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Risk is equal to the expected
value

If you throw a die, the outcome will be either 1, 2, 3, 4, 5 or 6. Before you throw
the die, the outcome is unknown – to use the terminology of statisticians, it is
random. You are not able to specify the outcome, but you are able to express how
likely it is that the outcome is 1, 2, 3, 4, 5 or 6. Since the number of possible
outcomes is 6 and they are equally probable – the die is fair – the probability
that the outcome turns out to be 3 (say), is 1/6. This is simple probability theory,
which I hope you are familiar with.

Now suppose that you throw this die 600 times. What would then be the
average outcome? If you do this experiment, you will obtain an average about
3.5. We can also deduce this number by some simple arguments: about 100
throws would give an outcome equal to 1, and this gives a total sum of outcomes
equal to 100. Also about 100 throws would give an outcome equal to 2, and this
would give a sum equal to 2 times 100, and so on. The average outcome would
thus be

(1 × 100 + 2 × 100 + 3 × 100 + 4 × 100

+ 5 × 100 + 6 × 100)/600 = 3.5. (1.1)

In probability theory this number is referred to as the expected value. It is obtained
by multiplying each possible outcome with the associated probability, and sum-
ming over all possible outcomes. In our example this gives

1 × 1/6 + 2 × 1/6 + 3 × 1/6 + 4 × 1/6 + 5 × 1/6 + 6 × 1/6 = 3.5. (1.2)

We see that formula (1.2) is just a reformulation of (1.1) obtained by dividing 100
by 600 in each sum term of (1.1). Thus the expected value can be interpreted as
the average value of the outcome of the experiment if the experiment is repeated
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2 MISCONCEPTIONS OF RISK

over and over again. Statisticians would refer to the law of large numbers, which
says that the average value converges to the expected value when the number of
experiments goes to infinity.

Reflection

For the die example, show that the expected number of throws showing an
outcome equal to 2 is 100 when throwing the die 600 times.

In each throw, there are two outcomes: one if the outcome is a ‘success’ (that
is, shows 2), and zero if the outcome is a ‘failure’ (that is, does not show 2).
The corresponding probabilities are 1/6 and 5/6. Hence the expected value for a
throw equals 1 × 1/6 + 0 × 5/6 = 1/6, in other words the expected value equals
the probability of a success. If you perform 2 throws the expected number of
successes equals 2 × 1/6, and if you perform 600 throws the expected number
of successes equals 600 × 1/6 = 100. These conclusions are intuitively correct
and are based on a result from probability calculus saying that the expected
value of a sum equals the sum of the expected values. Thus the desired result is
shown. �

The expected value is a key concept in risk analysis and risk management. It is
common to express risk by expected values. Here are some examples:

• For some experts ‘risk’ equals expected loss of life expectancy (HM Trea-
sury, 2005, p. 33).

• Traditionally, hazmat transport risk is defined as the expected undesirable
consequence of the shipment, that is, the probability of a release incident
multiplied by its consequence (Verma and Verter, 2007).

• Risk is defined as the expected loss to a given element or a set of ele-
ments resulting from the occurrence of a natural phenomenon of a given
magnitude (Lirer et al., 2001).

• Risk refers to the expected loss associated with an event. It is measured by
combining the magnitudes and probabilities of all of the possible negative
consequences of the event (Mandel, 2007).

• Terrorism risk refers to the expected consequences of an existent threat,
which, for a given target, attack mode, target vulnerability and damage
type, can be expressed as the probability that an attack occurs multiplied
by the expected damage, given that an attack occurs (Willis, 2007).

• Flood risk is defined as expected flood damage for a given time period
(Floodcite, 2006).

But is an expected value an adequate expression of risk? And should decisions
involving risk be based on expected values?
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Example. A Russian roulette type of game

Let us look at an example: a Russian roulette type of game where you are offered a
play using a six-chambered revolver. A single round is placed in the revolver such
that the location of the round is unknown. You take the weapon and shoot, and if
it discharges, you lose $24 million. If it does not discharge, you win $6 million.

As the probability of losing $24 million is 1/6, and of winning $6 million is
5/6, the expected gain is given by

−24 × 1/6 + 6 × 5/6 = −4 + 5 = 1.

Thus the expected gain is $1 million. Say that you are not informed about the
details of the game, just that the expected value equals $1 million. Would that
be sufficient for you to make a decision whether to play or not play? Certainly
not – you need to look beyond the expected value. The possible outcomes of the
game and the associated probabilities are required to provide the basis for an
informed decision. Would it not be more natural to refer to this information as
risk, and in particular the probability that you lose $24 million? As we will see
in coming chapters, such conceptions of risk are common.

The game has an expected value of $1 million, but that does not mean that you
would accept the game as you may lose $24 million. The probability 1/6 of losing
may be considered very high as such a loss could have dramatic consequences
for you. And how important is it for you to win the $6 million? Perhaps your
financial situation is good and an additional $6 million would not change your
life very much for the better. The decision to accept the play needs to take into
account aspects such as usefulness, desirability and satisfaction. Decision analysts
and economists use the term utility to convey these aspects.

Daniel Bernoulli: The need to look beyond expected
values

The observation that there is a need for seeing beyond the expected values in
such decision-making situations goes back to Daniel Bernoulli (1700–1782) more
than 250 years ago. In 1738, the Papers of the Imperial Academy of Sciences in
St Petersburg carried an essay with this central theme: ‘the value of an item
must not be based on its price, but rather on the utility that it yields’ (Bernstein,
1996). The author was Daniel Bernoulli, a Swiss mathematician who was then
38 years old. Bernoulli’s St Petersburg paper begins with a paragraph that sets
forth the thesis that he aims to attack (Bernstein, 1996):

Ever since mathematicians first began to study the measurement of
risk, there has been general agreement on the following proposition:
Expected values are computed by multiplying each possible gain by
the number of ways it can occur, and dividing the sum of these
products by the total number of cases.
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Bernoulli finds this thesis flawed as a description of how people in real
life go about making decisions, because it focuses only on gains (prices) and
probabilities, and not the utility of the gain. Usefulness and satisfaction need to
be taken into account. According to Bernoulli, rational decision-makers will try
to maximize expected utility, rather than expected values (see Chapter 6). The
attitude to risk and uncertainties varies from person to person. And that is a good
thing. Bernstein (1996, p. 105) writes:

If everyone valued every risk in precisely the same way, many risky
opportunities would be passed up. . . . Where one sees sunshine, the
other sees a thunderstorm. Without the venturesome, the world would
turn a lot more slowly. Think of what life would be like if everyone
were phobic about lightning, flying in airplanes, or investing in start-
up companies. We are indeed fortunate that human beings differ in
their appetite for risk.

Reflection

Bernoulli provides this example in his famous article: two men, each worth
100 ducats (about $4000), decide to play a fair game (i.e. a game where the
expectation is the same for both players) based on tossing coins, in which there is
a 50–50 probability of winning or losing. Each man bets 50 ducats on the throw,
which means that he has an equal probability of ending up worth 150 ducats or
of ending up worth only 50 ducats. Would a rational player play such a game?

The expectation is 100 ducats for each player, whether they decide to play
or not. But most people would find this play unattractive. Losing 50 ducats hurts
more than gaining 50 ducats pleases the winner. There is an asymmetry in the
utilities. The best decision for both is to refuse to play the game.

Risk-averse behaviour

Economists and psychologists refer to the players as risk-averse. They dislike the
negative outcomes more than the weight given by the expected value. The use of
the term ‘risk averse’ is based on a concept of risk that is linked to uncertainties
more than expected values (see Chapter 4). Hence this terminology is in conflict
with the idea of seeing risk as the expected value.

Let us return to the Russian roulette game described above. Imagine that you
were given a choice between a gift of $0.5 million for certain or an opportunity
to play the game with uncertain outcomes. The gamble has an expectation equal
to $1 million. Risk-averse people will choose the gift over the gamble. As the
possible loss is so large ($24 million), they would probably prefer any gift (even
a fixed loss) instead of accepting the game. The minimum gift you would require
is referred to as the certainty equivalent. A person is risk-averse if the certainty
equivalent is less than the expected value. Different people would be risk-averse
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to different degrees. This degree is expressed by the certainty equivalent. How
high (low) would the gift have to go before you would prefer the game to the gift?

For the above examples, most people would show a risk-averse attitude. A
risk seeker would have a higher certainty equivalent than the expected value. He
or she values the probability of winning to be so great that (s)he would prefer to
play the game instead of receiving the gift of say $1.2 million.

A portfolio perspective

But is it not more rational to be risk-neutral, that is, letting the certainty equivalent
be equal to the expected value? Say that you represent an enterprise with many
activities and you are offered the Russian roulette type of game. The enterprise
is huge, with a turnover of billions of dollars and hundreds of large projects. In
such a case the enterprise management would probably accept the game, as the
expectation is positive. The argument is that when considering many such games
(projects) the expected value would be a good indication of the actual outcome
of the total value of the games (projects).

To illustrate this, say that the portfolio of projects comprises n = 100 projects
and each project is of the Russian roulette type, that is, the probability of losing
$24 million is 1/6, and the probability of winning $6 million is 5/6. For each
project the expected gain equals $1 million and hence the expected average gain
for the 100 projects is $1 million. Looking at all the projects we would predict
$1 million per project, but the actual gain could be higher or lower. There is a
probability that we lose hundreds of million of dollars, but the probability is rather
low. In theory, all projects could result in a loss of $24 million, adding up to loss
of $2400 million. Assuming that all the n projects are independent of each other,
the probability of this extreme result is (1/6)100, which is an extremely small
number; it is negligible. It is, however, quite likely that we end up with a loss, that
is, negative average gain. To compute this probability we make use of the central
limit theorem, expressing the fact that the probability distribution of the average
value can be accurately approximated by the normal (Gaussian) probability curve.
As shown in Table 1.1, the probability that the average gain is less than zero

Table 1.1 Probability distribution for the average gain when n = 100.
X Probability that the average gain is less than x

−2 0.004

−1 0.04

0 0.19

1 0.50

2 0.81

3 0.96

4 0.996
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Figure 1.1 The Gaussian curve for the average gain in millions of dollars for
the case n = 100. The area under the curve from a point a to a point b on the
x-axis represents the probability that the gain takes a value in this interval.

equals approximately 0.20, assuming that all projects are independent. Figure 1.1
shows the Gaussian curve for the average gain. The probability that the average
gain will take a value lower than any specific number is equal to the area below
the curve. The integral of the total curve is 1. Hence, the probability is 0.50
that the average gain is less than 1, and 0.50 that the average gain exceeds 1.
Table 1.1 provides a summary of some specific probabilities.

The central limit theorem has an interesting history, as Tijms (2007, p. 162)
describes:

The first version of this theorem was postulated by the French-born
mathematician Abraham de Moivre, who, in a remarkable article published
in 1733, used the normal distribution to approximate the distribution of
the number of heads resulting from many tosses of a fair coin. This find-
ing was far ahead of its time, and was nearly forgotten until the famous
French mathematician Pierre-Simon Laplace rescued it from obscurity in
his monumental work Théorie Analytique des Probabilités , which was pub-
lished in 1812. Laplace expanded De Moivre’s finding by approximating the
binomial distribution with the normal distribution. But as with De Moivre,
Laplace’s finding received little attention in his own time. It was not until the
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nineteenth century was at an end that the importance of the central limit
theorem was discerned, when, in 1901, Russian mathematician Aleksandr
Lyapunov defined it in general terms and proved precisely how it worked
mathematically. Nowadays, the central limit theorem is considered to be the
unofficial sovereign of probability theory.

Calculations of the figures in Table 1.1

The calculations are based on the expected value, which equals 1, and the
variance, which is a measure of the spread of the distribution relative to the
expected value. For one project, the variance equals

(−24 − 1)2× 1/6 + (6 − 1)2× 5/6 = 252× 1/6 + 52× 5/6 = 750/6 = 125.

We see that the variance is computed by squaring the difference between
a specific outcome and the expected value, multiplying the result by the
probability of this outcome, and then summing over the possible outcomes.
If X denotes the outcome we denote by E[X ] the expected value of X , and
Var[X ] the variance of X . Formally, we have Var[X] = E([X − EX])2.

The square root of the variance is called the standard deviation of X , and
is denoted SD[X ]. For this example we obtain SD[X] = 11.2. The variance
of a sum of independent quantities equals the sum of the individual variances.
Let Y denote the total gain for the 100 projects. Then the variance of Y ,
Var[Y ], equals 12 500.

The central limit theorem states that

P(Y/n ≤ x) ≈ �(
√

n(x − EX)/SD[X]),

where
√

n equals the square root of n and � is the probability distribution
of the standard normal distribution with expectation 0 and variance 1. The
approximation ≈ produces an accurate result for large n , typically larger than
30. The application of this formula gives

P(Y/n < 0) ≈ �(−10/11.2) = �(−0.89) = 0.19,

using a statistical table for the � function. The standard deviation for Y /n
equals SD[X]]/

√
n = 1.12.

We observe that the expected value is a more informative quantity when look-
ing at 100 projects of this form than looking at one in isolation. The prediction
is the same, $1 million per project, but the uncertainties have been reduced.
And if we increase the number of projects the uncertainties are further reduced.
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Table 1.2 Probability distribution for the average gain when
n = 1000.

X Probability that the average gain is less than x

−0.25 0.0002

0 0.002

0.5 0.08

1 0.50

1.5 0.92

2 0.998

Say that we consider n = 1000 projects. Then we obtain results as in Table 1.2
and Figure 1.2. We see that the probability of a loss in this case is reduced
to 0.2%. The outcome would with high probability be a gain close to $1 mil-
lion. The uncertainties are small. Increasing n even further would give stronger
and stronger concentration of the probability mass around 1. This can be illus-
trated by the variance or the standard deviation. For the above example the
standard deviation of the average gain, SD[Y /n], equals 1.12 in case n = 100
and 0.35 when n = 1000. As the number of projects increases, the variance and
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Figure 1.2 The Gaussian curve for the average gain in millions of dollars for
the case n = 1000. The area under the curve from a to b represents the probability
that the gain takes a value in this interval.
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Table 1.3 Probability distribution for the average gain when n = 10 000.
X Probability that the average gain is less than x

0.60 0.0002

0.90 0.19

1 0.50

1.1 0.81

1.4 0.9998
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Figure 1.3 The Gaussian curve for the average gain in millions of dollars for the
case n = 10 000. The area under the curve from a to b represents the probability
that the gain takes a value in this interval.

the standard deviation decrease. When n becomes several thousands, the variance
and the standard deviation become negligible and the average gain is close to
the expected value 1. See Table 1.3 and Figure 1.3 which present the result for
n = 10 000.

Dependencies

The above analysis is based on the assumption that the projects are indepen-
dent. The law of large numbers and the central limit theorem require that this
assumption is met for the results to hold true. But what does this mean and to
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what extent is this a realistic assumption? Consider two games (projects), and let
X1 and X2 denote the gains for games 1 and 2, respectively. These games are
independent if the probability distribution of X2 is not dependent on X1, that is,
the probability that the outcome of X2 turns out to be −24 or 6 is not dependent
on whether the outcome of X1 is −24 or 6. For the Russian roulette type game
independence is a reasonable assumption under appropriate experimental condi-
tions. For real-life projects the situation is, however, more complex. If you know
that project 1 has resulted in a loss, this may provide information also about
project 2. There could be a common cause influencing both projects negatively
or positively. Think about an increase in the oil price or a political event that
influences the whole market. Hence, the independence assumption must be used
with care.

Reflection

Consider an insurance company that covers the costs associated with work acci-
dents in a country. Is it reasonable to judge the costs as independent?

Yes, a work accident at one moment in one place has a negligible relationship
to a work accident at another moment in a different place. �

Returning to the example with n projects, the expected value cannot be the sole
basis for the judgement about acceptance or not. The dependencies could give
an actual average gain far away from 1. Consider as an example a case where
the loss is −24 for all projects if the political event B occurs. The probability of
B is set to 10%. If B does not occur, this means that the loss in one game, X , is
−24 with probability 4/54 = 0.074. The projects are assumed independent if B
does not occur. We write P(X = −24|not B) = 0.074.

This is seen by using the law of total probability:

P(X = −24) = P(X = −24|B) · P(B) + P(X = −24|not B) · P(not B)

= 1 · 0.1 + P(X = −24|not B) · 0.9 = 1/6.

The expected gain and variance given that B does not occur equal

E[X|not B] = −24 · (4/54) + 6 · (50/54) = 204/54 = 3.78,

Var[X|not B] = (−24 − 3.78)2 · (4/54) + (6 − 3.78)2 · (50/54) = 61.7.

Hence for one particular project we have the same probability distribution: the
possible outcomes are 6 and −24, with probabilities 5/6 and 1/6, respectively.
The projects are, however, not independent. The variance of the average gain,
Var[Y /n], does not converge to zero as in the independent case.
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To see this, we first note that

Var[Y ] = E(Y − EY ])2 = E[(Y − EY ])2|B] · 0.1 + E[(Y − EY ])2|not B] · 0.9

≥ (25n)2 · 0.1 = 62.5n2.

Consequently Var[Y/n] ≥ 62.5 and the desired conclusion is proved.

Hence, for large n the probability distribution of the average gain Y /n takes the
following form:

• There is a probability of 0.1 that Y /n equals −24.

• There is a probability close to 0.90 that Y /n is in an interval close to 3.78.

If for example n = 10 000, the interval is [3.6, 3.9]. This interval is computed
by using the fact that if B does not occur, the expected value and standard
deviation (SD) of Y /n equals 3.78 and

√
61.7/n, respectively. Using the Gaussian

approximation, the interval 3.78 ± 1.64 · SD has a 90% probability.
We can conclude that there is a rather high probability of a large loss even

if the number of projects is large. The dependence causes the average gain not
to converge to the expected value 1.

Should not risk as a concept explicitly reflect this probability of a loss equal to
−24? The expected value 1 is not very informative in this case as the distribution
has two peaks, −24 and 3.78. Often in real life we may have many such peaks,
but the probabilities could be rather small. Other definitions of risk do, however,
incorporate this type of distribution, as we will see in the coming chapters.

Different distributions. Extreme observations

Above we have considered projects that are similar: they have the same distri-
bution. In practice we always have different types of projects and some could
be very large. To illustrate this, say that we have one project where the possible
outcomes are −2400 and 600 and not −24 and 6. The expectation is thus 100
for this project. Then it is obvious that the outcome of this project dominates
the total value of the portfolio. The law of large numbers and the central limit
theorem cannot be applied. See Figure 1.4 which shows the case with n = 100
standard projects with outcomes −24 and 6 and one project with the extreme
outcomes −2400 and 600. The probabilities are the same, 1/6 and 5/6, respec-
tively. We observe that the distribution has two peaks, dominated by the extreme
project. There is a probability of 1/6 of a negative outcome. If this occurs, the
average gain is reduced to about −23. If the extreme project gives a positive
result, the average gain is increased to about 7. The 100 standard projects are
not sufficiently many to dominate the total portfolio. The computations of the
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Figure 1.4 The probability distribution for the average gain for n= 100 standard
projects and one project with outcomes −2400 and 600. The area under the curve
from a to b represents the probability that the gain takes a value in this interval.

numbers in Figure 1.4 are based on the following arguments: If Y denotes the sum
of the gains of the n = 100 standard projects and YL the gain from the extreme
project, the task is to compute P((Y + YL)/101 ≤ y). But this probability can
be written as

P(Y ≤ 101y − YL) = P(Y ≤ 101y + 2400|YL = −2400) · 1/6

+ P(Y ≤ 101y − 600|YL = 600) · 5/6

= P(Y/100 ≤ 1.01y + 24) · 1/6

+ P(Y/100 ≤ 1.01y − 6) · 5/6,

and the problem is of the standard form analysed earlier for Y . We have assumed
that project gains are independent.

If the number of the standard projects increases, the value of the extreme
project is reduced, but it is obvious that some large projects could have a sig-
nificant influence on the total value of the portfolio. Figures 1.5 and 1.6 are
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Figure 1.5 The probability distribution for the average gain for n= 1000 and
one project with outcomes −2400 and 600. The area under the curve from a to b
represents the probability that the gain takes a value in this interval.

similar to Figure 1.4 but n = 1000 and 10 000, respectively. The influence of
the extreme project is reduced, but for n = 1000 the probability of a negative
outcome is still about 1/6. However, in the case of n = 10 000, the probability
of a negative outcome is negligible. The probability mass is now concentrated
around the expected value 1. We see that a very large number of standard projects
are required to eliminate the effect of the extreme project.

Difficulties in establishing the probability distribution

In the above analysis there is no discussion about the probability distribution
for each project. There is a probability of 1/6 of the negative outcome and a
probability of 5/6 of the positive outcome. In practice we seldom have such a
distribution available. If you run a business project or you invest your money on
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Figure 1.6 The probability distribution for the average gain for n= 10 000 and
one project with outcomes −2400 and 600. The area under the curve from a to b
represents the probability that the gain takes a value in this interval.

the stock market, it is not obvious how to determine the probability distributions.
You may have available some historical data, but to what extent are they relevant
for the future? Let us simplify our analysis by considering n = 10 000 future
projects and assume that the possible outcomes are −24 and 6 as above, but a
probability distribution has not been specified. Historical data are on hand, for
similar projects, and these show a distribution between the two possible outcomes
which are 1/6 and 5/6 respectively. However, we do not know if this distribution
will actually be the distribution for the future projects. We may assume that this
will be the case, but we do not know for sure. There are uncertainties – surprises
may occur. Under the assumption that the future will be as history indicates,
the results are shown by Table 1.3 and Figure 1.3. One may argue that such an
assumption is reasonable and that the data are the best information available,
but we have to acknowledge that not all uncertainties have been revealed by the
numbers shown by Table 1.3 and Figure 1.3. Should not this uncertainty factor be
considered an element of risk? We will discuss this in detail in the coming chapter.

We end this chapter with two general reflections on the use of expected values
in risk management.
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Reflection

In his paper from 1738 referred to above, Daniel Bernoulli presented and dis-
cussed the so-called St Petersburg paradox. This problem was first suggested by
his cousin Nicolaus Bernoulli. It is based on a casino game where a fair coin is
tossed successively until the moment that heads appears for the first time. The
casino payoff is 2 ducats if heads comes up on the first toss, 4 ducats if heads
turns up for the first time in the second toss, and so on. In general the payoff is 2n

ducats. Thus, with each additional toss, the payoff is doubled. How much should
the casino require the player to stake such that, over the long run, the game will
not be a losing endeavour for the casino? (Tijms, 2007; Bernstein, 1996).

The answer is that the casino owners should not allow this game to be played,
whatever amount a player is willing to stake, as the expected value of the casino
payoff for one player is an infinitely large number of ducats. To see that the
expected value exceeds every conceivable large value, note first that the proba-
bility of getting heads in the first toss is 1/2, the probability of getting heads for
the first time at the second toss equals 1/2 × 1/2, and so on and the probability of
getting heads for the first time at the nth toss equals (1/2)

n. The expected value
of the game for one player is thus

1/2 × 2 + (1/2)
2 × 4 + . . . + (1/2)

n × 2n + . . . .

In this infinite series, a figure of 1 ducat is added to the sum each time, and
consequently the sum exceeds any fixed number.

In Bernoulli’s day a heated discussion grew up around this problem. Some
indicated that the probabilistic analysis was wrong. But no, the mathematics
is correct. However, the model is not a good description of the real world.
The model tacitly assumes that the casino is always in a position to pay out,
whatever happens, even in the case that heads shows up for the first time after
say 30 tosses where the payoff is larger than $1000 million. So a more realistic
model is developed if the casino can only pay out up to a limited amount. Then
the expected payoff is limited and can be calculated. See Tijms (2007). �

Reflection

Willis (2007) defines terrorism risk as expected damage, as mentioned above. In
view of the discussion in this chapter, why is such a perspective problematic?

For terrorism risk, the possible consequences could be extreme with millions
of possible fatalities, and consequently the expectation, even on a national and
international level, would produce poor predictions of the actual damages and
losses. In addition, the uncertainties in underlying phenomena and processes are
large. It is extremely difficult to predict when the next attack will occur and what
form it will take. The historical data obviously provide limited information. Any
assigned probability distribution is likely to deviate strongly from the observed
loss distribution.
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Summary

These are the two main issues that we should reflect on:

• Is the concept of risk captured by the expected value?

• Should decisions involving risk be based on expected values?

For both questions, the answer is in general no. The problem is that the expected
value could deviate strongly from the actual outcomes. There are two main rea-
sons for this:

1. The consequences or outcomes could be so extreme that the average of a
large population of activities is dominated by these extreme outcomes.

2. The probability distribution could deviate strongly from the future
observed outcome distribution.

In gamble-like situations of repeated experiments, the expected value would pro-
vide good predictions of the actual future quantities studied, but not often in
other situations.
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