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1.1 Introduction

Microstrip and other printed antennas are constituted of, in general, patches, strips, slots,

packaged semiconductor devices, radome, feed, etc. in a nonhomogeneous dielectric medium.

Finite substrate and ground plane size are the norm. The dielectric used is very thin compared to

the other dimensions of the antenna. The design of these antennas based on models such as

transmission linemodel or cavitymodel is approximate. Besides, these designs fit regular-shaped

geometries (rectangular, circular, etc.) only, whereas most of the useful antenna geometries are

complex and do not conform to these restrictions [1]. The effect of surface waves, mutual

coupling, finitegroundplane size, anisotropic substrate, etc. is difficult to include in these types of

design. The numerical techniques, on the other hand, can be used to analyze any complex antenna

geometry including irregular shape, finite dielectric and ground plane size, anisotropic dielectric,

radome, etc. The popular numerical techniques for antenna analysis includemethod ofmoments

(MoM), finite element method (FEM), and finite difference time domainmethod (FDTD).MoM

analysis technique, though efficient, is not versatile because of its dependence on Green’s

function. FEM and FDTD are the most suitable numerical analysis techniques for printed

antennas. FDTD is found to be versatile because any embedded semiconductor device in the

antenna can be included in the analysis at the device-field interaction level. This leads to an

accurate analysis of active antennas. Maxwell’s equations are solved as such in FDTD, without

analytical pre-processing, unlike the other numerical techniques. Therefore, almost any antenna

geometry can be analyzed. However, this technique is numerically intensive, and therefore

require careful programming to reduce computation cost. We shall describe the advances in

FDTD. Our reference in this respect is the classic book on FDTD by Taflove and Hagness [2].

A large number of FDTD algorithms have been developed. These can be classified as

conditionally stable and unconditionally stable. The conditionally stable schemes include the

original or Yee’s FDTD also called FDTD (2,2), FDTD (2,4), sampling bi-orthogonal time-

domain (SBTD) and their variants; and the unconditionally stable schemes include ADI
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(Alternate Direction Implicit), CN (CrankNicolson), CNSS (CrankNicolson Split Step), LOD

(Local One-Dimensional) and their variants. The updating of fields in conditionally stable

schemes does not require a solution of matrix equation as an intermediate step, and are

therefore fully explicit. However, these schemes have a limit on themaximumvalue of the time

step, which is governed by theminimum value of the space step through the Courant-Friedrich-

Levy (CFL) condition.

c:DtCFL � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Dx2þ1=Dy2þ1=Dz2

p ð1:1Þ

Due to the heterogeneous nature of the dielectric in the printed antennas, the wave velocity is

less than c and may vary from cell to cell and from one frequency to another. We therefore

introduce a safetymargin and chooseDt ¼ ð1=2ÞDtCFL uniformly to simplify coding and avoid

instability. Defining the Courant number q as

q ¼ Dt=DtCFL ð1:2Þ

implies that q¼ 1/2 and the wave takes 2Dt time to travel to the next node.

The value ofDtCFL puts a severe computational constraint on the structures as they have fine

geometrical features such as narrow strips or slots or thin dielectric sheets. Since the simulation

time of an antenna is independent of space and time steps, the number of updates of fields

increases linearly with the decrease in the time step. This results in an increase in processor

time. The limitation on DtCFL is removed in some of the FDTD algorithms and these are

therefore called unconditionally stable schemes. In these schemes one can use the same value

of the time step over the whole geometry even if fine geometrical features exist without

significantly affecting the accuracy of simulation results. Updating fields in unconditionally

stable schemes is carried out in stages called time splitting and involves solving a set of

simultaneous equations before going on to the next stage. These schemes therefore are more

computationally intensive. However, their accuracy is similar to that of conditionally stable

FDTD schemes.

The FDTD analysis of open region problems such as antennas necessitates the truncation

of the domain to conserve computer resources. The truncation of the physical domain of the

antenna is achieved through absorbing boundary conditions, either analytical ABC or

material ABC. Material ABC in the form of PML can achieve a substantial truncation of

domain with very low reflection. The design of PML should be compatible with the FDTD

scheme employed for the rest of the antenna. A number of PML formulations are available.

These are split-field and non split-field PML. Non split-field types are convenient for coding

and are therefore preferred. Of the various PML formulations available now, uniaxial PML

looks promising.

All the FDTD algorithms suffer from computational error, and the amount of error is related

to the space and time step sizes employed. The error is quantified in the form of numerical

dispersion. The goal of various FDTD schemes is to analyze multi-wavelength long complex

geometries, efficiently and accurately. The complexity of the geometry may be in the form of

fine geometrical dimensions, anisotropic dispersive medium, embedded packged semicon-

ductor device, feed, mounting structure, etc. The efficient FDTD algorithms try to achieve this
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aim by increasing the permissible space step size without increasing dispersion, by an increase

in the time step size compatible with fine geometrical features, the applicability of the

algorithm to anisotropic and dispersivemedium and reduced reflection from the PMLmedium.

The presence of thin strips/slotsmakes uniform discretization an inefficient approach. New and

efficient solutions are being tested in the form of a sub-cell approach, quasi-static approxima-

tion, etc. The treatment of PEC and PMC boundary conditions presented by irregular

geometries is receiving due attention, while the interface conditions interior to the device

are somewhat difficult to implement accurately. Modeling of fast variation of fields in metal,

and analysis of curved geometries is being attempted. We shall now discuss the advances in

FDTD analysis since 2003.

Yee’s algorithm is outlined first in order to define the grid structure and the placement of

electric andmagnetic field components on the Yee cell. This grid will be used as a reference for

other FDTD algorithms.

1.2 Standard (Yee’s) FDTD Method

The FDTD method was first proposed by Yee in 1966 [3] and has been used by many

investigators because of its host of advantages. However, computer memory and processing

time for FDTD have to be huge to deal with the problems which can be analyzed using

techniques based on the analytical pre-processing ofMaxwell’s equations such asMoM,mode

matching, method of lines, FEM, etc. Therefore, the emphasis in the development of FDTD

technique is to reduce the requirement for computer resources so that this technique can be used

to analyze electrically large complex electromagnetic problems.

To determine time-varying electromagnetic fields in any linear, isotropic media with

constants e, m, s Maxwell’s curl equations are sufficient; the curl equations are

r�H ¼ sEþe
@E

@t
ð1:3aÞ

�r � E ¼ m
@E

@t
ð1:3bÞ

The partial differential equations (1.3) are solved subject to the conditions that: (i) the fields are

zero at all nodes in the device at t¼ 0 except at the plane of excitation; (ii) the tangential

components of E andHon the boundary of the domain of the antennamust be given for all t> 0.

For computer implementation of Equation (1.3), the partial derivatives are implemented as

finite difference approximations, and are partly responsible for the inaccuracy of the solution.

For better accuracy, the central difference approximation is used in FDTD and is defined as,

@F

@u

�����
uo

¼
F uoþDu

2

� �
�F uo�Du

2

� �
Du

�����
Du! 0

þOðDuÞ2 ð1:4Þ

where O(�) stands for the order of. Use of Equation (1.4) converts Equation (1.3) into the

following form:
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Theindices i, j, andkdefinethepositionofthefieldnodes, suchthatx ¼ iDx; y ¼ jDy; z ¼ kDz.
The time instant is defined by t ¼ nDt. To implement the finite difference scheme in three

dimensions, theantenna isdividedintoanumberofcells,calledYeecells,ofdimensionDxDyDz.
One such cell is shown inFigure 1.1.Remarkably the positions of different components ofE and

H on the cell satisfy the differential and integral forms of Maxwell’s equations. One may note

fromFigure1.1 that theplacements of theEandHnodes areoffset in spacebyhalf a space step; it

is called staggeredgrid.Wenote fromEquation (1.5) that the time instantswhen theEandHfield

componentsarecalculatedareoffsetbyhalf a timestep, that is, componentsofEarecalculatedat

nDt and components ofHare calculated at (n þ 1/2)Dt. The alternate update ofE andHfields is

called leap frog and saves computer processing time.

1.3 Numerical Dispersion of FDTD and Hybrid Schemes

The finite difference form of derivative (1.4) has an error term OðDuÞ2. As a result,

Equations (1.5 a–f) are second-order accurate, resulting in an approximate solution of the

problem. The first sign of this approximation appears in the phase velocity vph for the numerical

wave being different from that in the continuous case. This phenomenon is called numerical

dispersion. The amount of dispersion depends on the wavelength, the direction of propagation

in the grid, time step Dt and the discretization size Du. The above algorithm is second-order

accurate in space and time, and is therefore called FDTD(2,2). The numerical dispersion for

plane wave propagation may be determined from the following expression
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Figure 1.1 Geometry of Yee’s cell used in FDTD analysis

Numerical Analysis Techniques 5



sinðoDt=2Þ
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A

2
ð1:6Þ

where �k is thewave number for the numerical wave. The phase velocity�v ¼ o=�k is determined

by solving Equation (1.6) as a function of discretizationsDx;Dy;Dz;Dt and propagation angle
y;f. The phase velocity is found to be maximum and close to the velocity of light for

propagation along the diagonals and minimum for waves propagating along the axis.

1.3.1 Effect of Non-Cubic Cells on Numerical Dispersion

Devices with high aspect ratio may be analyzed by using uniform or non-uniform cell size. An

alternative is to employ non-square or non-cubic cells. The influence of the aspect ratio of the

unit cell on the numerical dispersion of FDTD(2,2) has been reported by Zhao [4]. It is found

that the dispersion error ðc��vÞ=c increases with the increase in aspect ratio of the cell but

reaches an upper limit for aspect ratios greater than 10. For N (number of cells per wavelength,

l=D)¼ 10, the maximum dispersion error for non-cubic cells is 1.6%which decreases to 0.4%

for N¼ 20, showing second-order accuracy. In general, the maximum error for non-cubic cells

is about 1.5 times that of the corresponding error for cubic cells. For the non-square cells, this

ratio is twice that of square cells [4]. For guidance, the minimum mesh resolution required to

achieve a desired phase velocity error is plotted in Figure 1.2 for the cubic and non-cubic cells.

Figure 1.2 Comparison of minimum mesh resolution required for a given accuracy of phase velocity

when non-cubic (with high aspect ratio) or cubic unit cells are employed. Reproduced by permission of

�2004 IEEE, Figure 8 of [4]
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It may be noted from Figure 1.2 that 0.5% accuracy in phase velocity is achieved for N¼ 18.5,

and N¼ 13 is needed for 1% accuracy when non-cubic cells are employed. This study shows

that unit cells with very high aspect ratiomay be used by sacrificing a small amount of accuracy

in phase velocity. FDTD(2,2) is also employed for benchmarking other schemes.

1.3.2 Numerical Dispersion Control

The numerical dispersion can be reduced to any degree that is desired if one uses a fine enough

FDTD mesh. This, however, increases the number of nodes and therefore also increases the

computer memory and processor time required. An alternative way to decrease numerical

dispersion is to improve upon the finite difference approximation of Equation (1.4). Higher-

order finite difference schemes, also called multi-point schemes, are available to reduce the

error in approximating the derivatives. The fourth-order-accurate schemes called FDTD(2,4)

employ four nodal values located atDu=2 and 3Du=2 on either side of the observation point u0,
and the space derivative is defined as [5]
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Anotheralgorithmwith lowerdispersioncalledSBTD(samplingbi-orthogonal timedomain)has

been proposed. It is an explicit schemewith leap-frog update. It is conditionally stable wavelet-

based scheme in which spatial discretization of FDTD is replaced with sampling bi-orthogonal

discretization [6]. The field is expanded inwavelets or scale functions as basis functions in space

domain, while the time domain expansion is in pulse functions. The coefficients of expansion of

wavelets are determined by testingMaxwell’s equations with the scaling functions. For the two-

dimensional TM case, the expression for the fields for SBTD is of the form [6]
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where

c0 ¼ 1:229167 ¼ �c�1; c1 ¼ �0:093750 ¼ �c�2; c2 ¼ 0:010417 ¼ �c�3 ð1:9Þ

The field expressions (1.8) and (1.5) are very similar. The number of terms on the RHS of (1.8)

are six compared to four for the fourth-order accurate finite difference scheme (1.7), andmight

be responsible for lower dispersion property of SBTD.The SBTD scheme belongs to the family

of multiresolution time-domain (MRTD) schemes using Cohen-Daubechies-Feauveau (CDF)

wavelets [7]. The MRTD schemes simultaneously address issues of higher-order approxima-

tion of fields, multigrid structure, and accurate treatment of the interface between different

media, unlike the piecemeal approach of FDTD schemes [7].

The phase velocity for the two-dimensional TM case for SBTD and FDTD(2,2) schemes

are compared in Figure 1.3 [6]. The number of nodes per wavelength or spatial resolution N is

20 and q¼ 0.5. It is observed from the graph that the phase velocity for SBTD scheme is

1.001c independent of the direction of travel of wave. The error is also less compared to

FDTD(2,2).

The normalized phase velocity for FDTD(2,2) and SBTD schemes for a cubic mesh with

N¼ 20 are compared in [8] and plotted here as Figure 1.4. It is noted fromFigure 1.4 that SBTD

with q¼ 0.5 is isotropic and least dispersive. The combination of various spatial and temporal

discretizations (q¼ 0.75) have been studied for their effect on numerical dispersion [9]. The

phase velocity is plotted as a function of spatial sampling rate N in Figure 1.5 [9]. For each

scheme, the phase velocity is bounded by two lines; the maximum (max) phase velocity occurs

along the cell diagonal and the minimum (min) velocity occurs along the axis of the cell. It is

noted from Figure 1.5 that except for FDTD(2,2), all other schemes generate fast (>c) waves.

Figure 1.3 Comparison of dispersion curves for SBTD and FDTD(2,2), (q¼ 0.5). Reproduced by

permission of �2008 IEEE, Figure 1 of [6]
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The slow and fast wave behavior of various schemes, Figure 1.5, may be exploited to reduce

numerical dispersion in FDTD. For this, hybrid FDTD schemes have been proposed. The

hybrid scheme based on the combination of FDTD(2,2) and FDTD(2,4) is called HFDTD(2,4),

and that based onFDTD(2,2) and SBTD is calledHSBTD1 [9]. Numerical dispersion produced

by the hybrid schemes has been compared with non-hybrid schemes and it is found that

dispersion can be minimized by properly combining the schmes with slow and fast waves [9].

The lay-out of cells for such an experiment is shown in Figure 1.6 [9]. Most of the cells are

updated using higher-order schemes. The cells marked black are updated using higher-order

Figure 1.4 Comparison of normalized phase velocity versus azimuth angle in a cubic mesh at a spatial

sampling rate of 20 points per wavelength. q is the Courant number. Reproduced by permission of�2008

IEEE, Figure 1 of [8]

Figure 1.5 Comparison of phase velocities for SBTD and FDTD schemes as a function of spatial

sampling rate N, q¼ 0.75. Reproduced by permission of �2009 IEEE, Figure 1 of [9]
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schemeswhereas the cellsmarkedwhite in each sixth rowand column are updatedwith second-

order schemes. For various schemes, the effect of spatial sampling rate or grid resolution on the

error in resonant frequency of a two-dimensional cavity is compared in Figure 1.7 [9]. It is

confirmed from Figure 1.7 that the hybrid schemes may be used to reduce the numerical error

significantly. Further numerical experiments on a partially filled rectangular waveguide cavity

confirm that the error in resonant frequency reduced by a factor of 3.1 when HFDTD(2,4) is

employed; this factor increased to 22 when HSBTD1 is used. All these results are compared

to standard FDTD(2,2). The spatial sampling rate used was 26.7. The processor times of the

hybrid schemes are similar to those of higher-order schemes. The effects of numerical

dispersion for layered, anisotropic media have been reported in [10].

One area of challenge in applying the higher-order and hybrid schemes is in the treatment of

boundary conditions which are inside the computational domain, e.g. antenna conductors, feed

lines, pins, dielectric interface, etc. [5]. Some of these issues for standard FDTD method are

discussed in [11]. Lossy curved surface in the form of surface impedance boundary condition is

modeled in [12]. The metal-semiconductor interfaces may be defined by higher-order

impedance boundary conditions [13].

Numerical dispersion exhibited by the various finite difference schemes have been reviewed

and expressed in the form of a general expression [8]:

Figure 1.6 Cell pattern for the field components normal to the view. Reproduced by permission of

�2009 IEEE, Figure 2 of [9]

Figure 1.7 Comparison of relative error of various schemes for the resonant frequency of a two-

dimensional rectangular cavity. Reproduced by permission of �2009 IEEE, Figure 3 of [9]
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cos oDtð Þ ¼ ReðlkÞ ð1:10Þ
where lk is the complex eigenvalue (not equal to unity) of the amplification matrix M. The

above expression is applicable to all known conditionally and unconditionally stable

algorithms; within their stability limits for conditionally stable schemes. For specific FDTD

schemes, expression for lk in terms of discretization parameters and numerical wave number is

available in [8]. For FDTD(2,2), the eigenvalues of M are obtained as l1;2 ¼ 1;
l3;4;5;6 ¼ 1�2d � 2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1�dÞp

, where d is given by [8]

d ¼ q2x sin
2 fx=2ð Þþq2y sin

2 fy=2
� 	þq2z sin

2 fz=2ð Þ ð1:11aÞ

qu ¼ cDt=Du Ru ¼ l=Du k0 ¼ 2p=l u : x; y or z ð1:11bÞ

fx ¼ 2p
Rx

knum

k0
sin y cos f fy ¼

2p
Ry

knum

k0
sin y sin f fz ¼

2p
Rz

knum

k0
cos y ð1:11cÞ

1.4 Stability of Algorithms

The stability requirement of algorithm (1.5) puts an upper limit on time step Dt. This limit is

necessary otherwise the computed field values might increase spuriously without limit as time

marching continues. The reason for numerical instability is theviolation of causality, that is, the

minimum timeDt required for the signal to propagate fromone node to the other separated byD
is given by Dt ¼ D=c. Increasing the value of Dt beyond this value to speed up the simulation

will result in instability. The upper bound on Dt is called the CFL stability condition or

sometimes Courant limit and is given by (1.1). For the special case of cubic cell

Dx ¼ Dy ¼ Dz ¼ D, one obtains

c:DtCFL � Dffiffiffi
3

p ð1:12Þ

The stability and numerical dispersion for ADI, CNSS and CN schemes are investigated in

terms of their amplification matrix M [14]. The ADI and CNSS schemes are found to have the

same dispersion,. and CN and CNSS are found to be unconditionally stable. However, the

unconditional stablility of ADI is contingent upon space-time discretizations, and its amplifi-

cation matrix M is given by

jjMADI jj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cDt

minðDx;Dy;Dz
� �2

s
ð1:13Þ

where the matrix M is a function of wavenumber(magnitude and propagation direction), and

space-time discretizations Dx;Dy;Dz;Dt. For a cubic cell, (1.13) reduces to

jjMADI jj �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

3

r
ð1:14Þ
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Another unconditionally stable FDTD scheme is LOD-FDTD. It is an efficient scheme

compared to ADI, CN and CNSS schemes and is described in Section 1.5.

The FDTD algorithm may have to be run for a large number of time steps, sometimes of the

order of 100,000 steps until the time domain waveform converges. It is possible to accelerate

the convergence of the algorithm by using matrix-pencil (or GPOF) approach [15]. In this

approach, the late timewaveform can be predicted from the early time sampling data. Onemay

be able to save about 80% of the simulation time using GPOF [16].

1.5 Absorbing Boundary Conditions

The antennas have associated open space region. The FDTD simulation of the antenna in this

form will require an unlimited amount of computer memory and processing time, which is

impossible to arrange. Therefore, the domainmust be truncated so that the associated reflection

is minimal. For this, the solution domain is divided into two regions: the interior region and the

exterior region as shown in Figure 1.8. The interior region must be large enough to enclose the

antenna of interest. The exterior region simulates the infinite space. It is a limited free space

enclosing the interior region on one side and terminated on the other side by a perfect electric

conductor. When we apply the FDTD algorithm to the interior region, it simulates wave

propagation in the forward and backward directions. However, only the outward propagation in

the exterior region is desired so that infinite free space conditions are simulated. Reflections are

generated at the interior-exterior region interface and from the perfect electric conductor

terminating the exterior region. These reflections must be suppressed to an acceptable level so

that the FDTD solution is valid for all time steps. The exterior region includes the domain of

absorbing boundary condition or ABC for short.

The absorbing boundary condition can be simulated in a number of ways. These are

classified as analytical (or differential) ABC and material ABC. The material ABC is realized

from the physical absorption of the incident wave by means of a lossy medium, whereas

analytical ABC is simulated by approximating the one-way wave equation on the boundary

of interior region. Whereas the analytical ABC may be able to provide upto �60 dB of

reflection, the material ABC can provide better absorption with the reflection reaching an

Exterior region

Interior region

Antenna

Figure 1.8 A typical truncation of the physical domain by the exterior region in FDTD algorithms
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ideal limit of �80 to �120 dB from PML at the boundaries. Various types of ABCs are

summarized next.

1.5.1 Analytical Absorbing Boundary Conditions

Analytical ABC is a popular technique because of its simplicity of implementation. The

reflection from analytical ABC could be as low as 0.1%, i.e. �60 dB. Analysis for this

absorbing boundary condition is based on the works of Enquist and Majda [17], Mur [18],

Higdon [19], and Liao [20]. For a plane wave incident on a planar boundary, the wave will

propagate forward (without any reflection) if the field function F(x,y,z,t) satisfies one-way

wave equation at the boundary. Such a boundary is therefore called the absorbing boundary.

The PDE for the ABCs may be derived from the wave equation. Consider the following two-

dimensional wave equation in the Cartesian coordinates

@2F

@x2
þ @2F

@y2
� 1

c2
@2F

@t2
¼ 0 ð1:15Þ

This expression may be factored as

@

@x
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
@2

@t2
� @2

@y2

s !
@

@x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
@2

@t2
� @2

@y2

s !
F ¼ 0 ð1:16Þ

Applying each of the above pseudo-operators to F gives rise to the following PDEs for the

analytical ABC as

Dx�Dt

c

ffiffiffiffiffiffiffiffiffiffi
1�s2

p� �
F ¼ 0 for ABC on the left boundary ð1:17aÞ

DxþDt

c

ffiffiffiffiffiffiffiffiffiffi
1�s2

p� �
F ¼ 0 for ABC on the right boundary ð1:17bÞ

where Dx ¼ @=@x, etc. and s ¼ cDy=Dt. Direct implementation of the operators with square

root is not possible. The operators are therefore approximated and result in various forms of

ABC depending on the approximation employed.

The first-orderABCs are obtained by a very crude approximation
ffiffiffiffiffiffiffiffiffiffi
1�s2

p
� 1 in (1.17a); one

obtains

@

@x
� 1

c

@

@t

� �
Fjx¼0 ¼ 0 ð1:18Þ

for the left boundary at x¼ 0. Similar expressions can be written down by inspection for the

other boundaries also. The expression (1.18) is called the Enquist-Majda (E-M) first-order

ABC. The field function F represents the electric field tangential to the boundary. For a non-

planar wave, Equation (1.18) should be applied to all the components tangential to the planar

boundary. It is shown that (1.18) is unconditionally stable [18]. The absorbing boundary

condition (1.18) is exact only for a plane wave at normal incidence. Hence the wave will be
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reflected for an oblique incidence. Higher-order ABCs are suitable for non-normal incidence,

and are obtained by better approximation of the square root function
ffiffiffiffiffiffiffiffiffiffi
1�s2

p
. For this, let us

approximate
ffiffiffiffiffiffiffiffiffiffi
1�s2

p
in a general form as

ffiffiffiffiffiffiffiffiffiffi
1�s2

p
� d�bs2

1�as2
ð1:19Þ

where the parameters a, b, d are optimized to define various forms of third-order ABCs such as

Chebyshev, Pade and EM second-order. Use of Equation (1.19) in Equation (1.17a) gives

@3F

@x@t2
�ac2

@3F

@x@y2
� d

c

@3F

@t3
þbc

@3F

@t@y2
¼ 0 ð1:20Þ

This expression reduces to:

(a) first-order E-M ABC for d¼ 1, a¼ b¼ 0;

(b) second-order E-M ABC for d¼ 1, b¼ 1/2, a¼ 0;

(c) Pade approximation or Pade ABC for d¼ 1, b¼ 3/4, a¼ 1/4;

(d) Chebyshev ABC for d¼ 0.99973, b¼ 0.80864, a¼ 0.31657.

Mur’s ABCs are discretized versions of E-MABCs, e.g. first-orderMur ABC for the boundary

at x ¼ 0 is obtained by discretizing Equations (1.17a) or (1.20) at x ¼ Dx=2; t ¼ ðnþ1=2ÞDt
and is given by

Fnþ1
0 ¼ Fn

1þ
cDt�Dx
cDtþDx

� �
Fnþ1
1 �Fn

0

� 	 ð1:21Þ

Similar expressions may be obtained for other types of ABCs and for waves incident on

different boundaries. One can realize about �40 dB reflection by using these ABCs. Liao’s

third-order ABC may be used to achieve about �50 to �60 dB reflection and is discussed

next.

1.5.1.1 Liao’s ABC

Liao’s ABC is based on the extrapolation of fields in time and space using Newton-backward

difference polynomial. Consider an outer grid boundary at imax ¼ MDx, then the L-th order

Liao ABC may be written as [2, 21]

Fnþ1ðimaxÞ ¼
XL
i¼1

ð�1Þlþ1
CL
l F

nþ1�l imax�lhð Þ ð1:22Þ

where h ¼ acDt=Dx; a is the damping factor 0 � a � 2, and CL
l is the Binomial coefficient

defined as

CL
l ¼ L!

l!ðL�lÞ! ð1:23Þ
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It may be noted from Equation (1.22) that the field values at different time instants ðnþ1�lÞDt
and different locations ðimax�lhÞDx are combined judiciously to produce a near null field

Fnþ1ðimaxÞ. This scheme is different from the one-waywave equation scheme and is found to be

stable with double precision computations [2]. The choice of a and therefore h is not critical in
Equation (1.22), resulting in the robustness of the scheme. The value of amay be chosen such

that h is an integer and the required field locations coincidewith those available in the standard

FDTD scheme. Otherwise, quadratic interpolation may be employed. For the third-order ABC

and h an integer, Equation (1.22) becomes

Fnþ1
M ¼ 3Fn

M�1�3Fn�1
M�2þFn�2

M�3 ð1:24Þ
where F is one of the electric field components tangential to the boundary.

Interpretation of analytical ABCs in terms of surface impedance boundary condition (SIBC)

is discussed in [22]. The SIBC involves tangential components of both E and H fields, whereas

other analytical ABCs are applied to Efield only. The SIBC typeABCs reduce the order of PDE

without compromising the performance and this is discussed next.

Consider the half-space of an isotropic medium terminating the problem physical domain

as shown in Figure 1.9. The interface is defined by z¼ 0. Equating the tangential components of

E and H at the interface gives [23]

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x�k2y

q
Ex ¼ �Z0 k20�k2x

� 	
Hyþkx ky Hx


 � ð1:25aÞ

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x�k2y

q
Ey ¼ Z0 k20�k2y

� �
Hxþkx ky Hy

h i
ð1:25bÞ

For the two-dimensional TMx waves ðHx ¼ 0Þ with the fields constant along x (kx ¼ 0),

Equation (1.25) reduces to ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2y

q
Ex ¼ �Z0k0Hy ð1:26Þ

Figure 1.9 Half-space termination of physical space for deriving surface impedance boundary

condition
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Approximating the square-root factor according to Equation (1.19) gives

dk20�bk2y

� �
Ex ¼ �Z0 k20�ak2y

� �
Hy ð1:27Þ

The corresponding partial differential equation (PDE) for this boundary condition is obtained

by using k20 ¼ o2=c2, jo$@=@t, and �jky ¼ @=@y [23]

d

c2
@2Ex

@t2
�b

@2Ex

@y2
¼ � Z0

c2
@2Hy

@t2
þZ0a

@2Hy

@y2
ð1:28Þ

It may be recast in the following form by using
@2Hy

@t2
¼ � c

Z0

@2Ex

@z@t

d

c2
@2Ex

@t2
�b

@2Ex

@y2
¼ 1

c

@2Ex

@z@t
þZ0a

@2Hy

@y2
ð1:29Þ

Discretizing it about the point x ¼ iDx; y ¼ Dy=2 at t ¼ nDt gives [23]

Ex jnþ1
i;0 ¼ �Exjn�1

i;0 þ 2dDz
cDtþdDz

Exð jni;0þExjni;1Þþ
cDt�dDz
cDtþdDz

Exð jnþ1
i;1 þExjn�1

i;0 Þ

þ bðcDtÞ2Dz
Dy2ðcDtþdDzÞ

Exjniþ1;1�2Exjni;1þExjni�1;1

þExjniþ1;0�2Exjni;0þExjni�1;0

0
@

1
A

þ Z0aðcDtÞ2Dz
Dy2ðcDtþdDzÞ

Hyjnþ1=2
iþ1;1=2�2Hyjnþ1=2

i;1=2 þHyjnþ1=2
i�1;1=2

þHyjn�1=2
iþ1;1=2�2Hyjn�1=2

i;1=2 þHyjn�1=2
i�1;1=2

0
B@

1
CA ð1:30Þ

The above expression reduces to first-order Mur ABC for d¼ 1, a¼ b¼ 0; second-order Mur

ABC for d¼ 1, b¼ 1/2, a¼ 0; Pade ABC for d¼ 1, b¼ 3/4, a¼ 1/4; and Chebyshev ABC for

d¼ 0.99973, b¼ 0.80864, a¼ 0.31657.

The numerical results based on Equation (1.30) show that the second-order PDE (1.29)

involving both the components of E and H have similar performance as the third-order PDE

of (1.20) for one field component [22].

The performance of an ABC is determined by the power reflected by it and summed over the

whole grid. It is called global error and is defined as

E ¼
XXX

e2ði; j; kÞ ð1:31Þ
where e is the amplitude of reflected wave for an incident wave of unit amplitude. The

expression (1.30) was implemented for SIBC-based Chebyshev and Pade ABC, and compared

with Liao’s third-order and Mur’s second-order ABC on 20� 200 lattice. The source was

a Gaussian-like pulse of width 30Dt. The global error as a function of time is compared in

Figure 1.10 [22]. It may be noted that the second-order SIBC (Pade and Chebyshev) performs
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much better than the second-order Mur’s ABC. The Chebyshev approximation is better than

the third-order LiaoABC.The decay in global error after about n¼ 150 is due to the fact that the

source pulse went to zero some time ago. Extension of SIBC-based ABC for the three-

dimensional case is also discussed in [22].

Perfectlymatched layer (PML)may be employed for lower reflections and is discussed next.

The performance of some of the higher-order analytical ABCs is compared with PML in [24].

The golobal error for 30� 30� 30 geometry is compared in Figure 1.11 for higher-order

analytical ABCs and PML [24]. The Gaussian-like excitation pulse is 40 Dt wide. The PML

was terminated with Liao’s ABC instead of electric wall. The difference between third-order

E-M and Liao’s fifth-order is about 20 dB. It may be observed that PML can provide an

excellent termination of space domain.

1.5.2 Material-Absorbing Boundary Conditions

The absorbing sheets method was the first material ABC proposed and was used for FDTD

computations by Hallond and Williams [25]. In this method the exterior region is filled with

a lossy medium with parameters (m0; e0; s�; s), where s is the electrical conductivity and s� is
the fictitious magnetic conductivity. The lossy medium is taken to be of finite thickness and is

backed by a perfect electric conductor. The values of s and s� are selected so that when a wave
is incident normal to the interface separating the free space interior region and the lossy

medium, there should be no reflection, which is possible only if

Z0 ¼ Zm ð1:32Þ

Figure 1.10 Comparison of global error as a function of time for SIBC-basedChebyshev andPadeABCs

with Liao’s and Mur’s second-order ABCs. Reproduced by permission of�2003 IEEE, Figure 2 of [22]
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whereZ0 is the free space impedance definedby (mo; eo; s
* ¼ 0; s ¼ 0) andZm is the impedance

of the lossy medium dependent on (m0; e0; s*; s). Equation (1.32) can be expressed as

ffiffiffiffiffi
m0
e0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0þjs*

e0þjs

s
ð1:33Þ

For convenience if we choose m0 ¼ m0; e
0 ¼ e0 then matching condition (1.33) yields

s�

m0
¼ s

e0
¼ v ð1:34Þ

In practice, the conductivity of the lossy medium is increased gradually from 0 to sm at the

thickness t of the lossy medium. The increase may be linear or parabolic, and s is written as

sðrÞ where r is the distance from the interface.

The magnitude of the reflection coefficient for a wave incident at an anglefw.r.t the normal

to the layers is

RðfÞ ¼ Rð0Þ½ 	cosðfÞ ð1:35Þ
with R(0) the reflection coeffficient for normal incidence and is defined as

Rð0Þ ¼ exp
�2

eoc

ðt
0

snðrÞdr
0
@

1
A n ¼ 0; 1; 2 . . . ð1:36Þ

Figure 1.11 Comparison of global error as a function of time for a number of higher-order ABCs and

PML. Reproduced by permission of �1997 IEEE, Figure 1 of [24]
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In general, the profile for the PML medium may be defined as

snðrÞ ¼ sm
r
t

� �n
ð1:37Þ

and the corresponding

Rð0Þ ¼ exp
�2smt

ðnþ1Þeoc
� �

n ¼ 0; 1; 2 . . . ð1:38Þ

It appears from (1.38) that one may choose a sufficiently thick lossy medium to obtain any

desired amount of reflection. However, the reflection at oblique incident angles is higher, and

the total reflection at the interface for the absorbing sheets method is of the same order as that

obtained from analytical ABCs discussed earlier.

1.5.3 Perfectly Matched Layer ABC

The perfectlymatched layer (PML) formulationwas proposed byBerenger [26] and represents

a generalization of the absorbing sheets method to arbitrary angles of incidence. This is

achieved by splitting the electric and magnetic field components in the absorbing media, and

assigning different losses along different axis. The net effect of this is to create a nonphysical

lossy medium in the exterior region so that the wave impedance in this medium is independent

of the angle of incidence and frequency of the waves. The split-field PML makes coding

difficult. However, this method is used as a benchmark for other PML formulations.

1.5.4 Uniaxial PML

Non-split field formulations in PML have been developed to simplify coding. One of these

formulations is in the form of complex stretching of the Cartesian coordinates in the frequency

domain [27]. The stretching variable formulation leads to convolution in the time domain, and

can be avoided by the splitting of fields similar to that in Berenger’s PML.

In a popular unsplit-field formulation, the PML medium employed is anisotropic with

permittivity and permeability tensors, and is called Uniaxial PML, UPML for short. The

general formulation for UPML is given in [28, 29]. A diagonal tensor is uniaxial if it is

anisotropic along one axis only and is defined as

��e ¼ e0��s; and ��m ¼ m0��s ð1:39Þ
where the media tensor ��s for the three-dimensional PML region is defined as [30]

��s ¼

1=sx 0 0

0 sx 0

0 0 sx

2
66664

3
77775

sy 0 0

0 1=sy 0

0 0 sy

2
66664

3
77775

sz 0 0

0 sz 0

0 0 1=sz

2
66664

3
77775 ¼

sysz=sx 0 0

0 szsx=sy 0

0 0 sxsy=sz

2
66664

3
77775

ð1:40Þ
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and sv are defined as

sv ¼ kvþ sv
joe

¼ kvþ rv
jom

v ¼ x; y; z ð1:41Þ

where sv and rv are the UPML medium conductivity and reluctivity along the v-axis,

respectively. The medium characterized as above leads to reflectionless propagation from

free space to PML for both TE and TMwaves, independent of angle of incidence, polarization

and frequency. For exponential decay of the propagating wave in UPML, the media constants

should be complex with sv ¼ 1þ sv
joe

. The UPML is characterized by sxðiÞ alone for layers

perpendicular tox-axis, bysyð jÞ alone for layers perpendicular to y-axis, bysxðiÞandsyð jÞ etc.
for the edge regions, and by sxðiÞ, syð jÞ and szðkÞ for the corner regions as shown in

Figure 1.12. The non-PML region or central region is characterized by sx ¼ sy ¼ sz ¼ 0, thus

simplifying coding. The values of sv are gradually increased as one goes deeper into the PML

region.

The implementation of UPML in FDTD algorithm is not simple since the medium is

dispersive due to the frequency dependence of permittivity and permeability tensors. Direct

transformation from frequency domain to time domain involves convolution and is ineffi-

cient. Instead, a two-step time marching scheme is suggested in [2] for efficient implemen-

tation of UPML. In this scheme Maxwell’s equations are formulated in terms of D and B,

and E and H are derived from these. The procedure reported in [30] is D(E)-H based which

can be easily implemented in most of the FDTD schemes, e.g. for the standard FDTD

scheme

xyz - corner region

xy - edge region

x

z

y

z - face region

Interior region

Figure 1.12 Illustration showing the face, edge and corner regions of the PMLmedium surrounding the

interior region
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Dnþ1
x ðiþ 1

2
; j; kÞ ¼ c1j D

n
xðiþ 1

2
; j; kÞ

þc2j

Hnþ1=2
z ðiþ 1

2
; jþ 1

2
; kÞ�Hnþ1=2

z ðiþ 1
2
; j� 1

2
; kÞ

Dy

0
B@

�
Hnþ1=2

y ðiþ 1
2
; j; kþ 1

2
Þ�Hnþ1=2

y ðiþ 1
2
; j; k� 1

2
Þ

Dz

1
CA ð1:42Þ

where

c1j ¼
2eky�syð jÞDt
2ekyþsyð jÞDt ; c

2
j ¼

2eDt
2ekyþsyð jÞDt ð1:43Þ

Enþ1
x ðiþ1

2
; j; kÞ ¼ c3k E

n
xðiþ1

2
; j; kÞþc4k c5iþ1=2 D

nþ1
x ðiþ1

2
; j; kÞ�c6iþ1=2 D

n
xðiþ1

2
; j; kÞ

� �
ð1:44Þ

where

c3k ¼
2ekz�szðkÞDt
2ekzþszðkÞDt ; c4k ¼ 1

e 2ekzþszðkÞDtð Þ ;

c5
iþ1=2 ¼ 2ekxþsxðiþ1=2ÞDt; c6

iþ1=2 ¼ 2ekx�sxðiþ1=2ÞDt
ð1:45Þ

It is understood that the indices i, j,kwithin the brackets after sx, etc. refer to the position of the
node.

Substituting for Dnþ1
x from Equation (1.42), one can write,

Enþ1
x ðiþ 1

2
; j; kÞ ¼ c3kE

n
xðiþ 1

2
; j; kÞþ c4kc

5
iþ1=2c

1
j�c4kc

6
iþ1=2

� �
Dn

xðiþ 1
2
; j; kÞ

þc4kc
5
iþ1=2c

2
j

Hnþ1=2
z ðiþ 1

2
; jþ 1

2
; kÞ�Hnþ1=2

z ðiþ 1
2
; j� 1

2
; kÞ

Dy
�

Hnþ1=2
y ðiþ 1

2
; j; kþ 1

2
Þ�Hnþ1=2

y ðiþ 1
2
; j; k� 1

2
Þ

Dz

0
BBBBBBB@

1
CCCCCCCA

ð1:46Þ

Similar expressions may be obtained for other field components. For a two-dimensional PML,

the updating equations are obtained by setting sz ¼ 0; kz ¼ 1. The optimal value of sv used in
the updating equations may be chosen according to that given in [31, 32].
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The numerical results for FDTD(2,2), SBTD, ADI, and CN schemes employing this UPML

are presented for two-dimensional TE cases in [30]. The absorbing behavior of UPML for

SBTD scheme is found to be similar to that for FDTD(2,2). TheUPML inADI scheme is found

to produce larger reflections compared to that in FDTD(2,2) and is shown in Figure 1.13 for the

three-dimensional study [32]. Thevalue ofDtCFL used is 1.926 ps.Also, the absorbing ability of
UPMLdeteriorates with the increase inCourant number q in Figure 1.13. The reflection error is

defined as Emeasured�Eref

�� ��= Eref max

�� �� where Eref is the value measured by extending the

dimensions outward to avoid reflections from boundaries, and Eref max is the maximum value

observed at the same point.

1.6 LOD-FDTD Algorithm

The alternating-direction implicit (ADI) FDTD algorithm was proposed by Namiki [33].

It employs the same grid as in FDTD(2,2) and is second-order accurate in both space and

time. The algorithm is implicit because the update of fields is not a single step process as for

FDTD(2,2) but involves solving a set of simultaneous equations as an intermediate step. The

ADI algorithm has been analyzed thoroughly for its dispersion and stability properties. It has

been found that themaximumpermissible step sizeDt inADI-FDTDdepends on the numerical

errors which increase with the increase in the Courant number q. ADI exhibits splitting error

which depends not only on time step size but also on the spatial derivatives of fields. Due to its

implicit nature which involves solving a tridiagonal matrix equation, the number of arithmetic

operations per update of fields is more compared to FDTD(2,2). CN-FDTD is more accurate

than ADI-FDTD but is computationally expensive. The LOD-FDTD is simple to code, is 20%

more efficient, and provides similar accuracy as ADI-FDTD for the same computer memory

Figure 1.13 Reflection error from the FDTD-UPML and ADI-UPML as a function of time with q as a

parameter. Reproduced by permission of �2002 IEEE, Figure 1 of [32]
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required [34]. We describe LOD-FDTD algorithm for three-dimensional problems next. The

efficiency of LOD-FDTD can be improved to 83% by a simple transformation.

For a lossless medium the Maxwell’s curl equations (1.3) reduce to

r�H ¼ e
@E

@t
r� E ¼ �m

@H

@t
ð1:47Þ

These equations may be expressed in operator form as

@F

@t
¼ A½ 	Fþ B½ 	F ð1:48Þ

where F ¼ ½Ex;Ey;Ez;Hx;Hy;Hz	T and

A½ 	 ¼

0 0 0 0 0
@

e@y

0 0 0
@

e@z
0 0

0 0 0 0
@

e@x
0

0
@

m@z
0 0 0 0

0 0
@

m@x
0 0 0

@

m@y
0 0 0 0 0

2
666666666666666666666664

3
777777777777777777777775

ð1:49aÞ

B½ 	 ¼

0 0 0 0 � @

e@z
0

0 0 0 0 0 � @

e@x

0 0 0 � @

e@y
0 0

0 0 � @

m@y
0 0 0

� @

m@z
0 0 0 0 0

0 � @

m@x
0 0 0 0

2
6666666666666666666666666664

3
7777777777777777777777777775

ð1:49bÞ
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By applying the CN (Crank-Nicolson) algorithm

@Fðnþ1=2Þ=@t � ðFnþ1�FnÞ=Dt; Fnþ1=2 � ðFnþ1þFnÞ=2 ð1:50Þ
to Equation (1.48) at t ¼ ðnþ1=2ÞDt we have

I½ 	�Dt
2

A½ 	�Dt
2

B½ 	
� �

Fnþ1 ¼ I½ 	þDt
2

A½ 	þDt
2

B½ 	
� �

Fn ð1:51Þ

Equation (1.51) can be approximated as, assuming Dtð Þ2AB 
 4,

I½ 	�Dt
2

A½ 	
� �

I½ 	�Dt
2

B½ 	
� �

Fnþ1 ¼ I½ 	þDt
2

A½ 	
� �

I½ 	þDt
2

B½ 	
� �

Fn ð1:52Þ

The above expresssion may be decomposed into the following sub-steps if the operator

matrices A and B commute,

I½ 	�Dt
2

A½ 	
� �

Fnþ1=2 ¼ I½ 	þDt
2

A½ 	
� �

Fn ð1:53aÞ

I½ 	�Dt
2

B½ 	
� �

Fnþ1 ¼ I½ 	þDt
2

B½ 	
� �

Fnþ1=2 ð1:53bÞ

The splitting of time step as defined above is found to suffer from non-commutivity-related

error. A simple modification of the time instant for the sub-steps is proposed to reduce this

error [35]. The modification is to re-define (1.53) as

I½ 	�Dt
2

A½ 	
� �

Fnþ3=4 ¼ I½ 	þDt
2

A½ 	
� �

Fnþ1=4 ð1:54aÞ

I½ 	�Dt
2

B½ 	
� �

Fnþ5=4 ¼ I½ 	þDt
2

B½ 	
� �

Fnþ3=4 ð1:54bÞ

The change-over from the fractional time steps to integer time steps for compatibility with

FDTD(2,2) will be discussed at the end. Nowwe substitute the operatormatrices and obtain the

following expressions for the field components:

Sub-step 1

Enþ3=4
x ¼ Enþ1=4

x þDt
2e

@Hnþ3=4
z

@y
þ @Hnþ1=4

z

@y

� �
; ð1:55aÞ

Hnþ3=4
z ¼ Hnþ1=4

z þDt
2m

@E
nþ3=4
x

@y
þ @E

nþ1=4
x

@y

 !
ð1:55bÞ
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Sub-step 2

Enþ5=4
x ¼ Enþ3=4

x þDt
2e

@Hnþ5=4
z

@y
þ @Hnþ3=4

z

@y

� �
; ð1:56aÞ

Hnþ5=4
z ¼ Hnþ3=4

z þDt
2m

@E
nþ5=4
x

@y
þ @E

nþ3=4
x

@y

 !
ð1:56bÞ

The expressions for other field components can be simply written down by inspection.

Eliminating Hnþ3=4
z from (1.55a) and (1.55b) gives

Enþ3=4
x �Dt2

4me
@2E

nþ3=4
x

@y2
¼ Enþ1=4

x þDt2

4me
@2E

nþ1=4
x

@y2
þDt

e
@Hnþ1=4

z

@y
ð1:57Þ

The finite difference approximation of the above leads to the following update [35]

�aE
nþ3=4
x ðiþ1

2 ; j�1;kÞþð1þ2aÞEnþ3=4
x ðiþ1

2
; j;kÞ�aEnþ3=4

x ðiþ1

2
; jþ1;kÞ ¼

¼ ð1�2aÞEnþ1=4
x ðiþ1

2
; j;kÞþb

Hnþ1=4
z ðiþ 1

2
; jþ 1

2
;kÞ

�Hnþ1=4
z ðiþ 1

2
; j� 1

2
;kÞ

0
B@

1
CAþa

E
nþ1=4
x ðiþ 1

2
; jþ1;kÞ

þE
nþ1=4
x ðiþ 1

2
; j�1;kÞ

0
B@

1
CA
ð1:58Þ

where

a¼ Dt2

4emDy2
and b¼ Dt

eDy
: ð1:59Þ

Equation (1.58) represents a matrix equation and is tri-diagonal in nature. Its solution

determines E
nþ3=4
x . The size of the matrix is determined by Ny, the number of nodes along

the y-axis. The matrix size being large, indirect matrix solution techniques are employed. An

alternate-direct implicitDouglas-Gunn algorithmhas been used bySun andTrueman [36].Yang

et al. used a biconjugate-gradient (BCG) algorithm with symmetric successive over-relaxation

(SSOR) as a pre-conditioner to speed up the BCG algorithm [37].

The field E
nþ3=4
x obtained above may be used to explicitly update Hnþ3=4

z through

Equation (1.55b) according to

Hnþ3=4
z ðiþ1

2
; jþ1

2
; kÞ

¼ Hnþ1=4
z ðiþ1

2
; jþ1

2
; kÞþf

E
nþ1=4
x ðiþ 1

2
; jþ1; kÞ�E

nþ1=4
x ðiþ 1

2
; j; kÞþ

E
nþ3=4
x ðiþ 1

2
; jþ1; kÞ�E

nþ3=4
x ðiþ 1

2
; j; kÞ

0
B@

1
CA ð1:60Þ

where
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f ¼ Dt
2mDy

ð1:61Þ

We can similarly solve for Enþ3=4
y and Enþ3=4

z and update other H-field components, e.g.

Hnþ3=4
x ði; jþ1

2
;kþ1

2
Þ¼Hnþ1=4

x ði; jþ1

2
;kþ1

2
Þþg

Enþ1=4
y ði; jþ1

2
;kþ1Þ�Enþ1=4

y ði; jþ1
2
;kÞþ

Enþ3=4
y ði; jþ1

2
;kþ1Þ�Enþ3=4

y ði; jþ1
2
;kÞ

0
B@

1
CA

ð1:62Þ
where

g¼ Dt
2mDz

: ð1:63Þ

Similarly, (1.56) may be discretized and solved to update the field components. This completes

one cycle of time step updation.

The field updating procedure described above assumes that the initial field values are

available at t ¼ ð1=4ÞDt. Tan proposes the following input processing from t¼ 0 to

t ¼ ð1=4ÞDt [38]

I½ 	�Dt
4

B½ 	
� �

u1=4 ¼ I½ 	þDt
4

B½ 	
� �

u0 ð1:64Þ

Use of Equation (1.49b) for matrix B results in

E1=4
x � Dt2

16me
@2E

1=4
x

@z2
¼ E0

xþ
Dt2

16me
@2E0

x

@z2
�Dt
2e

@H0
y

@z
ð1:65aÞ

H1=4
y ¼ H0

y�
Dt
4m

@E0
x

@z
þ @E

1=4
x

@z

 !
ð1:65bÞ

While the implementation ofEquation (1.65a) requires the solution of amatrix equation similar

to that for E
nþ3=4
x and described earlier, the update for H1=4

y is explicit. Discretizing Equa-

tion (1.65) results in

�pE
1=4
x ðiþ 1

2
; j; k�1Þþð1þ2pÞE1=4

x ðiþ 1
2
; j; kÞ�pE

1=4
x ðiþ 1

2
; j; kþ1Þ ¼

¼ ð1�2pÞE0
xðiþ 1

2
; j; kÞþp

E0
xðiþ 1

2
; j; kþ1Þþ

E0
xðiþ 1

2
; j; k11Þ

0
B@

1
CA�q

H0
y ðiþ 1

2
; j; kþ 1

2
Þ�

H0
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2
; j; k� 1
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Þ
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H1=4
y ðiþ1

2
; j; kþ1

2
Þ ¼ H0

y ðiþ1
2
; j; kþ1

2
Þþs

E0
xðiþ 1

2
; j; kþ1Þ�E0

xðiþ 1
2
; j; kÞþ

E
1=4
x ðiþ 1

2
; j; kþ1Þ�E
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0
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1
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where

p ¼ Dt2

16emDz2
; q ¼ Dt

2eDz
and s ¼ Dt

4mDz
ð1:67Þ

The following transformation is recommended for output processing of data from Fnþ5=4 to

Fnþ1 [38]

I½ 	þDt
4

B½ 	
� �

Fnþ1 ¼ I½ 	�Dt
4

B½ 	
� �

Fnþ5=4 ð1:68Þ

The increased efficiency of LOD-FDTD compared to ADI-FDTD is due to the reduced number

of arithmetic operations on the RHS of Equation (1.53) [35]. The number of arithmetic

operations for the LOD and ADI schemes are compared in Table 1.1 [[35],Table 1].

It is observed in [38] that the various implicit FDTD schemes have similar updating

structures, and it is possible to improve their efficiency using a general procedure. The

approach devised is to express these algorithms in a form so that the RHS of transformations

e.g. (1.54) should consist of least number of terms and should be free from the matrix operator.

Auxiliary variables are introduced for this purpose. For the LOD-FDTD described above we

may define the auxiliary variables as [38]

Fnþ3=4 ¼ Hnþ3=4�Fnþ1=4 and Fnþ5=4 ¼ Hnþ5=4�Fnþ3=4 ð1:69Þ
The expressions (1.54) then transform to

1

2
I½ 	�Dt

4
A½ 	

� �
Hnþ3=4 ¼ Fnþ1=4 1

2
I½ 	�Dt

4
B½ 	

� �
Hnþ5=4 ¼ Fnþ3=4 ð1:70Þ

Table 1.1 Comparison between ADI and LOD-FDTD schemes for the number of arithmetical

operations

Arithmetical operations ADI LOD

Implicit M/D 18 18

A/S 48 24

Explicit M/D 12 6

A/S 24 24

Total M/D 30 24

A/S 72 48

Source: Reproduced by permission of �2007 IEEE, Table 1 of [35].

Note: �M¼multiplication, D¼ division, A¼ addition and S¼ subtraction.
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This LOD algorithm ismore efficient than Equation (1.54) because the RHS of Equation (1.70)

is free frommatrix operators. The efficiency of themodified algorithm is found to be 1.83 times

that of the ADI-FDTD algorithm of Equation (1.53) [38].

The LOD-FDTD algorithm for circularly symmetric geometries has been reported. The

improvement in efficiency compared to ADI-FDTD has been reported to be about

40% [39]. Extension of LOD-FDTD method to dispersive media has been reported by

Shibayama et al. [40]. The improvement in efficiency is found to be about 30% compared

to FDTD(2,2).

1.6.1 PML Absorbing Boundary Condition for LOD-FDTD

For the use of LOD-FDTD to antennas, the electromagnetic geometry must be terminated with

reflectionless boundaries. Split field and unsplit field PML have been formulated for LOD-

FDTD in [41] and [42], respectively. The reflection coefficient of the order of�75 dB has been

reported for the split-field PML in the context of a two-dimensional TE case [41]. It has been

observed that unsplit field non-dispersive PML gives reflection of the order of �17 dB for

q¼ 2, and �12 dB for q¼ 4. However, complex envelope unsplit field dispersive PML gives

better performance,�33 dB for q¼ 2 and�25 dB for q¼ 4 [42]. Convolutional PML (CPML)

has been found to give better performance than other forms of PML for LOD-FDTD [43]. It is

found that CPML gives lower reflection by about 16 dB compared to FDTD-PML for q¼ 1.

This is shown in Figure 1.14 for 8 layers of CPML. The reflection from CPML is found to

decrease with increase in q number due to the increased value of Eref max [43]. This is shown

in Figure 1.15.

Figure 1.14 Comparison of reflection error from LOD-CPML and FDTD-PML for q¼ 1. Reproduced

by permission of �2007 IEEE, Figure 2 of [43]
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1.7 Robustness of Printed Patch Antennas

The printed antennas are likely to get damaged when they brush against some hard object

during use.When used as an RFID antenna, the environment is expected to be relatively harsh.

The damage may occur to the top metallization, produce voids in dielectric subatrate, etc. In

addition, the substrate may have non-uniform thickness and dielectric constant. The effect of

these degradations on the resonant frequency of patch antennas has been studied analytically

and verified numerically [44]. The analysismay be carried out based on perturbation technique.

It has been found that the robustness of microstrip antennas is directly related to the substrate

damage volume and position. The change in resonance frequency of the antenna is directly

proportional to the volume and the change in permittivity of the defect. Small damage to the

patch metallization alone does not affect return loss.

1.8 Thin Dielectric Approximation

The printed flat antennas on dielectric films are being used increasingly because they can be

made into complicated shapes. Often the film is very thin and is less than one cell along the

thickness. Use of uniform cell size is not advisable because of too much demand on computer

resources. The other alternatives are non-uniform grid, or local refinement in the region, or sub-

cell algorithm. Another alternative is to model the field distribution in the film region using

quasi-static approximation. The geometry of a metal strip on a thin dielectric film is shown in

Figure 1.16. Using the sub-cell approach for the tangential fields Ex and Ey, one needs to

replace e and s in (1.4) by their average values defined as

eavg ¼ e0ðDz�dÞþerd
Dz

savg ¼ sd
Dz

ð1:71Þ

Figure 1.15 Comparison of reflection error from LOD-CPML for four values of q. Reproduced by

permission of �2007 IEEE, Figure 3 of [43]

Numerical Analysis Techniques 29



where d is the film thickness, Dz is cell size along the film thickness, er and s are electrical

parameters of the film. The field Ez near the strip edge is dominated by the static field, and may

be included in the FDTD algorithm as described in [45, 46].

1.9 Modeling of PEC and PMC for Irregular Geometries

The PEC or PMC boundaries may not conform in places to the grid employed for the FDTD

analysis of complex geometrical shapes. The modifications for such cases include conformal

FDTD (C-FDTD) method [47], contour-path FDTD (CP-FDTD) method [48], sub-cell

models [49], etc. These methods may require changes in existing source codes, grid, and

time step. Sometimes, staircase approximation of the geometry is employed.A newmethod has

been suggested in [50] and does not involve disturbing the original grid. The method involves

extrapolation of (tangential) field values from the adjacent internal node to obtain exterior field

values so that the perfect boundary condition in between is satisfied. The new method can be

applied to model parallel, slanted, and curved walls in the existing FDTD grid [50]. Time step

reduction is not necessary.

To illustrate this method we consider a rectangular resonator whose cross-section in the x–y

plane is shown in Figure 1.17. The geometry is deliberately displaced along the y-axis so that

the PEC on the LHS and RHS do not coincide but are parallel to the existing grid. Let the

displacement with respect to the grid be xDy, 0 < x < 1. The PEC walls are now located off-

grid. The field values at the LHS PEC wall at y ¼ xDy is modeled in a linear fashion from the

values at nearby node at y ¼ Dy. Let us denote the tangential component of electric field

FðDyÞ ¼ f1. Assuming linear variation of field between adjacent layers of nodes at y ¼ Dy and
y ¼ xDy, we can write[50]

FðDyÞ ¼ f1 ¼ aDyþb ð1:72aÞ

Figure 1.16 Thin dielectric film in a FDTD cell. Reproduced by permission of �2004 IEEE [45]
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FðxDyÞ ¼ 0 ¼ axDyþb due to PEC ð1:72bÞ

Eliminating a and b gives for the field in the vicinity of PEC boundary as

FðyÞ ¼ f1

1�x
y

Dy
�x

� �
ð1:73Þ

Application of (1.73) to the layer at y¼ 0, left of PEC, gives

Fð0Þ ¼ f0 ¼ f1
x

x�1

� �
; for x � xmax ð1:74Þ

Obviously, this layer is external to the computational domain.

Similarly, the PEC boundary condition on the RHS at y ¼ ðnþxÞDy can be satisfied from the

known field values at y ¼ nDy. The resulting expression for fnþ1 is given by

Fððnþ1ÞDyÞ ¼ fnþ1 ¼ x�1

x

� �
fn for x � 1�xmax ð1:75Þ

The extrapolation of internal field values to the adjacent layers beyond the perfect boundaries

has a limitation on the offset x called xmax for (1.74) and xmax ¼ 1�xmax for (1.75). The

coefficient in these expressions approaches infinity as x! 1 and gives rise to instability in the

algorithm. The permissible value of xmax is given by [50]

xmax ¼ 0:643þ0:584
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1:01q

p
ð1:76Þ

Figure 1.17 Cross-section of a rectangular cavity in the x-y plane. The cavity is offset from the grid by

xDy. Reproduced by permission of �2005 IEEE, Figure 1 of [50]
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where q is the Courant number. For 0:866 � q � 0:98625 the corresponding range of xmax is

0:85 � xmax � 0:7. Offsets x > xmax are also discussed in [50].

The simple approach for Dirichlet boundary condition has been extended to the off-grid

Neumann boundary condition, slanted PECwalls and curvedPECwalls. The above approach is

verified by computing the resonant frequencies of a rectanglar cavity with PEC at one end and

PMC at the other end, as shown in Figure 1.18. The cavity dimensions are: h¼ 10mm,

d¼ 10mm, and L¼ 30mm; the step sizes used are: Dx ¼ Dy ¼ Dz ¼ 1 mm and q¼ 0.88.

Comparison of the computed and analytical resonant frequencies are given in Table 1.2 for

x ¼ 0:15 [50]. The accuracy is fairly good.
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