
1
Introduction

At it’s heart, the role of a content management system (CMS) is to make
it easier to publish content to websites and intranets. It may be used to
allow the owner of a one-person company to update his or her website
without needing a website developer or learning HTML skills. Or, in a
multinational company, it might allow a skilled web team across various
cities to manage a complex assortment of updates to products, services,
promotions, and news in multiple languages. Either way, it automates
various tasks, and makes building a website more efficient and reliable.

Countless products are available based on such a promise, however,
all of varying sophistication, histories, programming languages, and geo-
graphical dominance. The decision-makers and developers involved in
selecting a CMS work in fast-paced environments and are creatures of
habit: They have personal favorites to solve the challenges their job
provides. Why go through the trouble of trying a new CMS?

1.1 Why SilverStripe?

One thing up front: SilverStripe is not the answer to all problems that you
might face throughout the development of a website or web application.
No software is ever a silver bullet for every situation. You must determine
selection criteria based on your needs, skills, budgets, and timeframes, and
select the most relevant tool based on those criteria. That said, SilverStripe
is intended to be both used out-of-the-box and for major customization.
This makes it particularly interesting when building websites – because
everyone seems to relish having a unique set of needs in terms of design,

CO
PYRIG

HTED
 M

ATERIA
L



2 SILVERSTRIPE

information architecture, content, features, integration with other systems,
business policies, and so on.

The following pages list some major benefits of SilverStripe, and describe
how it stands out in a crowded CMS market. We acknowledge that
the information here is concise, but this will help you refer back to an
overview even when you’re familiar with SilverStripe. We try to keep
things brief here; the rest of the book will substantiate the claims made,
as you begin to build stuff using the software.

1.1.1 An Application and a Framework

SilverStripe is really two products in one: The SilverStripe CMS and the
Sapphire Framework. There are plenty of CMS applications and quite a
few programming frameworks in the marketplace; however, SilverStripe
is very rare in that it tightly weaves the two concepts together.

You will need to read the whole book to understand entirely the value of
this unity, but the value is much greater than the sum of its parts. In other
words, the CMS has plenty of good things about it, as does Sapphire.
However, with them joined so closely, their collective value is multiplied.
The closeness of the two concepts is possible because Sapphire and the
CMS were created in tandem, by the same people.

1.1.2 CMS for Content Authors and Framework for Developers

One fundamental reason for SilverStripe being divided into two sections
is to honor the needs of two quite separate types of people who use the
software. The CMS backend is designed to allow non-technical users to
update web pages, images, links, moderate blog comments, and so on.
This is the area where content authors do their content management, and
anything technical is strictly kept out of sight for the sake of good usability.

The framework is used to build the underlying website, and isn’t for
content authors. You ‘use’ the framework by actually writing HTML, CSS,
JavaScript, and object-oriented PHP code. The framework enables begin-
ning PHP programmers to achieve quite powerful things, by following
recipes and tutorials as shown in this book and elsewhere. However,
the framework is targeted at savvy PHP programmers. For them, Sapphire
allows much more creative freedom in building complex websites quickly
and robustly.

Many other CMS products don’t have such a separation. In other words,
in many systems the CMS user interface is shared by content authors and
developers, which typically makes the interface too complicated for it’s
primary users: the content authors. In some systems, developers perform
their work mainly through a graphical configuration interface, which
is usually more limiting than raw programming. A graphical interface



INTRODUCTION 3

to accommodate sophisticated needs for developers would require a
bewildering set of options, which would add complexity and bloat the
software, when the idea in question is likely to be far more efficiently
expressed as a few lines of code.

So, this separation in SilverStripe means that the CMS backend can be
designed for non-technical users, and the framework can confidently
concentrate on being suitable to technically-minded web developers (see
Figure 1.1 for an overview of the SilverStripe system).

Sapphire Framework

Developer/Template Designer Content Author

Website

Visitor

CMS

Figure 1.1 SilverStripe system overview.

1.1.3 Clear Separation of Concerns

As we begin to suggest above, a core principle in SilverStripe is the
separation of concerns. In this introduction, we use that term loosely to
mean organizing the software into all sorts of logical divisions. You will
be familiar with how HTML and CSS separate the concerns of markup
and presentation, and that JavaScript is used to allow for the concern of
behavior and interaction on a web page. This structure provides many
benefits such as enabling reuse: change a single style in a CSS file, and
so long as you’ve stuck to best practices in your HTML, styles throughout
the whole website will update, saving time and maintaining consistency.

SilverStripe follows this principle: Update an isolated area of the system
that deals with a particular function, and it produces logical, robust, and
application-wide changes. Without this architectural principle, changing
a feature of your website means changing a few lines of code here, a
few lines of code there, and finding that each step of the way upsets



4 SILVERSTRIPE

unrelated parts of your website. This domino effect suddenly turns a small
change into a major coding and testing fiasco. SilverStripe’s architecture
therefore helps to keep code changes proportionate to the effort needed to
implement them. However, like the HTML, CSS, and JavaScript example,
this reward is only given to those who carefully architect their SilverStripe
application to its best practices.

Let’s highlight a few examples relating to this principle:

• Avoid repitition with the Sapphire framework. Sapphire supports the
concept of writing the logic of your website once. For instance, if
your website deals with selling T-shirts, you define that a T-shirt has
an attribute ‘color’ in one place in your code. You don’t have to write
redundant code elsewhere to explain that T-shirts have colors; the
template, CMS, and even the database will automatically be updated
based on your single declaration. This principle is commonly called
Don’t repeat yourself (DRY).

• No need to change database schema manually. This important point
is hinted at above: SilverStripe will inspect your code for the tables
and fields it needs, and update the schema accordingly. This makes
keeping your database schema in sync with your PHP code a beautiful
thing.

• Separates the PHP logic into the Model and the Controller. You’re
probably familiar with separating PHP logic from HTML templates,
but SilverStripe goes one step further. This is a very integral part
of Sapphire, so let’s pause for a moment to investigate this in the
following box.

Model View Controller as a central concept

The Model View Controller (MVC) concept is one of many design
patterns that have been identified as good programming architecture.
A design pattern is essentially a structured way to document the
solution to a specific problem in computer science, a term made
popular by the ‘Gang of Four’ in their book Design Patterns: Elements
of Reusable Object-Oriented Software (Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, published by Addison-Wesley). The
three parts, Model, View, and Controller, describe the main roles of
any application built with SilverStripe:

• The Model is responsible for maintaining the state in the application.
It’s basically data: Some of it might be transient and only live within
a web request, whereas other data might be permanently stored in
a database. You can think of the Model as essentially the database



INTRODUCTION 5

schema you have for a website. We elaborate on this simplistic
definition in later chapters.

• A View displays data that’s collected from the Model, usually through
a template on a website or application frontend. One Model might
have many Views: The list of forum users on your website might
have a ‘public view’ and a ‘backend management interface view’. In
both of these views, the used Model logic would be the same: The
separation into different roles avoids code duplication and clarifies
responsibilities.

• The Controller manages the layer in between the Model and View,
and passes data between them. It’s the ‘glue’ of an application.
It might take a new forum submission from a View, and tell the
model to store it in the database. Although the actual input form is
rendered in the View, the Controller is responsible for processing
it. The Controller, for instance, would ensure that the submitter can
post to this forum, and might send out emails to moderators or
people subscribed to the forum. To clarify, the Model should not
be responsible for such logic, and instead just store the data once
the Controller has figured out what needs storing and how. Using
the example here, separating the Model and Controller shows how
you can have different form processing logic (multiple Controllers)
making reuse of the Model.

All three roles work closely together. It’s just important to understand
what goes where on a conceptual and practical level. If that sounds a
bit too abstract for you at the moment, don’t despair. MVC is a central
concept in SilverStripe, and we’ve dedicated an in-depth explanation
to it in Chapter 3, Section 3.2, ‘MVC – Model View Controller’.

• Object Relational Mapper. The PHP code throughout SilverStripe is
heavily object-oriented rather than procedural code, and this archi-
tecture extends to how you access the database. This maintains a
unified approach to processing data both in and out of your database:
you deal with objects rather than flipping constantly between arrays,
methods, objects, SQL syntax, and so on. This lessens the lines of
code used to create, remove, update, and delete data in your database,
and improves readability. It also marries the database schema more
closely to your PHP code, thereby lessening the risk that these are out
of sync. The concept is explained in Chapter 3, Section 3.3, ‘ORM –
Object Relational Mapping’ in more depth.

• A very flexible data-model. Because of the ORM and the MVC
patterns, SilverStripe is able to consume quite complex data structures.



6 SILVERSTRIPE

You might have all sorts of different ‘types’ of pages, each with
different fields. Then you might add products, members, product
reviews, coupon codes, and all sorts of other objects to your website.
All of this data needs to be stored in your database, managed in the
CMS, and presented on your public website. SilverStripe allows you
to have a complex entity model, full of relationships, while ensuring
the structure and data granularity is elegant.

• HTML, CSS, and JavaScript. Being the lingua franca of the web,
SilverStripe respects that competent website developers need to have
control over and separate their website into these three languages.
In other words: SilverStripe doesn’t make you add CSS into your
HTML. Nor does it prevent you from intelligently using JavaScript
to progressively enhance your website with extra functionality. It
stays out of your hair – as a developer, you can craft these files and
incorporate them into your project in an elegant fashion. This provides
for fantastic flexibility in your markup, therefore providing freedom in
visual design.

• Simple template language. The ‘View’ mentioned in the MVC expla-
nation above means that SilverStripe templates don’t contain logic.
More than simply insisting pedantically that the Controller instead
should contain this logic – it means that the templates deliberately
resemble standard HTML syntax and that they can be created and
edited by people without PHP skills. This lets you unleash your
zealous HTML- and CSS-skilled designer on SilverStripe templates.
Compared to other templating languages, SilverStripe’s seems overly
simplistic. But you might come to appreciate the benefit of this in
the same way you appreciate extracting your CSS out of your HTML:
When you need to change something you have only one place to
look, making changes easy and encouraging consistency.

• Class inheritance as a means of customization. This is really a topic
for a later chapter in the book. But it’s important, and so we whet
your appetite with a preview. If you have the concept of a ‘Product’ in
your application, how do you customize that to make some ‘Products’
a ‘Book’, which might require an Author field? Extensions like this
are fundamental to any CMS software package. SilverStripe uses the
natural capabilities of an object-oriented language to extend Products
into Books. This is nothing special in any object-oriented language,
and all MVC frameworks do this, but it’s rare for a CMS to get out of
your way and just let you use these natural features of object-oriented
code.

• Clean file system structure. SilverStripe’s file and folder structure is
neatly organized in several ways. The core application lives in a
couple of top-level folders. All your project-specific changes go into



INTRODUCTION 7

your own top-level folders, providing convenient separation from the
core package. Files containing code are named specifically based on
the PHP classes they define. This means a lot of files, but also makes the
role of each file specific and deliberate. Template files follow similar
naming conventions, which makes SilverStripe websites portable:
You can just move files and folders from one installation to another
and be confident about what functionality in the application you’re
shifting.

• Modules, themes, and widgets. The core functionality of SilverStripe
can be extended by modules (for example ‘forum’ functionality),
themes (changing the visual appearance of your website), and widgets
(small features you can add to a page). We will build all of these
types throughout this book. Extensions allow the core to be kept
compact and succinct, so you don’t have a product with features you
don’t need. Although the ability to have fully-featured modules isn’t
a surprise for a CMS, having them tightly integrated at a framework
level is a unique characteristic.

• Automated tests. SilverStripe provides a neat structure for testing
any custom code you write. This means that you can test that your
application works, automatically (we talk about this a bit more in
Chapter 9, ‘Testing’). Automated tests allow you to make a code-level
change to your website and test that you’ve not broken other features
in your website. This reduces the friction of making changes to your
application. In turn, this translates to being more able to continuously
update your application, which is very appropriate in the world of
‘continuous beta’, and supports an Agile development methodology
(see the following box). By the way, SilverStripe uses automated tests
to ensure the consistency of its core functionality as well.

Agile development

This term stands for a software development methodology that fosters
a process of frequent inspection and adaption after an initial planning
phase. It’s in contrast to a more rigid methodology, commonly known
as Waterfall, where you devise a detailed specification upfront and
proceed to build to that specification, generally with fixed budgets and
timeframes.

The agile approach embraces the idea that it’s impossible to predict
exactly what you want ahead of seeing your software take shape.
Speaking metaphorically, it’s very difficult to foresee the impact of a
picture in your living room based on the floor plan. Perhaps the lighting
is totally different from what the window placement suggests?



8 SILVERSTRIPE

Instead of resisting change requests, an agile approach involves
constant communication, demonstrations, and changes, as well as
re-prioritizing what should be worked on. Agile maintains this notion
throughout the process: Your software should be working and ‘deliv-
erable’ most of the time, as opposed to just being launched at the
‘eleventh hour’.

A major benefit of an agile approach is that you’re more likely to
finish with a useful set of features – the features implemented are the
most important ones. Done well, agile also serves to maintain project
schedules and budgets.

Agile is a way of thinking that involves everyone in a project: It impacts
project managers and stakeholders just as much as developers – and it
requires discipline from each of them. Agile works best with software
that can quickly prototype features and that can support change easily.

More information on agile methodologies is available at http://
agilemanifesto.org/ and http://agilealliance.org.

1.1.4 Interoperability and Open Standards

SilverStripe makes substantial use of open and common technologies as
first-class citizens. The choice of PHP, MySQL, HTML, CSS, and JavaScript
for example is very deliberate: They score well in terms of being well
understood by the web industry, are open rather than in the control of
a private company, and therefore are likely to be supported for a long
time into the future. Here are some specific examples of SilverStripe’s
treatment of interoperability and open standards:

• Embracing browser compatibility. SilverStripe does a lot of work to
ensure that your website and administration system hums along in
different web browsers. We’ve already covered the main factor here:
SilverStripe gives you full control of HTML and CSS in your templates.
It’s an indictment on other CMS products that we even have to
mention this: But yes, content authors using the SilverStripe backend
can use a Mac, Windows, or Linux computer for their work because it
performs well in Internet Explorer, Firefox, Safari, and Chrome. With
all these browsers competing for supremacy, your website and CMS
backend need to be cross-browser compatible now if they’re to have
any hope of being cross-browser in the future. The core developers
of SilverStripe also have a watchful eye on HTML 5, which is quickly
gaining traction after a long period of stagnation in the HTML standard.

• JavaScript and progressive enhancement. Ideally a website should
work with JavaScript disabled, thereby ensuring accessible



INTRODUCTION 9

functionality and content for both users and search engines. This
paradigm has two approaches: graceful degradation and progressive
enhancement. SilverStripe supports these for your frontend templates,
both by giving you full control over the templates as explained earlier,
and by ensuring that automatically generated markup complies with
the principles of progressive enhancement. Although the CMS back-
end does require JavaScript to function, it shies away from excessive
Javascript-generated HTML, making debugging easier, allowing the
backend user interface HTML to be edited as template files, and
encouraging robust customizations.

• Database Abstraction. SilverStripe currently only supports MySQL
in a stable release, but the underlying architecture allows for other
database drivers. Because of this, SilverStripe has been shown to work
on other databases such as PostgreSQL or the Microsoft SQL server.
Note that both are currently in an alpha state.

• Server-side interoperability. SilverStripe requires a PHP webserver
but not much else. It supports running on the two most popular
webservers, Apache and Microsoft IIS. Being able to install SilverStripe
onto Windows, Mac, and Linux servers means that you can trial or
deploy it on an architecture that you’re familiar with or that will better
support integration into your IT environment.

• Accessibility. Having control over HTML, CSS, and JavaScript means
that it’s easy to write the markup that validates against Web Con-
tent Accessibility Guidelines (WCAG) as published by the W3C (see
http://www.w3.org/TR/WCAG20/), and therefore can be pro-
cessed easily by screen readers. This is a necessity for government
sector work, and in case the standard commercial justification is
instead important to you: Good markup positively influences your
search engine rank!

• Unicode. Not everybody has only 26 letters in their alphabet. New
Zealanders typically need the Macron so that they can spell ‘Māori’.
Europeans have various diacritics. The Chinese have tens of thou-
sands of Han characters. The Unicode standard enables SilverStripe
templates and the content entered into the CMS to be in multiple
languages and alphabets.

• Supporting the ‘web of data’ and it’s APIs. There’s an inexorable
trend away from websites only providing their content and features in
a human-readable format. If your website catalogs a hundred books, or
adds a dozen fresh news articles every day, this content shouldn’t just
be accessible in a gleefully designed HTML and CSS webpage. The
information should also be available to download as a CSV document.
Or an RSS feed. Or better yet, a full Web Services API, allowing the
content to be machine-readable in a robust and versatile fashion. This



10 SILVERSTRIPE

lets other websites and tools take information from its authoritative
source – your website – and promote it elsewhere. However, you’re
unlikely to bother with such a feature on your website if it adds time or
complexity to your project. Fortunately, as Chapter 6, Section 6.10,
‘Web services using RESTfulServer’ explains, SilverStripe gives you
robust and feature-rich APIs with very little code.

1.1.5 Conventions

As you might have begun to determine already, SilverStripe makes a lot
of use of conventions. There are also documented PHP coding standards,
conventions for HTML and CSS, and naming conventions for functions,
methods, and filenames. As a result, you have a well-considered structure
to follow for your projects – this allows teams of people to work on
SilverStripe projects, and helps you share your work with others in the
overall developer community.

Related to this is the principle of convention over configuration, which
has two major benefits: Efficiency and robustness to the developer and
user-friendliness to content authors, as illustrated by these examples:

• The base package ‘just works’ out-of-the-box. It provides a helpful
installer, and immediately can be used to add pages and run a website.
A default theme means that it’s feasible to write no code and have this
as a public website – it would just look a little bland. Extension mod-
ules such as the blog and forum adhere to this ‘works out-of-the-box’
principle, too, which makes getting started with SilverStripe quicker.

• Options are only visible in the user interface where they’re commonly
used. Functions with less frequent usage exist on the sidelines without
cluttering up the interface, and rarely used functions are either possi-
ble through extension modules or may be excluded altogether. Those
rare features might still be useful to you, and are basically waiting
for a developer to write them using one of the many extension points
in the framework. Although this may make you consider using an
older, more ‘feature rich’ alternative to SilverStripe, do be careful: In
general there’s a major switch toward using more lightweight tools
that are user-friendly. A good CMS is one that doesn’t have a ton of
functionality you never use.

• The same is true at the code level, in the Sapphire framework. The core
package focuses on providing commonly needed features easily. Gen-
erally, if functionality is missing, it provides easy means for adding,
replacing, or changing behavior – by writing code. This is in contrast
to having a multitude of built-in options that serve to complicate and
bloat the software. This focus is rare in CMS packages.



INTRODUCTION 11

1.1.6 CMS Interface

So far we’ve discussed principles and architecture. They’re important
to mention because they might not be as readily apparent as the func-
tionality that’s visible within the CMS backend functions provided by
the SilverStripe backend is to try it out. The best way to understand
the functions provided by SilverStripe is to try it out, for instance the
official public demo at http://demo.silverstripe.com/ or the screencast at
http://silverstripe.org/assets/video/cms.html.

Chapter 4 serves to explain the CMS interface in detail, so we’ll just
mention some interesting features here.

In comparison to other CMSs, the backend is quite clean and uncluttered,
and supports intuitive usage without specialized knowledge. Long training
sessions should be a thing of the past with SilverStripe for the average
computer user who is familiar with using Microsoft Word or similar text
processing solutions.

Behind the scenes, SilverStripe was an early adopter of highly interactive
interfaces built around JavaScript and AJAX, which means certain areas
of the interface can dynamically adapt to user actions without reloading
the entire application. AJAX powers key tasks such as opening and saving
pages, inserting images and links, and most strikingly, using drag&drop to
organize your sitemap. The use of AJAX makes performing these standard
tasks much quicker than the traditional approach of having to reload the
entire webpage. Other interesting features include the following:

• A site-tree interface instantly provides users with the idea of the
organization of the website’s pages, and how to edit and update
pages.

• Each page has a private ‘draft’ view, which you can work on until
you’re happy to publish it live. Each page version is saved, allowing
you to revert to and compare older versions of pages.

• There’s support for websites having multiple languages and subsites.

• The user interface used by content authors is translated into many
different languages, which makes it more accessible to non-English
markets.

• There’s powerful and automatic image manipulation. If you insert a
10 megapixel image onto your homepage, SilverStripe automatically
reduces it to a filesize appropriate for the web.

• The URLs are friendly URLs, of the format http://yoursite.com/
pagename/.



12 SILVERSTRIPE

• You can use a WYSIWYG editor to update content, sidestepping the
need for content authors to learn HTML.

• There’s a graphical user interface to manage files and other documents,
as well as security permissions.

• Some extension modules provide rich additional functionality to the
CMS. For instance, the Userforms module lets non-technical people
create forms for their website. The Workflow module provides the
ability for larger groups of people to work on a website, ensuring that
content goes through an approval process before being published.

• It’s highly customizable. Developers can substantially alter the user
interface so that content authors have the ability to manage their
unique website. This is much more than being able to add a
custom field – you can create entirely new data management inter-
faces, making the CMS backend capable of managing all sorts of
data.

1.1.7 Commercial Open Source Software – Best of Both Worlds?

SilverStripe is open source software, which means that you benefit from
access to the source code, and of course that it’s free to use. It also
serves to build a global community of developers who take interest in the
software, sharing best practices, code, documentation, roadmap ideas,
and so on.

The source code is managed and predominantly produced by a privately
held company, SilverStripe Ltd. This in contrast to a community ownership
model that often typifies open source. Despite SilverStripe being produced
by a company, which would often suggest there being a ‘commercial’
and a ‘free community’ version, the SilverStripe company instead focuses
on making a single (free) version great.

Having a company behind an open source project typically allows the
best of both worlds: On the one hand it provides access to code, a good
price, and minimizes lock-in to a vendor. On the other hand, it also
provides assurance that there is a number you can call if you want to pay
for professional services, such as resolving an issue or commissioning
a feature. You can visit http://silverstripe.com/ for more detail on the
professional services that SilverStripe and its partner companies offer,
or keep an eye on the community forums on http://silverstripe.org/ for
freelancers.

However, the devil is in the detail: Open source has become a coveted
term and there’s variation in just how ‘open’ different ‘open source
content management systems’ are. Some companies profess to provide
open source software, but fail to honor some key principles beyond just
providing access to the source code. In SilverStripe’s case, the company



INTRODUCTION 13

does the right thing and provides a number of attributes necessary for the
open source litmus test:

• Source code is available in a public versioning repository. All past
and upcoming versions of the software are available, with all changes
between them shown in a convenient manner. Every change on every
line of code can be tracked to a person, a moment in time, and
a release.

• The project accepts (and encourages!) contributions in the form of
code back to the project. Although nobody outside of the company has
commit rights to the core package at the moment, contributed patches
are regularly added to the core, and many members in the community
have commit rights to extensions. So far, the company’s control
appears to have done a good job prioritizing sound architecture and
usability.

• Core developers regularly appear publicly on support forums and use
a development mailing list to advise of the roadmap, and actively
encourage discussion and input by the wider developer community.
A healthy sign of this is that some features rise in the priority list of
the core team after community discussion. Multiple language support
is an example of an often requested feature that was implemented by
SilverStripe based on community feedback.

• The bug tracker and feature request system are all publicly visible and
open to the public to use at http://open.silverstripe.com/. A public
roadmap and a real-time list of changes to the product are also found
here.

• SilverStripe is distributed under the commonly used BSD license,
which is a permissive license approved by the Open Source Initiative
(http://opensource.org/). SilverStripe refrained from crafting their own
open-source license, which means that your legal team will have an
easier job reviewing the license details (assuming they know about
open source!).

BSD license

BSD is short for Berkeley Software Distribution, which is a liberal
license model originally developed by the American university of the
same name. The BSD license allows copying, modifying, and distribut-
ing of software without having to grant access to the altered source
code, and is by definition a ‘permissive’ license. The only requirement
is that the original (fairly short) license note has to stay in place.
The complete license can be found at http://opensource.org/licenses/
bsd-license.php.



14 SILVERSTRIPE

In practice, this means that service providers can develop specific
extensions for paying customers without obligations to license this
work as open source. The created intellectual property stays with the
service provider.

SilverStripe is one of very few CMSs that take this liberal approach of
BSD licensing. Most open source alternatives use a variant of the GNU
Public License (GPL), which enforces greater responsibility around
contributing your changes back into the core product.

1.1.8 What You Don’t Get

Another way to define something is by what it doesn’t have:

• There’s no graphical user interface to manage templates, website
logic, alter your database schema, provide a ‘control panel’, and so
forth. These are all managed by editing code at the framework level,
offering more flexibility to developers.

• The template files and PHP files are stored on the file system. This
means that the responsibility of maintaining a history of old versions
of these files, allowing collaboration by multiple people editing these
files, and pushing files from ‘development’ to ‘production’ is up for
you to manage. There’s plenty of powerful tools to provide this facility
(e.g., Subversion and Rsync) but SilverStripe doesn’t do it for you.

• SilverStripe is not a document management system, a term that
normally refers to a more heavy-weight product capable of managing
many thousands of documents for perhaps just as many staff, and
robustly ensuring versioning, integrity, and security of the files. Any
document management system worth its salt will have APIs to provide
integration with SilverStripe, allowing for instance the uploading of
files into the CMS from your document store. SilverStripe does have a
powerful ‘Files and Images’ system that lets website content authors
manage thousands of publicly accessible images and documents on
your website, and it’s well suited to that purpose.

• You don’t get a Microsoft application with SilverStripe, but if want to
want to leverage knowledge or investment in a Microsoft environment,
take advantage of SilverStripe being able to run on IIS and talk to SQL
Server databases. Use APIs if you need integrate with third party
applications such as Sharepoint.

• There’s no inline editing. Some content management systems allow
you to browse the website, find a section of content you want to
edit, click it, and edit it right then and there – ‘inline’. SilverStripe



INTRODUCTION 15

has chosen to put more effort into making a ‘backend’ CMS interface
polished and user-friendly. You’ll see in this book that forms can be
added to the ‘frontend’, which update pages and content in the CMS,
but these are focused on providing specific functions, such as letting
members update their profile. However, you can have a link shown
on webpages that loads the CMS backend for the current page.

• There’s not gazillions of modules, themes, widgets, translations, and
developers able to give you free support ‘yesterday’. If you want
something modern you need to be prepared to have less of these
amenities. Bear in mind that you don’t need so much pre-built code
because it should be easy to write it yourself.

• We don’t supply an application that runs on the x386 PC you have
earmarked for the local museum. SilverStripe is built in an environment
where dual-core machines are the lowest-end computers available.
That’s not to say SilverStripe shouldn’t concentrate on client-side
performance in the browser, but it makes pragmatic choices. On
server-side performance, you can expect several page views to be
dynamically generated per second; hundreds if you use static caching.

1.2 History

After giving you a high level overview of what SilverStripe has in store
technically, we’d like to give you a little insight into where it comes from.
Welcome to our little SilverStripe history lesson!

The website development company SilverStripe Ltd was founded in 2000
in the beautiful capital of New Zealand, Wellington. The three founders
Tim Copeland, Sam Minnée, and Sigurd Magnusson originally developed
and marketed a closed-source PHP4-based CMS to local small and
medium-sized business customers.

In 2005, the business decided to rebuild this CMS from scratch in PHP5,
using the experience gathered throughout five years of commercial CMS
development. This rewrite was largely motivated by the need to support
larger customers with more complex website requirements. The rewrite
came with a twist, too: This time it would be open sourced. SilverStripe
hoped to foster goodwill and a wider adoption by this move, assuming
it would make SilverStripe a better and more mature product in the long
run. If they could pull it off and create a thriving community around
the newcomer, the feedback and ideas generated would mean welcome
improvements to the overall system.

The software was rewritten substantially in 2006, with beta downloads
available late that year, and v2.0.0 stable released in February 2007. Just
months after the stable release, the project was accepted into the Google



16 SILVERSTRIPE

Summer of Code, followed shortly later that year by being accepted into
the Google Highly Open Participation Contest (see later box ‘Google’s
open source initiatives’).

These two programs brought SilverStripe to the attention of web devel-
opers around the world, and led to many new features being contributed
to the software. In 2008, the software won ‘Most Promising CMS’ at
the PacktPub Open Source CMS awards, having been a finalist the year
before. The software also featured at the annual MySQL Conference in
California, won at the New Zealand Open Source Awards, and was used
to power http://demconvention.com/, a high traffic official website in the
recent and very visible US Presidential Elections.

In 2009, the software was chosen as one of ten packages bundled
with Microsoft Web Platform Installer, an automated way to install PHP
applications on Microsoft’s IIS webserver. The Microsoft installer now
accounts for nearly half of SilverStripe’s downloads each month. Since
launch, the SilverStripe project team have maintained at least one major
and a couple of minor releases each year.

On the commercial side, the SilverStripe company has more than tripled
its company size since going open source, currently employing over 30
staff. To help grow the company, in 2007 the founders appointed a new
CEO, Brian Calhoun, who had spent considerable time working in the
Silicon Valley software industry.

All employed developers can dedicate a certain percentage of their work
time to open source development. Many new features also find their
beginnings in commercial work for specific clients with enough foresight
to allow open source usage of their commissioned work. Much of the
company’s work has come from international clients who became aware
of the open source product without any significant marketing effort on
behalf of SilverStripe, by virtue of the community spreading the word.

Google’s Open Source Initiatives

Through the Google Summer of Code (GSOC) and Google Highly
Open Participation (GHOP) Contest programs, the search giant shows
generous support for open source software. Both programs encourage
students to contribute to established open source projects.

The Summer of Code is a reference to the Summer of Love that took
place in San Francisco, 1967 – and implies similarly youthful and
revolutionary energies. The annual event began in 2005, and provides
hundreds of paid internships to university students. The students work
for about three months over the northern hemisphere summer, and
are mentored by members of an open source project to contribute a



INTRODUCTION 17

specific feature or effort to that project. More information is available
at http://code.google.com/soc/.

The Google Highly Open Participation Contest connects high-school
students with open source projects in a similar fashion, but with paid
tasks that take only hours, not months, to complete. Further information
is at http://code.google.com/ghop/.

The support from Google not only boosted SilverStripe development,
but also led to a good chunk of attention from the global open source
community, as well as potential clients. SilverStripe is now recognized
beyond the southern hemisphere, and finds a lot of adopters in Europe
as well as North America.

1.3 Future

SilverStripe is a fairly young CMS. The price you pay for any modern
system is that the documentation, features, and support may be more raw
than in an older system – but then, an older system clearly has its share
of disadvantages too. It is therefore comforting that the project cares a lot
about embracing and furthering website development best practices, and
that the core developers and the company show regular commitment to
growing both the community and the software.

In most cases, the active developer community is able to respond quickly
to any questions. Overall, the development velocity is quite high, and
this is the main factor that made this underdog a great CMS. It doesn’t
look as if development is slowing down any time soon; SilverStripe is
seeing increased contributions from the community in the form of themes,
modules, and new core developers.

The community is definitely at the heart and pulse of the web, which
means that new requirements and technologies are embraced very
quickly. This is also the reason for sparse long-term roadmap planning –
the next SilverStripe version is always dependent on community contri-
butions and appropriate responses to new requirements. Before writing
this book, we decided not to include a comprehensive and detailed Sil-
verStripe API reference for this very reason. The young product is moving
a lot quicker than the dead trees that compose these pages. If you’re
looking for a complete reference, the web guarantees you up-to-date
information: http://api.silverstripe.com/.

Looking at download figures, the trend is pointing upwards. In late
2008, two years after the first betas, 100,000 downloads were reached.
Less than a year later, downloads hit 200,000. A good indicator is also
the adoption rate among third party developers: Numerous commercial



18 SILVERSTRIPE

service providers have included SilverStripe in their service portfolio.
SilverStripe is currently transforming from the ‘secret weapon’ for early
adopters to a broadly used application.

1.4 Conclusion

SilverStripe is a user-friendly and versatile CMS, and gets real strength
through its MVC underpinnings and developer-friendly framework.

It’s not yet at a point where it can compete feature-by-feature, extension-
by-extension with some of the more established systems in the market,
but it doesn’t really have to: The underlying architecture compensates
for many missing bullet points because it’s comparatively easy to extend
and customize the out-of-the-box experience. SilverStripe’s focus on
using open standards and common technology not only helps to make
extending the software easier, but also helps to future-proof projects you
make with it.

The BSD license is particularly interesting for commercial service
providers who are interested in developing extensions for their clients,
both open and closed source. The ability for technical support to come
from commercial and community sources makes it suitable for both small
and large budget projects.

SilverStripe is able to score well in terms of cost-effective development:
Websites and web applications are easy to get started, and importantly,
can be quickly customized in an agile fashion. This agility can be a
significant competitive advantage.


