
1
Getting Started

This chapter serves as a quick introduction to the tools bundled with the SDK. It also shows you basic
development steps that include coding, UI design, and debugging. You do not have to understand
everything in this chapter as we will go over these concepts throughout the book. What you need to
get from this chapter is a feeling of iPhone development using XCode.

We start with some basics of the XCode IDE in Section 1.1. Next, Section 1.2 talks about the UI
design tool Interface Builder. After that, we show you how to use the built-in debugger in XCode in
Section 1.3. Next, Section 1.4 shows you different sources of information for obtaining additional
help. Finally, we summarize the chapter in Section 1.5.

1.1 SDK and IDE Basics

In this section, we walk you through the process of creating your first iPhone application. But first,
you need to obtain the iPhone SDK and install it on your Mac.

1.1.1 Obtaining and installing the SDK

Obtaining and installing the iPhone SDK is easy; just follow these steps:

1. Get your iPhone developer Apple ID and password from:
http://developer.apple.com/iphone/

2. Download the latest iPhone SDK for iPhone OS from the site mentioned above.

3. Install the iPhone SDK on your Intel-based Mac.

Now, you’re ready to create your first project – read on!

CO
PYRIG

HTED
 M

ATERIA
L

2 iPhone SDK 3 Programming

1.1.2 Creating a project

Locate XCode and launch it. You can use Spotlight to find it or you can navigate to
/Developer/Applications/XCode. XCode is the central application for writing, designing,
debugging, and deploying your iPhone applications. You will use it a lot, so go ahead and add it
to the Dock.

From XCode, select File->New Project. You should see a window, similar to the one shown in
Figure 1.1, asking you for the type of project you want to create. Choose the default and create a
window-based application. This is the most generic type of iPhone project and the one that can be
customized for different needs.

Figure 1.1 Choosing window-based application in the project creation process.

Click on Choose... and enter the name of your project (here, we’re using My Project) and hit
Save. A new directory is created with the name you entered, and several files are generated for you.
You should now see the newly created iPhone project as in Figure 1.2.

Getting Started 3

Figure 1.2 A newly created iPhone project in XCode.

1.1.3 Familiarizing yourself with the IDE

As you can see from Figure 1.2, the main window is divided into several areas. On the top, you
will find the Toolbar (Figure 1.3). The Toolbar provides quick access to common tasks. It is fully
configurable; you can add and remove tasks as you want. To customize the Toolbar, Control-click it
and choose Customize Toolbar.... There, you can drag your favorite task on the Toolbar. Hit
Done when you’re finished. To remove an item, Control-click on it and choose Remove Item.

Figure 1.3 The XCode Toolbar.

4 iPhone SDK 3 Programming

On the left-hand side, you’ll see the Groups & Files list (Figure 1.4).

Figure 1.4 The Groups & Files list in XCode.

This list is used to organize the source code, frameworks, libraries, executables, and other types of
files in your project.

The list shows several files and groups. Groups can contain other groups and files. You can delete a
group as well as create a new one. The group indicated by the blue icon whose name is the same as
the name you’ve chosen as the project name is a static group. Underneath it, you see all your headers,
implementations, resources (images, audio files, etc.), and other related files. The folder-like yellow
groups act conceptually as containers. You can have containers inside other containers and all files
inside these containers live in the same directory on the disk. The hierarchy only helps you organize
things. You have full freedom to organize your project’s layout as you like. The compiler will pick
up the resources, headers, and implementation files when it builds your application.

The other kind of groups that are listed below the project group are called smart groups. There
are two types of smart groups: 1) built-in smart groups, and 2) custom smart groups. The content
of the built-in smart groups cannot be customized. Examples of these groups include executables,
bookmarks, errors/warnings, and targets. Customized smart groups are shown in purple, and two
predefined groups are created for you when you create a new project.

Getting Started 5

Figure 1.5 The Details view with the text editor view.

Figure 1.5 shows the Details view and the text editor beneath it.

Selecting an item in the Groups & Files list will result in its details being shown in the Details
view. You can go to a full-editor window using Command-shift-E.

1.1.4 Looking closely at the generated code

Expand the Classes and Other Sources groups. You will notice several files that live underneath
these two groups. Click on the main.m file and expand to a full-editor view.

The main.m file looks very similar to a C file with a main() function. As we will see later in this
book, all that main() does is prepare for memory management and launch the application.

Click on the My_ProjectAppDelegate.h file under the Classes group. You will notice that
the editor changes its content. This file contains the declaration of the application delegate class.
Every application that runs on the iPhone OS has a delegate object that handles critical phases of its
lifecycle.

Click on My_ProjectAppDelegate.m. This file with the .m extension is the counterpart of the
previous .h file. In it, you see the actual implementation of the application delegate class. Two
methods of this class are already implemented for you. The applicationDidFinishLaunching:
method is one of those methods that handles a particular phase of the application lifecycle. The other

6 iPhone SDK 3 Programming

method, dealloc, is a method where memory used by this object is released. In iPhone OS, you
manage the allocation and freeing of memory as there is no garbage collection. Memory management
is crucial in iPhone development, and mastering it is very important. The first chapters are dedicated
to teaching you exactly that – and much more.

The generated files and resources are adequate for starting the application. To launch the application,
click on Build and Go in the Toolbar or press the Command-Enter key combination. You’ll notice
that the application starts in the Simulator and it only shows a white screen with the status bar on
top. Not very useful, but it works!

1.2 Creating Interfaces

To be useful, an iPhone application needs to utilize the amazing set of UI elements available from
the SDK. Our generated iPhone application contains a single UI element: a window.

All iPhone apps have windows (usually one.) A window is a specialized view that is used to host
other views. A view is a rectangle piece of real-estate on the 320 × 480 iPhone screen. You can
draw in a view, animate a view by flipping it, and you can receive multi-touch events on it. In iPhone
development, most of your work goes towards creating views, managing their content, and animating
their appearance and disappearance.

Views are arranged into a hierarchy that takes the shape of a tree. A tree has a root element and zero
or more child elements. In iPhone OS, the window is the root element and it contains several child
views. These child views can in turn contain other child views and so on and so forth.

To generate views and manage their hierarchy, you can use both Interface Builder (IB) and Objective-
C code. IB is an application that comes with the SDK that allows you to graphically build your view
and save it to a file. This file is then loaded at run-time and the views stored within it come to life on
the iPhone screen.

As we mentioned before, you can also use Objective-C code to build the views and manage their
hierarchy. Using code is preferred over using IB for the following reasons. First, as beginner, you
need to understand all aspects of the views and their hierarchy. Using a graphical tool, although it
simplifies the process, does hide important aspects of the process. Second, in advanced projects,
your views’ layouts are not static and change depending on the data. Only code will allow you to
manage this situation. Finally, IB does not support every UI element all the time. Therefore, you will
sometimes need to go in there and generate the views yourself.

The following section teaches you how to use IB. However, for the most part in this book, Objective-
C code is used to illustrate the UI concepts. For extensive coverage of Interface Builder, please see
Appendix F.

Getting Started 7

1.2.1 Interface Builder

The project has a basic window resource file. This file can be found under the Resources group.
Expand the Resources group and locate the file MainWindow.xib. This file contains the main
window of the application. This file is an .xib file that stores the serialized objects in the interface.
When the project is built, this file is converted to the more optimized format .nib and loaded into
memory when one or more of the UI components stored in it are requested.

Double-click on the MainWindow.xib file to launch IB. IB starts by opening four windows. The first
window shows the main window stored in the file. The second window shows the document window
listing the different objects stored in the file. The third window is the Library window containing all
the UI objects that you can add to the file. The fourth and final window is the Inspector window with
its four panes.

The Inspector window shows the attributes of the currently selected object. If you click on an object,
the Inspector windows shows you its attributes distributed among four different panes. Each pane
has several sections. You can change these attributes (such as color, position, and connections) and
the changes will propagate to your project’s user interface.

The main window of the application is white; let’s change it to yellow. Click on the window object
in the document window. In the Inspector window, make sure that the left-most pane is selected. In
the View section of this pane, change the background color to yellow as shown in Figure 1.6.

Figure 1.6 The attributes pane in the Inspector window of Interface Builder.

8 iPhone SDK 3 Programming

Go to XCode and run the application. Notice how the main window of the application has changed
to yellow. It is important to keep the project open in XCode while working with IB. XCode and IB
communicate well when both applications are open.

To build a user interface, you start with a view and add to it subviews of different types. You are
encouraged to store separate views in separate .xib files. This is important as referencing one object
in a file will result in loading all objects to main memory. Let’s go ahead and add a label view to our
window. This label will hold the static text “Hello iPhone.”

A label is one of the many UI components available for you. These components are listed under
several groups in the Library. Locate the Library window and click on Inputs & Values as
shown in Figure 1.7.

Figure 1.7 The Library window of Interface Builder.

Click on the Label item and drag it onto the middle of the window. Expand the dimensions of the
label as shown in Figure1.8.

When the label is selected, the Inspector window changes to reflect the attributes of the label.
Figure 1.9 shows a portion of the attributes of a label in the Inspector window. You can change
these attributes and observe the effect they have on the object instantaneously.

The label’s text is left justified; let’s make it center. In the Layout item of the attributes, click on
the icon indicating center. Notice how the label text becomes centered. The text of the label can be
changed in the Text item. Change Label to Hello iPhone. Go to XCode and hit Build and Go.
You will notice the window showing Hello iPhone in the middle.

Getting Started 9

Figure 1.8 Adding a label view to a window in IB.

Figure 1.9 Attributes of a label in the Inspector window.

10 iPhone SDK 3 Programming

The text of the label is small, so let’s make it bigger. Click on the Text item and choose a text size of
48 points. Go to XCode and hit Build and Go. Figure 1.10 shows a screenshot of the completed
Hello iPhone application.

Figure 1.10 A screenshot of the completed Hello iPhone application.

Congratulations on your first successful iPhone application!

You deliver the product to the client and he is happy. However, he wants the application to have more
interaction with the user. He asks you to revise the application by adding a button that the user can
tap on to change the text displayed in the label.

Open the MainWindow.xib document if it is not already open. Locate the Round Rect Button

item under Items & Values in the Library window. Drag and drop it under the label in the
main window. Change the button’s title by entering “Change” in the Title field found in the fourth
section of the attributes window. The main window should look like the one shown in Figure 1.11.

Now that we have a button, we want to have a method (a function) in our code to get executed when
the user touches the button. We can achieve that by adding a connection between the button’s touch
event and our method.

Getting Started 11

Figure 1.11 The main window after adding a new button.

Click on the button so that it becomes selected. Click on the second pane in the Inspector window.
This pane shows the connections between an object and our code. The pane should look like the one
in Figure 1.12.

Figure 1.12 The connections pane of our new button.

12 iPhone SDK 3 Programming

Now, we want to add a connection between the Touch Down event and a method we call button-
Tapped. Let’s first add this method in My_ProjectAppDelegate class.

In the My_ProjectAppDelegate.h file, add the following before @end.

-(IBAction)buttonTapped;

In the My_ProjectAppDelegate.mfile, add the buttonTappedmethod body. The My_Project-
AppDelegate.m file should look something like the one in Listing 1.1.

Listing 1.1 The application delegate class after adding a new method.

#import "My_ProjectAppDelegate.h"
@implementation My_ProjectAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:(UIApplication *)application {

// Override point for customization after application launch
[window makeKeyAndVisible];

}

-(IBAction)buttonTapped{
UILabel *label = (UILabel*)[window viewWithTag:55];
if([label.text isEqualToString:@"Hello iPhone"])

label.text = @"Hello World";
else

label.text = @"Hello iPhone";
}

- (void)dealloc {
[window release];
[super dealloc];

}
@end

The buttonTapped method simply obtains a reference to the label and changes its text to either
“Hello World” or “Hello iPhone”. You don’t need to understand this code at this stage. All you need
to understand is that the label on the screen is encapsulated by the UILabel class and it’s tagged
with the number 55.

Now, let’s switch to IB and add a tag to the label so that it can be retrieved from the code. Click on
the label and in the Inspector window, choose the first pane. In the second section, enter 55 for the
Tag field (fourth item.)

We still need to perform one last step. We need to connect the touch event with the method we
just created. Click on the button and choose the connections pane (second pane). Control-click or
right-click on the circle on the right-hand side of Touch Down event and drag it on top of the
My_ProjectAppDelegate object in the Document window and let go as shown in Figure 1.13.

Getting Started 13

Figure 1.13 Making a connection between an event and a method in another object.

When you release the mouse, IB shows you potential methods (actions) that you can connect this
event to. Right now we only have one action and that action is buttonTapped. Select that action
and you’ll notice that a connection has been made as shown in Figure 1.14.

Figure 1.14 A connection between a touch event and an action.

Now, switch to XCode and hit Build and Go. You’ll notice that tapping on the button changes the
text value of the label.

14 iPhone SDK 3 Programming

1.3 Using the Debugger

During the development of your applications, often things go wrong and the feature that you’ve just
added is not functioning properly. At these moments, the built-in debugger becomes invaluable.

Let’s introduce a bug into our code. Go to My_ProjectAppDelegate.m file and change the tag’s
value used to obtain the label from 55 to 54, then Build and Go. Now, tapping the button has no
effect on the label’s text.

First, you want to make sure that the buttonTapped method gets called. In XCode, click in the left
margin of the first line in the buttonTapped method as shown in Figure 1.15. After you click there,
a breakpoint (shown in blue) is added.

Figure 1.15 Adding a breakpoint in the buttonTapped method.

Click Build and Go to debug the application. When the application launches, tap on the button.
You’ll notice that the execution hits the breakpoint as shown in Figure 1.16. At least we know that
we made our connection correctly.

Figure 1.16 Hitting a breakpoint in the buttonTapped method.

Let’s step over the statement that obtains the label from the window. Click on the Step Over button
located beneath the Toolbar as shown in Figure 1.17.

After stepping over the statement, we need to inspect the value obtained. Hover the mouse over
label in the statement just executed as shown in Figure 1.18. A tip appears showing its value.
Notice that the value is 0x0. In Objective-C, this value is called nil and means that no object is
stored in this variable. After inspecting the tag value and going back-and-forth between XCode and
IB, we find the problem, fix it, remove the breakpoint by clicking on it to turn it off, and hit Build
and Go.

Getting Started 15

Figure 1.17 Step over a function or a method call button.

Figure 1.18 Inspecting the value of the label after obtaining it from the window.

1.4 Getting More Information

There are plenty of sources for information on the SDK. These sources include the following:

• Developer Documentation. The best locally stored source of information is the Developer
Documentation. In XCode, select Help->Documentation. The documentation window
appears as shown in Figure 1.19. You can search using the search box on the left-hand corner
for any defined type in the SDK. The documentation is hyper-linked and you can go back-
and-forth between different pieces of information. It’s easy to use and it will become your
friend.

• Developer Documentation from within XCode. If you’re in XCode and you need more
information about something, Option-double-click it and the Developer Documentation opens
with more information.

• Other help from within XCode. If you’re in XCode and you need to get the declaration and
possible implementation of a given token (e.g., class, tag, variable, etc.), Command-double-
click it. If there are multiple pieces of information, or disambiguation is needed, a list of items
to choose from will be shown.

• iPhone Dev Center. The center is located at http://developer.apple.com/iphone/.
The iPhone Dev Center has a large collection of technical resources and sample code to help
you master the latest iPhone technologies.

• Apple’s Fora. You can start with the site at https://devforums.apple.com/.

• The Web. There is plenty of information on the web. Just enter a relevant query and let Google
do its magic!

16 iPhone SDK 3 Programming

Figure 1.19 The Developer Documentation in XCode.

1.5 Summary

This chapter provided a gentle introduction to the world of iPhone development. We showed you
in Section 1.1 how to download and install the iPhone SDK. After that, we iterated through the
development of an iPhone application and showed you how to use Interface Builder to design user
interfaces. Next, Section 1.3 discussed how to debug an iPhone application using the built-in visual
debugger in XCode. You were also exposed to different sources for obtaining further help on the
tools and the SDK in general in Section 1.4.

The rest of the book will detail all aspects of iPhone development. However, from now on, since we
want to teach you everything you need, we will stop using Interface Builder and show you how to
build your UI using code. This will help you gain a solid understanding of the process. You can, of
course, mix and match with Interface Builder as you wish.

Getting Started 17

The next two chapters cover the Objective-C language and the coding environment that you will be
working with: Cocoa. We hope you’re as excited as we are!

Problems

(1) Check out the UILabel.h header file and read about the UILabel class in the documentation.

(2) What’s an IBOutlet and IBAction? Use Command-double-click to see their definitions in
the UINibDeclarations.h header file.

(3) Explore the XCode IDE by reading the XCode Workspace Guide under the Help menu of
the XCode application.

(4) Explore Interface Builder by choosing Interface Builder Help under the Help menu of
the Interface Builder application.

