affecting benthic habitats requires detection of
specific patterns of statistical interactions in data sampled before and after a potential
impact, in the potentially impacted place and in control or reference locations. This
is complex because ecological assemblages and populations vary at many spatial
and temporal scales. Here, we introduce methods to ensure appropriate, indepen-
dent replication of sampling at hierarchical scales in space and time. For statistical
analysis, the logic of sampling design is critical. Determining precision of estimates
and maximising power to detect impacts require care in the design, analysis and
interpretation of the relevant data.

Keywords benthic variance, environmental impact, environmental sampling, in-
dependence, precautionary principle, precision, replication, scale, sampling design,
statistical interaction

1.1 Introduction

Quantified sampling, particularly to test applied and logically structured hypothe-
ses about patterns and processes in marine habitats, is of increasing importance
in underpinning the understanding of natural processes and to predict changes
in response to environmental influences. There have been numerous advances in
soul-searching (Peters, 1991), methods of analysis (Clarke, 1993; Anderson, 2001),
commentaries on logic (Underwood, 1990; Resetarits & Bernardo, 1998; Lawton,
1999) and the need for better understanding of environmental impacts (Schmitt &
Osenberg, 1996; Sparks, 2000). As a result, it is not possible in a general summary
to review comprehensively even the new material, let alone everything relevant to
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the topic of improved benthic sampling. Suffice it to say that it is also essential
to help with management and conservation of diversity, natural resources, systems
and functions. Taking care in the acquisition of quantitative information should,
therefore, be of paramount importance to all marine biologists and ecologists.

This chapter, therefore, presents a general overview of the issues concerned. It
is not, nor could it be, a ‘cookbook’ of procedures that might work. Rather, it is an
attempt to consider fundamental issues of replication, in space and time, the nature
of variables examined, issues about designing comparative sampling programmes
and so forth.

These topics are considered against a general background of the logical structure
underpinning sampling methodology. The issue is a simple one – unless the aims
and objectives of any study are clearly identified at the outset, the least damaging
outcome will be wastage of time, money and resources. The worst outcome would
be a complete lack of valid information on which to build understanding, predictive
capacity and managerial/conservatory decision-making. Where aims are vague,
designs of sampling are usually (if not always) inadequate, data do not match
necessary assumptions, analyses are invalid and conclusions suspect.

In contrast, where aims and purposes are logical, coherent and explicit, it is
usually possible to design a robust, effective, efficient and satisfactory sampling
programme, which will allow aims to be achieved with minimal uncertainty. This
seems such common sense that it does not need to be stated – but common sense
indicates that the world is flat and that the sun rotates round the earth. Common
sense is not enough.

For example, Hurlbert (1984) published a devastating critique of the failure
of many published studies to demonstrate a valid basis for reaching conclusions,
because the samples analysed were inappropriately or not at all replicated. His study
was confined to the published studies, in refereed journals, subject to independent
scrutiny. The overall situation, taking into account rejected papers, less intensively
scrutinised journals and the flood of unreviewed grey literature, was clearly much
worse. It is clear, from practical inspection of more recent literature and through
reviewing manuscripts and applications for grants, that the situation (though now
better) has not improved substantially (Hurlbert, 2004).

The starting point for studies needing quantitative sampling is that objectives
should be clear, the variables to be measured should be defined and the sorts of
patterns anticipated in the data should be clearly identified (as testable hypotheses).
Wherever possible, as much information as is available should have been collected
(and understood) about the operational processes operating, their spatial and tem-
poral scales and about the biological interactions in assemblages and responses
to environmental variables. Ideally, the constraints of money, time and equipment
should also have all been taken into account. In other words, the professional com-
ponents of scientific work should all be in place. Under these circumstances, it
should be possible to design sampling to achieve minimal probabilities of error in
analyses.
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As a result, the focus in this chapter is on general issues and procedures to
provide help and guidance with setting objectives, formulating hypotheses and
designing sampling, particularly for measuring ecological impacts. This will serve
as an aide-memoire for contemplating issues of logic when dealing with spatial
and temporal variability in biological systems. It will also provide an introduction
into the broader literature where many advances have been made in methodologies
dealing with the problems of biological complexity in the real world.

1.2 Variability in benthic populations

Surveys must always be designed to take into account the fact that benthic animals
and plants are extremely patchy in distribution and abundance. Patchiness is caused
by processes external to the assemblage, particularly disturbances and recruitment,
in addition to processes operating within the existing assemblage. Although anthro-
pogenic disturbances are often very severe (e.g. large-scale trawling or dredging can
cause extreme changes in benthic assemblages; Hall & Harding, 1997; Lindegarth
et al., 2000), natural disturbances are common and can be important contributors
to spatial variability of populations. These vary from small-scale disturbances, e.g.
being overturned by waves affects the assemblage on a boulder (Sousa, 1979) and
potentially the assemblage in the sediment below it, to large-scale processes, such
as the erosion of nearshore sediments (Shanks & Wright, 1986) and the destruction
of assemblages in response to large storms (Underwood, 1998).

However, the most important contribution to patchiness is probably due to un-
predictable and variable patterns of recruitment (Underwood & Denley, 1984).
Both settlement itself and post-settlement mortality typically vary at a hierarchy
of spatial scales (Caffey, 1985; Gaines & Bertness, 1992). Patterns at larger scales
tend to be more predictable because most species are confined to particular habitats
within a biogeographic range (Brown & Gibson, 1983). However, at small scales
within patches of habitat, there is considerable variability in recruitment (Keough,
1998), caused by local environmental variation (e.g. topographic features of habitat
or localised water currents) or by the existing assemblage itself (e.g. gregarious
settlement in response to conspecific adults or consumption of larvae by large
numbers of sessile species). The numbers of larvae competent to settle that arrive
in any site are themselves influenced by a multitude of external processes, many of
which act in the water column well away from the site of settlement. The localised
processes, both physical and biological, that influence recruitment are interactive,
so recruitment is extremely variable in space and time.

In addition, numerous interactions within the assemblages themselves continu-
ally alter patterns of abundances and these effects, too, occur at a range of spatial
scales. For example, though predation may decrease abundances at the scale of a
shore or habitat, within that habitat predation may eliminate species from certain
patches, but leave other patches alone. Feeding by eagle rays or shore birds can
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create extreme small-scale patchiness in abundances of their prey, although these
effects are complicated by environmental factors, such as currents and movement
of sediment (reviewed by Thrush, 1999). Even in areas with heavy predation, prey
may settle in particular microhabitats, where they can grow large enough to escape
predation (Dayton, 1971).

Competition, either for space among sessile animals or plants or for food among
mobile animals, also contributes greatly to patchiness of assemblages. Therefore,
over-growth or dislodgment of one species by another (Keough, 1984) causes very
patchy assemblages of sponges, ascidians and other colonial animals in subtidal
habitats and of barnacles and various types of algae in intertidal habitats. Although
species that are superior competitors for space or food may eliminate inferior
species, the relative strength of interspecific competition may be balanced with
that of intraspecific competition. This ensures that neither species is eliminated,
but that both persist in very variable and patchy numbers.

Processes such as these are better understood for benthic assemblages living on
hard surfaces because, first, the patterns are often readily visible and, second, the
processes are relatively easily investigated experimentally. They are, however, also
important for assemblages in soft sediments, where recruitment may be equally
variable (Skilleter, 1992; Whitlatch et al., 1998) and local disturbances, competi-
tion and predation alter local abundances, causing very patchy distributions at a
hierarchy of spatial and temporal scales (Morrisey et al., 1992a, 1992b; Ysebaert
& Herman, 2002; Fig. 1.1). To estimate abundances of benthic animals and plants
accurately, measures must be made at the range of spatial scales relevant for the
species, assemblage or process under consideration.

1.3 Appropriate replication

Appropriate spatial replication

Whatever the hypothesis being tested and the ultimate use of the data from sampling,
spatial replication is a mandatory component of any benthic study. The large
variability in numbers and varieties of benthic species from place to place at many
spatial scales (see Section 1.2) creates fundamental problems for determining at
what scales replication is necessary.

Consider a relatively simple problem of determining the influence of type of
sediment on the numbers and types of benthic species. To keep the example very
simple, suppose that a particular species of polychaete is generally more abundant
where sediments are coarse than where fine sediments form the major proportion. In
any ecological study of these worms in some new area, a relevant hypothesis to be
tested is, therefore, that abundance will, on average, be greater in an area of coarse
sediment than in a corresponding area of fine sediment. Furthermore, suppose that
patches of the different types of sediment are about 800 m in diameter. Finally, as
is virtually inevitable, imagine that numbers of worms per m2 of habitat may vary
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(a)

(b)

Fig. 1.1 Mean (Standard Error; SE) abundance of two species of amphipods (a) and (b) between
sites (S1, S2; tens of metres apart) in each of two locations (L1, L2; 100 m apart) in each of three
mangrove forests (F1, F2, F3; kilometres apart). Note that each species shows significant variation at
each spatial scale, but these differ between the two species. Patterns of variation at the scale of sites
and locations also vary from one mangrove forest to another.
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substantially at scales of tens of metres and at scales of hundreds of metres, even
in the same type of sediment. Consider a sampling scheme in which 10 box cores
are sampled in one patch of coarse sediment and 10 cores are taken from a patch of
finer sediment some 2 km away. The mean number of worms is greater in the cores
from the coarser sediment, which is consistent with the hypothesis. Nevertheless,
this does not allow a valid interpretation that the difference is associated with the
difference in sediment (as was predicted). Such an interpretation or influence is
confounded by the alternative that numbers are different simply because the two
areas are 2 km apart. In other words, if samples are taken in two patches of fine or
two patches of coarse sediment separated by 2 km, numbers of worms may differ
as much as is observed in the two samples shown here. The alternative models
explaining why numbers of worms vary are that the sediments differ or that natural
variation from place to place, regardless of sediment, caused the numbers to be
different. The only way to separate these two models is to predict (from the first
model) that differences from one type of sediment to the other are greater than
expected from natural variation in either type of sediment.

The study, therefore, requires replication of sites of each type of sediment to
estimate natural variation that is not associated with type of sediment. It is some-
times argued that such a study as described is replicated because there were several
cores in each patch. This is an example of what Hurlbert (1984) called ‘pseu-
doreplication’ – the replicate units in each sample are at the wrong scale and are
estimating variability at tens of metres, not at the hundreds of metres at which
there are differences among patches of the same type. A better-constructed design
would solve the problem by sampling several patches of coarse sediment spaced,
say, 2 km apart and several patches of finer sediment at similar spacing, about 2 km
from the nearest area of coarse sediment sampled. The two types of patch should
be interspersed, i.e. chosen to be higgledy-piggledy on a map, so that no systematic
trend or gradient makes them different for reasons other than the type of sediment
(see Underwood (2000) for examples and illustrations of this issue).

Using such a design, the variation of scales of tens of metres within a patch
and at hundreds of metres from patch to patch of the same type of sediment can
be estimated. A hierarchical or spatially nested analysis of the data can then be
used to test the hypothesis that the difference, on average, between the two types
of sediment is greater than the natural spatial variation from patch to patch of the
same type. Examples of such analysis for benthic infauna are in Green and Hobson
(1970) and Morrisey et al. (1992a, 1992b), and the form and structure of analyses
are described in detail in Underwood (1997a).

The lengthy description of a very simple case is made necessary by the large
number of unreplicated studies, with logically invalid conclusions, that still keep
appearing in (or are submitted to and rejected from) ecological journals. It should
be noted that better sampling is no substitute for good biological knowledge. So,
if the variation in numbers of polychaetes from site to site with finer sediments
is known from previous studies to be of the order of tens to hundreds of worms
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per m2 and there are 1500 more worms per m3 in the single coarser site than in
the single finer site sampled, it can be argued that this size of difference is much
greater than natural variation among sites with finer sediments. In such a case, the
conclusion that more worms are found in coarser sediments would be valid.

This argument will, however, only be correct if there has been adequate previous
study to demonstrate the general validity (from area to area of the world and
from time to time) of the notion that numbers of worms vary naturally by tens to
hundreds per metre. It is not usually the case that sufficient information of this type
is available. It is, in fact, often the case that previous studies were not replicated
at appropriate spatial scales to justify reaching such general conclusions. If such
an argument is to be used, it is, therefore, essential to provide the details of the
previous studies that might justify it. Often, it is more efficient (and always more
valid scientifically, because it does not depend on inductive inferences) to use
appropriate replication in any new study.

One further example of problems of logical conclusions from sampling at only
one or two spatial scales will be considered. Suppose that dredging is being done
at several places in an estuary, to keep channels open for shipping. The sediments
in shipping channels are contaminated by heavy metals. Sampling is required in
order to detect any impact on benthic infauna in areas around the sites being
dredged (not in the sites being dredged – they are not just impacted, but the habitat
is actually removed). The concern is that fine sediments with associated heavy
metals may wash from the dredged sites to areas up to 100 m away. A replicated
study can be designed (as in Fig. 1.2), with several dredged areas and several
controls being sampled. In each area, replicated patches of sediment are sampled.
Natural spatial variation from patch to patch and area to area is estimated and
analysis can reveal any systematic difference between sites near dredging and
control sites.

Suppose, however, that the movement of contaminated sediment accidentally
released from a dredged area is actually much larger than anticipated. Contaminated
fines may now be dispersed over the whole estuary, thus deleteriously affecting
all of the control sites, in addition to the sites immediately adjacent to dredging.
Changes in benthic fauna due to heavy metals will now occur over all the sites
sampled, but there will be no apparent impact because the control sites and the
sites next to dredging will not show any differences, when the data are analysed.
It would seem that, during the course of the study, there has been an estuary-wide
change in fauna not associated specifically with dredging. This sort of situation
requires sampling at much larger scales, best of all in other estuaries where dredging
is not occurring.

Designs of this type and procedures for analysing the data to detect impacts in
such situations were discussed in detail by Green (1979) and Underwood (1992,
1994). The moral of this example is clear – when in doubt about the relevant spatial
scale, use a design that can detect changes or differences at one or more of several
of the possible scales.
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(a) Predicted

(b) Actual

Fig. 1.2 Sampling to detect an impact due to escape of fine sediments from dredging at × in areas
A, B and C in an estuary. In each area, there are sampling sites (•) within the distance predicted that
sediment would disperse if accidentally released (i.e. over the stippled areas in (a)). Control sites (◦)
are outside the predicted area of impact and at similar distances apart as the potentially impacted sites.
In (b) is the actual, much larger (stippled) area impacted; no impact would be detected because all the
controls are also affected.
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Appropriate temporal replication

Many hypotheses concern temporal changes, e.g. seasonal patterns of variation
or potential changes in populations due to disturbances. A major problem associ-
ated with many such studies is the confounding of temporal and spatial variability
(Underwood, 1993; Stewart-Oaten & Bence, 2001). For example, to measure sea-
sonal patterns of abundance, a common procedure is to collect a sample, using
a set number of replicates, each month (or each season) in one or more places.
Tests of temporal patterns then typically compare the abundances from one month
(or season) to another to the variability among replicates in the different seasons
(using procedures such as analyses of variance). The problem with such compar-
isons is that variation among seasons is indeed a measure of temporal variation,
but variation within a sample is calculated from measures of spatial variation, be-
cause the replicates taken at any particular time are all taken at the one time, even
though spatially scattered. In such a design, seasonal (or other temporal) patterns
are not contrasted against temporal variation within each season, but against spatial
variation.

To test for seasonal variation (or other a priori selected scales of temporal
variation), temporal variation among the factors of interest must be compared to
temporal variation within each factor of interest. In other words, temporal variation
among seasons must be compared to the magnitudes of variation that occur in each
season. To measure such variability, it is essential to collect samples several times
within each season. With two or more scales of temporal sampling, seasonal or
other long-term trends can be identified against background noise. Where there is
no measure of shorter-term temporal variation and such variation is large, quite
spurious seasonal (or other temporal) patterns will be seen in the data (Fig. 1.3).

Different scales of temporal sampling are extremely important for identify-
ing environmental impacts. Disturbances to the environment may either be short-
lived (pulse disturbances) or persist for long periods of time (press disturbances)
(Bender et al., 1984). The responses of organisms to either type of disturbance
may be relatively short-term (i.e. a pulse response); for example, abundances may
rapidly increase, but soon drop to normal levels, irrespective of whether the distur-
bance persists or ceases. Alternatively, populations may show long-term responses
(i.e. press responses) to continuing disturbances (because the disturbance continues
to exert an effect) or to pulse disturbances (because the disturbance, although it
ended long ago, caused a long-term change to another environmental or biological
variable). The experimental designs needed to distinguish among pulse and press
responses to pulse or press disturbances have been thoroughly described by Un-
derwood (1991) and Glasby and Underwood (1996). All require a sampling design
that can measure temporal variation at different temporal scales, measured at the
spatial scales relevant to the pulse and press responses.

For examining most environmental impacts and many other ecological hypothe-
ses, the temporal scales of change are not known and can seldom be predicted. The
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(a) (b)

(c) (d)

Fig. 1.3 With only a single sample at a series of time intervals a long time apart (e.g. each sea-
son), an apparent seasonal pattern could be identified in the variable being measured whether (a)
there is, indeed, a long-term seasonal trend or (b) there is considerable short-term variability, but no
long-term trend. Short-term temporal sampling is needed within each season. This provides the cor-
rect form of within-season replication to measure seasonal changes and identifies (c) long-term trends
from (d) background ‘noise’.

only way to identify important temporal change is to use a hierarchical temporal
sampling scheme. Such designs (Underwood, 1991) not only identify whether any
change indicates a pulse or press response but also quantify temporal variances at
a number of scales. Impacts that change variances may be more common than and
as important as those that change means (Underwood, 1991). If an impact causes
much greater fluctuations in abundance (e.g. by altering water currents so that
recruitment is more unpredictable), the average abundance of a species may not
change over long periods of time; nonetheless the species may be very rare or very
common at different times, depending on recent recruitment (Fig. 1.4). If a subse-
quent impact occurs during a period when abundance is small, such populations
may be far more vulnerable to cumulative, but relatively minor impacts, which
can then cause local extinctions. Sampling designs that measure changes in mean
abundance at different temporal scales, in addition to changes in temporal variances
of abundance, are most likely to be successful at identifying environmental impacts
and natural ecological variation.
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Fig. 1.4 Environmental impacts (at the times indicated by arrows) that affect the variability in abun-
dances of a species, rather than the mean abundance, can cause increased vulnerability to further
disturbance. If a subsequent impact occurs during a phase when abundances are very small, the
species may easily be driven to local extinction.

1.4 Size of sampling unit

Because abundances typically vary at a range of spatial scales, the size of the sam-
pling unit selected to sample populations is very important in identifying patterns
of abundance. For example, consider a population of polychaetes or other small
benthic animals that typically aggregate in clusters, about 10 cm in diameter, with
the clusters spaced about 20–30 cm apart (Fig. 1.5a). Therefore, some patches of
sediment have very large numbers of animals, whereas other patches have very
few or no animals at all. Sampling with very large cores or quadrats, for example
50 cm × 50 cm, will give the impression that the animals are very regularly spaced
throughout the site. Each quadrat will probably sample one cluster, with perhaps a
few individuals from adjacent clusters, giving very similar measures of abundance
in each replicate (Fig. 1.5b). This is due to the fact that this size of sampling unit

(a) (b) (c)

Fig. 1.5 (a) Small benthic animals frequently aggregate into clusters separated from one another.
(b) Sampling with units that are much larger than the clusters tends to produce data that suggest a
very regular distribution because each unit samples a similar number of individuals. (c) Sampling with
smaller units shows the very clustered spatial pattern, with some units sampling clusters and others
sampling the bare space among the clusters.
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is too large to measure the spatial pattern because the ecological processes causing
these patterns are operating at scales of 30 cm or smaller.

Sampling with a quadrat smaller than 30 cm, e.g. 15 cm (Fig. 1.5c), provides a
more accurate picture of the spatial variability of these organisms. Some of these
units will land near or around clusters, which will thus give very large numbers of
the animals. Others will land in spaces among clusters, which will thus give very
small numbers of the animals. The average of the replicates should be the same as
when large quadrats are used (when scaled to the same area), as long as each set of
quadrats representatively samples the population. The variance will, however, be
much larger because it will more accurately represent the true pattern of dispersion,
thus identifying the scale at which the ecological processes causing these patterns
are operating.

In many cases, particularly for organisms in sediments or for very small or
cryptic organisms, one cannot observe the patterns of dispersion prior to sampling,
so it is not always easy to determine the appropriate size of a sampling unit. In these
cases, a pilot study in one site at the start of the experiment, in which a range of
sizes of sampling units are used, may identify such patterns and save subsequent,
time-consuming efforts. Alternatively, good knowledge of the natural history of the
species under investigation, or of other, similar species, or a critical evaluation of
the sizes of sampling units others have used, with the reasons why and the patterns
identified, may help.

When patterns of abundance of several species occupying the same habitat are
being quantified, different-sized sampling units can be used for the different species
simultaneously. Therefore, for intertidal and subtidal rocky shores in Australia, a
50 cm × 50 cm quadrat has been shown to provide independent samples that
accurately quantify patterns of dispersion and abundance for several of the larger
gastropods and barnacles (Underwood, 1981). There are many smaller species
that show most variability at the scale of a few centimetres, e.g. littorinid snails
(Underwood, 1981). To count these in a 50 cm × 50 cm quadrat is not only time-
consuming (because there may be many thousands in a quadrat of this size), but
would also not measure variation at the scale that is most important for these
small animals. It is more useful, therefore, to count these and similar small species
in replicated, smaller subquadrats, scattered representatively over the area of the
large quadrat. Similarly, there may be large animals, such as sea urchins or large
whelks that may be seldom sampled in a 50 cm × 50 cm quadrat, unless a very
large number of quadrats is used. Therefore, these animals may be sampled in large
units, e.g. 3 m × 3 m, within which one may sample some 50 cm × 50 cm quadrats,
within each of which some 5 cm × 5 cm subquadrats (Fig. 1.6) may be sampled.
Each of these scales is relevant to the species being measured and no single scale
is appropriate for all species.

Another problem that can arise from the use of inappropriate or a single size
of sampling unit may occur when attempting to measure patterns of association
between abundances of two species. Consider two species of amphipods living
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Fig. 1.6 When sampling a suite of species of different sizes and abundances, the most time-effective
design is to sample large animals in large quadrats (or other sampling units) scattered over the site,
smaller animals in a number of subquadrats, nested inside each of the large quadrats and very small
or numerous animals in a set of even smaller areas scattered inside each subquadrat. Such sampling
measures variation of the small animals over the same extent of the site as the large animals and allows
the variation of the small animals to be partitioned among the different spatial scales.

in shallow, subtidal sediments. If sampled with large cores, say 25 cm in diam-
eter, abundances of the two species may be very strongly positively correlated
(Figs. 1.7a, b), i.e. they increase in abundance together. If sampled with small
cores, say 10 cm diameter, abundances may be very strongly negatively correlated
(Figs. 1.7c, d), i.e. where there are many of Species A, there are few of Species
B and vice versa. These two different patterns could be caused because the two
species are responding similarly to certain environmental variables, which cause
their numbers to increase or to decrease similarly. For example, water depth may
have a large-scale gradient across the site and both species are more common in
shallower than in deeper water. At the same time, the two species may respond
differently to other environmental variables, so that where numbers of one species
are large, those of the other species are small and vice versa. For example, there
may be small ripples in the sediment across the study site, with one species living
up-current and the other down-current of each ripple. This would separate the ani-
mals at a scale smaller than 25 cm, thus revealing the negative correlation picked
up with the smaller sampling unit (Fig. 1.7e).

Use of only one of the units would lead to the conclusion that the two species
were either positively or negatively correlated. In fact, they are negatively and
positively correlated. The different-sized units also direct attention to the scale of
the important ecological processes. Therefore, it is necessary to consider factors that
cause positive correlation at the scale of the entire site, perhaps over tens of metres,
in addition to factors that cause negative correlation at the scale of cm within the site.
The opposite pattern could equally be found. For example, species may be positively
correlated at a small spatial scale, if they use the same microhabitat. At a large
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(a)

(c)

(e)

(b)

(d)

Fig. 1.7 Sampling two species using a large sampling unit (a) shows a positive relationship between
the species (b), whereas a smaller unit (c) shows a negative relationship (d). (e) This occurs because
the two species are responding to small-scale environmental variables that tend to separate them, while
each of them increases in the same way across a broad environmental gradient. Note that the actual
pattern in (e) is not visible or known when sampling most types of benthic organisms, so correlations
at one scale may not be a good, nor complete, description of relationships between species.

spatial scale, e.g. across a depth gradient, they may be negatively correlated, with
one species more common in shallow water and one more common in deeper water.

It is often very difficult to identify individuals of many sessile animals and plants.
Therefore, they are usually sampled in situ by estimating the percentage of space
that they occupy. This can be done by photographing patches of habitat and deter-
mining cover from the photographs using a grid of dots or planimetry, or directly
in the field. Cover can be estimated from a grid of points, with the species under
each point being scored (Underwood, 1981), or by dividing a quadrat into a series
of smaller grids and estimating cover in each of these on a 0–4 scale (Benedetti-
Cecchi et al., 1996). Comparing different methods of sampling cover of sessile
organisms in the field, Foster et al. (1991) and Benedetti-Cecchi et al. (1996) have
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shown that estimates of cover vary according to the method used and a pilot study
may be needed to determine which method gives greater accuracy and precision.

It is clear that the size of the sampling unit used will have a major influence
on the spatial patterns that are identified and, hence, understanding of ecological
processes. In their extensive review on this topic, Andrew and Mapstone (1987)
strongly emphasised the need to consider carefully the sizes (and numbers) of
sampling units used in a study to optimise any sampling design, rather than auto-
matically using methods that are reported in the literature, without any idea of their
suitability.

1.5 Independence in sampling

Many analytical procedures require that data be independently measured from place
to place, time to time and replicate to replicate. This is a particularly important
assumption for many univariate procedures (regressions, analysis of variance, chi-
squared tests). The issues are not so stark for some multivariate analyses and
for many tests where data are permuted to generate distributions of test statistics
(Clarke, 1993). Nevertheless, even where the consequences of non-independence
may not be clearly understood, they should not be ignored.

Correlations in space occur among data where, for example, density in one area
influences what happens in surrounding areas. For example, for the numbers of the
two species illustrated earlier (see Section 1.4), there would be positive correlations
between data points taken on the peaks of ripples (where numbers of one species are
relatively large). There would be negative correlation between any pair of sample
units where one is in a trough (where numbers are small) and one is on a peak
(where numbers are large).

Many biological processes cause correlations in spatial data. For example, if
some species are scattered at random across an area of habitat, there will be no
pattern of correlation between the numbers in pairs of sample units, wherever they
are placed. If, in contrast, numbers are non-random because predatory fish eat the
animals and the activity of fish is concentrated in a few sites, perhaps where there
are rocks, there are now patches relatively devoid of the prey animals. Two or more
sampling units (cores, grabs, quadrats) landing in one of the areas where predators
are active will have small numbers of prey and there will thus be some positive
correlation in numbers found in sample units where numbers are small.

Non-independence through time (more commonly called serial correlation) can
be a more serious problem. Analysing differences in numbers of animals (numbers
of species, or whatever other variable) is fraught with difficulties because the
numbers in any given area tend to be correlated with future numbers. Even after
trends due to seasonal cycles or mortality through time have been identified in
analyses, there is often a tendency for the data at one time to be related to those at
the next time, or to those at subsequent times of sampling.



BLBK463-Eleftheriou Printer: Yet to Come April 19, 2013 7:45 Trim: 244mm×172mm

16 Methods for the Study of Marine Benthos

There are two general issues about serial correlation. The first is to determine
whether it is present in any given set of data and the second is to determine what
can be done about it. A general test for serial correlation is the Durbin–Watson test
(Durbin & Watson, 1951), which uses residuals from whatever trend or time-course
has been fitted to the data. If ei represents the residual at time i and there are t times
of sampling,

d =

t∑

i = 1
(ei − ei−1)2

t∑

i = 1
e2

i

is compared with tabulated values when there is no serial correlation. If positive
correlation is present, differences between adjacent times of sampling are smaller
than expected by chance and d will be smaller than in uncorrelated series of data.

If serial correlation is present and many times of sampling (or distances for spatial
analyses) are available, time-series analytical procedures will help. Procedures are
described in detail in Box and Jenkins (1976), Diggle (1990) and Cliff and Ord
(1973). One possibility is to repeat the Durbin–Watson test at different temporal (or
spatial) lags. Thus, compare ei with ei − 2, ei − 3, etc., to identify an interval at which
there is no longer any noticeable correlation. Data from such distances or times
apart would then be sufficiently independent and could be analysed by traditional
procedures. This must, however, result in a loss of data and a considerable waste
of effort collecting data that are subsequently not useable.

What this means in practice for sampling biota is that, usually, it is not possible
to have data for several temporal or spatial samples. Therefore, it is crucial to think
in advance about the biological and environmental processes operating that will
cause positive or negative correlations in the data. Then, it is often possible to
ensure that sampling is done at large enough distances or times to ensure that the
correlations do not turn up in the sampled data. Procedures such as hierarchical
sampling schemes will also help to allow relevant analysis and some forms of
fractal analysis may offer alternative approaches (Leduc et al., 1994).

1.6 Multivariate measures of assemblages

Examination of many types of models about natural ecological processes, such as
predation or competition, or about changes in response to environmental distur-
bance or management, requires measures of assemblages of species. Differences
in assemblages from place to place, or changes through time, are complex be-
cause several variables can change simultaneously. These include the species or
taxa found in each sample, their relative abundances and their distribution among
replicates within each sample, i.e. their spatial variation. Each of these is equally
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important in understanding natural ecological processes or changes in response to
disturbances. Therefore, analytical tools that can identify changes in assemblages
need to take all of these factors into consideration.

Several procedures attempt to reduce such multivariate data into univariate mea-
sures that summarise aspects of the entire data set, e.g. species richness, evenness,
dominance, etc. None of these measures, however, deals simultaneously with the
entire variability of the data. For example, showing that the number of species does
not vary from place to place allows no ecological interpretation if it is not known that
the identities of the species are different in different places. More useful procedures
examine components of a multivariate set of data simultaneously, thus measuring
the magnitude of differences between samples in composition of species, abun-
dances and spatial pattern. These procedures are well described elsewhere (Clarke,
1993) and will be introduced only briefly here.

These procedures generally work on the same principle (illustrated in Fig. 1.8).
Abundances (biomasses or equivalent measures) are measured in a suite of taxa
(Fig. 1.8a) in each of a set of samples, each with a number of replicates. A similarity
(or dissimilarity) matrix is then calculated for all pairs of replicates across all of
the samples in the matrix (Fig. 1.8b). A number of measures of similarity can be
used, but the Bray–Curtis coefficient of similarity,

Sjk = 100

⎡

⎢
⎢
⎣1 −

p∑

i=1

∣
∣yi j − yik

∣
∣

p∑

i=1

(
yi j + yik

)

⎤

⎥
⎥
⎦

where p is the number of species and yij and yik represent the number of species
i in any two sample units (units j and k), is generally considered most suitable
for ecological data that tend to have many zero values and where abundances
tend to be over-dispersed among replicates (Clarke et al., 2006a). The Bray–Curtis
measure is also not affected by species that are absent from both of the replicates
being compared. When two replicates are identical, the similarity measure is 100%
(dissimilarity 0%) and when they have no species in common, similarity is 0%
(and dissimilarity 100%).

These measures of (dis)similarity can then be compared within and among
samples, assuming replication in each sample, using analyses such as ANOSIM
(Clarke, 1993) or PERMANOVA (Anderson, 2001). These test the null hypothesis
that the average magnitude in these measures between samples is not greater than
it is within samples. These tests have been extended to consider many complex
designs, but extreme care should be exercised in interpreting any significant result
because, as described above, differences between samples are affected by the
species present, their abundances and their occurrences across replicates. These
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Similarity matrix

s7s6s5s4s3s2s1
s2 68.7
s3 66.058.0
s4 61.467.362.4
s5 59.048.760.267.5
s6 63.046.550.071.851.0
s7 63.473.765.145.566.361.8
s8 73.753.174.172.049.871.875.1

Data

s8s7s6s5s4s3s2s1
Species 1 210126 1900 11
Species 2 00020001
Species 3 15 0000063
Species 4 00010112
Species 5 00533332010
Species 6 5699877931235554
Species 7 10120 0224311
Species 8 00150023130
Species 9 30003010
Species 10 01500050
Species 11 01001101
Species 12 00030100
Species 13 00000200
Species 14 00403000
Species 15 05009563
Species 16 00000106
Species 17 30000000
Species 18 3023110118
Species 19 4438336447343447
Species 20 00000112

100

90

80

70

60

50

s4s6s2s3 s1 s7s5s8

(a)

(b)

(d)

(c)

Fig. 1.8 Many useful multivariate analytical procedures convert (a) a matrix of samples, in this case
the columns are abundances of a suite of taxa (the rows in the table), or (b) other variables into a matrix
of similarities or dissimilarities. This summarises differences across all variables between each pair
of samples into a single distance, or measure of difference between the pair. This information can be
presented graphically in many ways. (c) Non-metric MultiDimensional Scaling (nMDS) plots illustrate
similarity among samples in two- or three-dimensional space, using the ranked distances. Points closer
together on the plot are more similar and vice versa. (d) Clustering attempts to identify ‘natural’ groups
of samples by identifying which are more similar to each other.
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tests do not allow identification of the contribution that each of these types of
variation is making to any overall patterns of differences.

Tests of complex designs have other potential statistical problems. For example,
differences in dispersion (multivariate variance) within different samples cause
difficulties in the interpretation of outcomes of tests for difference among samples.
Unlike many univariate procedures, where methods for overcoming such prob-
lems have been examined in detail, there has not yet been such development of
multivariate procedures.

As with univariate analyses, one must also consider transforming the data prior
to analysis. It is common to see the data transformed to X0.5 or X0.25 in an attempt to
minimise the effects of very common species and to allow rare species to contribute
more to any patterns of difference. Transformations of different severity (e.g. X0.5

is not as severe a transform as ln(X)) affect the patterns found (Olsgard et al., 1997)
and, thus, the interpretation of any analysis. Another consideration is the level of
taxonomic resolution to use. Frequently, very similar results are obtained when
organisms are sorted to species, or to genera, or families, or larger groups (Gray
et al., 1988; Clarke, 1993). This will cause particular difficulties for interpretation
when different species in an assemblage are affected differentially by the transfor-
mation. For example, species with relatively large abundances are affected more
by square root transformation than are species with smaller abundances. Clarke
et al. (2006b) described procedures to deal with assemblages in which species
have different spatial variances among replicate sample units. At the start of any
project, spending time to examine the effects of different transformations or levels
of taxonomic resolution on the results obtained may well save considerable effort
later. It is, however, very important to consider these issues carefully, especially
with respect to the model and hypothesis being tested.

Measures of (dis)similarity can also be presented graphically, e.g. in Non-metric
MultiDimensional Scaling (nMDS) plots. Such plots attempt to place all the repli-
cates into a two- or three-dimensional diagram, maintaining the relative distances
(or measures of dissimilarity) among the replicates (Fig. 1.8c). Replicates that
plot closely together contain similar assemblages and replicates that plot further
apart contain more dissimilar assemblages. Such plots are particularly useful for
illustrating differences among samples and are usually used in conjunction with
analyses, such as PERMANOVA.

In addition, samples can be subjected to cluster analyses, of which there are a
range of different methods (Clifford & Stephenson, 1975). These attempt to find
natural groups of samples, rather than to examine differences between predeter-
mined groups. These groupings are often displayed in a dendrogram (Fig. 1.8d)
against a scale of (dis)similarity (e.g. Bray–Curtis similarity), which identifies the
degree of similarity that separates samples into different groups.

There are ongoing developments of relevant methods, some of which are very
useful in analyses of environmental impacts. A recent summary of relevant tech-
niques is given in Clarke and Gorley (2006).
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1.7 Transformations and scales of measurement

There are several reasons why data may need to be transformed prior to analysis.
Some parametric and non-parametric analytical procedures (analysis of variance,
Kruskall–Wallis tests of ranks) have underlying assumptions, for example, that the
data are normally distributed, or that variances among samples are not heteroge-
neous (i.e. are of the same magnitude). If these assumptions are not met, there is
increased possibility of Type I errors (i.e. increased chance of mistakenly finding
apparent differences among samples, when they are, in fact, similar; Table 1.4).
Although different analyses have different levels of sensitivity to making Type I
errors, depending on the particular assumption being violated (Underwood, 1997a),
it may be necessary to transform data prior to analysis to meet the assumptions of
the analysis (Winer et al., 1991).

Three types of ecological processes are responsible for variances being of dif-
ferent sizes among samples. Counts of randomly dispersed animals or plants in
quadrats, cores or other sampling units will be distributed approximately as Pois-
son distributions. This sort of pattern occurs where there are no ecological processes
operating to cause the individuals to aggregate or to spread out, so that they are
not scattered at random. In a Poisson distribution, the variance equals the mean.
Therefore, when comparing samples in which means differ, it is also inevitable that
variances will differ (Fig. 1.9a). Comparing samples with very large differences
among means is likely to give significant values for heterogeneity of variances
(e.g. using Cochran’s test). In such situations, where the variance: mean plot is
roughly linear, the data can usually be transformed using

√
X + 1 to eliminate

these problems.
Many ecological processes cause variances to increase exponentially with in-

creases in means so that the data are log-normally distributed. For example, sizes of
organisms caused by differing rates of growth, distances moved during dispersal or
concentrations of enzymes in animals of different sizes are often log-normally dis-
tributed. It is common for most members of a population to grow at relatively similar
rates or to disperse relatively similar distances, although a few grow extremely fast
or disperse very long distances. These will cause log-normal distributions in the
data. Similarly, while small animals may have large concentrations of enzymes,
large animals may have small concentrations. If enzyme concentrations are scaled
to the size of the animals, measures will be very large for small animals. In cases
such as these, the Standard Deviation (SD), not the variance, is approximately
linearly related to the mean (Fig. 1.9b). Such data will be more likely to meet as-
sumptions of normality and homogeneity of variances if they are log-transformed
prior to analysis (to whichever base seems most appropriate). Unfortunately, if
there are zeros in the data, a value (e.g. 0.1 or 1, depending on the range of the data
themselves) needs to be added to each datum prior to transformation. Adding these
numbers needs careful consideration because this procedure can alter the relative
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(a) (b)

(c) (d)

Fig. 1.9 (a) Linear relationship between means and variances in randomly distributed species;
(b) linear relationship between Standard Deviations (SDs) and means in log-normally distributed data;
(c) relationship between variances and means of proportional (or percentage) data; (d) relationship
between SDs and means between constrained sets of proportional (or percentage) data. Parts (a) and
(b) are numbers of microgastropods per cobble; (c) and (d) are percentage covers of unoccupied space
underneath intertidal boulders.

relationships among means, especially in cases where the data are very variable,
e.g. there are many zeros or very small numbers in some samples.

Finally, if data are percentages (or proportions), they may be distributed as
binomial distributions. In such cases, variances may be small for samples where
means are near the limits of the distribution (e.g. 0% or 100%), but relatively
large when samples have means towards the middle of the distribution (e.g. 50%).
In such cases, an arc-sine transformation may remove heterogeneity of variances
(Fig. 1.9c). When the data do not span most of the range of 0–100%, they will often
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appear to be distributed like a log-normal distribution, so that a transformation to
logarithms may be more appropriate (Fig. 1.9d).

In some cases, even if variances are not heterogeneous and, therefore, transfor-
mation is not necessary to meet the assumptions of some statistical test, it may
still be appropriate to transform data prior to analysis. Therefore, if the ecolog-
ical processes influencing the patterns being measured are multiplicative, rather
than simply additive, it is appropriate to transform all data to logarithms when
testing for differences among mean values. This would ensure that doubling the
mean from 10 to 20 from one site to another would give the same measure of
difference as doubling from a mean of 100–200. This may be very important, for
example, for testing predictions about the effects of pollutants on populations of an-
imals across a number of sites, where the natural density of animals differs greatly
from site to site. If the pollutant is hypothesised to decrease densities similarly
across a range of natural environmental conditions (and therefore across a range
of natural densities), transforming the densities to logarithms will allow for such
a test because the test will not be confounded by variation in natural densities.
More insights into use of transformations in ecological sampling can be found in
Elliott (1977).

In any case, whatever transformation is used for whatever reason, note that trans-
forming data must change the scale over which the data are distributed and, there-
fore, must alter the relationships between means and variances. Transformations,
therefore, also change the meaning or interpretation of any test of a hypothesis.
This must be considered very carefully, particularly in multivariate analyses if the
same transform is applied to the numbers of a set of species that have very dif-
ferent densities. It is essential that the relationships between the hypothesis being
tested, the analytical procedures being used and the scale in which the data are
analysed should be clearly maintained to ensure that results of any statistical tests
are interpreted logically in terms of ecological processes.

1.8 Data-checking and quality control

Rigorous control of the quality of data is an essential requirement for any research
project. This does not only mean collecting relevant, independent, representa-
tive data in the field or laboratory for appropriate tests of hypotheses of interest.
Very careful translation of the data into the format necessary for analysis is also
essential. Nowadays, most data are stored in databases or electronic spreadsheets.
It is essential that as much quality control goes into checking that the data in the
spreadsheet match those collected in the laboratory or field, as went into collecting
the data in the first place. One infallible but time-consuming way to ensure that the
data match is to make sure that, after each set of data is entered into the computer,
it is also checked by two people, at least one of whom was not involved in the
collection of the data. This helps to eliminate many errors that may arise from
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Table 1.1 Calculations of Standard Deviations (SDs) from counts of small snails in 15 samples. Note
the very large SD for Sample 5 in Column 2, due to a value of 233 being entered instead of 23. When
this was corrected (Column 3), Sample 5 still had a large SD, but this was correct. It was due to naturally
large abundances and patchiness in this sample.

Sample SD – not checked SD – checked

1 0.00 0.00
2 0.45 0.45
3 4.92 4.92
4 0.00 0.00
5 101.04 15.96
6 8.26 8.26
7 7.46 7.46
8 7.60 7.60
9 2.59 2.59

10 7.14 7.14
11 5.45 5.45
12 5.02 5.02
13 4.04 4.04
14 3.42 3.42
15 3.65 3.65

illegible handwriting, fatigue or the sheer boredom associated with entering large
amounts of data into databases or spreadsheets.

If it is not possible to develop a foolproof procedure, there are possible short-cuts.
For example, if one has a large set of univariate data, such as the sizes of urchins,
the diversity of amphipods or the numbers of polychaetes, from a number of sites,
it is often useful simply to calculate the SD for each site. If data have been omitted,
or very aberrant values have been incorrectly entered, they will cause a very small
or a very large measure of SD in a site, relative to other sites (Table 1.1). Therefore,
a very unusual SD may indicate an error either in collection of the data in the first
place, or an error in transcribing data into the computer. This procedure is quick
and easy to use as a form of data-checking, but it will not pick up relatively small
errors, only those that cause substantially different estimates of SDs in samples.

When data from a number of species (or variables) have been collected, an-
other form of quality control is to calculate distance measures among the differ-
ent replicates (e.g. Bray–Curtis dissimilarities for species, or Euclidean distances
for abiotic variables). If these are plotted as an nMDS (Non-parametric Multi
Dimensional Scaling) plot in two- or three-dimensions, the plot will quickly show
outliers, i.e. replicates that have abnormal values for one or more species/variables
(Fig. 1.10a). Available procedures to identify which species/variables contribute
most to measures of dissimilarity (Clarke, 1993) may help to focus on the particular
data that should be checked.

Of course, not all samples with excessively large or small SDs or which form
outliers in nMDS plots are necessarily the result of an error. They may simply
reflect large natural variability. Similar procedures can also be used to determine
whether the sampling strategy is appropriate or not. For example, if replicates
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(a) (b)

Fig. 1.10 (a) Replicate two in this sample of macrobenthos from a mangrove forest forms an outlier
in the Non-metric MultiDimensional Scaling (nMDS) plot because the data for 3 of the 37 taxa in the set
of data were omitted from this sample (and were, therefore, erroneously given a value of 0). When this
was corrected, the replicates grouped into a single cluster. (b) If the points from a number of replicates
in a single sample cluster into two or more distinct groups, it often suggests that the replicates are
coming from two distinct strata and the sampling design should be stratified.

cluster into two distinct groups (Fig. 1.10b), it suggests that one might be dealing
with two habitats or sets of environmental conditions, each with a different set of
taxa. A stratified sampling strategy would probably be better in such a case, with,
for example, A, B and E treated as replicates within one stratum and C, D and F
as replicates in another (Fig. 1.10b; see Chapman & Underwood, 1999). Similarly,
if a species were very aggregated in some sites, but more randomly distributed in
others, the SDs would tend to fall into two distinct groups. This too would suggest
that sampling should not be done across all sites as if they were equal. Instead,
sites should be stratified into two groups (see Section 1.11).

Visual examination of patterns of means, variances, correlation and multivariate
data is as important as the statistical tools used to analyse the data. It can provide
important information about errors in data and about patterns of variability within
and among samples. It should, therefore, be considered as an important precursor
to any analysis, rather than looking at the data after statistical differences have been
identified.

1.9 Detecting environmental impacts as
statistical interactions

Much benthic sampling is done to detect or measure the size of environmental
impacts. It is, therefore, worth considering the sorts of sampling designs that are
best able to do this. Of course, many situations exist in which optimal designs
cannot be done because of lack of time before a disturbance causing an impact,
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or lack of resources sufficient to achieve adequate spatial replication. Wherever a
sampling design cannot be optimal, designing the sampling as carefully as possible
will ensure the greatest chance of reliable and unambiguous detection of impacts.
By understanding what is needed, greater appreciation can be achieved concerning
what is not possible and the consequences for interpretation of data.

The main features of sampling designs necessary to detect impacts have been
described in detail by Green (1979) and Underwood (1994, 2000). In an ideal
design, there should be data from before to after a disturbance that might cause
impacts, so that, if an impact does take place, it can be demonstrated that it appeared
after the disturbance purported to have caused it. There must be proper temporal
replication before and after the disturbance to provide reliable estimates of average
conditions (Bernstein & Zalinski, 1983; Stewart-Oaten et al., 1986) and to estimate
temporal variance, which might itself be altered by an environmental disturbance
(Underwood, 1991).

There must be replicated, undisturbed controls to demonstrate that an impact, if
it occurs, is associated with the disturbed area and is not a general phenomenon
happening in that habitat, which is not due to that disturbance (Green, 1979).
‘Undisturbed’ in this context means subject to any other influence or process
except the particular disturbance under investigation (Underwood, 2000). Control
sites should be replicated to prevent confounding of interpretations (Underwood,
1992; see the section entitled ‘Appropriate spatial replication’).

Finally, as convincingly demonstrated by Green (1979), an environmental impact
should always be considered as an ecological interaction. An impact is a change
from before to after a disturbance (planned or accidental), which is not the same
in the disturbed area as in an undisturbed control area. Therefore, there is a lack of
consistency in the temporal pattern of change of the variables being measured in the
disturbed area and the patterns of change in the controls (Fig. 1.11). Accordingly,
in order to analyse impacts, it is necessary to design sampling that will provide
data that can be analysed to detect and interpret statistical interactions.

One type of ideal design is illustrated in Fig. 1.11 and the analysis is shown
in Tables 1.2 and 1.3. The situation concerns the construction of sewage outfalls
along a coastline. They are to be situated on rocky headlands with fast currents,
deep water and coarse offshore sediments. Two outfalls were examined, with two
corresponding control areas with similar features of habitat (rocky headlands with
fast currents, deep water and coarse sediments). Any coast-wide change in benthic
fauna that is not due to discharge of sewage will affect the control areas and the
outfall locations. An impact will cause a different type of change where there
are outfalls from where there are no outfalls (hence an interaction in the spatial
difference between outfall and control locations from before to after the outfalls
are commissioned).

Data are collected three times (essentially chosen at random) over two years
before the outfalls begin to discharge sewage and then three times over a period
of two years, starting two years after the outfalls are commissioned (Fig. 1.11). At
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(a)

(b)

(c)

Fig. 1.11 (a) Sampling to detect impacts from construction of coastal sewage outfalls. Two out-
falls (—, . . . ) and two similar control sites (—, —) are sampled 3 times (�) before and again after
the outfalls begin to discharge. (b) Data that would indicate a large-scale, consistent ‘press’ impact.
(c) Data that would identify shorter-term fluctuating impacts.
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Table 1.2 Framework for analysis of hypothetical sampling to detect impacts due to construction of
sewage outfalls (illustrated in 1.11). O indicates the comparison of mean numbers of an amphipod
between outfall and control locations and is a fixed factor (see Winer et al., 1991; Underwood, 1997a).
There are two (randomly chosen) locations of each type, indicated by L(O). Sampling before and after
the outfalls were built represents a fixed factor; there are 3 randomly chosen times of sampling before
and again after the outfalls start operation. n = 5 replicate cores are sampled at each time in each
location.

Source of variation Degrees of freedom Test

Outfalls versus controls = O 1 Irrelevant
Before versus after = B 1 Irrelevant
O × B 1 Indicates large-scale,

long-term impact
Locations (outfall or

control)
= L(O) 2 Irrelevant

B × L(O) 2 Indicates different
impacts at the two
outfalls

Times of sampling
(before or after)

= T(B) 4 Irrelevant

O × T(B) 4 Indicates possible
fluctuating impacts

L(O) × T(B) 8 Indicates possible
fluctuating impacts
that differ between
outfalls

Residual 96
Total 119

Table 1.3 Framework for an asymmetrical (beyond Before-After/Control-Impact (BACI)) analysis of
sampling to detect impacts due to construction of a single sewage outfall. There is now no replication
of outfall locations, but all other details are as in Table 1.2.

Source of variation Degrees of freedom Test

Outfalls versus controls = O 1 Irrelevant
Before versus after = B 1 Irrelevant
O × B 1 Indicates large-scale,

long-term impact
Locations (control) = L(C) 1 Irrelevant
B × L(C) 2 Indicates different

impacts at the two
outfalls

Times of sampling
(before or after)

= T(B) 4 Irrelevant

O × T(B) 4 Indicates possible
fluctuating impacts

L(C) × T(B) 4 Indicates possible
fluctuating impacts
that differ between
outfalls

Residual 72
Total 89
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each time of sampling, a certain number, say five, replicate areas of sediment would
be taken in each location and the animals of some species of interest (perhaps an
amphipod) collected from each area.

From such data, the analysis in Table 1.2 can be completed. A large and con-
sistent press impact (Bender et al., 1984; Underwood, 1989, 1991) would cause
an interaction identified as O × B in Table 1.2. A shorter-term, more fluctuating
response (perhaps a pulse response; Bender et al., 1984) would appear as an inter-
action O × T(B) in Table 1.2. Where an impact has a different effect on fauna in the
two locations with outfalls, there will be an interaction B × L(O) or L(O) × T(B)
depending on the rates of change caused by the sewage. Impacts causing changes in
temporal variance rather than changes in mean abundance of animals (Fig. 1.11b)
can also be analysed (Underwood, 1991, 1994).

Of course, in most cases, there is only one planned disturbance (in the present
example, only one outfall is planned). Consequently, there is a loss of replication
of the disturbed (‘outfall’) location and correspondingly less certainty about any
impact. There must, however, still be replication of control locations, ensuring
that extreme forms of confounding do not happen. Such asymmetrical designs are
still analysable and interpretable (Table 1.3) and have been called ‘beyond BACI’
designs (Underwood, 1992) to distinguish them from earlier, spatially unreplicated
and confounded BACI designs (Stewart-Oaten et al., 1986). The acronym BACI
is for ‘Before-After/Control-Impact’ sampling, where there is one (and only one)
disturbed (called ‘Impact’) location and only one control area. The disadvantages
and logical problems with BACI designs are well known (Underwood, 1992; Smith
et al., 1993).

In many situations, there can be no sampling before a disturbance, either because
it is accidental (such as an oil spill) or because the impacts were unforeseeable and
start to appear only after the disturbance has started. Such situations can still be
analysed (Chapman et al., 1995; Glasby & Underwood, 1996), but, again, there
may be uncertainty about the cause of the impact. Without previous data from
before the event, there is less certainty that the impact started after the disturbance.

There is now a substantial body of reviews of literature on sampling and anal-
ysis of environmental impacts, starting from Green (1979) and, more recently,
Spellerberg (1991), the papers in Schmitt and Osenberg (1996) and Sparks (2000).
There are still many problems in analyses of complex samples for multivariate mea-
sures, but interactions caused by impacts can, in the simplest cases, be analysed by
permutation procedures (Anderson, 2001).

1.10 Precautionary principles and errors in interpretations

Precaution has become a guiding goal for decision-making in a framework of
ecological sustainability (see Cameron & Abouchard, 1991; Wynne, 1992). De-
spite different views by lawyers, managers and scientists on what precautionary
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Table 1.4 Two types of error in conclusions from statistical tests.

As a result of sampling, the null hypothesis is:

Rejected Retained

You believe there has been an
environmental impact

You believe there has been no
environmental impact

Unknown to you, the null
hypothesis is:

TRUE TYPE I ERROR CORRECT DECISION
With probability α

FALSE CORRECT DECISION TYPE II ERROR
With probability β

principles mean (Dovers & Handmer, 1995), there is nevertheless consensus that
precaution can be defined in terms of environmental decisions. Given uncertainty
about the scientific information underpinning managerial decisions (and, although
often forgotten, the uncertainty in all the architectural, economic, engineering, le-
gal, political and social information), it is important to remember that mistakes do
occur in the interpretation of analyses of quantitative ecological data. In statistical
terms, there are two major types of mistake (Table 1.4). Type I errors occur when
a null hypothesis is rejected by a statistical procedure, but which is, in fact, true.
Type II errors occur when a null hypothesis is false (i.e. some alternative is true),
but is retained. In environmental decision-making, the hypothesis put forward is
that there will be an impact due to some disturbance. For other types of ecological
studies, hypotheses include predictions such as the following:

(i) Based on the observation that faunal assemblages vary with depth and com-
position of sediments varies with depth, it can be proposed that differences in
composition of sediments cause the difference in assemblages. Therefore, a
relevant hypothesis is that, for any particular composition of sediments, similar
fauna will be found at all depths. Also, at any depth, the fauna in a particular
type of sediment will be similar to that in the same type of sediment at other
depths.

(ii) Given previous observations of fewer amphipods in areas where rays feed, the
model can be proposed that predation or disturbance by the rays decreases
the number of amphipods. This leads to the hypothesis that areas where rays
are experimentally prevented from entering will develop larger numbers of
amphipods than in corresponding control areas.

Sampling is then done to test the hypothesis (hypotheses) and data are analysed
statistically. A statistical procedure includes choosing a probability (α) of Type I
error – the probability that the data collected cause rejection of the null hypothesis
as the outcome of the test, even though the hypothesis is, in fact, correct. So, an
impact could apparently be found where there is no impact; different fauna seem
to be present in similar sediments, whereas in reality, there is no difference. The
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presence of rays seems to make a difference, but in fact, the numbers of amphipods
are not influenced by rays.

Type II errors exhibit the opposite situation – no impact is found, even though
one has occurred. A Type II error occurs when fauna do actually differ, but no
difference is found in the samples; or if the sampled numbers of amphipods are not
significantly different in the presence and absence of rays, even though rays are, in
fact, important predators. The probability of making Type II errors (β) cannot be
assessed in most studies.

In environmental studies, failure to detect an impact (a Type II error) is much
more serious than erroneously claiming to find one (Type I) where there is none.
Where an impact is believed to have occurred, more work will usually be done (to
check, to determine its extent, to test further hypotheses about its consequences). In
such a case the mistake will almost certainly be detected. In contrast, where a real
impact has not been detected, no particular follow-up will occur and environmental
degradation will continue. Precautionary principles, therefore, are based on the
assumption that errors should be of Type I and not of Type II (Gray, 1990, 1996;
Peterman & M’Gonigle, 1992; Underwood, 1997b).

There is not enough space here to demonstrate how to reduce the probability
of Type II errors. Details can be found in Green (1989), Peterman and M’Gonigle
(1992) and Underwood (1997b). The probability of not making a Type II error, i.e.
of correctly rejecting a null hypothesis (finding an impact) when it is false (there
is an impact), is (1 − β) and is called the power of a test (see Table 1.4). Power is
increased where:

(i) α, the probability of Type I error is increased;
(ii) the intrinsic variance, or ‘noise’, in the measurements is small;

(iii) the size of the effect is large, i.e. large differences are expected if the null
hypothesis is false;

(iv) the sizes of samples are large.

Of these, the variance is a property of the system being measured (but see Section
1.11). α and the sizes of samples (numbers of replicate sites, times of sampling,
sample units in each site) are chosen by the experimenter. Thus, they should be
chosen to achieve large power, i.e. great capacity to reject null hypotheses (to find
differences where they exist).

The key to power analysis is the effect-size. To calculate the power of any
sampling and analysis requires that the amount of difference among times, places,
habitats, experimental treatments, etc., be specified in advance. Thus, the hypothesis
that rays influence amphipods is devoid of real information. What is required is
a statement, based on available knowledge, that, if rays decrease the numbers of
amphipods, removing them from some experimental areas will cause an increase
of X amphipods per unit area of habitat. Where the original observations provoking
the study were that fewer amphipods are present where rays feed (see above), X is
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known from these observations (it is the observed difference hypothetically caused
by rays).

For the assessment of environmental impacts, effect-sizes are more difficult
to establish. A good yardstick is that the effect-sizes (how much difference in the
densities of the affected species) or how much change in any other relevant variable
is expected (if there really is an impact) should be based on what responses would be
triggered by the discovery of that size of impact. So, suppose that an impact causes
a reduction of 10% in numbers of crustaceans in some mud flat near an industrial
outfall and constitutes an impact, but there is no proposed change in regulation or
management. In contrast, suppose that a reduction of 60% would trigger immediate
regulatory responses. It is, therefore, very important to be able to detect a 60%
difference, but of limited or no value to be able to find much smaller impacts.

In this case, a sensible effect-size would be somewhere around 50% change and
the power of the study should be made large (say >90%) in order to have a good
chance of finding the impact if it occurs (Green, 1989; Underwood, 1997a). Where
resources (money, time, equipment (i.e. money, money, money!)) are insufficient
to allow adequate replication to achieve large power, α (the probability of Type I
error) should be increased in order to achieve reductions in β (the probability of
Type II error). Mapstone (1995) has described in detail how to trade off the lack
of resources (increasing β) by increasing the chance of mistakenly finding impacts
(increasing α) in the assessment of environmental impacts.

1.11 Precision and the size of samples

As indicated earlier (see Section 1.10), the power of tests is a function of the sizes
of samples used. In general, the precision of an estimate from a certain sample
is increased as a function of the size of sample. A typical measure of precision
is the standard error, which is (sample variance/size of sample)1/2 and clearly
decreases (so precision increases) as size of sample increases. Wherever possible
(and it is always desirable), a maximal acceptable imprecision should be specified.
It is possible to estimate the variance of the variable being measured and thereby
to calculate how many replicates should be included in a sample to achieve the
necessary precision.

There are, however, several features of design of sampling that help to increase
precision of estimates of abundances of organisms. The first is stratification. Wher-
ever it is possible to make a ‘map’ of abundances (from previous studies in the
literature or from pilot studies) stratification of sampling will often substantially
reduce imprecision. As a simple example, let us suppose that it is generally known
that a particular species of sea urchin is generally more abundant (per box core) in
areas of very coarse sediment than where sediments are finer. Let us suppose that
in the study area, about 25% of the seafloor is composed of coarse sediments, in
several large patches. The remaining areas are finer sediments. There are sufficient



BLBK463-Eleftheriou Printer: Yet to Come April 19, 2013 7:45 Trim: 244mm×172mm

32 Methods for the Study of Marine Benthos

Table 1.5 Sampling urchins in an estuary with two types of sediments.
In (a), n = 16 cores are taken at random over the whole area; some are
in coarse, some are in finer sediments. In (b), n = 4 cores are taken
in the areas of coarse sediment and n = 12 in areas of finer sediment.
Stratification substantially increases the precision of the estimate of
mean number per core.

(a) Numbers of urchins in 16 cores
19, 100, 77, 13, 1, 15, 20, 17, 90, 77, 8, 22, 8, 78, 14, 29
Mean = 36.8; variance = 1156; SE = 8.5

(b) Numbers of urchins
Coarse sediment: n = 4

102, 80, 100, 95
Mean = 15.2; variance = 289; SE = 8.5

Finer sediment: n = 12
8, 10, 5, 6, 26, 23, 25, 26, 17, 8, 1, 27
Mean = 15.2; variance = 81.1; SE = 2.8

Combined sample:
Mean = 35.6; SE = 2.6

funds to take a total of 16 cores to estimate the average numbers of urchins per m2

of seafloor, as part of an ongoing study of disturbances due to trawling. Suppose
you now take the samples at random positions across the area, resulting in the data
in Table 1.5a. This gives an estimate of mean abundance of 36.8, with Standard
Error (SE) = 8.5.

If, instead, the sampling were to be stratified – i.e. you took 25% (or 4 of the
16 samples) in the areas of coarse sediment and the remainder in the other habitat,
then you would have the data in Table 1.5b. Now, the mean number of urchins is
estimated separately in each habitat, with separate estimates of imprecision, which
are then combined for the whole area to give a mean abundance of 34.9, with
SE = 2.5. This latter method is much more precise because it removes the variation
among replicate cores that is due to the systematic differences between the two
types of habitat. Of course, it also gives explicit information about the densities of
urchins in each of the two habitats, which may or may not be useful (depending on
the actual hypotheses being tested).

Combining the samples from each habitat, as done here, is only valid if the
variances in numbers of urchins in the two areas are measured independently.
Alternative methods, in particular how to stratify samples so that the number of
replicates taken in each stratum is proportional to the variance in the stratum, have
been described in detail (Cochran & Cox, 1957; Cox, 1958) and other issues in
marine ecology were reviewed by Andrew and Mapstone (1987).

A different method of expressing imprecision is to calculate the Confidence
Interval (CI) for a particular mean estimated from a sample. A 95% CI indicates
a range of values that have a 95% probability of including the true mean being
estimated. If the CI is small, the unknown mean has been estimated with a fair
degree of precision.
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Table 1.6 Sampling an amphipod in three habitats to demonstrate precision of combined samples.
Data (hypothetical) are numbers in n = 5 cores in each habitat. Variances were homogeneous (Levene’s
test, F with 2, 12 df = 1.18, P > 0.30).

Habitat

1 2 3

Replicate 1 10 28 12
2 14 31 9
3 3 33 3
4 5 26 0
5 2 19 1

Mean 6.8 27.4 5.0
Variance 25.7 293 31.2
SE 2.3 2.4 2.3
95% CI (4 df) 6.3 6.7 6.5
Combined variance 28.7 28.7 28.7
Combined SE 2.4 2.4 2.4
95% CI (12 df) 5.2 5.2 5.2

A 95% CI for a sample mean X̄ from a sample of size n is

X̄ ± t0.05,(n−1)df ×
√

Sample variance/n.

As size of sample (n) increases, the CI will decrease because the SE (i.e.
(variance/mean)1/2) is smaller and because there are more degrees of freedom (df)
(i.e. (n − 1) increases), giving a smaller value of t (from Student’s t-distribution,
in this case choosing α = 0.05, the probability of Type I error).

In any study of differences in means through time (seasons, before/after events,
etc.) or across space (habitats, patches, depths, etc.), it makes sense to combine
samples, so that the estimates of variance around each mean come from a combined
estimate of variance, with more df than from each sample alone. Thus, putting the
samples together as in an analysis of variance improves the precision of sampled
estimates of means, as illustrated in Table 1.6. For this to be valid the variances of the
various samples should be similar and this can be tested by various procedures. The
example in Table 1.6 considers samples of n = 5 cores from each of three habitats.
The combined CI is much smaller than the individual ones. To achieve the same
precision (i.e. the same small CI) for each habitat separately would have required
samples of n = 7 for each habitat, thus increasing the required work 1.4 times.

1.12 Gradients and hierarchies in sampling

There has been debate about appropriate sampling designs to use for analyses of
influences along an environmental or other gradient. For example, when testing a
hypothesis about the influence of discharge of fresh water from an estuary, it is
appropriate to sample along a gradient from the mouth of the estuary. Similarly
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and more obviously, sampling down a depth gradient requires the sites to be along
the gradient.

In other cases, the situation is not so clear-cut and whether or not sampling
along a gradient is the best option depends entirely on the hypothesis being tested.
Furthermore, even if a gradient is to be sampled, the spacing of samples is dependent
on the precise issue under examination.

To provide an illustration of the issues, consider a simple case of discharges
of contaminants from an outfall on the coast (see Underwood, 2000, for more
details). In all three situations considered here, it is proposed that pollution due to
the contaminants will be revealed by differences in the assemblages of animals in
sediments near to, as opposed to far away from, the outfall.

In the first case, the design of the outfall included modelling of the probable
dispersal of contaminants and their dilution away from the pipe (Fig. 1.12a). The
requirement of the ecological sampling is to test the hypothesis that concentrations
of contaminants in the animals in sediments do, indeed, conform to the modelled
pattern of distribution. In this case, samples must be taken along the gradient, at
fairly regular intervals, to have the greatest chance of detecting departures from the
prediction.

In the second case (Fig. 1.12b), the issue of concern is not the actual spatial
pattern of contamination, but the distance from the outfall at which concentrations
of contaminants fall below a certain critical value. For example, if the outfall is
discharging pesticides in run-off from housing, there may be, for human safety,
a maximal allowable concentration of contaminants in scallops on the seafloor. It
is, therefore, important to focus attention on the limits within which it is unsafe
to harvest scallops for human consumption. In this case, sampling effort should
be entirely focused on the areas where modelling indicates that concentrations
of contaminants are below the critical threshold. The resources and effort should
be used to identify the ‘safe’ boundary rather than the actual spatial gradient of
contamination.

Mostly, however, there are major disconnections between gradients of contam-
ination and actual biological responses, i.e. pollution (Phillips, 1978; Spellerberg,
1991; Keough & Black, 1996; Raimondi & Reed, 1996). Such disconnections are
due to the inertia of biological systems, i.e. animals or assemblages not being af-
fected by that contaminant, so that there is no response despite chemical signals.
Alternatively, biological responses can occur when concentrations of contaminants
are minimal, or undetectable, because of bioaccumulation in individual animals.
Finally, populations may be unaffected by pollution due to widespread dispersal
of their larvae, maintaining populations from elsewhere (Underwood & Peterson,
1988). In such cases, analyses along gradients are not likely to be the best ap-
proach, because there is no clear indication of the course or extent of the gradient.
An effective alternative is to sample at sites near the outfall to make comparisons
with distant sites that are chosen to be control sites because they are located far
enough away to be unaffected by the outfall (Fig. 1.13a). As discussed above (see
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Source

(a)

(b)

Source

Fig. 1.12 Sampling relevant to gradients of some influence (e.g. pollution from an outfall pipe). (a) The
issue is the spatial pattern of decreasing impact based on predicted spatial dilution of contaminants, so
sampling along the gradient away from the outfall is necessary. (b) The major concern is risk to health
due to pollution being over a defined ‘safe’ limit in animals at some distance from the outfall. Sampling
is, therefore, concentrated around the areas where this safe limit is supposed to occur.

the section entitled ‘Appropriate spatial replication’), uncertainty about the scale
of the potential pollution requires sampling at more than one spatial scale.

Another design that may be useful concerns tests of hypotheses about differences
in assemblages resulting from some installation or intrusion into a habitat. For
example, it may be proposed that fauna in sediments near to rocky reefs are different
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(a)

C3

C1

C2

C4

(b)

Fig. 1.13 (a) Sampling to handle uncertainty about the scale of an impact due to an outfall. It has
been proposed that any impact would only extend over a small distance (stippled), so samples are
taken from that area and from controls on either side, outside the area expected to be affected. The
area influenced may, however, be much larger (shaded), so other control samples are taken at much
greater distances from the outfall. (b) Sampling to test the hypothesis that assemblages in sediments
are influenced by the presence of a rocky reef (reefs are shaded). For two replicate reefs, n = 5 cores
are taken next to the reef (0 m) and at 10, 20 and 40 m from it. The reef will cause samples at 0–10 to
differ more than 10–20 or 0–20 to differ more than 20–40 (i.e. more than similar distances where there
are no reefs; for more details, see the text).
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from those further away. The reasons for these differences may be physical (waves,
water flow, sediments may all be affected by the presence of a reef) or biological
(predatory fish are associated with reefs and therefore eat animals close to a reef,
but not those further away). In this case, sampling is needed to test the hypothesis
that assemblages close to a reef are different from those further away. Samples
should then be taken near a reef and at some distance away, say, 10 m (Fig. 1.13b).

The hypothesis is that any difference is greater than normal spatial differences,
so a further set of samples is taken 20 m in from the reef. If the reef influences the
fauna, the difference in uni- or multivariate measures of a species or the assemblage
from the samples at the reef and at 10 m will not be the same as the natural variation
at that scale, i.e. the difference from 10 to 20 m. If the scale of potential influences
is not known in advance, other distances can be sampled. Thus, a further sample at
40 m allows comparison of the differences between samples at the reef and at 20 m
with the natural variation between 20 and 40 m (Fig. 1.13b). A detailed example
of the use of this design was described by Kelaher et al. (1998) for infauna in
sediments near boardwalks in mangrove forests.

The point to be understood is that sampling designs must be modified for each
particular situation and the general principle to guide designs must be to have
a flexible framework (Green, 1993), responsive to the needs of the particular
hypotheses being tested (Underwood, 1997a).

1.13 Combining results from different places or times

Sometimes, a particular study may be quite small so that, taken on its own, it cannot
reveal much about a process under investigation. It is, therefore, important to think
about mechanisms for combining the outcomes of such studies in a meta-analysis,
i.e. a combination of results of similar tests of the same hypothesis in different
places and times and conditions. General issues about ecological meta-analyses
were pioneered by Gurevitch et al. (1992).

Here, some procedures are introduced. First, in many experimental studies,
the samples are quite small and the outcomes are not clear, because the tests
are not powerful enough to provide unambiguous interpretations. There are two
general procedures available for combining the results of several small tests. Let
us suppose that the outcomes of experimental treatments (say, mean numbers of
some polychaete at five different depths) are available from several small studies
(perhaps six different cruises have collected such data, but each only had two or
three samples from each depth). The means from the five depths can be ranked
from smallest to largest for each study and summed. This gives the frequency out
of six studies of each depth having the smallest, second, third, fourth or the largest
number of worms. Such data can be analysed by a test devised by Anderson (1959)
to determine non-random patterns in the rankings (see Underwood & Chapman,
1992, for a detailed example).
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Second, there may be a test of a certain hypothesis in several studies. Each gives
a probability of the data being likely to be due to chance errors in sampling, but
only a few (or none) are significant. The probabilities from these small tests can be
combined using Fisher’s (1935) test

C = −2
k∑

i=1

loge (Pi )

where k is the number of tests and Pi is the probability from each test (i = 1, . . . , k).
C is distributed as χ2 with 2k df if there are, in fact, no differences in the set of
tests. Thus, large values of χ2 would cause the rejection of the null hypotheses
over a set of tests. An example is given in Table 1.7.

Finally, in some situations, several small tests have been done, but the meta-
analysis requires them to be weighted, for example, to reflect different amounts of
habitat across a study area. Suppose, for example, it is proposed that numbers of
species of crustaceans are greater in some estuary in areas with seagrasses than
in patches of open, sandy sediments among the seagrass beds. Three species of
seagrass form beds in the estuary and one of them (Posidonia) occurs in densely
or sparsely covered beds. Thus, there are four habitats of interest. In the estuary,
there are different areas of each type of habitat.

Samples of n = 5 replicate cores were taken among each type of seagrass and
n = 5 cores were taken in bare patches within the bed. For each such pair of
samples, a 1-tailed t-test was done. There were significantly more crustaceans
among seagrass in only one of the four tests (Table 1.7), but the probabilities were
quite small in several tests. To test the hypothesis of a difference between seagrass
and bare areas over the whole estuary, the tests were combined by Fisher’s (1935)
method, giving C = 18.29, with 8 df. This was significant at P < 0.02, indicating
greater numbers of worms among seagrasses across the whole set of data. This test
does not take into account the different areas occupied by the different habitats. So,
a Stouffer–Liptak procedure (Folks, 1984) was used, which weights the outcomes

Table 1.7 Example (using hypothetical data) of meta-analysis of numbers of worms per core (n = 5
cores per sample) among seagrass and in empty patches in seagrass in an estuary. The proportion of
all seagrass made up by each habitat is given and is the weighting for the Stouffer–Liptak procedure
(for all other details, see text).

Habitat
Proportion
(= weight) Seagrass Bare patches t1-tail, 8 df P ZI

Dense Posidonia 0.40 62 (10.1) 51 (9.7) 0.79 0.227 0.749
Sparse Posidonia 0.30 15 (2.7) 11 (2.9) 1.01 0.170 0.954
Zostera 0.13 23 (3.0) 18 (3.2) 1.13 0.146 1.054
Halophila 0.17 15 (1.5) 9 (1.9) 2.49 0.019 2.075
C = 18.28
Zw = 1.98
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of tests so that large habitats count for more than do smaller ones in a test of the
estuary as a whole. The test statistic is

ZW =
k∑

i=1

Wi .Zi

/√
√
√
√

k∑

i=1

W 2
i

where Zi is the standard normal score for Pi, the probability in each test and Wi,
is the weighting for the ith habitat. The weighting is the proportional area of the
estuary occupied by that habitat, so that widespread, common habitats count for
more in the outcome. The probability of getting a value as large or larger than ZW

can be found from the standard normal distribution. In this case, ZW = 1.98, with
P < 0.03. There is a major difference between areas with seagrass and empty areas
across all habitats. A more detailed example from marine ecological data may be
found in McDonald et al. (1993).

Thus, even where resources do not allow for large amounts of replication and
adequate power, it is possible to combine the outcomes of repeated or similar
studies, provided they are designed in logically comparable ways and have specific,
well-identified hypotheses so that the procedures for combining them are valid.

1.14 Conclusions

It should be clear from the above that there are important and close connections
between biological knowledge about systems, logical development of ideas, models
and hypotheses, design of sampling, analysis of data and interpretations of the
information. Of course, like everything else in science (and life itself), there will
be continuing disagreements about the role and purpose of hypothesis-testing in
marine research (see Stewart-Oaten, 1996; Suter, 1996). This can be a rich debate
or a sterile one. Here, it would be a distraction, so it will receive no mention.
Suffice it to say that those who favour risk analysis in environmental assessments
and those who favour estimation of magnitudes of differences among sites, times,
habitats, conditions, rather than structured tests of formally explicit hypotheses
would surely all agree about the need for care in developing sampling programmes.
Without advance thought about appropriate scales of replication, it is no more
possible to put valid CI around estimates of mean numbers of animals (or any
other parameter being estimated) than it is to do a valid statistical test of some
hypotheses about a parameter. Estimators and other describers of the world have
the same issues for design as do experimentalists testing hypotheses in advancing
scientific understanding.

The issues are similar, whatever problem is being investigated. Biological sys-
tems are variable in space and time at many scales, due to many interacting
processes. It is the responsibility of biologists and ecologists to understand the
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consequences of such variation and the ensuing interactions and non-independent
patterns so that sampling can be planned to take all of the issues into account.
Where ‘ideal’ sampling is not possible, what is uncertain in the data can and must
be considered before any conclusions are reached. This will ensure that unplanned
difficulties or accidental loss of samples do not prevent interpretations being of
value. If major problems are inevitable with some design, alter the design or inves-
tigate more preliminary hypotheses in order to unravel the problems.

This introductory assessment of some of the issues is selective and seriously
incomplete – there are many other issues. Its purpose is to identify the sorts of
issues that should be considered when planning any programme of sampling in
marine benthic systems, whatever the issue of concern in the study. Understanding
the themes discussed should, at least, provide warnings about pitfalls and some of
the vocabulary needed to translate a particular study into meaningful questions to
ask statistical advisors.

The problems of pollution, fragmentation and destruction of habitat, over-
harvesting of resources, restoration of degraded habitats, conservation of biodi-
versity, control of introduced species, global warming and rises in sea level, etc.,
are vast and urgent. Never has there been such a need for good scientific understand-
ing and advice about what to do and how, when and where. This science deserves
the best scientific practice, so improving logic, design, analysis and interpretation
of studies is an urgent and ongoing task for marine scientists. Complacency and
unprofessionalism will continue to undermine the role of science and will continue
to slow down the implementation of solutions to currently urgent problems. Getting
designs of sampling right entails getting problems identified and understood and
provides links to valid analysis and interpretation. Improved sampling designs are
the key to improved scientific contributions to social needs.
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