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Classical Time Series Models
and Financial Series

The standard time series analysis rests on important concepts such as stationarity, autocorrelation,
white noise, innovation, and on a central family of models, the autoregressive moving average
(ARMA) models. We start by recalling their main properties and how they can be used. As we
shall see, these concepts are insufficient for the analysis of financial time series. In particular, we
shall introduce the concept of volatility, which is of crucial importance in finance.

In this chapter, we also present the main stylized facts (unpredictability of returns, volatility
clustering and hence predictability of squared returns, leptokurticity of the marginal distributions,
asymmetries, etc.) concerning financial series.

1.1 Stationary Processes

Stationarity plays a central part in time series analysis, because it replaces in a natural
way the hypothesis of independent and identically distributed (iid) observations in standard
statistics.

Consider a sequence of real random variables (Xt )t∈Z, defined on the same probability
space. Such a sequence is called a time series, and is an example of a discrete-time stochastic
process.

We begin by introducing two standard notions of stationarity.

Definition 1.1 (Strict stationarity) The process (Xt ) is said to be strictly stationary if the vec-
tors (X1, . . . , Xk)

′ and (X1+h, . . . , Xk+h)
′ have the same joint distribution, for any k ∈ N and

any h ∈ Z.

The following notion may seem less demanding, because it only constrains the first two
moments of the variables Xt , but contrary to strict stationarity, it requires the existence of
such moments.
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2 GARCH MODELS

Definition 1.2 (Second-order stationarity) The process (Xt ) is said to be second-order
stationary if:

(i) EX2
t < ∞, ∀t ∈ Z;

(ii) EXt = m, ∀t ∈ Z;
(iii) Cov(Xt , Xt+h) = γX(h), ∀t, h ∈ Z.

The function γX(·) (ρX(·) := γX(·)/γX(0)) is called the autocovariance function (autocorrelation
function) of (Xt ).

The simplest example of a second-order stationary process is white noise. This process is
particularly important because it allows more complex stationary processes to be constructed.

Definition 1.3 (Weak white noise) The process (εt ) is called weak white noise if, for some pos-
itive constant σ 2:

(i) Eεt = 0, ∀t ∈ Z;
(ii) Eε2

t = σ 2, ∀t ∈ Z;
(iii) Cov(εt , εt+h) = 0, ∀t, h ∈ Z, h �= 0.

Remark 1.1 (Strong white noise) It should be noted that no independence assumption is made
in the definition of weak white noise. The variables at different dates are only uncorrelated and
the distinction is particularly crucial for financial time series. It is sometimes necessary to replace
hypothesis (iii) by the stronger hypothesis

(iii′) the variables εt and εt+h are independent and identically distributed.

The process (εt ) is then said to be strong white noise.

Estimating Autocovariances

The classical time series analysis is centered on the second-order structure of the processes. Gaus-
sian stationary processes are completely characterized by their mean and their autocovariance
function. For non-Gaussian processes, the mean and autocovariance give a first idea of the tem-
poral dependence structure. In practice, these moments are unknown and are estimated from a
realization of size n of the series, denoted X1, . . . , Xn. This step is preliminary to any construction
of an appropriate model. To estimate γ (h), we generally use the sample autocovariance defined,
for 0 ≤ h < n, by

γ̂ (h) = 1

n

n−h∑
j=1

(Xj − X)(Xj+h − X) := γ̂ (−h),

where X = (1/n)
∑n

j=1 Xj denotes the sample mean. We similarly define the sample autocorrela-
tion function by ρ̂(h) = γ̂ (h)/γ̂ (0) for |h| < n.

The previous estimators have finite-sample bias but are asymptotically unbiased. There are
other similar estimators of the autocovariance function with the same asymptotic properties (for
instance, obtained by replacing 1/n by 1/(n − h)). However, the proposed estimator is to be
preferred over others because the matrix (γ̂ (i − j)) is positive semi-definite (see Brockwell and
Davis, 1991, p. 221).

It is of course not recommended to use the sample autocovariances when h is close to n, because
too few pairs (Xj ,Xj+h) are available. Box, Jenkins and Reinsel (1994, p. 32) suggest that useful
estimates of the autocorrelations can only be made if, approximately, n> 50 and h ≤ n/4.
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It is often of interest to know – for instance, in order to select an appropriate model – if
some or all the sample autocovariances are significantly different from 0. It is then necessary to
estimate the covariance structure of those sample autocovariances. We have the following result
(see Brockwell and Davis, 1991, pp. 222, 226).

Theorem 1.1 (Bartlett’s formulas for a strong linear process) Let (Xt ) be a linear process
satisfying

Xt =
∞∑

j=−∞
φj εt−j ,

∞∑
j=−∞

|φj | < ∞,

where (εt ) is a sequence of iid variables such that

E(εt ) = 0, E(ε2
t ) = σ 2, E(ε4

t ) = κεσ
4 < ∞.

Appropriately normalized, the sample autocovariances and autocorrelations are asymptotically nor-
mal, with asymptotic variances given by the Bartlett formulas:

lim
n→∞ nCov{γ̂ (h), γ̂ (k)} =

∞∑
i=−∞

γ (i)γ (i + k − h) + γ (i + k)γ (i − h)

+ (κε − 3)γ (h)γ (k) (1.1)

and

lim
n→∞ nCov{ρ̂(h), ρ̂(k)} =

∞∑
i=−∞

ρ(i)[2ρ(h)ρ(k)ρ(i) − 2ρ(h)ρ(i + k) − 2ρ(k)ρ(i + h)

+ ρ(i + k − h) + ρ(i − k − h)]. (1.2)

Formula (1.2) still holds under the assumptions

Eε2
t < ∞,

∞∑
j=−∞

|j |φ2
j < ∞.

In particular, if Xt = εt and Eε2
t < ∞, we have

√
n

⎛
⎜⎝

ρ̂(1)
...

ρ̂(h)

⎞
⎟⎠ L→ N (0, Ih) .

The assumptions of this theorem are demanding, because they require a strong white noise (εt ). An
extension allowing the strong linearity assumption to be relaxed is proposed in Appendix B.2. For
many nonlinear processes, in particular the ARCH processes studies in this book, the asymptotic
covariance of the sample autocovariances can be very different from (1.1) (Exercises 1.6 and 1.8).
Using the standard Bartlett formula can lead to specification errors (see Chapter 5).

1.2 ARMA and ARIMA Models

The aim of time series analysis is to construct a model for the underlying stochastic process. This
model is then used for analyzing the causal structure of the process or to obtain optimal predictions.
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The class of ARMA models is the most widely used for the prediction of second-order
stationary processes. These models can be viewed as a natural consequence of a fundamental
result due to Wold (1938), which can be stated as follows: any centered, second-order stationary,
and ‘purely nondeterministic’ process1 admits an infinite moving-average representation of the form

Xt = εt +
∞∑
i=1

ciεt−i , (1.3)

where (εt ) is the linear innovation process of (Xt ), that is

εt = Xt − E(Xt |HX(t − 1)), (1.4)

where HX(t − 1) denotes the Hilbert space generated by the random variables Xt−1, Xt−2, . . . .2

and E(Xt|HX(t – 1)) denotes the orthogonal projection of Xt onto HX(t – 1). The sequence of
coefficients (ci) is such that

∑
i c2

i < ∞. Note that (εt ) is a weak white noise.
Truncating the infinite sum in (1.3), we obtain the process

Xt(q) = εt +
q∑

i=1

ciεt−i ,

called a moving average process of order q, or MA(q). We have

‖Xt(q) − Xt‖2
2 = Eε2

t

∑
i > q

c2
i → 0, as q → ∞.

It follows that the set of all finite-order moving averages is dense in the set of second-order
stationary and purely nondeterministic processes. The class of ARMA models is often preferred
to the MA models for parsimony reasons, because they generally require fewer parameters.

Definition 1.4 (ARMA( p, q) process) A second-order stationary process (Xt ) is called
ARMA(p, q), where p and q are integers, if there exist real coefficients c, a1, . . . , ap, b1, . . . , bq

such that,

∀t ∈ Z, Xt +
p∑

i=1

aiXt−i = c + εt +
q∑

j=1

bj εt−j , (1.5)

where (εt ) is the linear innovation process of (Xt ).

This definition entails constraints on the zeros of the autoregressive and moving average poly-
nomials, a(z) = 1 +∑p

i=0 aiz
i and b(z) = 1 + ∑q

i=0 biz
i (Exercise 1.9). The main attraction of

this model, and the representations obtained by successively inverting the polynomials a(·) and
b(·), is that it provides a framework for deriving the optimal linear predictions of the process, in
much simpler way than by only assuming the second-order stationarity.

Many economic series display trends, making the stationarity assumption unrealistic. Such
trends often vanish when the series is differentiated, once or several times. Let �Xt = Xt −
Xt−1 denote the first-difference series, and let �dXt = �(�d−1Xt) (with �0Xt = Xt ) denote the
differences of order d .

1A stationary process (Xt ) is said to be purely nondeterministic if and only if
⋂∞

n=−∞ HX(n) = {0}, where
HX(n) denotes, in the Hilbert space of the real, centered, and square integrable variables, the subspace consti-
tuted by the limits of the linear combinations of the variables Xn−i , i ≥ 0. Thus, for a purely nondeterministic
(or regular) process, the linear past, sufficiently far away in the past, is of no use in predicting future values.
See Brockwell and Davis (1991, pp. 187–189) or Azencott and Dacunha-Castelle (1984) for more details.

2 In this representation, the equivalence class E(Xt |HX(t − 1)) is identified with a random variable.
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Definition 1.5 (ARIMA( p, d, q) process) Let d be a positive integer. The process (Xt ) is said to
be an ARIMA(p, d, q) process if, for k = 0, . . . , d − 1, the processes (�kXt ) are not second-order
stationary, and (�dXt ) is an ARMA(p, q) process.

The simplest ARIMA process is the ARIMA(0, 1, 0), also called the random walk, satisfying

Xt = εt + εt−1 + · · · + ε1 + X0, t ≥ 1,

where εt is a weak white noise.
For statistical convenience, ARMA (and ARIMA) models are generally used under stronger

assumptions on the noise than that of weak white noise. Strong ARMA refers to the ARMA model
of Definition 1.4 when εt is assumed to be a strong white noise. This additional assumption allows
us to use convenient statistical tools developed in this framework, but considerably reduces the
generality of the ARMA class. Indeed, assuming a strong ARMA is tantamount to assuming that
(i) the optimal predictions of the process are linear ((εt ) being the strong innovation of (Xt )) and
(ii) the amplitudes of the prediction intervals depend on the horizon but not on the observations.
We shall see in the next section how restrictive this assumption can be, in particular for financial
time series modeling.

The orders (p, q) of an ARMA process are fully characterized through its autocorrelation
function (see Brockwell and Davis, 1991, pp. 89–90, for a proof).

Theorem 1.2 (Characterization of an ARMA process) Let (Xt ) denote a second-order station-
ary process. We have

ρ(h) +
p∑

i=1

aiρ(h − i) = 0, for all |h|>q,

if and only if (Xt ) is an ARMA(p, q) process.

To close this section, we summarize the method for time series analysis proposed in the famous
book by Box and Jenkins (1970). To simplify presentation, we do not consider seasonal series, for
which SARIMA models can be considered.

Box–Jenkins Methodology

The aim of this methodology is to find the most appropriate ARIMA(p, d, q) model and to use it
for forecasting. It uses an iterative six-stage scheme:

(i) a priori identification of the differentiation order d (or choice of another transformation);

(ii) a priori identification of the orders p and q;

(iii) estimation of the parameters (a1, . . . , ap, b1, . . . , bq and σ 2 = Var εt );

(iv) validation;

(v) choice of a model;

(vi) prediction.

Although many unit root tests have been introduced in the last 30 years, step (i) is still essentially
based on examining the graph of the series. If the data exhibit apparent deviations from stationarity,
it will not be appropriate to choose d = 0. For instance, if the amplitude of the variations tends



6 GARCH MODELS

In
de

x 
va

lu
e

20
00

30
00

40
00

50
00

60
00

70
00

19/Aug/91 11/Sep/01 21/Jan/08

Figure 1.1 CAC 40 index for the period from March 1, 1990 to October 15, 2008 (4702
observations).

to increase, the assumption of constant variance can be questioned. This may be an indication
that the underlying process is heteroscedastic.3 If a regular linear trend is observed, positive or
negative, it can be assumed that the underlying process is such that EXt = at + b with a �= 0. If
this assumption is correct, the first-difference series �Xt = Xt − Xt−1 should not show any trend
(E�Xt = a) and could be stationary. If no other sign of nonstationarity can be detected (such
as heteroscedasticity), the choice d = 1 seems suitable. The random walk (whose sample paths
may resemble the graph of Figure 1.1), is another example where d = 1 is required, although this
process does not have any deterministic trend.

Step (ii) is more problematic. The primary tool is the sample autocorrelation function. If,
for instance, we observe that ρ̂(1) is far away from 0 but that for any h> 1, ρ̂(h) is close to
0,4 then, from Theorem 1.1, it is plausible that ρ(1) �= 0 and ρ(h) = 0 for all h> 1. In this
case, Theorem 1.2 entails that Xt is an MA(1) process. To identify AR processes, the partial
autocorrelation function (see Appendix B.1) plays an analogous role. For mixed models (that is,
ARMA(p, q) with pq �= 0), more sophisticated statistics can be used, as will be seen in Chapter 5.
Step (ii) often results in the selection of several candidates (p1, q1), . . . , (pk, qk) for the ARMA
orders. These k models are estimated in step (iii), using, for instance, the least-squares method.
The aim of step (iv) is to gauge if the estimated models are reasonably compatible with the data.
An important part of the procedure is to examine the residuals which, if the model is satisfactory,
should have the appearance of white noise. The correlograms are examined and portmanteau tests
are used to decide if the residuals are sufficiently close to white noise. These tools will be described
in detail in Chapter 5. When the tests on the residuals fail to reject the model, the significance of
the estimated coefficients is studied. Testing the nullity of coefficients sometimes allows the model
to be simplified. This step may lead to rejection of all the estimated models, or to consideration
of other models, in which case we are brought back to step (i) or (ii). If several models pass the
validation step (iv), selection criteria can be used, the most popular being the Akaike (AIC) and
Bayesian (BIC) information criteria. Complementing these criteria, the predictive properties of the
models can be considered: different models can lead to almost equivalent predictive formulas. The
parsimony principle would thus lead us to choose the simplest model, the one with the fewest
parameters. Other considerations can also come into play: for instance, models frequently involve
a lagged variable at the order 12 for monthly data, but this would seem less natural for weekly data.

3 In contrast, a process such that VarXt is constant is called (marginally) homoscedastic.
4 More precisely, for h> 1,

√
n|ρ̂(h)|/

√
1 + 2ρ̂2(1) is a plausible realization of the |N(0, 1)| distribution.
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If the model is appropriate, step (vi) allows us to easily compute the best linear predictions X̂t (h)

at horizon h = 1, 2, . . . . Recall that these linear predictions do not necessarily lead to minimal
quadratic errors. Nonlinear models, or nonparametric methods, sometimes produce more accurate
predictions. Finally, the interval predictions obtained in step (vi) of the Box–Jenkins methodology
are based on Gaussian assumptions. Their magnitude does not depend on the data, which for
financial series is not appropriate, as we shall see.

1.3 Financial Series

Modeling financial time series is a complex problem. This complexity is not only due to the variety
of the series in use (stocks, exchange rates, interest rates, etc.), to the importance of the frequency
of d’observation (second, minute, hour, day, etc) or to the availability of very large data sets. It is
mainly due to the existence of statistical regularities (stylized facts) which are common to a large
number of financial series and are difficult to reproduce artificially using stochastic models.

Most of these stylized facts were put forward in a paper by Mandelbrot (1963). Since then,
they have been documented, and completed, by many empirical studies. They can be observed
more or less clearly depending on the nature of the series and its frequency. The properties that
we now present are mainly concerned with daily stock prices.

Let pt denote the price of an asset at time t and let εt = log(pt /pt−1) be the continuously
compounded or log return (also simply called the return). The series (εt ) is often close to the series
of relative price variations rt = (pt − pt−1)/pt−1, since εt = log(1 + rt ). In contrast to the prices,
the returns or relative prices do not depend on monetary units which facilitates comparisons between
assets. The following properties have been amply commented upon in the financial literature.

(i) Nonstationarity of price series . Samples paths of prices are generally close to a random
walk without intercept (see the CAC index series5 displayed in Figure 1.1). On the other
hand, sample paths of returns are generally compatible with the second-order stationarity
assumption. For instance, Figures 1.2 and 1.3 show that the returns of the CAC index
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Figure 1.2 CAC 40 returns (March 2, 1990 to October 15, 2008). August 19, 1991, Soviet Putsch
attempt; September 11, 2001, fall of the Twin Towers; January 21, 2008, effect of the subprime
mortgage crisis; October 6, 2008, effect of the financial crisis.

5 The CAC 40 index is a linear combination of a selection of 40 shares on the Paris Stock Exchange (CAC
stands for ‘Cotations Assistées en Continu’).
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Figure 1.3 Returns of the CAC 40 (January 2, 2008 to October 15, 2008).

oscillate around zero. The oscillations vary a great deal in magnitude, but are almost constant
in average over long subperiods. The recent extreme volatility of prices, induced by the
financial crisis of 2008, is worth noting.

(ii) Absence of autocorrelation for the price variations . The series of price variations generally
displays small autocorrelations, making it close to a white noise. This is illustrated for the
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Figure 1.4 Sample autocorrelations of (a) returns and (b) squared returns of the CAC 40
(January 2, 2008 to October 15, 2008).
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CAC in Figure 1.4(a). The classical significance bands are used here, as an approximation,
but we shall see in Chapter 5 that they must be corrected when the noise is not independent.
Note that for intraday series, with very small time intervals between observations (measured
in minutes or seconds) significant autocorrelations can be observed due to the so-called
microstructure effects.

(iii) Autocorrelations of the squared price returns . Squared returns (ε2
t ) or absolute returns (|εt |)

are generally strongly autocorrelated (see Figure 1.4(b)). This property is not incompatible
with the white noise assumption for the returns, but shows that the white noise is not strong.

(iv) Volatility clustering. Large absolute returns |εt | tend to appear in clusters. This property is
generally visible on the sample paths (as in Figure 1.3). Turbulent (high-volatility) subperiods
are followed by quiet (low-volatility) periods. These subperiods are recurrent but do not
appear in a periodic way (which might contradict the stationarity assumption). In other
words, volatility clustering is not incompatible with a homoscedastic (i.e. with a constant
variance) marginal distribution for the returns.

(v) Fat-tailed distributions . When the empirical distribution of daily returns is drawn, one can
generally observe that it does not resemble a Gaussian distribution. Classical tests typically
lead to rejection of the normality assumption at any reasonable level. More precisely, the
densities have fat tails (decreasing to zero more slowly than exp(−x2/2)) and are sharply
peaked at zero: they are called leptokurtic. A measure of the leptokurticity is the kurtosis
coefficient, defined as the ratio of the sample fourth-order moment to the squared sample
variance. Asymptotically equal to 3 for Gaussian iid observations, this coefficient is much
greater than 3 for returns series. When the time interval over which the returns are com-
puted increases, leptokurticity tends to vanish and the empirical distributions get closer to a
Gaussian. Monthly returns, for instance, defined as the sum of daily returns over the month,
have a distribution that is much closer to the normal than daily returns. Figure 1.5 compares
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Figure 1.5 Kernel estimator of the CAC 40 returns density (solid line) and density of a Gaussian
with mean and variance equal to the sample mean and variance of the returns (dotted line).
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Table 1.1 Sample autocorrelations of returns εt (CAC 40 index, January 2, 2008 to October 15,
2008), of absolute returns |εt |, sample correlations between ε+

t−h and |εt |, and between −ε−
t−h and

|εt |.
h 1 2 3 4 5 6 7

ρ̂ε(h) −0.012 −0.014 −0.047 0.025 −0.043 −0.023 −0.014
ρ̂|ε|(h) 0.175 0.229 0.235 0.200 0.218 0.212 0.203
ρ̂(ε+

t−h, |εt |) 0.038 0.059 0.051 0.055 0.059 0.109 0.061
ρ̂(−ε−

t−h, |εt |) 0.160 0.200 0.215 0.173 0.190 0.136 0.173

We use here the notation ε+
t = max(εt , 0) and ε−

t = min(εt , 0).

a kernel estimator of the density of the CAC returns with a Gaussian density. The peak
around zero appears clearly, but the thickness of the tails is more difficult to visualize.

(vi) Leverage effects . The so-called leverage effect was noted by Black (1976), and involves
an asymmetry of the impact of past positive and negative values on the current volatility.
Negative returns (corresponding to price decreases) tend to increase volatility by a larger
amount than positive returns (price increases) of the same magnitude. Empirically, a positive
correlation is often detected between ε+

t = max(εt , 0) and |εt+h| (a price increase should
entail future volatility increases), but, as shown in Table 1.1, this correlation is generally
less than between −ε−

t = max(−εt , 0) and |εt+h|.
(vii) Seasonality . Calendar effects are also worth mentioning. The day of the week, the proximity

of holidays, among other seasonalities, may have significant effects on returns. Following a
period of market closure, volatility tends to increase, reflecting the information cumulated
during this break. However, it can be observed that the increase is less than if the information
had cumulated at constant speed. Let us also mention that the seasonal effect is also very
present for intraday series.

1.4 Random Variance Models

The previous properties illustrate the difficulty of financial series modeling. Any satisfactory sta-
tistical model for daily returns must be able to capture the main stylized facts described in the
previous section. Of particular importance are the leptokurticity, the unpredictability of returns, and
the existence of positive autocorrelations in the squared and absolute returns. Classical formulations
(such as ARMA models) centered on the second-order structure are inappropriate. Indeed, the
second-order structure of most financial time series is close to that of white noise.

The fact that large absolute returns tend to be followed by large absolute returns (whatever
the sign of the price variations) is hardly compatible with the assumption of constant conditional
variance. This phenomenon is called conditional heteroscedasticity :

Var(εt | εt−1, εt−2, . . . ) �≡ const.

Conditional heteroscedasticity is perfectly compatible with stationarity (in the strict and second-
order senses), just as the existence of a nonconstant conditional mean is compatible with station-
arity. The GARCH processes studied in this book will amply illustrate this point.

The models introduced in the econometric literature to account for the very specific nature
of financial series (price variations or log-returns, interest rates, etc.) are generally written in the
multiplicative form

εt = σtηt (1.6)
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where (ηt ) and (σt ) are real processes such that:

(i) σt is measurable with respect to a σ -field, denoted Ft−1;

(ii) (ηt ) is an iid centered process with unit variance, ηt being independent of Ft−1 and σ(εu;
u < t);

(iii) σt > 0.

This formulation implies that the sign of the current price variation (that is, the sign of εt ) is that
of ηt , and is independent of past price variations. Moreover, if the first two conditional moments
of εt exist, they are given by

E(εt | Ft−1) = 0, E(ε2
t | Ft−1) = σ 2

t .

The random variable σt is called the volatility6 of εt .
It may also be noted that (under existence assumptions)

E(εt ) = E(σt )E(ηt ) = 0

and
Cov(εt , εt−h) = E(ηt )E(σtεt−h) = 0, ∀h> 0,

which makes (εt ) a weak white noise. The series of squares, on the other hand, generally have
nonzero autocovariances: (εt ) is thus not a strong white noise.

The kurtosis coefficient of εt , if it exists, is related to that of ηt , denoted κη, by

E(ε4
t )

{E(ε2
t )}2

= κη

[
1 + Var(σ 2

t )

{E(σ 2
t )}2

]
. (1.7)

This formula shows that the leptokurticity of financial time series can be taken into account in two
different ways: either by using a leptokurtic distribution for the iid sequence (ηt ), or by specifying
a process (σ 2

t ) with a great variability.
Different classes of models can be distinguished depending on the specification adopted for σt :

(i) Conditionally heteroscedastic (or GARCH-type) processes for which Ft−1 = σ(εs; s < t) is
the σ -field generated by the past of εt . The volatility is here a deterministic function of the
past of εt . Processes of this class differ by the choice of a specification for this function.
The standard GARCH models are characterized by a volatility specified as a linear function
of the past values of ε2

t . They will be studied in detail in Chapter 2.

(ii) Stochastic volatility processes7 for which Ft−1 is the σ -field generated by {vt , vt−1, . . .},
where (vt ) is a strong white noise and is independent of (ηt ). In these models, volatility is a
latent process. The most popular model in this class assumes that the process log σt follows
an AR(1) of the form

log σt = ω + φ log σt−1 + vt ,

where the noises (vt ) and (ηt ) are independent.

(iii) Switching-regime models for which σt = σ(�t ,Ft−1), where (�t ) is a latent (unobservable)
integer-valued process, independent of (ηt ). The state of the variable �t is here interpreted
as a regime and, conditionally on this state, the volatility of εt has a GARCH specification.
The process (�t ) is generally supposed to be a finite-state Markov chain. The models are
thus called Markov-switching models.

6 There is no general agreement concerning the definition of this concept in the literature. Volatility some-
times refers to a conditional standard deviation, and sometimes to a conditional variance.

7 Note, however, that the volatility is also a random variable in GARCH-type processes.
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1.5 Bibliographical Notes

The time series concepts presented in this chapter are the subject of numerous books. Two classical
references are Brockwell and Davis (1991) and Gouriéroux and Monfort (1995, 1996).

The assumption of iid Gaussian price variations has long been predominant in the finance
literature and goes back to the dissertation by Bachelier (1900), where a precursor of Brownian
motion can be found. This thesis, ignored for a long time until its rediscovery by Kolmogorov in
1931 (see Kahane, 1998), constitutes the historical source of the link between Brownian motion
and mathematical finance. Nonetheless, it relies on only a rough description of the behavior of
financial series. The stylized facts concerning these series can be attributed to Mandelbrot (1963)
and Fama (1965). Based on the analysis of many stock returns series, their studies showed the
leptokurticity, hence the non-Gaussianity, of marginal distributions, some temporal dependencies
and nonconstant volatilities. Since then, many empirical studies have confirmed these findings.
See, for instance, Taylor (2007) for a recent presentation of the stylized facts of financial times
series. In particular, the calendar effects are discussed in detail.

As noted by Shephard (2005), a precursor article on ARCH models is that of Rosenberg (1972).
This article shows that the decomposition (1.6) allows the leptokurticity of financial series to be
reproduced. It also proposes some volatility specifications which anticipate both the GARCH and
stochastic volatility models. However, the GARCH models to be studied in the next chapters are
not discussed in this article. The decomposition of the kurtosis coefficient in (1.7) can be found in
Clark (1973).

A number of surveys have been devoted to GARCH models. See, among others, Boller-
slev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), Pagan (1996), Palm (1996),
Shephard (1996), Kim, Shephard, and Chib (1998), Engle (2001, 2002b, 2004), Engle and Pat-
ton (2001), Diebold (2004), Bauwens, Laurent and Rombouts (2006) and Giraitis et al. (2006).
Moreover, the books by Gouriéroux (1997) and Xekalaki and Degiannakis (2009) are devoted to
GARCH and several books devote a chapter to GARCH: Mills (1993), Hamilton (1994), Franses
and van Dijk (2000), Gouriéroux and Jasiak (2001), Tsay (2002), Franke, Härdle and Hafner
(2004), McNeil, Frey and Embrechts (2005), Taylor (2007) and Andersen et al. (2009). See also
Mikosch (2001).

Although the focus of this book is on financial applications, it is worth mentioning that GARCH
models have been used in other areas. Time series exhibiting GARCH-type behavior have also
appeared, for example, in speech signals (Cohen, 2004; Cohen, 2006; Abramson and Cohen,
2008), daily and monthly temperature measurements (Tol, 1996; Campbell and Diebold, 2005;
Romilly, 2005; Huang, Shiu, and Lin, 2008), wind speeds (Ewing, Kruse, and Schroeder, 2006),
and atmospheric CO2 concentrations (Hoti, McAleer, and Chan, 2005; McAleer and Chan, 2006).

Most econometric software (for instance, GAUSS, R, RATS, SAS and SPSS) incorporates
routines that permit the estimation of GARCH models. Readers interested in the implementation
with Ox may refer to Laurent (2009).

Stochastic volatility models are not treated in this book. One may refer to the book by Taylor
(2007), and to the references therein. For switching regimes models, two recent references are the
monographs by Cappé, Moulines and Rydén (2005), and by Frühwirth-Schnatter (2006).

1.6 Exercises

1.1 (Stationarity, ARMA models, white noises)
Let (ηt ) denote an iid centered sequence with unit variance (and if necessary with a finite
fourth-order moment).

1. Do the following models admit a stationary solution? If yes, derive the expectation and
the autocorrelation function of this solution.
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(a) Xt = 1 + 0.5Xt−1 + ηt ;

(b) Xt = 1 + 2Xt−1 + ηt ;

(c) Xt = 1 + 0.5Xt−1 + ηt − 0.4ηt−1.

2. Identify the ARMA models compatible with the following recursive relations, where ρ(·)
denotes the autocorrelation function of some stationary process:

(a) ρ(h) = 0.4ρ(h − 1), for all h> 2;

(b) ρ(h) = 0, for all h> 3;

(c) ρ(h) = 0.2ρ(h − 2), for all h> 1.

3. Verify that the following processes are white noises and decide if they are weak or strong.

(a) εt = η2
t − 1;

(b) εt = ηtηt−1;

1.2 (A property of the sum of the sample autocorrelations)
Let

γ̂ (h) = γ̂ (−h) = 1

n

n−h∑
t=1

(Xt − Xn)(Xt+h − Xn), h = 0, . . . , n − 1,

denote the sample autocovariances of real observations X1, . . . , Xn. Set ρ̂(h) = ρ̂(−h) =
γ̂ (h)/γ̂ (0) for h = 0, . . . , n − 1. Show that

n−1∑
h=1

ρ̂(h) = −1

2
.

1.3 (It is impossible to decide whether a process is stationary from a path)
Show that the sequence

{
(−1)t

}
t=0,1,...

can be a realization of a nonstationary process. Show
that it can also be a realization of a stationary process. Comment on the consequences of this
result.

1.4 (Stationarity and ergodicity from a path)
Can the sequence 0, 1, 0, 1, . . . be a realization of a stationary process or of a stationary and
ergodic process? The definition of ergodicity can be found in Appendix A.1.

1.5 (A weak white noise which is not semi-strong)
Let (ηt ) denote an iid N(0, 1) sequence and let k be a positive integer. Set εt = ηtηt−1 . . . ηt−k .
Show that (εt ) is a weak white noise, but is not a strong white noise.

1.6 (Asymptotic variance of sample autocorrelations of a weak white noise)
Consider the white noise εt of Exercise 1.5. Compute limn→∞ nVar ρ̂(h) where h �= 0 and
ρ̂(·) denotes the sample autocorrelation function of ε1, . . . , εn. Compare this asymptotic
variance with that obtained from the usual Bartlett formula.

1.7 (ARMA representation of the square of a weak white noise)
Consider the white noise εt of Exercise 1.5. Show that ε2

t follows an ARMA process. Make
the ARMA representation explicit when k = 1.

1.8 (Asymptotic variance of sample autocorrelations of a weak white noise)
Repeat Exercise 1.6 for the weak white noise εt = ηt/ηt−k , where (ηt ) is an iid sequence
such that Eη4

t < ∞ and Eη−2
t < ∞, and k is a positive integer.
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Figure 1.6 Sample autocorrelations ρ̂(h) (h = 1, . . . , 36) of (a) the S&P 500 index from
January 3, 1979 to December 30, 2001, and (b) the squared index. The interval between the
dashed lines (±1.96/

√
n, where n = 5804 is the sample length) should contain approximately

95% of a strong white noise.

1.9 (Stationary solutions of an AR(1))
Let (ηt )t∈Z be an iid centered sequence with variance σ 2 > 0, and let a �= 0. Consider the
AR(1) equation

Xt − aXt−1 = ηt , t ∈ Z. (1.8)

1. Show that for |a| < 1, the infinite sum

Xt =
∞∑

k=0

akηt−k

converges in quadratic mean and almost surely, and that it is the unique stationary solution
of (1.8).

2. For |a| = 1, show that no stationary solution exists.

3. For |a| > 1, show that

Xt = −
∞∑

k=1

1

ak
ηt+k

is the unique stationary solution of (1.8).

4. For |a| > 1, show that the causal representation

Xt − 1

a
Xt−1 = εt , t ∈ Z, (1.9)

holds, where (εt )t∈Z is a white noise.

1.10 (Is the S&P 500 a white noise?)
Figure 1.6 displays the correlogram of the S&P 500 returns from January 3, 1979 to
December 30, 2001, as well as the correlogram of the squared returns. Is it reasonable to
think that this index is a strong white noise or a weak white noise?

1.11 (Asymptotic covariance of sample autocovariances)
Justify the equivalence between (B.18) and (B.14) in the proof of the generalized Bartlett
formula of Appendix B.2.
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1.12 (Asymptotic independence between the ρ̂(h) for a noise)
Simplify the generalized Bartlett formulas (B.14) and (B.15) when X = ε is a pure white
noise.
In an autocorrelogram, consider the random number M of sample autocorrelations falling
outside the significance region (at the level 95%, say), among the first m autocorrelations.
How can the previous result be used to evaluate the variance of this number when the observed
process is a white noise (satisfying the assumptions allowing (B.15) to be used)?

1.13 (An incorrect interpretation of autocorrelograms)
Some practitioners tend to be satisfied with an estimated model only if all sample autocorre-
lations fall within the 95% significance bands. Show, using Exercise 1.12, that based on 20
autocorrelations, say, this approach leads to wrongly rejecting a white noise with a very high
probability.

1.14 (Computation of partial autocorrelations)
Use the algorithm in (B.7) – (B.9) to compute rX(1), rX(2) and rX(3) as a function of ρX(1),
ρX(2) and ρX(3).

1.15 (Empirical application)
Download from http://fr.biz.yahoo.com//bourse/accueil.html for instance, a
stock index such as the CAC 40. Draw the series of closing prices, the series of returns, the
autocorrelation function of the returns, and that of the squared returns. Comment on these
graphs.




