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  Chapter 1 

 SUMMARY 

    1     In this chapter we discuss the best methodologi-
cal tools for visually and statistically comparing 
predictions of  the metabolic theory of  ecology to 
data.  
  2     Visualizing empirical data to determine whether 
it is of  roughly the correct general form is accom-
plished by log - transforming both axes for size -
 related patterns, and log - transforming the  y  - axis 
and plotting it against the inverse of  temperature 
for temperature - based patterns. Visualizing these 
relationships while controlling for the infl uence of  
other variables can be accomplished by plotting the 
partial residuals of  multiple regressions.  
  3     Fitting relationships of  the same general form as 
the theory is generally best accomplished using 
ordinary least - squares - based regression on log -
 transformed data while accounting for phylogenetic 
non - independence of  species using phylogenetic 
general linear models. When multiple factors are 
included this should be done using multiple regres-

sion, not by fi tting relationships to residuals. 
Maximum likelihood methods should be used for 
fi tting frequency distributions.  
  4     Fitted parameters can be compared to theoretical 
predictions using confi dence intervals or likelihood -
 based comparisons.  
  5     Whether or not empirical data are consistent 
with the general functional form of  the model can 
be assessed using goodness - of - fi t tests and compari-
sons to the fi t of  alternative models with different 
functional forms.  
  6     Care should be taken when interpreting statisti-
cal analyses of  general theories to remember that 
the goal of  science is to develop models of  reality 
that can both capture the general underlying pat-
terns or processes and also incorporate the impor-
tant biological details. Excessive emphasis on 
rejecting existing models without providing alter-
natives is of  limited use.    

   1.1    INTRODUCTION 

 Two major functional relationships characterize the 
current form of  the metabolic theory of  ecology 
(MTE). Power - law relationships, of  the form  y     =     cM  α    

(Fig.  1.1 A,B), describe the relationship between body 
size and morphological, physiological, and ecological 
traits of  individuals and species (West et al.  1997 ; 
Brown et al.  2004 ). The Arrhenius equation, of  the 
general form,  y     =     ce   −    E   /   kT   (Fig.  1.1 C,D), characterizes the 



     Figure 1.1     Examples of  power - law relationships and exponential temperature relationships. Several power - law relationships 
are shown on untransformed (A) and logarithmically scaled (B) axes. Power - law relationships with exponents equal to one 
characterize direct proportionalities, which are linear relationships with intercepts of  zero. Several temperature relationships 
are shown on untransformed (C) and Arrhenius plot axes (1/ T  vs. logarithmically scaled  y ) (D). Power laws with exponents 
greater than 1 are described as superlinear because their slope is increasing in linear space and power laws with exponents 
less than 1 are described as sublinear because their slope is decreasing. Relationships that have exponents equal to zero do not 
change with the variable of  interest and are therefore described as invariant with respect to mass or temperature. Note that in 
the Arrhenius plots different coeffi cients are used to allow for clear presentation.  
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ing the exponential infl uence of  temperature on bio-
chemical kinetics.

   I i M e E kT/= −
0

α     (1.1)  

  See Brown and Sibly (Chapter  2 ) or Brown et al.  (2004)  
for details. 

 Most analyses of  this central equation focus on 
either size or temperature in isolation, or attempt to 
remove the infl uence of  the other variable before pro-
ceeding. As such, the most common analyses focus on 
either power - law relationships,  y     =     cM b  , or exponential 
relationships,  y     =     ce   −    E   /   kT  , both of  which can be log -
 transformed to yield linear relationships (Fig.  1.1 ).

   y cM y c M= ( ) = ( ) + ( )⇒α αlog log log     (1.2a)  

   y c y c E kT= ⇒ ( ) = ( ) −−e E kT/ log log ( / )     (1.2b)   

 The linear forms of  these relationships form the basis 
for the most common approaches to plotting these data 
and graphically assessing the validity of  the general 
form of  the equations. Plots of  these linearized forms 
are obtained either by log - transforming the appropri-
ate variables or by logarithmically scaling the axes 
so that the linear values remain on the axes, but 
the distance between values is adjusted to be equiva-
lent to log - transformed data. In this book all linearized 
plots will used log - scaled, rather than log - transformed, 
axes. Relationships between size and morphological, 
physiological, and ecological factors are typically 
plotted on log - log axes and relationships between tem-
perature and these factors are displayed using 
Arrhenius plots with the log - scaled  y  variable plotted 
against the inverse of  temperature (Fig.  1.2 A,B). If  the 
relationships displayed on plots of  these forms are 
approximately linear then they are at least roughly 
consistent with the general form predicted by meta-
bolic theory. 

 When information on both size and temperature are 
included in an analysis to understand their combined 
impacts on a biological factor, this has been displayed 
graphically by removing the effect of  one factor and 
then plotting the relationship for the other factor (Fig. 
 1.2 C,D). The basic idea is to rewrite the combined size –
 temperature equation so that only one of  the two vari-
ables of  interest appears on the right - hand side.

   
y

ce
M y

E
kT

c ME
kT

−
= ⇒ ( ) + − =α αlog ( ) ( )log log     (1.3a)  

relationships between temperature and physiological 
and ecological rates (Gillooly et al.  2001 ; Brown et al. 
 2004 ). In addition to being central to metabolic theory, 
these empirical relationships are utilized broadly 
to characterize patterns and understand processes 
in areas of  study as diverse as animal movement 
(Viswanathan et al.  1996 ), plant function (Wright 
et al.  2004 ), and biogeography (Arrhenius  1920 ; 
Martin and Goldenfeld  2006 ).   

 Methodological approaches for comparing meta-
bolic theory predictions to empirical data fall into two 
general categories: (1) determining whether the 
general functional form of  a relationship predicted by 
the theory is valid; and (2) determining whether the 
observed values of  the parameters match the specifi c 
quantitative predictions made by the theory. Both of  
these categories of  analysis rely on being able to accu-
rately determine the best fi tting form of  a model with 
the same general functional form as that of  MTE, so we 
will begin by discussing how this has typically been 
done using ordinary least - squares (OLS) regression on 
appropriately transformed data. Potential improve-
ments to these approaches that account for statistical 
complexities of  the data will then be considered. We 
will discuss methods for comparing the fi tted parame-
ters to theoretical values and how to determine 
whether the general functional form predicted by the 
theory is supported by data. This will require some dis-
cussion of  the philosophy of  how to test theoretical 
models. So we will end with a general discussion of  the 
technical and philosophical challenges of  testing and 
developing general ecological theories.  

   1.2    VISUALIZING  MTE  
RELATIONSHIPS 

 Before conducting any formal statistical analysis it is 
always best to visualize the data to determine whether 
the model is reasonable for the data and to identify any 
potential problems or complexities with the data. 

   1.2.1    Visualizing functional relationships 

 The primary model of  metabolic theory describes the 
relationship between size, temperature, and metabolic 
rate; combining a power function scaling of  mass and 
metabolic rate with the Arrhenius relationship describ-
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the partial residuals to visualize the relationship with 
a single predictor variable in multiple regression. Often 
in the MTE literature the theoretical forms of  the rela-
tionships (  α      =    0.75,  E     =     − 0.65) have been used rather 
than the fi tted forms based on multiple regression. For 
reasons discussed below we recommend using the 
fi tted values of  the parameters, or simply using the 
partial residuals functions in most statistical packages, 
to provide the best visualization of  the relationship 
with the variable of  interest.  

   
y

cM
e y M c

E
kT

E kT
α α= ⇒ ( ) − ( )− = −− / log log ( )log   

  (1.3b)     

 The value for the dependent variable (i.e., the value 
plotted for each point on the vertical axis) is then deter-
mined by dividing the observed value of   y  by the appro-
priate transformation of  temperature or mass for the 
observation and log - transforming the resulting value. 
This is equivalent to the standard approach of  plotting 

     Figure 1.2     Plots of  metabolic rate as a function of  mass and temperature. (A) Log - log plot of  mass vs. metabolic rate not 
accounting for temperature. (B) Arrhenius plot of  temperature vs. metabolic rate not accounting for mass. (C) Log - log plot of  
mass vs. metabolic rate accounting for temperature. (D) Arrhenius plot of  temperature vs. metabolic rate accounting for mass. 
 Data is for reptiles from Gillooly et al.  (2001) .   
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rithmic distances apart) and then dividing the counts 
in each bin by the linear width of  the bin prior to 
graphing (Fig.  1.3 B). The logarithmic scaling of  the bin 
sizes decreases the number of  bins with zero counts 
(often to zero) and the division by the linear width of  
the bin preserves the underlying shape of  the relation-
ship. Another, equally valid approach is to visualize the 
relationship using appropriate transformations of  the 
cumulative distribution function (Fig.  1.3 C; see White 
et al.  2008  for details), but we have found that it is 
often more diffi cult to intuit the underlying form of  the 
distribution from this type of  visualization and there-
fore recommend normalized logarithmic binning in 
most cases.     

   1.3    FITTING  MTE  MODELS TO DATA 

   1.3.1    Basic fi tting 

 Since the two basic functional relationships of  meta-
bolic theory can be readily written as linear relation-
ships by log - transforming one or both axes, most 
analyses use linear regression of  these transformed 
variables to estimate exponents, compare the fi tted 
values to those predicted by the theory, and character-
ize the overall quality of  fi t of  the metabolic models to 
the data. Given the most basic set of  statistical assump-
tions, this is the correct approach. 

   1.2.2    Frequency distributions 

 In addition to making predictions for the relationships 
between pairs of  variables  –  e.g., size, temperature, and 
metabolic rate  –  metabolic ecology models have been 
used to make predictions for the form of  frequency dis-
tributions (i.e., histograms) of  biological properties 
such as the number of  trees of  different sizes in a stand 
(Fig.  1.3 ; West et al.  2009 ). The predicted forms of  
these distributions are typically power laws and have 
often been plotted by making histograms of  the varia-
ble of  interest, log - transforming both the counts and 
the bin centers and then plotting the counts on the  y  -
 axis and the bin centers on the  x  - axis (Fig.  1.3 A; e.g., 
Enquist and Niklas  2001 ; Enquist et al.  2009 ). This is 
a reasonable way to visualize these data, but it suffers 
from the fact that bins with zero individuals must be 
excluded from the analysis due to the log - transformation. 
These bins will occur commonly in low probability 
regions of  the distribution (e.g., at large diameters), 
thus impacting the visual perception of  the form of  the 
distribution. To address this problem we recommend 
using normalized logarithmic binning ( sensu  White 
et al.  2008 ), the method typically used for visualizing 
this type of  distribution in the aquatic literature (e.g., 
Kerr and Dickie  2001 ). This approach involves binning 
the data into equal logarithmic width bins (either by 
log - transforming the data prior to constructing the his-
togram or by choosing the bin edges to be equal loga-

     Figure 1.3     Examples of  visualizations of  frequency distributions. Methods include (A) linear binning, (B) normalized -
 logarithmic binning, and (C) linearizing the cumulative distribution function.  Data are from the Nosy Mangabe, Madagascar, 
site of  Alwyn Gentry ’ s tree transect data (site 201; Phillips and Miller  2002 ).   
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urement using nonlinear regression (e.g., Packard and 
Birchard  2008 ; Packard and Boardman  2008, 2009a, 
2009b ; Packard  2009 ; Packard et al.  2009, 2010 ). 

 One fundamental difference between log - linear 
regression and nonlinear regression on untransformed 
data lies in the assumptions that the two approaches 
make about the nature of  unexplained variation. In 
nonlinear regression the error term (i.e., residuals) is 
assumed to be normally distributed and additive, 
 y     =      α x b      +      ε  ,   ε      ∼    N(0,   σ   2 ), while log - linear regression 
assumes the error term is log - normally distributed and 
multiplicative (equation  1.1 ). The form of  the error 
distribution in the empirical data determines which 
method performs better, with the method that assumes 
the appropriate error form (i.e., nonlinear regression 
with additive error, and log - linear regression with mul-
tiplicative error) yielding the best results (Xiao et al. 
 2011 ). 

 Throughout this chapter we recommend that the 
form of  the error distribution be explicitly considered, 
when possible, in deciding which methods to use 
(Cawley and Janacek  2010 ; Xiao et al.  2011 ). However, 
log - normal error is substantially more common than 
normal error in physiological and morphological 
data (Fig.  1.4 : Xiao et al.  2011 ; see also Gingerich 

 Specifi cally, if  the data points are independent, the 
error about the relationship is normally distributed 
when the relationship is properly transformed (i.e., it is 
multiplicative log - normal error on the untransformed 
data):

   log log log , ~ ,y c b M( ) = ( ) + ( )+ ( )ε ε σN 0 2     (1.4a)  

   y cM eb= ε ε σ, ~ ( , )N 0 2     (1.4b)  

  and there is error (i.e., stochasticity) only in the  y  -
 variable, then the correct approach to analyzing the 
component relationships is ordinary least - squares 
regression. 

 Given the same basic statistical assumptions, analyz-
ing the full relationship including both size and tem-
perature should be conducted using multiple regression 
with the logarithm of  mass and the inverse of  tempera-
ture as the predictor variables. This approach is supe-
rior to the common practice of  using simple regression 
after correcting for the infl uence of  the other variable 
(see, e.g., Gillooly et al.  2001 ; Brown et al.  2004 ) 
because it appropriately allows for correlation between 
the predictor variables, thus yielding the best simulta-
neous estimates of  the parameters for each variable 
and the appropriate estimates of  the confi dence inter-
vals for those parameters (Freckleton  2002 ; Downs 
et al.  2008 ). 

 In many cases the assumptions underlying these 
basic statistical analyses may be reasonable, and these 
methods are often robust to some violations of  the 
assumptions. However, there are also a number of  
instances in common MTE analyses where substantial 
violations of  assumptions related to the independence 
of  data points, and even the basic form of  the error 
about the relationship, may necessitate the use of  
more complex methods to obtain the most rigorous 
results.  

   1.3.2    Log - transformation vs. nonlinear 
regression 

 While most analyses utilize the fact that log -
 transforming one or both sides of  the equation yields a 
linear relationship, allowing appropriately transformed 
data to be modeled using linear regression (log - linear 
regression), it has recently been suggested that analysis 
on logarithmic scales is fl awed and that, instead, analy-
sis should be carried out on the original scale of  meas-

     Figure 1.4     Likelihood analysis comparing the fi ts of  
normal vs. log - normal error to 471 biological power laws 
shows that most morphological and physiological 
relationships are better characterized by multiplicative 
log - normal error and therefore that traditional log -
 transformed regression is better in most cases than 
nonlinear regression  (Xiao et al.  2011 ).   
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measurement error, which is unlikely to be the case in 
biological systems (e.g., Sokal and Rohlf   1995 ; Smith 
 2009 ) and even then this argument is not valid in 
most situations (Warton et al.  2006 ; Smith  2009 ). 
Recent advice regarding when it is appropriate to use 
RMA (or a related alternative) vs. OLS is based on a 
combination of  the goal of  the analysis and the causal 
relationship between the variables (Warton et al.  2006 ; 
O ’ Connor et al.  2007a ; Smith  2009 ). For an excellent 
treatment of  the logic behind RMA vs. OLS see Smith 
 (2009) . All line - fi tting techniques discussed can be 
implemented using the SMATR package in R ( http://
www.bio.mq.edu.au/ecology/SMATR/ ).  

   1.3.4    Which method(s) should I use? 

 Our interpretation of  the recent discussion on which 
method to use is that, for the majority of  cases in meta-
bolic theory, OLS regression on log - transformed data is 
the correct approach. Most analyses in metabolic 
theory are causal in nature  –  the hypothesis is that the 
size and temperature of  an organism determine a 
broad suite of  dependent variables. In the case of  
hypothesized causal relationships we are logically 
assigning all equation error (i.e., variability about the 
line not explained by measurement error; Fuller  1987 ; 
McArdle  2003 ) to the Y variable and therefore should 
be estimating the form of  the relationship using OLS 
(Warton et al.  2006 ; Smith  2009 ). In addition to 
causal relationships, OLS regression is also most 
appropriate in cases where one wants to predict 
unknown values of  Y based on X (Sokal and Rohlf  
 1995 ; Warton et al.  2006 ; Smith  2009 ). Metabolic 
theory is often used in this context to estimate the 
metabolic rate of  individuals based on body size (e.g., 
Ernest and Brown  2001 ; White et al.  2004 ; Ernest et 
al.  2009 ). The fact that OLS is appropriate for many 
metabolic theory predictions is convenient because 
variants on simple bivariate relationships (e.g., phylo-
genetic correction, mixed effects models) are typically 
based on OLS. 

 There are some cases where directional causality 
between the two variables being analyzed is not implied 
by metabolic models. For example, predictions for the 
relationships between different measures of  size (e.g., 
height and basal stem diameter in trees) do not imply 
a direct causal relationship between the variables but 
an  “ emergent ”  outcome of  a process affected by two 
interdependent variables. In this case, the choice of  

 2000 ; Kerkhoff  and Enquist  2009 ; Cawley and 
Janacek  2010 ), which implies that for most metabolic 
theory analyses log - linear regression is appropriate. 
This is good news because log - linearity allows the 
implementation of  some approaches discussed below 
which cannot readily be implemented in a nonlinear 
context.    

   1.3.3    Alternatives to ordinary 
least - squares regression 

 The ordinary least - squares (OLS) approach is just one 
of  several available choices for fi tting a linear relation-
ship between X and Y variables, with each method 
making different assumptions about the variation 
around the regression line. Understanding which of  
these methods to use can seem complicated because 
these choices depend on information about the sources 
and magnitude of  variability around the regression 
line, the nature of  the relationship between X and Y, 
and the goal of  the analysis. In addition, there is con-
fl icting advice in the literature regarding when to use 
which method, and uncertainty about best practice 
has led to many studies reporting regression slopes 
determined using more than one approach (e.g., 
Coomes et al.  2011 ). 

 The main alternative to OLS regression is commonly 
known as reduced major axis (RMA) regression. 
Whereas OLS assumes that residual variation occurs 
only in the vertical direction, RMA allows for variation 
also in the horizontal direction by minimizing the sum 
of  the products of  deviations in the vertical and hori-
zontal directions. For most datasets, slopes estimated 
by RMA are steeper than those estimated by regression 
(Smith  2009 ). Other alternatives include major axis 
(MA), which generates estimates of  the slope that are 
intermediate between RMA and OLS regression, and 
the OLS bisector, which determines the average of  the 
slope of  X on Y and the slope of  Y on X (Isobe et al. 
 1990 ). OLS, RMA, and MA are all special cases of  a 
general model in which the ratio of  the error variances 
in X and Y can take on any value (Harvey and Pagel 
 1991 ; M.P. O ’ Connor et al.  2007a ). 

 A common argument for the use of  alternatives to 
OLS in allometric studies is that it is inappropriate to 
assume that X is measured without error, as implied in 
OLS regression (e.g., Legendre and Legendre  1998 ). 
However, this argument relies on the assumption that 
all of  the variation about the regression line is due to 
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a priori or estimated from the data. The most important 
of  these is  λ , which is a measure of  the strength of  the 
phylogenetic signal in the data. Suppose some trait(s) 
have been measured in fi ve species for which an evolu-
tionary tree, i.e., phylogeny, is available, as shown in 
Figure  1.5 A. If  the pattern of  trait variation among 
these species is consistent with random evolutionary 
change along the branches of  the phylogeny, then  λ  is 
said to be 1. At the other extreme it is possible that close 
relatives are no more similar to each other than dis-
tantly related species. It is then as if  all species were 
completely independent, equally distant phylogeneti-
cally from their common ancestor, as shown in Figure 
 1.5 B. In this case  λ  is said to be 0. Most analyzed cases 
fall in between these two extremes and fi nd that some 
proportion  λ  of  the variation is accounted for by the 
phylogeny, the rest being attributable to recent inde-
pendent evolution, as in Figure  1.5 C. Parameters  κ  and 
 δ  provide a way of  scaling the rates of  evolutionary 
change along the branches of  the phylogeny. For 
example,  κ     =    1 corresponds to gradual evolution, and 
 κ     =    0 is a model in which evolution is concentrated 
at speciation events. Parameter  δ , which is rarely 
used, measures whether the rates of  evolution have 
increased, decreased, or stayed constant over time. The 
best mathematical account of  the method is provided 
by Garland and Ives ( 2000 , p. 349) where it is referred 
to as the generalized least - squares approach. A recent 
guide to the use and misuse of  PGLMs is given in 
Freckleton  (2009) .   

 The traits of  interest in metabolic scaling analyses 
tend to show strong phylogenetic signals. For example, 
in mammals,  λ     =    0.984, 1.0, and 0.84 for basal meta-
bolic rate, mass, and body temperature, respectively 

which variable to place on the  x  - axis is arbitrary. In this 
case (and in many similar cases in other areas of  allom-
etry; e.g., the leaf  economics spectrum) RMA or a 
related approach is more appropriate for analysis 
because we want to partition equation error between 
X and Y, rather than assigning it all to Y.  

   1.3.5    Phylogenetic methods 

 A common goal of  analysis in metabolic ecology is to 
understand the relationship between two morphologi-
cal, physiological, or ecological properties, across 
species. The data points in these analyses are typically 
average values of  the two properties for each species, 
which leads to a potential complication. Because there 
are limits to how quickly traits can evolve, closely 
related species may not be statistically independent due 
to their shared evolutionary history. This lack of  inde-
pendence among data points violates a key assumption 
of  ordinary least - squares regression (and general 
linear models more broadly). 

 The problem of  phylogenetic non - independence is 
well known in evolutionary biology, and a method 
known as independent contrasts (Felsenstein  1985 ) 
remains popular for correcting for the phylogenetic 
signal in comparative data. Independent contrasts 
have been recently superseded by phylogenetic general 
linear models (PGLMs), which allow a wide range of  
evolutionary scenarios to be modeled (Garland and 
Ives  2000 ). 

 The current implementation of  PGLMs was devised 
by Mark Pagel (Pagel  1997, 1999 ). There are three 
parameters,  λ ,  κ , and  δ , each of  which can be specifi ed 

     Figure 1.5     The Pagel  λ  approach to modeling the evolution process. (A) shows the phylogeny of  fi ve species A – E, which are 
descended from a common ancestor Z ; (B) shows how evolution is modeled if  the species appear to be independent; (C) shows 
the type of  intermediate model currently used (the Pagel  λ  model).  
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to this problem, it fails to properly account for the 
structure of  the data, which can result in inaccurate 
parameter estimates (Clark et al.  1999 ; Edwards  2008 ; 
White et al.  2008 ) and incorrect estimates of  the 
quality of  fi t of  the model to the data (Newman  2005 ; 
Edwards et al.  2007 ; Clauset et al.  2009 ). 

 The correct approach for fi tting frequency distribu-
tions in metabolic theory to data is based on likelihood 
(Edwards et al.  2007 ; White et al.  2008 ). Maximum 
likelihood estimation determines the values of  the 
parameters that maximize the likelihood of  the model, 
given the data. In the case of  the metabolic theory this 
is typically fi nding the best - fi tting exponent of  a power -
 law frequency distribution. Determining the best 
parameters using maximum likelihood estimation for 
power laws is straightforward in most cases, requiring 
only a simple calculation. In the most common case 
where there is a meaningful lower bound (e.g., trees 
 < 1   cm are not measured) and the upper bound is 
assumed to be infi nite, the exponent is determined 
simply by

   θ = − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥∑

−

1
1 1

– log
minn

x

x
    (1.5)  

  where the summation is over all values of   x . In other 
cases the calculations may be different, so care is 
required to confi rm that assumptions being used to 
determine the MLE of  the parameters are consistent 
with the data to which the calculation is being applied. 
In the case of  the power - law frequency distributions 
predicted by metabolic theory, MLEs for all possible 
detailed forms are available in White et al. ( 2008 ; 
see Johnson et al.  1994, 2005 , for more technical 
treatments).   

   1.4    ARE THE FITTED PARAMETERS 
CONSISTENT WITH THEORETICAL 
PREDICTIONS? 

 Having fi t a relationship of  the same general form as 
the MTE predictions using the methods above, the next 
step in evaluating the MTE is to determine whether the 
fi tted parameters are consistent with the specifi c quan-
titative predictions of  the theory. 

 In regression - based analyses this is typically done 
by determining whether or not the 95% confi dence 

(Clarke et al.  2010 ). However, estimates of  scaling 
parameters from PGLMs and conventional GLMs tend 
to be similar, converging on the same answer when the 
explanatory power ( R  2 ) approaches 1. 

 Despite their promise, PGLMs are currently diffi cult 
to use. They require that a phylogeny, ideally with 
branch lengths, be available or assembled for the 
species of  interest. They also assume that the form of  
the phylogeny and the assumed models of  evolution 
are accurate. However, little analysis has been done to 
determine the impacts of  error in either of  these inputs 
on the outcome of  the analysis. In addition, while soft-
ware is available for conducting PGLM analyses, 
including BayesTraits ( http://www.evolution.rdg.ac.
uk/BayesTraits.html ) and several packages in R includ-
ing ape ( http://cran.r - project.org/web/packages/ape/ ) 
and caper ( http://r - forge.r - project.org/projects/caper/ ; 
Orme et al.  2011 ), the documentation is fragmentary 
and utilizing these packages can be diffi cult for new 
users. 

 In general we recommend that PGLMs be used when 
quality phylogenies are available. However, in cases 
where the relationship between two variables is strong 
this is unlikely to have a demonstrable infl uence on the 
results. If  no phylogeny is available, an alternative is to 
use taxonomy as a proxy for phylogeny in a hierarchi-
cal (mixed effects) model (e.g., McGill  2008 ; Isaac and 
Carbone  2010 ). We also caution that factors other 
than phylogenetic relationship, such as similar body 
size or environment, can potentially be additional 
causes of  non - independence of  data in species - level 
analyses.  

   1.3.6    Methods for fi tting frequency 
distributions 

 The predicted form of  MTE frequency distributions is 
typically power law,  f ( x )    =     cx  θ    (also known as the Pareto 
distribution in the probability and statistics literature), 
and the fi t of  these predictions to empirical data has 
typically been evaluated by fi tting a regression through 
the data generated using histograms for visualization 
(i.e., binning the values of  the variable of  interest, 
counting how many values occur in each bin, log -
 transforming the counts and the position of  the bin, 
and then fi tting a relationship to those data points 
using linear regression). An example of  this would be 
fi tting a regression through the points in Figure  1.3 A 
or  1.3 B. While this seems like a reasonable approach 
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 Determining the goodness of  fi t of  regressions is 
more complicated and therefore simple tests are not 
available. Instead, it is standard to evaluate several 
assumptions of  regression to determine whether the 
regression should be used or to compare the fi ts of  
linear regressions to more complex models (see below). 
Evaluating the assumptions of  regression is good 
general practice, and failure to satisfy these assump-
tions can indicate that the model is not suffi cient for 
characterizing the pattern in the data. Specifi cally the 
two most relevant tests are to determine: (1) whether 
or not the residuals about the regression are normally 
distributed (which can be done using standard 
goodness - of - fi t tests); and (2) whether the variance 
of  the residuals does not change as a function of  the 
value of  the predictor variable (i.e., the residuals are 
homoskedastic).  

   1.5.2    Comparison to alternative models 

 The other approach to determining whether or not 
the observed relationship has the same shape as the 
predictions of  MTE is to compare the fi t of  the relation-
ship or distribution to alternative models. The most 
common example of  this is the use of  polynomial 
regression to determine whether or not a simple linear 
relationship (among log - transformed variables) is an 
appropriate fi t to the data. The standard approach is 
to fi t polynomial regressions that include one or more 
higher - order terms (x 2 , x 3 , etc.) and determine whether 
or not those terms are signifi cant in the regression. 
If  they are, this is typically considered to be an indi-
cation that a different, or more complex, model than 
the simple linear relationship (on log - transformed 
data) is necessary. This polynomial approach has 
only rarely been used in MTE analyses, perhaps for 
reasons discussed below (see section  1.6 ), but it has 
been successfully utilized to indicate that the current 
metabolic theory predictions for the relationship 
between temperature and species richness are not 
suffi cient to fully characterize the observed patterns 
(Algar et al.  2007 ; Hawkins et al.  2007 ; but see Gillooly 
and Allen  2007 ). 

 A more general approach is to use likelihood and 
information criteria - based methods. These methods 
determine which of  a set of  models is most consistent 
with the empirical data and whether that model pro-
vides a meaningfully better fi t than alternative models 

interval (CI) about the best - fi tting parameter includes 
the theoretical prediction. This is a well - established 
practice and easy to apply (most statistical software 
that will generate parameter estimates will also gener-
ate confi dence intervals for those estimates). However, 
hypothesis testing of  this kind is not intended to deter-
mine whether two values of  a parameter are similar. 
The appropriate interpretation of  a CI containing the 
theoretical value is that we cannot reject the model, 
but this is not the same as supporting it. Alternatives 
that focus on determining whether or not two values 
are meaningfully similar are available (i.e., equivalence 
testing; Dixon and Pechmann  2005 ) but have never 
been applied to metabolic theory and are only rarely 
used in ecology in general. 

 Comparing the parameters of  frequency distribu-
tions to those predicted by theory can also be done 
using confi dence intervals, which can be determined 
accurately for all forms of  power - law distribution when 
the number of  data points is large (see appendix in 
White et al.  2008 ) and for small sample sizes for the 
most common form of  the distribution (the Pareto; 
Johnson et al.  1994 ; Newman  2005 ; Clauset et al. 
 2009 ). Confi dence intervals can also be calculated 
using bootstrap or jackknife techniques if  necessary 
(Newman  2005 ). An alternative approach is to explic-
itly test whether a distribution with a fi tted value pro-
vides a meaningfully better fi t to the data than one with 
the theoretical value. This can be done using likelihood 
ratio tests (Vuong  1989 ; Clauset et al.  2009 ).  

   1.5    IS THE SHAPE OF THE 
RELATIONSHIP CONSISTENT WITH 
THEORETICAL PREDICTIONS? 

   1.5.1    Goodness - of - fi t tests 

 For frequency distributions it is possible to directly ask 
whether or not the observed form of  the distribution is 
consistent with (i.e., not signifi cantly different from) 
the form predicted by the theory. This is done using 
goodness - of - fi t tests, where the null hypothesis is that 
observed data are drawn from the theoretical distribu-
tion. A number of  goodness - of - fi t tests are available 
that entail different detailed assumptions including the 
chi - square test, the Kolmogorov – Smirnov test, and the 
G - test. If  the sample size is suffi ciently large and data 
are continuously distributed, all of  these tests should 
give similar answers. 
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ble starting assumptions and makes reasonable predic-
tions, it may be better to modify and improve that 
model than to abandon it. This iterative process of  
hypothesis refi nement is considered essential for the 
development of  ecology (Mentis  1988 ), and several 
recent attempts to refi ne models from metabolic ecology 
make valuable contributions to this process (Banavar 
et al.  2010 ; Savage et al.  2010 ). 

 The goal of  theory is to provide simplifi ed characteri-
zations of  reality; so rejecting models is only useful if  it 
leads to better models. Testing models and identifying 
their fl aws is a necessary, but not suffi cient, part of  the 
process. This raises questions about the merits of  com-
paring process - based models to purely phenomenologi-
cal models that lack a biological mechanism. Consistent, 
directional, deviations from a general theory indicate 
that the theory is either incomplete or simply wrong. 
However, studies that only demonstrate the superior 
performance of  phenomenological over mechanistic 
models often yield little direct progress towards accept-
able theories. In contrast, comparing theoretical pre-
dictions to mechanistic models that include either 
additional or alternative processes has the potential to 
yield improved characterizations of  biological systems. 
An illustrative example is Fisher ’ s sex ratio theory, 
which predicts a canonical ratio of  1   :   1. When sample 
sizes are large, signifi cant deviations are almost always 
observed. This does not mean the theory is wrong. 
Indeed, considering the direction and magnitude of  
the deviations (large in eusocial hymenoptera, small 
in humans) leads to progress in understanding the 
additional processes that affect sex ratios in real 
populations. 

 It is important to consider the goal of  a model when 
determining whether it should be replaced or modifi ed 
(Martinez del Rio  2008 ). For example, in many cases 
related to MTE the goal is to understand the fundamen-
tal processes that produce the fi rst - order relationship 
between body size and metabolic rate. MTE is success-
ful at characterizing the relevant empirical pattern, 
because a 3/4 - power allometric relationship is the 
best - supported pattern, both when analyzing large 
numbers of  species and when the average form of  the 
model across taxonomic groups is determined (Savage 
et al.  2004b ; Isaac and Carbone  2010 ). As such, MTE 
may provide information about the underlying process. 
However, if  the goal is to accurately predict the meta-
bolic rate of  species for which data is not available 
then it is necessary to consider the empirical evidence 
of  variation among taxonomic groups (e.g., Nagy et al. 

(Hilborn and Mangel  1997 ; Burnham and Anderson 
 2002 ). A full introduction to this area is beyond the 
scope of  this chapter, but the basic approach is to cal-
culate the likelihoods of  all the candidate models and 
then compare those likelihoods to one another, taking 
into account that some models have more parameters 
than others and are therefore more likely to provide 
good fi ts to empirical data (for ecological examples see 
Muller - Landau et al. 2006a and Coomes and Allen 
 2007 ). We strongly recommend Hilborn and Mangel 
 (1997)  to those looking for an accessible introduction 
to this area of  statistics. Equivalent Bayesian methods 
are also available, but have rarely been applied in the 
context of  metabolic ecology. Good examples are avail-
able in Dietze et al.  (2008)  and Price et al.  (2009)  for 
those interested in this approach. 

 In addition to testing the basic shape of  the predicted 
relationship and the specifi c parameter values, these 
methods can be used to assess the form of  the error 
distribution to allow for decisions to be made about 
whether to use log - linear or nonlinear regression 
(Xiao et al.  2011 ; see above) and to determine the 
degree of  phylogenetic non - independence among data 
points that needs to be accounted for (Freckleton 
 2009 ).   

   1.6    THOUGHTS ON TESTING 
ECOLOGICAL THEORIES 

 It is useful and informative to compare the fi ts of  meta-
bolic theory models (and ecological models in general) 
to alternative models to see if  a better characterization 
of  the empirical data is possible. If  an alternative model 
provides a better fi t to the data there are two different 
conclusions that can be drawn: (1) the model is not 
useful and should be abandoned; or (2) the model is 
incomplete and requires further development. In 
ecology we have tended to prefer the language of  rejec-
tion  –  any model for which data deviates from the pre-
diction using a goodness - of - fi t test, or for which an 
alternative model is found to provide a superior fi t, is 
rejected. This attitude likely has its origins in an 
emphasis on Plattian inference (Platt  1964 ) and an, 
arguably improper (Hurlbert and Lombardi  2009 ), 
emphasis on the arbitrary defi nition of   p     <    0.05 as 
being  “ signifi cant. ”  Further discussion of  how a 
rejected model may be improved is rarely undertaken. 
However, in cases where a model is based on reasona-
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 In conclusion, the goal of  science is to develop 
models of  reality that both capture general underlying 
patterns and processes, and incorporate important bio-
logical details. Developing general ecological theories 
allows us to understand how ecological systems 
operate and make predictions for how they will respond 
to global change and other major perturbations. 
Rigorous statistical approaches and proper testing of  
theories are necessary to accomplish this result. Efforts 
to improve methodological approaches and to use 
these approaches to test existing theories should always 
be undertaken with the goal of  improving our under-
standing of  ecological systems.  
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 1999 ; Isaac and Carbone  2010 ). In this case models 
that incorporate taxonomic variation are an important 
improvement over the more general MTE (Isaac and 
Carbone  2010 ). 

 Evaluating models is further complicated by the fact 
that general ecological theories (including MTE) typi-
cally make predictions for multiple empirical patterns 
(see Brown et al.  2004 ). This generality is desirable 
because it makes metabolic theory applicable in a 
broad range of  situations, but it also makes MTE easier 
to reject since rejection of  any prediction implies rejec-
tion of  the entire theory. However, it is unreasonable to 
compare a model that makes a large number of  predic-
tions to a model that makes one or a few specifi c predic-
tions without penalizing the more specifi c model for its 
lack of  generality and resultantly larger number of  
parameters per prediction (Price et al.  2009 ). 
Unfortunately there are no general approaches for 
dealing with this type of  difference among models, and 
the one example that we are aware of  (Price et al. 
 2009 ) represents a fi rst attempt rather than a general 
solution to the challenge of  evaluating models that 
make multiple predictions. 


