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Introduction to statistical
pattern recognition

Statistical pattern recognition is a term used to cover all stages of an investigation from problem
formulation and data collection through to discrimination and classification, assessment of results
and interpretation. Some of the basic concepts in classification are introduced and the key issues
described. Two complementary approaches to discrimination are presented, namely a decision
theory approach based on calculation of probability density functions and the use of Bayes
theorem, and a discriminant function approach.

1.1 Statistical pattern recognition

1.1.1 Introduction

We live in a world where massive amounts of data are collected and recorded on nearly every
aspect of human endeavour: for example, banking, purchasing (credit-card usage, point-
of-sale data analysis), Internet transactions, performance monitoring (of schools, hospitals,
equipment), and communications. The data come in a wide variety of diverse forms – numeric,
textual (structured or unstructured), audio and video signals. Understanding and making sense
of this vast and diverse collection of data (identifying patterns, trends, anomalies, providing
summaries) requires some automated procedure to assist the analyst with this ‘data deluge’.
A practical example of pattern recognition that is familiar to many people is classifying email
messages (as spam/not spam) based upon message header, content and sender.

Approaches for analysing such data include those for signal processing, filtering, data
summarisation, dimension reduction, variable selection, regression and classification and have
been developed in several literatures (physics, mathematics, statistics, engineering, artificial
intelligence, computer science and the social sciences, among others). The main focus of
this book is on pattern recognition procedures, providing a description of basic techniques
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2 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

together with case studies of practical applications of the techniques on real-world problems.
A strong emphasis is placed on the statistical theory of discrimination, but clustering also
receives some attention. Thus, the main subject matter of this book can be summed up in a
single word: ‘classification’, both supervised (using class information to design a classifier –
i.e. discrimination) and unsupervised (allocating to groups without class information – i.e.
clustering). However, in recent years many complex datasets have been gathered (for example,
‘transactions’ between individuals – email traffic, purchases). Understanding these datasets
requires additional tools in the pattern recognition toolbox. Therefore, we also examine
developments such as methods for analysing data that may be represented as a graph.

Pattern recognition as a field of study developed significantly in the 1960s. It was very
much an interdisciplinary subject. Some people entered the field with a real problem to solve.
The large number of applications ranging from the classical ones such as automatic character
recognition and medical diagnosis to the more recent ones in data mining (such as credit scor-
ing, consumer sales analysis and credit card transaction analysis) have attracted considerable
research effort with many methods developed and advances made. Other researchers were
motivated by the development of machines with ‘brain-like’ performance, that in some way
could operate giving human performance.

Within these areas significant progress has been made, particularly where the domain over-
laps with probability and statistics, and in recent years there have been many exciting new
developments, both in methodology and applications. These build on the solid foundations
of earlier research and take advantage of increased computational resources readily avail-
able nowadays. These developments include, for example, kernel-based methods (including
support vector machines) and Bayesian computational methods.

The topics in this book could easily have been described under the term machine learning
that describes the study of machines that can adapt to their environment and learn from exam-
ple. The machine learning emphasis is perhaps more on computationally intensive methods
and less on a statistical approach, but there is strong overlap between the research areas of
statistical pattern recognition and machine learning.

1.1.2 The basic model

Since many of the techniques we shall describe have been developed over a range of diverse
disciplines, there is naturally a variety of sometimes contradictory terminology. We shall use
the term ‘pattern’ to denote the p-dimensional data vector x = (x1, . . . , xp)

T of measurements
(T denotes vector transpose), whose components xi are measurements of the features of an
object. Thus the features are the variables specified by the investigator and thought to be
important for classification. In discrimination, we assume that there exist C groups or classes,
denoted ω1, . . . , ωC and associated with each pattern x is a categorical variable z that denotes
the class or group membership; that is, if z = i, then the pattern belongs to ωi, i ∈ {1, . . . , C}.

Examples of patterns are measurements of an acoustic waveform in a speech recognition
problem; measurements on a patient made in order to identify a disease (diagnosis); mea-
surements on patients (perhaps subjective assessments) in order to predict the likely outcome
(prognosis); measurements on weather variables (for forecasting or prediction); sets of fi-
nancial measurements recorded over time; and a digitised image for character recognition.
Therefore, we see that the term ‘pattern’, in its technical meaning, does not necessarily refer
to structure within images.
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Figure 1.1 Pattern classifier.

The main topic in this book may be described by a number of terms including pattern
classifier design or discrimination or allocation rule design. Designing the rule requires
specification of the parameters of a pattern classifier, represented schematically in Figure 1.1,
so that it yields the optimal (in some sense) response for a given input pattern. This response
is usually an estimate of the class to which the pattern belongs. We assume that we have a
set of patterns of known class {(xi, zi), i = 1, . . . , n} (the training or design set) that we use
to design the classifier (to set up its internal parameters). Once this has been done, we may
estimate class membership for a pattern x for which the class label is unknown. Learning the
model from a training set is the process of induction; applying the trained model to patterns
of unknown class is the process of deduction.

Thus, the uses of a pattern classifier are to provide:

� A descriptive model that explains the difference between patterns of different classes
in terms of features and their measurements.

� A predictive model that predicts the class of an unlabelled pattern.

However, we might ask why do we need a predictive model? Cannot the procedure that
was used to assign labels to the training set measurements also be used for the test set in
classifier operation? There may be several reasons for developing an automated process:

� to remove humans from the recognition process – to make the process more reliable;

� in banking, to identify good risk applicants before making a loan;

� to make a medical diagnosis without a post mortem (or to assess the state of a piece of
equipment without dismantling it) – sometimes a pattern may only be labelled through
intensive examination of a subject, whether person or piece of equipment;

� to reduce cost and improve speed – gathering and labelling data can be a costly and
time consuming process;

� to operate in hostile environments – the operating conditions may be dangerous or
harmful to humans and the training data have been gathered under controlled conditions;

� to operate remotely – to classify crops and land use remotely without labour-intensive,
time consuming, surveys.

There are many classifiers that can be constructed from a given dataset. Examples include
decision trees, neural networks, support vector machines and linear discriminant functions.
For a classifier of a given type, we employ a learning algorithm to search through the parameter
space to find the model that best describes the relationship between the measurements and
class labels for the training set. The form derived for the pattern classifier depends on a number
of different factors. It depends on the distribution of the training data, and the assumptions
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made concerning its distribution. Another important factor is the misclassification cost – the
cost of making an incorrect decision. In many applications misclassification costs are hard
to quantify, being combinations of several contributions such as monetary costs, time and
other more subjective costs. For example, in a medical diagnosis problem, each treatment
has different costs associated with it. These relate to the expense of different types of drugs,
the suffering the patient is subjected to by each course of action and the risk of further
complications.

Figure 1.1 grossly oversimplifies the pattern classification procedure. Data may undergo
several separate transformation stages before a final outcome is reached. These transforma-
tions (sometimes termed preprocessing, feature selection or feature extraction) operate on the
data in a way that, usually, reduces its dimension (reduces the number of features), removing
redundant or irrelevant information, and transforms it to a form more appropriate for sub-
sequent classification. The term intrinsic dimensionality refers to the minimum number of
variables required to capture the structure within the data. In speech recognition, a prepro-
cessing stage may be to transform the waveform to a frequency representation. This may be
processed further to find formants (peaks in the spectrum). This is a feature extraction process
(taking a possibly nonlinear combination of the original variables to form new variables). Fea-
ture selection is the process of selecting a subset of a given set of variables (see Chapter 10).
In some problems, there is no automatic feature selection stage, with the feature selection
being performed by the investigator who ‘knows’ (through experience, knowledge of previous
studies and the problem domain) those variables that are important for classification. In many
cases, however, it will be necessary to perform one or more transformations of the measured
data.

In some pattern classifiers, each of the above stages may be present and identifiable as
separate operations, while in others they may not be. Also, in some classifiers, the preliminary
stages will tend to be problem specific, as in the speech example. In this book, we consider
feature selection and extraction transformations that are not application specific. That is
not to say the methods of feature transformation described will be suitable for any given
application, however, but application-specific preprocessing must be left to the investigator
who understands the application domain and method of data collection.

1.2 Stages in a pattern recognition problem

A pattern recognition investigation may consist of several stages enumerated below. Not all
stages may be present; some may be merged together so that the distinction between two
operations may not be clear, even if both are carried out; there may be some application-
specific data processing that may not be regarded as one of the stages listed below. However,
the points below are fairly typical.

1. Formulation of the problem: gaining a clear understanding of the aims of the investi-
gation and planning the remaining stages.

2. Data collection: making measurements on appropriate variables and recording details
of the data collection procedure (ground truth).
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3. Initial examination of the data: checking the data, calculating summary statistics and
producing plots in order to get a feel for the structure.

4. Feature selection or feature extraction: selecting variables from the measured set that
are appropriate for the task. These new variables may be obtained by a linear or
nonlinear transformation of the original set (feature extraction). To some extent, the
partitioning of the data processing into separate feature extraction and classification
processes is artificial, since a classifier often includes the optimisation of a feature
extraction stage as part of its design.

5. Unsupervised pattern classification or clustering. This may be viewed as exploratory
data analysis and it may provide a successful conclusion to a study. On the other hand,
it may be a means of preprocessing the data for a supervised classification procedure.

6. Apply discrimination or regression procedures as appropriate. The classifier is designed
using a training set of exemplar patterns.

7. Assessment of results. This may involve applying the trained classifier to an indepen-
dent test set of labelled patterns. Classification performance is often summarised in the
form of a confusion matrix:

True class

ω1 ω2 ω3

Predicted class ω1 e11 e12 e13

ω2 e21 e22 e23

ω3 e31 e32 e33

where eij is the number of patterns of class ωj that are predicted to be class ωi. The
accuracy, a, is calculated from the confusion matrix as

a =

∑

i

eii

∑

ij

eij

and the error rate is 1 − a.

8. Interpretation.

The above is necessarily an iterative process: the analysis of the results may generate
new hypotheses that require further data collection. The cycle may be terminated at different
stages: the questions posed may be answered by an initial examination of the data or it
may be discovered that the data cannot answer the initial question and the problem must be
reformulated.

The emphasis of this book is on techniques for performing the steps 4, 5, 6 and 7.
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1.3 Issues

The main topic that we address in this book concerns classifier design: given a training set of
patterns of known class, we seek to use those examples to design a classifier that is optimal
for the expected operating conditions (the test conditions).

There are a number of very important points to make about this design process.

Finite design set
We are given a finite design set. If the classifier is too complex (there are too many free
parameters) it may model noise in the design set. This is an example of overfitting. If the
classifier is not complex enough, then it may fail to capture structure in the data. An illustration
of this is the fitting of a set of data points by a polynomial curve (Figure 1.2). If the degree
of the polynomial is too high then, although the curve may pass through or close to the data
points thus achieving a low fitting error, the fitting curve is very variable and models every
fluctuation in the data (due to noise). If the degree of the polynomial is too low, the fitting error
is large and the underlying variability of the curve is not modelled (the model underfits the
data). Thus, achieving optimal performance on the design set (in terms of minimising some
error criterion perhaps) is not required: it may be possible, in a classification problem, to
achieve 100% classification accuracy on the design set but the generalisation performance –
the expected performance on data representative of the true operating conditions (equivalently
the performance on an infinite test set of which the design set is a sample) – is poorer than could
be achieved by careful design. Choosing the ‘right’ model is an exercise in model selection.
In practice we usually do not know what is structure and what is noise in the data. Also,
training a classifier (the procedure of determining its parameters) should not be considered as
a separate issue from model selection, but it often is.

–0.4 –0.2 0.2 0.4

–0.1

0.1

0.2

Figure 1.2 Fitting a curve to a noisy set of samples: the data samples are from a quadratic
function with added noise; the fitting curves are a linear fit, a quadratic fit and a high-degree
polynomial.
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Optimality
A second point about the design of optimal classifiers concerns the word ‘optimal’. There
are several ways of measuring classifier performance, the most common being error rate,
although this has severe limitations (see Chapter 9). Other measures, based on the closeness
of the estimates of the probabilities of class membership to the true probabilities, may be
more appropriate in many cases. However, many classifier design methods usually optimise
alternative criteria since the desired ones are difficult to optimise directly. For example, a
classifier may be trained by optimising a square-error measure and assessed using error rate.

Representative data
Finally, we assume that the training data are representative of the test conditions. If this is
not so, perhaps because the test conditions may be subject to noise not present in the training
data, or there are changes in the population from which the data are drawn (population drift),
then these differences must be taken into account in the classifier design.

1.4 Approaches to statistical pattern recognition

There are two main divisions of classification: supervised classification (or discrimination)
and unsupervised classification (sometimes in the statistics literature simply referred to as
classification or clustering).

The problem we are addressing in this book is primarily one of supervised pattern clas-
sification. Given a set of measurements obtained through observation and represented as a
pattern vector x, we wish to assign the pattern to one of C possible classes, ωi, i = 1, . . . ,
C. A decision rule partitions the measurement space into C regions, �i, i = 1, . . . , C. If an
observation vector is in �i then it is assumed to belong to class ωi. Each class region �i may
be multiply connected – that is, it may be made up of several disjoint regions. The boundaries
between the regions �i are the decision boundaries or decision surfaces. Generally, it is in
regions close to these boundaries where the highest proportion of misclassifications occurs. In
such situations, we may reject the pattern or withhold a decision until further information is
available so that a classification may be made later. This option is known as the reject option
and therefore we have C + 1 outcomes of a decision rule (the reject option being denoted by
ω0) in a C class problem: x belongs to ω1 or ω2 or . . . or ωC or withhold a decision.

In unsupervised classification, the data are not labelled and we seek to find groups in
the data and the features that distinguish one group from another. Clustering techniques,
described further in Chapter 11, can also be used as part of a supervised classification scheme
by defining prototypes. A clustering scheme may be applied to the data for each class separately
and representative samples for each group within the class (the group means for example)
used as the prototypes for that class.

In the following section we introduce two approaches to discrimination that will be
explored further in later chapters. The first assumes a knowledge of the underlying class-
conditional probability density functions (the probability density function of the feature
vectors for a given class). Of course, in many applications these will usually be unknown and
must be estimated from a set of correctly classified samples termed the design or training
set. Chapters 2, 3 and 4 describe techniques for estimating the probability density functions
explicitly.

The second approach introduced in the next section develops decision rules that use the
data to estimate the decision boundaries directly, without explicit calculation of the probability
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density functions. This approach is developed in Chapters 5 and 6 where specific techniques
are described.

1.5 Elementary decision theory

Here we introduce an approach to discrimination based on knowledge of the probability
density functions of each class. Familiarity with basic probability theory is assumed.

1.5.1 Bayes’ decision rule for minimum error

Consider C classes, ω1, . . . , ωC, with a priori probabilities (the probabilities of each class
occurring) p(ω1), . . . , p(ωC), assumed known. If we wish to minimise the probability of
making an error and we have no information regarding an object other than the class probability
distribution then we would assign an object to class ωj if

p(ω j) > p(ωk) k = 1, . . . ,C; k �= j

This classifies all objects as belonging to one class: the class with the largest prior prob-
ability. For classes with equal prior probabilities, patterns are assigned arbitrarily between
those classes.

However, we do have an observation vector or measurement vector x and we wish to
assign an object to one of the C classes based on the measurements x. A decision rule based
on probabilities is to assign x (here we refer to an object in terms of its measurement vector)
to class ωj if the probability of class ωj given the observation x, that is p(ω j|x), is greatest
over all classes ω1, . . . , ωC. That is, assign x to class ωj if

p(ω j|x) > p(ωk|x) k = 1, . . . ,C; k �= j (1.1)

This decision rule partitions the measurement space into C regions �1, . . . , �C such that if
x ∈ � j then x belongs to class ωj. The regions �j may be disconnected.

The a posteriori probabilities p(ω j|x) may be expressed in terms of the a priori probabil-
ities and the class conditional density functions p(x|ωi) using Bayes’ theorem as

p(ωi|x) = p(x|ωi)p(ωi)

p(x)

and so the decision rule (1.1) may be written: assign x to ωj if

p(x|ω j)p(ω j) > p(x|ωk)p(ωk) k = 1, . . . ,C; k �= j (1.2)

This is known as Bayes’ rule for minimum error.
For two classes, the decision rule (1.2) may be written

lr(x) = p(x|ω1)

p(x|ω2)
>

p(ω2)

p(ω1)
implies x ∈ class ω1
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Figure 1.3 p(x|ωi)p(ωi), for classes ω1 and ω2: for x in region A, x is assigned to class ω1.

The function lr(x) is the likelihood ratio. Figures 1.3 and 1.4 give a simple illustration for a
two-class discrimination problem. Class ω1 is normally distributed with zero mean and unit
variance, p(x|ω1) = N(x; 0, 1). Class ω2 is a normal mixture (a weighted sum of normal den-
sities) p(x|ω2) = 0.6N(x; 1, 1) + 0.4N(x;−1, 2). Figure 1.3 plots p(x|ωi)p(ωi), i = 1, 2,
where the priors are taken to be p(ω1) = 0.5, p(ω2) = 0.5. Figure 1.4 plots the likelihood ratio
lr(x) and the threshold p(ω2)/p(ω1). We see from this figure that the decision rule (1.2) leads
to a disconnected region for class ω2.
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lr(x)
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Figure 1.4 Likelihood function: for x in region A, x is assigned to class ω1.
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The fact that the decision rule (1.2) minimises the error may be seen as follows. The
probability of making an error, p(error), may be expressed as

p(error) =
C∑

i=1

p(error|ωi)p(ωi) (1.3)

where p(error|ωi) is the probability of misclassifying patterns from class ωi. This is given by

p(error|ωi) =
∫

C[�i]
p(x|ωi)dx (1.4)

the integral of the class-conditional density function over C[�i], the region of measurement
space outside �i (C is the complement operator), i.e.

∑C
j=1, j �=i�j. Therefore, we may write

the probability of misclassifying a pattern as

p(error) =
C∑

i=1

∫

C[�i]
p(x|ωi)p(ωi)dx

=
C∑

i=1

p(ωi)

(
1 −

∫

�i

p(x|ωi)dx
)

= 1 −
C∑

i=1

p(ωi)

∫

�i

p(x|ωi)dx (1.5)

from which we see that minimising the probability of making an error is equivalent to
maximising

C∑

i=1

p(ωi)

∫

�i

p(x|ωi)dx (1.6)

which is the probability of correct classification. Therefore, we wish to choose the regions
�i so that the integral given in (1.6) is a maximum. This is achieved by selecting �i to be
the region for which p(ωi)p(x|ωi) is the largest over all classes and the probability of correct
classification, c, is

c =
∫

max
i

p(ωi)p(x|ωi)dx (1.7)

where the integral is over the whole of the measurement space, and the Bayes’ error is

eB = 1 −
∫

max
i

p(ωi)p(x|ωi)dx (1.8)

This is illustrated in Figures 1.5 and 1.6.
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Figure 1.5 Class-conditional densities for two normal distributions.

Figure 1.5 plots the two distributions p(x|ωi), i = 1, 2 (both normal with unit variance
and means ±0.5), and Figure 1.6 plots the functions p(x|ωi)p(ωi) where p(ω1) = 0.3, p(ω2) =
0.7. The Bayes’ decision boundary defined by the point where p(x|ω1)p(ω1) = p(x|ω2)p(ω2)

(Figure 1.6) is marked with a vertical line at xB. The areas of the hatched regions in Figure 1.5
represent the probability of error: by Equation (1.4), the area of the horizontal hatching is the
probability of classifying a pattern from class 1 as a pattern from class 2 and the area of the
vertical hatching the probability of classifying a pattern from class 2 as class 1. The sum of
these two areas, weighted by the priors [Equation (1.5)], is the probability of making an error.
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Figure 1.6 Bayes’ decision boundary for two normally distributed classes with unequal
priors.
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1.5.2 Bayes’ decision rule for minimum error – reject option

As we have stated above, an error or misrecognition occurs when the classifier assigns a
pattern to one class when it actually belongs to another. In this section we consider the reject
option. Usually it is the uncertain classifications (often close to the decision boundaries) that
contribute mainly to the error rate. Therefore, rejecting a pattern (withholding a decision) may
lead to a reduction in the error rate. This rejected pattern may be discarded, or set aside until
further information allows a decision to be made. Although the option to reject may alleviate or
remove the problem of a high misrecognition rate, some otherwise correct classifications are
also converted into rejects. Here we consider the trade-offs between error rate and reject rate.

First, we partition the sample space into two complementary regions: R, a reject region
and A, an acceptance or classification region. These are defined by

R =
{

x|1 − max
i

p(ωi|x) > t

}

A =
{

x|1 − max
i

p(ωi|x) ≤ t

}

where t is a threshold. This is illustrated in Figure 1.7 using the same distributions as those in
Figures 1.5 and 1.6.

The smaller the value of the threshold t then the larger is the reject region R. However, if
t is chosen such that

1 − t ≤ 1

C

or equivalently,

t ≥ C − 1

C

1 − t

t

A AR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -3 -2 -1 0 1 2 3 4

p(ω1|x)

p(ω2|x)

Figure 1.7 Illustration of acceptance and reject regions.
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where C is the number of classes, then the reject region is empty. This is because the minimum
value which max

i
p(ωi|x) can attain is 1/C [since 1 = ∑C

i=1 p(ωi|x) ≤ Cmax
i

p(ωi|x)], when

all classes are equally likely. Therefore, for the reject option to be activated, we must have
t < (C − 1)/C.

Thus, if a pattern x lies in the region A, we classify it according to the Bayes’ rule for
minimum error [Equation (1.2)]. However, if x lies in the region R, we reject x (withhold a
decision).

The probability of correct classification, c(t), is a function of the threshold, t, and is given
by Equation (1.7), where now the integral is over the acceptance region, A, only

c(t) =
∫

A
max

i
[p(ωi)p(x|ωi)] dx

and the unconditional probability of rejecting a measurement, r, also a function of the threshold
t, is the probability that it lies in R:

r(t) =
∫

R
p(x)dx (1.9)

Therefore, the error rate, e (the probability of accepting a point for classification and incorrectly
classifying it), is

e(t) =
∫

A

(
1 − max

i
p(ωi|x)

)
p(x)dx

= 1 − c(t) − r(t)

Thus, the error rate and reject rate are inversely related. Chow (1970) derives a simple
functional relationship between e(t) and r(t) which we quote here without proof. Knowing
r(t) over the complete range of t allows e(t) to be calculated using the relationship

e(t) = −
∫ t

0
sdr(s) (1.10)

The above result allows the error rate to be evaluated from the reject function for the Bayes’
optimum classifier. The reject function can be calculated using unlabelled data and a practical
application of the above result is to problems where labelling of gathered data is costly.

1.5.3 Bayes’ decision rule for minimum risk

In the previous section, the decision rule selected the class for which the a posteriori prob-
ability, p(ω j|x), was the greatest. This minimised the probability of making an error. We
now consider a somewhat different rule that minimises an expected loss or risk. This is a
very important concept since in many applications the costs associated with misclassification
depend upon the true class of the pattern and the class to which it is assigned. For example,
in a medical diagnosis problem in which a patient has back pain, it is far worse to classify a
patient with severe spinal abnormality as healthy (or having mild back ache) than the other
way round.
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14 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

We make this concept more formal by introducing a loss that is a measure of the cost of
making the decision that a pattern belongs to class ωi when the true class is ωj. We define a
loss matrix � with components

λji = cost of assigning a pattern x to ωi when x ∈ ω j

In practice, it may be very difficult to assign costs. In some situations, λ may be measured
in monetary units that are quantifiable. However, in many situations, costs are a combination
of several different factors measured in different units – money, time, quality of life. As a
consequence, they are often a subjective opinion of an expert. The conditional risk of assigning
a pattern x to class ωi is defined as

li(x) =
C∑

j=1

λji p(ω j|x)

The average risk over region �i is

ri =
∫

�i

li (x) p(x)dx

=
∫

�i

C∑

j=1

λij p(ωi|x)p(x)dx

and the overall expected cost or risk is

r =
C∑

i=1

ri =
C∑

i=1

∫

�i

C∑

j=1

λji p(ω j|x)p(x)dx (1.11)

The above expression for the risk will be minimised if the regions �i are chosen such that if

C∑

j=1

λji p(ω j|x)p(x) ≤
C∑

j=1

λjk p(ω j|x)p(x) k = 1, . . . ,C (1.12)

then x ∈ �i. This is the Bayes’ decision rule for minimum risk, with Bayes’ risk, r∗, given by

r∗ =
∫

x
min

i=1,...,C

C∑

j=1

λji p(ω j|x)p(x)dx

One special case of the loss matrix � is the equal cost loss matrix for which

λij =
{

1 i �= j
0 i = j
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Substituting into (1.12) gives the decision rule: assign x to class ωi if

C∑

j=1

p(ω j|x)p(x) − p(ωi|x)p(x) ≤
C∑

j=1

p(ω j|x)p(x) − p(ωk|x)p(x) k = 1, . . . ,C

that is,

p(x|ωi)p(ωi) ≥ p(x|ωk)p(ωk) k = 1, . . . ,C

implies that x ∈ class ωi; this is the Bayes’ rule for minimum error.

1.5.4 Bayes’ decision rule for minimum risk – reject option

As with the Bayes’ rule for minimum error, we may also introduce a reject option, by which
the reject region, R, is defined by

R =
{

x

∣∣∣∣min
i

li(x) > t

}

where t is a threshold. The decision is to accept a pattern x and assign it to class ωi if

li(x) = min
j

l j(x) ≤ t

and to reject x if

li(x) = min
j

l j(x) > t

This decision is equivalent to defining a reject region �0 with a constant conditional risk

l0(x) = t

so that the Bayes’ decision rule is: assign x to class ωi if

li(x) ≤ l j(x) j = 0, 1, . . . ,C

with Bayes’ risk

r∗ =
∫

R
tp(x)dx +

∫

A
min

i=1,...,C

C∑

j=1

λji p(ω j|x)p(x)dx (1.13)

1.5.5 Neyman–Pearson decision rule

An alternative to the Bayes’ decision rules for a two-class problem is the Neyman–Pearson
test. In a two-class problem there are two possible types of error that may be made in the
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decision process. We may classify a pattern of class ω1 as belonging to class ω2 or a pattern
from class ω2 as belonging to class ω1. Let the probability of these two errors be ε1 and ε2,
respectively, so that

ε1 =
∫

�2

p(x|ω1) dx = error probability of Type I

and

ε2 =
∫

�1

p(x|ω2) dx = error probability of Type II

The Neyman–Pearson decision rule is to minimise the error ε1 subject to ε2 being equal to a
constant, ε0, say.

If class ω1 is termed the positive class and class ω2 the negative class, then ε1 is re-
ferred to as the false negative rate: the proportion of positive samples incorrectly assigned
to the negative class; ε2 is the false positive rate: the proportion of negative samples classed
as positive.

An example of the use of the Neyman–Pearson decision rule is in radar detection where
the problem is to detect a signal in the presence of noise. There are two types of error that may
occur; one is to mistake noise for a signal present. This is called a false alarm. The second
type of error occurs when a signal is actually present but the decision is made that only noise
is present. This is a missed detection. If ω1 denotes the signal class and ω2 denotes the noise
then ε2 is the probability of false alarm and ε1 is the probability of missed detection. In many
radar applications, a threshold is set to give a fixed probability of false alarm and therefore
the Neyman–Pearson decision rule is the one usually used.

We seek the minimum of

r =
∫

�2

p(x|ω1) dx + μ

{∫

�1

p(x|ω2) dx − ε0

}

where μ is a Lagrange multiplier1 and ε0 is the specified false alarm rate. The equation may
be written

r = (1 − με0) +
∫

�1

{μp(x|ω2) dx − p(x|ω1) dx}

This will be minimised if we choose �1 such that the integrand is negative, i.e.

if μp(x|ω2) − p(x|ω1) < 0, then x ∈ �1

or, in terms of the likelihood ratio,

if
p(x|ω1)

p(x|ω2)
> μ, then x ∈ �1 (1.14)

1 The method of Lagrange’s undetermined multipliers can be found in most textbooks on mathematical methods,
for example Wylie and Barrett (1995).
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Thus the decision rule depends only on the within-class distributions and ignores the a priori
probabilities.

The threshold μ is chosen so that

∫

�1

p(x|ω2) dx = ε0,

the specified false alarm rate. However, in general μ cannot be determined analytically and
requires numerical calculation.

Often, the performance of the decision rule is summarised in a receiver operating char-
acteristic (ROC) curve, which plots the true positive against the false positive (that is, the
probability of detection [1 − ε1 = ∫

�1
p(x|ω1) dx] against the probability of false alarm

[ε2 = ∫
�1

p(x|ω2) dx)] as the threshold μ is varied. This is illustrated in Figure 1.8 for the
univariate case of two normally distributed classes of unit variance and means separated by a
distance, d. All the ROC curves pass through the (0, 0) and (1, 1) points and as the separation
increases the curve moves into the top left corner. Ideally, we would like 100% detection for
a 0% false alarm rate and curves that are closer to this the better.

For the two-class case, the minimum risk decision [see Equation (1.12)] defines the
decision rules on the basis of the likelihood ratio (λii = 0):

if
p(x|ω1)

p(x|ω2)
>

λ21 p(ω2)

λ12 p(ω1)
, then x ∈ �1 (1.15)

The threshold defined by the right-hand side will correspond to a particular point on the ROC
curve that depends on the misclassification costs and the prior probabilities.

In practice, precise values for the misclassification costs will be unavailable and we shall
need to assess the performance over a range of expected costs. The use of the ROC curve as
a tool for comparing and assessing classifier performance is discussed in Chapter 9.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 − ε1

ε2

d = 1

d = 2
d = 4

Figure 1.8 Receiver operating characteristic for two univariate normal distributions of unit
variance and separation, d; 1 − ε1 = ∫

�1
p(x|ω1) dx is the true positive (the probability of

detection) and ε2 = ∫
�1

p(x|ω2) dx is the false positive (the probability of false alarm).
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1.5.6 Minimax criterion

The Bayes’ decision rules rely on a knowledge of both the within-class distributions and the
prior class probabilities. However, situations may arise where the relative frequencies of new
objects to be classified are unknown. In this situation a minimax procedure may be employed.
The name minimax is used to refer to procedures for which either the maximum expected loss
or the maximum of the error probability is a minimum. We shall limit our discussion below
to the two-class problem and the minimum error probability procedure.

Consider the Bayes’ rule for minimum error. The decision regions �1 and �2 are defined by

p(x|ω1)p(ω1) > p(x|ω2)p(ω2) implies x ∈ �1 (1.16)

and the Bayes’ minimum error, eB, is

eB = p(ω2)

∫

�1

p(x|ω2) dx + p(ω1)

∫

�2

p(x|ω1) dx (1.17)

where p(ω2) = 1 − p(ω1).
For fixed decision regions �1 and �2, eB is a linear function of p(ω1) (we denote this

function ẽB) attaining its maximum on the region [0, 1] either at p(ω1) = 0 or p(ω1) = 1.
However, since the regions �1 and �2 are also dependent on p(ω1) through the Bayes’
decision criterion (1.16), the dependency of eB on p(ω1) is more complex, and not necessarily
monotonic.

If �1 and �2 are fixed [determined according to (1.16) for some specified p(ωi)], the error
given by (1.17) will only be the Bayes’ minimum error for a particular value of p(ω1), say p∗

1
(Figure 1.9).

For other values of p(ω1), the error given by (1.17) must be greater than the minimum
error. Therefore, the optimum curve touches the line at a tangent at p∗

1 and is concave down
at that point.

0.0 0.1

a

b

Bayes’ minimum error,eB

error, ẽB , for fixed
decision regions

p∗1 p(ω1)

Figure 1.9 Minimax illustration.
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The minimax procedure aims to choose the partition �1, �2, or equivalently the value of
p(ω1) so that the maximum error (on a test set in which the values of p(ωi) are unknown)
is minimised. For example, in Figure 1.9, if the partition were chosen to correspond to the
value p∗

1 of p(ω1), then the maximum error which could occur would be a value of b if p(ω1)
were actually equal to unity. The minimax procedure aims to minimise this maximum value,
i.e. minimise

max{ẽB(0), ẽB(1)}

or minimise

max

{∫

�2

p(x|ω1) dx,

∫

�1

p(x|ω2) dx
}

This is a minimum when
∫

�2

p(x|ω1) dx =
∫

�1

p(x|ω2) dx (1.18)

which is when a = b in Figure 1.9 and the line ẽB(p(ω1)) is horizontal and touches the Bayes’
minimum error curve at its peak value.

Therefore, we choose the regions �1 and �2 so that the probabilities of the two types of
error are the same. The minimax solution may be criticised as being over-pessimistic since it
is a Bayes’ solution with respect to the least favourable prior distribution. The strategy may
also be applied to minimising the maximum risk. In this case, the risk is

∫

�1

[λ11 p(ω1|x) + λ21 p(ω2|x)] p(x)dx +
∫

�2

[λ12 p(ω1|x) + λ22 p(ω2|x)] p(x)dx

= p(ω1)

[
λ11 + (λ12 − λ11)

∫

�2

p(x|ω1)dx
]

+ p(ω2)

[
λ22 + (λ21 − λ22)

∫

�1

p(x|ω2)dx
]

and the boundary must therefore satisfy

λ11 − λ22 + (λ12 − λ11)

∫

�2

p(x|ω1) dx − (λ21 − λ22)

∫

�1

p(x|ω2) dx = 0

For λ11 = λ22 and λ21 = λ12, this reduces to the condition (1.18).

1.5.7 Discussion

In this section we have introduced a decision theoretic approach to classifying patterns. This
divides up the measurement space into decision regions and we have looked at various strate-
gies for obtaining the decision boundaries. The optimum rule in the sense of minimising
the error is the Bayes’ decision rule for minimum error. Introducing the costs of making
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incorrect decisions leads to the Bayes’ rule for minimum risk. The theory developed assumes
that the a priori distributions and the class-conditional distributions are known. In a real-
world task, this is unlikely to be so. Therefore approximations must be made based on the
data available. We consider techniques for estimating distributions in Chapters 2, 3 and 4.
Two alternatives to the Bayesian decision rule have also been described, namely the
Neyman–Pearson decision rule (commonly used in signal processing applications) and the
minimax rule. Both require knowledge of the class-conditional probability density functions.
The ROC curve characterises the performance of a rule over a range of thresholds of the
likelihood ratio.

We have seen that the error rate plays an important part in decision making and classifier
performance assessment. Consequently, estimation of error rates is a problem of great interest
in statistical pattern recognition. For given fixed decision regions, we may calculate the
probability of error using Equation (1.5). If these decision regions are chosen according to
the Bayes’ decision rule [Equation (1.2)], then the error is the Bayes’ error rate or optimal
error rate. However, regardless of how the decision regions are chosen, the error rate may be
regarded as a measure of a given decision rule’s performance.

Calculation of the Bayes’ error rate (1.8) requires complete knowledge of the class condi-
tional density functions. In a particular situation, these may not be known and a classifier may
be designed on the basis of a training set of samples. Given this training set, we may choose
to form estimates of the distributions (using some of the techniques discussed in Chapters 2
and 3) and thus, with these estimates, use the Bayes decision rule and estimate the error
according to (1.8).

However, even with accurate estimates of the distributions, evaluation of the error requires
an integral over a multidimensional space and may prove a formidable task. An alternative
approach is to obtain bounds on the optimal error rate or distribution-free estimates. Further
discussion of methods of error rate estimation is given in Chapter 9.

1.6 Discriminant functions

1.6.1 Introduction

In the previous section, classification was achieved by applying the Bayesian decision
rule. This requires knowledge of the class-conditional density functions, p(x|ωi) (such
as normal distributions whose parameters are estimated from the data – see Chapter 2),
or nonparametric density estimation methods (such as kernel density estimation – see
Chapter 4). Here, instead of making assumptions about p(x|ωi), we make assumptions about
the forms of the discriminant functions.

A discriminant function is a function of the pattern x that leads to a classification rule. For
example, in a two-class problem, a discriminant function h(x) is a function for which

h(x) > k ⇒ x ∈ ω1

h(x) < k ⇒ x ∈ ω2 (1.19)

for constant k. In the case of equality [h(x) = k], the pattern x may be assigned arbitrarily to
one of the two classes. An optimal discriminant function for the two-class case is

h(x) = p(x|ω1)

p(x|ω2)
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with k = p(ω2)/p(ω1). Discriminant functions are not unique. If f is a monotonic function
then

g(x) = f (h(x)) > k′ ⇒ x ∈ ω1

g(x) = f (h(x)) < k′ ⇒ x ∈ ω2

where k′ = f (k) leads to the same decision as (1.19).
In the C group case we define C discriminant functions gi(x) such that

gi(x) > g j(x) ⇒ x ∈ ωi j = 1, . . . ,C, j �= i

That is, a pattern is assigned to the class with the largest discriminant. Of course, for two
classes, a single discriminant function

h(x) = g1(x) − g2(x)

with k = 0 reduces to the two-class case given by (1.19).
Again, we may define an optimal discriminant function as

gi(x) = p(x|ωi)p(ωi)

leading to the Bayes’ decision rule, but as we showed for the two-class case, there are other
discriminant functions that lead to the same decision.

The essential difference between the approach of the previous section and the discriminant
function approach described here is that the form of the discriminant function is specified and is
not imposed by the underlying distribution. The choice of discriminant function may depend on
prior knowledge about the patterns to be classified or may be a particular functional form whose
parameters are adjusted by a training procedure. Many different forms of discriminant function
have been considered in the literature, varying in complexity from the linear discriminant
function (in which g is a linear combination of the xi) to multiparameter nonlinear functions
such as the multilayer perceptron.

Discrimination may also be viewed as a problem in regression (see Section 1.7) in which
the dependent variable, y, is a class indicator and the regressors are the pattern vectors. Many
discriminant function models lead to estimates of E[y|x], which is the aim of regression
analysis (though in regression y is not necessarily a class indicator). Thus, many of the
techniques we shall discuss for optimising discriminant functions apply equally well to
regression problems. Indeed, as we find with feature extraction in Chapter 10 and also
clustering in Chapter 11 similar techniques have been developed under different names in
the pattern recognition and statistics literature.

1.6.2 Linear discriminant functions

First of all, let us consider the family of discriminant functions that are linear combinations
of the components of x = (x1, . . . , xp)

T ,

g(x) = wT x + w0 =
p∑

i=1

wixi + w0 (1.20)
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g = 0
g < 0

g > 0

x
g(x)
|w|

w

|w0|
|w|

Figure 1.10 Geometry of linear discriminant function given by Equation (1.20).

This is a linear discriminant function, a complete specification of which is achieved by
prescribing the weight vector w and threshold weight w0. Equation (1.20) is the equation of
a hyperplane with unit normal in the direction of w and a perpendicular distance |w0|/|w|
from the origin. The value of the discriminant function for a pattern x is a measure of the
perpendicular distance from the hyperplane (Figure 1.10).

A linear discriminant function can arise through assumptions of normal distributions for
the class densities, with equal covariance matrices (see Chapter 2). Alternatively, without
making distributional assumptions, we may impose the form of the discriminant function to
be linear and determine its parameters (see Chapter 5).

A pattern classifier employing linear discriminant functions is termed a linear machine
(Nilsson, 1965), an important special case of which is the minimum-distance classifier. Sup-
pose we are given a set of prototype points p1, . . . , pC, one for each of the C classes ω1, . . . ,
ωC. The minimum-distance classifier assigns a pattern x to the class ωi associated with the
nearest point pi. For each point, the squared Euclidean distance is

|x − pi|2 = xT x − 2xT pi + pT
i pi

and minimum-distance classification is achieved by comparing the expressions xT pi − 1
2 pT

i pi

and selecting the largest value. Thus, the linear discriminant function is

gi(x) = wT
i x + wi0

where

wi = pi

wi0 = −1

2
|pi|2
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•

p1

p2

p3

p4

Figure 1.11 Decision regions for a minimum-distance classifier.

Therefore, the minimum-distance classifier is a linear machine. If the prototype points, pi,
are the class means, then we have the nearest class mean classifier. Decision regions for a
minimum-distance classifier are illustrated in Figure 1.11. Each boundary is the perpendicular
bisector of the lines joining the prototype points of regions that are contiguous. Also, note
from Figure 1.11 that the decision regions are convex (that is, two arbitrary points lying in the
region can be joined by a straight line that lies entirely within the region). In fact, decision
regions of a linear machine are always convex. Thus, the two class problems, illustrated in
Figure 1.12, although separable, cannot be separated by a linear machine. Two generalisations
that overcome this difficulty are piecewise linear discriminant functions and generalised linear
discriminant functions.

1.6.3 Piecewise linear discriminant functions

This is a generalisation of the minimum-distance classifier to the situation in which there is
more than one prototype per class. Suppose there are ni prototypes in class ωi, p1

i , . . . , pni
i , i =

1, . . . ,C. We define the discriminant function for class ωi to be

gi(x) = max
j=1,...,ni

gj
i (x)

•
•
•
•
•
•
••
•
•

� � �

�
�
�
�
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Figure 1.12 Two examples of groups not separable by a linear discriminant.



P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

24 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

Figure 1.13 Dirichlet tessellation (comprising nearest-neighbour regions for a set of proto-
types) and the decision boundary (thick lines) for two classes.

where gj
i is a subsidiary discriminant function, which is linear and is given by

gj
i (x) = xT p j

i − 1

2
p j

i

T
p j

i j = 1, . . . , ni; i = 1, . . . ,C

A pattern x is assigned to the class for which gi(x) is largest; that is, to the class of the
nearest prototype vector. This partitions the space into

∑C
i=1 ni regions known as the Dirichlet

tessellation of the space. When each pattern in the training set is taken as a prototype vector,
then we have the nearest-neighbour decision rule of Chapter 4. This discriminant function
generates a piecewise linear decision boundary (Figure 1.13).

Rather than using the complete design set as prototypes, we may use a subset. Methods
of reducing the number of prototype vectors (edit and condense) are described in Chapter 4,
along with the nearest-neighbour algorithm. Clustering schemes may also be employed.

1.6.4 Generalised linear discriminant function

A generalised linear discriminant function, also termed a phi machine (Nilsson, 1965), is a
discriminant function of the form

g(x) = wT φ + w0

where φ = (φ1(x), . . . ,φD(x))T is a vector function of x. If D = p, the number of variables,
and φi(x) = xi, then we have a linear discriminant function.
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x2

x1

φ2

φ1

Figure 1.14 Nonlinear transformation of variables may permit linear discrimination.

The discriminant function is linear in the functions φi, not in the original measurements
xi. As an example, consider the two-class problem of Figure 1.14.

A linear discriminant function will not separate the two classes (denoted by the • and 	
symbols in the left-hand illustration), even though they are separable. However, if we make
the transformation

φ1(x) = x2
1

φ2(x) = x2

then the classes can be separated in the φ-space by a straight line as shown in the right-
hand illustration. Similarly, disjoint classes can be transformed into a φ-space in which a
linear discriminant function could separate the classes (provided that they are separable in the
original space).

The problem, therefore, is simple. Make a good choice for the functions φi(x), then use
a linear discriminant function to separate the classes. But, how do we choose φi? Specific
examples are shown in Table 1.1.

Table 1.1 Discriminant functions, φ.

Discriminant function Mathematical form, φi(x)

Linear φi(x) = xi, i = 1, . . . , p

Quadratic φi(x) = xl1
k1

xl2
k2
, i = 1, . . . , (p + 1)(p + 2)/2 − 1

l1, l2 = 0 or 1; k1, k2 = 1, . . . , p

l1, l2 not both zero

νth order polynomial φi(x) = xl1
k1

. . . xlν
kν

, i = 1, . . . ,

(
p + ν

ν

)
− 1

l1, . . . , lν = 0 or 1; k1, . . . , kν = 1, . . . , p

li not all zero
Radial basis function φi(x) = φ(|x − vi|)

for centre vi and function φ

Multilayer perceptron φi(x) = f (xT vi + vi0)

for direction vi and offset vi0. f is the logistic

function, f (z) = 1/(1 + exp(− z))
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Clearly there is a problem in that the more functions that are used as a basis set, then the
more parameters that must be determined using the limited training set. A complete quadratic
discriminant function requires D = ( p + 1)( p + 2)/2 terms and so for C classes there are
C( p + 1)( p + 2)/2 parameters to estimate. We may need to apply a constraint or to ‘regularise’
the model to ensure that there is no overfitting.

An alternative to having a set of different functions is to have a set of functions of the
same parametric form, but which differ in the values of the parameters they take,

φi(x) = φ(x; vi)

where vi is a set of parameters. Different models arise depending on the way the variable x
and the parameters v are combined. If

φ(x; v) = φ(|x − v|)

that is, φ is a function only of the magnitude of the difference between the pattern x and the
weight vector v, then the resulting discriminant function is known as a radial basis function.
On the other hand, if φ is a function of the scalar product of the two vectors

φ(x; v) = φ(xT v + v0)

then the discriminant function is known as a multilayer perceptron. It is also a model known
as projection pursuit. Both the radial basis function and the multilayer perceptron models can
be used in regression.

In these latter examples, the discriminant function is no longer linear in the parameters.
Specific forms for φ for radial basis functions and for the multilayer perceptron models will
be given in Chapter 6.

1.6.5 Summary

In a multiclass problem, a pattern x is assigned to the class for which the discriminant function
is the largest. A linear discriminant function divides the feature space by a hyperplane whose
orientation is determined by the weight vector w and distance from the origin by the weight
threshold w0. The decision regions produced by linear discriminant functions are convex.

A piecewise linear discriminant function permits nonconvex and disjoint decision regions.
Special cases are the nearest-neighbour and nearest class mean classifier.

A generalized linear discriminant function, with fixed functions φi, is linear in its param-
eters. It permits nonconvex and multiply connected decision regions (for suitable choices of
φi). Radial basis functions and multilayer perceptrons can be regarded as generalised linear
discriminant functions with flexible functions φi whose parameters must be determined or
specified using the training set.

The Bayes’ decision rule is optimal (in the sense of minimising classification error) and
with sufficient flexibility in our discriminant functions we ought to be able to achieve optimal
performance in principle. However, we are limited by a finite number of training samples and
also, once we start to consider parametric forms for the φi, we lose the simplicity and ease of
computation of the linear functions.
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1.7 Multiple regression

Many of the techniques and procedures described within this book are also relevant to problems
in regression, the process of investigating the relationship between a dependent (or response)
variable Y and predictor (also referred to as regressor, measurement and independent) variables
X1, . . . , Xp; a regression function expresses the expected value of Y in terms of X1, . . . , Xp

and model parameters. Regression is an important part of statistical pattern recognition and,
although the emphasis of the book is on discrimination, practical illustrations are sometimes
given on problems of a regression nature.

The discrimination problem itself is one in which we are attempting to predict the values
of one variable (the class variable) given measurements made on a set of predictor variables
(the pattern vector, x). In this case, the response variable is categorical.

Regression analysis is concerned with predicting the mean value of the response variable
given measurements on the predictor variables and assumes a model of the form,

E[y|x]

=

∫
yp(y|x)dy = f (x; θ)

where f is a (possibly nonlinear) function of the measurements x and θ, a set of parameters of
f . For example,

f (x; θ) = θ0 + θT x,

where θ = (θ1, . . . , θp)
T , is a model that is linear in the parameters and the variables. The

model

f (x; θ) = θ0 + θT φ(x),

where θ = (θ1, . . . , θD)T and φ = (φ1(x), . . . , φD(x))T is a vector of nonlinear functions of
x, is linear in the parameters but nonlinear in the variables. Linear regression refers to a
regression model that is linear in the parameters, but not necessarily the variables.

Figure 1.15 shows an illustrative regression summary. For each value of x, there is a
population of y values that varies with x. The solid line connecting the conditional means,
E[ y|x], is the regression line. The dotted lines either side represent the spread of the conditional
distribution (±1 standard deviation from the mean).

It is assumed that the difference (commonly referred to as an error or residual), εi,
between the measurement on the response variable and its predicted value conditional on the
measurements on the predictors,

εi = yi − E[y|xi]

is an unobservable random variable. A normal model for the errors is often assumed,

p(ε) = 1√
(2π)σ

exp

(
−1

2

ε2

σ 2

)
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Figure 1.15 Population regression line (solid line) with representation of spread of condi-
tional distribution (dotted lines) for normally distributed error terms, with variance depending
on x.

That is,

p(yi|xi, θ) = 1√
(2π)σ

exp

(
− 1

2σ 2
(yi − f (xi; θ))2

)

Given a set of data {(yi, xi), i = 1, . . . , n}, the maximum likelihood estimate of the model
parameters (the value of the parameters for which the data are ‘most likely’), θ, is that
for which

p({(yi, xi)}|θ)

is a maximum. Assuming independent samples, this amounts to determining the value of θ

for which the commonly used least squares error,

n∑

i=1

(yi − f (xi; θ))2 (1.21)

is a minimum (see the exercises at the end of the chapter).
For the linear model, procedures for estimating the parameters are described in

Chapter 5.
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1.8 Outline of book

The aim of this book is to provide a comprehensive account of statistical pattern recognition
techniques with emphasis on methods and algorithms for discrimination and classification.
In recent years there have been many developments in multivariate analysis techniques,
particularly in nonparametric methods for discrimination and classification including kernel
methods, but also the use of pattern recognition techniques applied to complex datasets such
as those represented by a network. These are described in this book as extensions to the basic
methodology developed over the years.

This chapter has presented some basic approaches to statistical pattern recognition. Sup-
plementary material on probability theory and data analysis can be found on the book’s
website.

Chapters 2, 3 and 4 describe basic approaches to supervised classification via Bayes’ rule
and estimation of the class-conditional densities. Chapter 2 considers normal-based models.
Chapter 3 develops these models to allow for uncertainty in model parameters. Chapter 4
addresses nonparametric approaches to density estimation.

Chapters 5–7 take a discriminant function approach to supervised classification. Chapter 5
describes algorithms for linear discriminant functions. Chapter 6 considers kernel-based
approaches for constructing nonlinear discriminant functions, namely radial basis functions
and support vector machine methods and alternative, projection-based methods, the multilayer
perceptron neural network. Chapter 7 describes approaches that result in interpretable rules,
often required for some applications to provide insight into the classification process.

Chapter 8 introduces the concept of classifier combination: can improvement be achieved
with an ensemble of classifiers? Some classifiers may perform well in one part of the data
space, other classifiers in another part. How should they be combined?

Chapter 9 addresses the important topic of performance assessment: how good is your
designed classifier and how well does it compare with competing techniques?

Chapters 10 and 11 consider techniques that may form part of an exploratory data analysis.
Chapter 10 describes methods of feature selection and extraction, both linear and nonlinear.
Chapter 11 addresses unsupervised classification or clustering. Chapter 12 considers datasets
that may be represented as complex networks. Many of the techniques employed for the
analysis of such datasets are part of the pattern recognition literature presented in this book.

Finally, Chapter 13 covers additional topics on pattern recognition including model
selection.

1.9 Notes and references

There was a growth of interest in techniques for automatic pattern recognition in the 1960s.
Many books appeared in the early 1970s, some of which are still very relevant today and have
been revised and reissued. More recently, there have been books detailing developments in
pattern recognition, particularly neural network methods and kernel methods.

A very good introduction is provided by the book of Hand (1981a). Perhaps a little out
of date now, it provides nevertheless a very readable account of techniques for discrimination
and classification written from a statistical point of view and is to be recommended. Two
of the main textbooks on statistical pattern recognition are those by Fukunaga (1990) and
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Devijver and Kittler (1982). Written with an engineering emphasis, Fukunaga’s book provides
a comprehensive account of the most important aspects of pattern recognition, with many
examples, computer projects and problems. Devijver and Kittler’s book covers the nearest-
neighbour decision rule and feature selection and extraction in some detail, though not at
the expense of other important areas of statistical pattern recognition. It contains detailed
mathematical accounts of techniques and algorithms, treating some areas in depth.

Another important textbook is that by Duda et al. (2001). This presents a thorough account
of the main topics in pattern recognition. Other books that are an important source of reference
material are those by Young and Calvert (1974), Tou and Gonzales (1974) and Chen (1973).
Also, good accounts are given by Andrews (1972), a more mathematical treatment, and
Therrien (1989), an undergraduate text.

Books that describe the ‘neural network’ aspects of developments in pattern recognition
and their relationship to the more traditional methods include those of Haykin (1994), who
provides a comprehensive treatment of neural networks, and Bishop (1995) who provides
an excellent introduction to neural network methods from a statistical pattern recognition
perspective. Ripley’s (1996) account provides a thorough description of pattern recognition
from within a statistical framework. It includes neural network methods, approaches developed
in the field of machine learning, advances in statistical techniques as well as development of
more traditional pattern recognition methods and gives valuable insights into many techniques
gained from practical experience. Hastie et al. (2001) provide a thorough description of modern
techniques in pattern recognition. Other books that deserve a mention are those by Schalkoff
(1992) and Pao (1989).

Bishop (2007) provides an excellent introduction to pattern recognition, particularly recent
developments and details of Bayesian computational methods.

The treatment of pattern recognition by Theodoridis and Koutroumbas (2009) is a com-
prehensive account, with similar goals to this book but with greater emphasis on unsupervised
methods. Each chapter is supported by MATLAB code [see also the books by Nabney (2001),
Theodoridis et al. (2010) and van der Heiden et al. (2004)].

Hand (1997) gives a short introduction to pattern recognition techniques and the central
ideas in discrimination but places greater emphasis on the comparison and assessment of
classifiers.

A more specialised treatment of discriminant analysis and pattern recognition is the
book by McLachlan (1992a). This is a very good book. It is not an introductory textbook,
but provides a thorough account of developments in discriminant analysis. Written from a
statistical perspective, the book is a valuable source of reference of theoretical and practical
work on statistical pattern recognition and is to be recommended for researchers in the field.

Comparative treatments of pattern recognition techniques (statistical, neural and machine
learning methods) are provided in the volume edited by Michie et al. (1994) who report on the
outcome of the Statlog project. Technical descriptions of the methods are given, together with
the results of applying those techniques to a wide range of problems. This volume provides the
most extensive comparative study available. More than 20 different classification procedures
were considered for about 20 datasets.

Books on data mining often give good treatments of pattern recognition, including both
supervised and unsupervised classification (Tan et al., 2005; Witten and Frank, 2005; Han
and Kamber, 2006).

There are many other books on pattern recognition. Some of those treating more specific
parts (such as clustering) are cited in the appropriate chapters of this book. In addition, most
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textbooks on multivariate analysis devote some attention to discrimination and classification.
These provide a valuable source of reference and are cited elsewhere in the book. There
are also pattern recognition books for specialist applications, for example, medical imaging
(Meyer-Baese, 2003) and forensics (Keppel et al., 2006).

Exercises

In some of the exercises, it will be necessary to generate samples from a multivariate normal
density with mean μ and covariance matrix �, denoted N(μ,�). Many computer packages
offer routines for this. However, it is a simple matter to generate samples from a normal
distribution with unit variance and zero mean (Press et al., 1992). Given a vector Y i of such
samples, then the vector U�1/2Y i + μ has the required distribution, where U is the matrix of
eigenvectors of the covariance matrix and �1/2 is a diagonal matrix whose diagonal elements
are the square roots of the corresponding covariance matrix eigenvalues.

1. Consider two multivariate normally distributed classes,

p(x|ωi) = 1

(2π)p/2|�i|1/2
exp

{
−1

2
(x − μi)

T �−1
i (x − μi)

}

with means μ1 and μ2 and equal covariance matrices, �1 = �2 = �. Show that the
logarithm of the likelihood ratio is linear in the feature vector x. What is the equation of
the decision boundary?

2. Determine the equation of the decision boundary for the more general case of �1 = α�2,
for scalar α (normally distributed classes as in Exercise 1). In particular, for two univariate
distributions, N(0, 1) and N(1, 1/4), show that one of the decision regions is bounded and
determine its extent.

3. For the distributions in Exercise 1, determine the equation of the minimum risk decision
boundary for the loss matrix,

� =
(

0 2
1 0

)

4. Consider two multivariate normally distributed classes [ω2 with mean ( − 1, 0)T and ω1

with mean (1, 0)T , and identity covariance matrix]. For a given threshold μ [see Equation
(1.14)] on the likelihood ratio, determine the regions �1 and �2 in a Neyman–Pearson
rule.

5. Consider three bivariate normal distributions, ω1, ω2, ω3 with identity covariance matrices
and means (−2, 0)T , (0, 0)T and (0, 2)T . Show that the decision boundaries are piecewise
linear. Now define a class, A, being the mixture of ω1 and ω3,

pA(x) = 0.5p(x|ω1) + 0.5p(x|ω3)

and class B as bivariate normal with identity covariance matrix and mean (a, b)T , for
some a, b. What is the equation of the Bayes’ decision boundary? Under what conditions
is it piecewise linear?
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6. Consider two uniform distributions with equal priors

p (x|ω1) =
{

1 when 0 ≤ x ≤ 1
0 otherwise

p (x|ω2) =
{

1
2 when 1

2 ≤ x ≤ 5
2

0 otherwise

Show that the reject function is given by

r(t) =
{ 3

8 when 0 ≤ t ≤ 1
3

0 when 1
3 ≤ t ≤ 1

Hence calculate the error rate by integrating (1.10).

7. Reject option. Consider two classes, each normally distributed with means x = 1 and
x = −1 and unit variances; p(ω1) = p(ω2) = 0.5. Generate a test set and use it (without
using class labels) to estimate the reject rate as a function of the threshold t. Hence,
estimate the error rate for no rejection. Compare with the estimate based on a labelled
version of the test set. Comment on the use of this procedure when the true distributions
are unknown and the densities have to be estimated.

8. The area of a sphere of radius r in p dimensions, Sp, is

Sp = 2π
p
2 rp−1

�(p/2)

where � is the gamma function [�(1/2) = π1/2, �(1) = 1, �(x + 1) = x�(x)]. Show
that the probability of a sample, x, drawn from a zero-mean normal distribution with
covariance matrix σ 2I (I is the identity matrix) and having |x| ≤ R is

∫ R

0
Sp(r)

1

(2πσ 2)p/2
exp

(
− r2

2σ 2

)
dr

Evaluate this numerically for R = 2σ and for p = 1, . . . , 10. What do the results tell you
about the distribution of normal samples in high-dimensional spaces?

9. In a two-class problem, let the cost of misclassifying a class ω1 pattern be C1 and the cost
of misclassifying a class ω2 pattern be C2. Show that the point on the ROC curve that
minimises the risk has gradient

C2 p(ω2)

C1 p(ω1)

10. Show that under the assumption of normally distributed residuals, the maximum like-
lihood solution for the parameters of a linear model is equivalent to minimising the
sum-square error (1.21).




