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1
Introduction

1.1 Coded Modulation
The main challenge in the design of communication systems is to reliably transmit digital information
(very often, bits generated by the source) over a medium which we call the communication channel or
simply the channel. This is done by mapping a sequence of Nb bits i = [i[1], . . . , i[Nb]] to a sequence
of Ns symbols x = [x[1], . . . ,x[Ns]]. These symbols are then used to vary (modulate) parameters of
the continuous-time waveforms (such as amplitude, phase, and/or frequency), which are sent over the
channel every Ts seconds, i.e., at a symbol rate Rs = 1/Ts. The transmission rate of the system is thus
equal to

R � Nb

NsTs
= Rs

Nb

Ns

[
bit
s

]
, (1.1)

where the bandwidth occupied by the waveforms is directly proportional to the symbol rate Rs. Depend-
ing on the channel and the frequency used to carry the information, the waveforms may be electromag-
netic, acoustic, optical, etc.

Throughout this book we will make abstraction of the actual waveforms and instead, consider a
discrete-time model where the sequence of symbols is transmitted through the channel resulting in a
sequence of received symbols y = [y[1], . . . ,y[Ns]]. In this discrete-time model, both the transmitted
and received symbol at each time instant are N -dimensional column vectors. We also assume that linear
modulation is used, that the transmitted waveforms satisfy the Nyquist condition, and that the channel
is memoryless. Therefore, assuming perfect time/frequency synchronization, it is enough to model the
relationship between the transmitted and received signals at time n, i.e.,

y[n] = h[n]x[n] + z[n]. (1.2)

In (1.2), we use h[n] to model the channel attenuation (gain) and z[n] to model an unknown interfering
signal (most often the noise). Using this model, we analyze the transmission rate (also known as spectral
efficiency):

R � Nb

Ns

[
bit

symbol

]
, (1.3)

which is independent of Rs, thus allowing us to make abstraction of the bandwidth of the waveforms
used for transmission. Clearly, R and R are related via

R = RsR

[
bit
s

]
. (1.4)
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2 Bit-Interleaved Coded Modulation

The process of mapping the information bits i to the symbols x is known as coding and x are called
codewords. We will often relate to well-known results stemming from the works of Shannon [1, 2] which
defined the fundamental limits for reliable communication over the channel. Modeling the transmitted
and received symbols x[n] and y[n] as random vectorsX and Y with distributions pX(x) and pY (y),
the rate R is upper bounded by the mutual information (MI) I(X;Y ). As long as R < I(X;Y ), the
probability of decoding error (i.e., choosing the wrong information sequence) can be made arbitrar-
ily small when Nb goes to infinity. The maximum achievable rate C = maxpX (x)I(X;Y ), called the
channel capacity, is obtained by maximizing over the distribution of the symbols X , and it represents
the ultimate transmission rate for the channel. In the case when z[n] is modeled as a Gaussian vector, the
probability density function (PDF) pX(x) that maximizes the MI is also Gaussian, which is one of
the most popular results establishing limits for a reliable transmission.

The achievability proof is typically based on random-coding arguments, where, to create the 2Nb code-
words which form the codebook X , the symbols x[n] are generated from the distribution pX(x). At the
receiver’s side, the decoder decides in favor of the most likely sequence from the codebook, i.e., it uses
the maximum likelihood (ML) decoding rule:

x̂ = argmax
x∈X

{pY |X(y|x)}. (1.5)

When Nb grows, however, the suggested encoding and decoding cannot be used as practical means for
the construction of the coding scheme. First, because storing the 2Nb codewords x results in excessive
memory requirements, and second, because an exhaustive enumeration over 2Nb codewords in the set
X in (1.5) would be prohibitively complex. In practice, the codebook X is not randomly generated, but
instead, obtained using an appropriately defined deterministic algorithm taking information bits as input.
The structure of the code should simplify the decoding but also the encoding, i.e., the transmitter can
generate the codewords on the fly (the codewords do not need to be stored).

To make the encoding and decoding practical, some “structure” has to be imposed on the codewords.
The first constraint typically imposed is that the transmitted symbols are taken from a discrete predefined
set S, called a constellation. Moreover, the structure of the code should also simplify the decoding, as
only the codewords complying with the constraints of the imposed structure are to be considered.

Consider the simple case of N = 1 (i.e., X is in fact a scalar), when the constellation is given by
S = {−1, 1}, i.e., a 2-ary pulse amplitude modulation (PAM) (2PAM) constellation, and when the
received symbol is corrupted by additive white Gaussian noise (AWGN), i.e., Y =X +Z where Z
is a zero-mean Gaussian random variable with variance σ2

Z . We show in Fig. 1.1 the MI for this case
and compare it with the capacity which relies on the optimization of the distribution ofX . This figure
indicates that for R < 0.5 bit/symbol, both values are practically identical. This allows us to focus on
the design of binary codes with rate R ≈ I(X;Y ) that can operate reliably without bothering about
the theoretical suboptimality of the chosen constellation. This has been in fact the focus of research
for many years, resulting in various binary codes being developed and used in practice. Initially,
convolutional codes (CCs) received quite a lot of attention, but more recently, the focus has been on
“capacity-approaching” codes such as turbo codes (TCs) or low-density parity-check (LDPC) codes.
Their performance is deemed to be very “close” to the limits defined by the MI, even though the
decoding does not rely on the ML rule in (1.5).

One particular problem becomes evident when analyzing Fig 1.1: the MI curve for 2PAM saturates at
log2|S| = 1 bit/symbol, and thus, it is impossible to transmit at rates R > 1 bit/symbol. From (1.4) and
R ≤ 1 bit/symbol, we conclude that if we want to increase the transmission rate R, we need to increase
the rate Rs, and therefore, the transmission bandwidth. This is usually called bandwidth expansion and
might be unacceptable in many cases, including modern wireless communication systems with stringent
constraints on the available frequency bands.

The solution to the problem of increasing the transmission rate R without bandwidth expansion is
to use a high-order constellation S and move the upper bound on R from R ≤ 1 bit/symbol to R ≤
log2|S| = m bit/symbol. Combining coding with nonbinary modulation (i.e., high-order constellations)
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Figure 1.1 Channel capacity C and the MI for 2PAM

is often referred to as coded modulation (CM), to emphasize that not only coding but also the mapping
from the code bits to the constellation symbols is important. The core problem in CM design is to choose
the appropriate coding scheme that generates symbols from the constellation S and results in reliable
transmission at rate R > 1 bit/symbol. On the practical side, we also need a CM which is easy to imple-
ment and which—because of the ever-increasing importance of wireless communications—allows us to
adjust the coding rate R to the channel state, usually known as adaptive modulation and coding (AMC).

A well-known CM is the so-called trellis-coded modulation (TCM), where convolutional encoders
(CENCs) are carefully combined with a high-order constellation S. However, in the past decades, a
new CM became prevalent and is the focus of this work: bit-interleaved coded modulation (BICM).
The key component in BICM is a (suboptimal) two-step decoding process. First, logarithmic likelihood
ratios (LLRs, also known as L-values) are calculated, and then a soft-input binary decoder is used. In the
next section, we give a brief outline of the historical developments in the area of CM, with a particular
emphasis on BICM.

1.2 The Road Toward BICM
The area of CM has been explored for many years. In what follows, we show some of the milestones in
this area, which culminated with the introduction of BICM. In Fig. 1.2, we show a timeline of the CM
developments, with emphasis on BICM.

The early works on CM in the 1970s include those by de Buda [27, 28], Massey [29], Miyakawa et al.
[30], Anderson and Taylor [31], and Aulin [32]. The first breakthroughs for coding for R > 1 bit/symbol
came with Ungerboeck and Csajka’s TCM [5, 6, 33, 34] and Imai and Hirakawa’s multilevel coding
(MLC) [9, 35]. For a detailed historical overview of the early works on CM, we refer the reader to [36,
Section 1.2] and [37, pp. 952–953]. Also, good summaries of the efforts made over the years to approach
Shannon’s limit can be found in [38, 39].

BICM’s birth is attributed to the paper by Zehavi [10]. More particularly, Zehavi compared BICM
based on CCs to TCM and showed that while BICM loses to TCM in terms of Euclidean distance (ED),
it wins in terms of diversity. This fundamental observation spurred interest in BICM.

BICM was then analyzed in [17] by Caire et al., where achievable rates for BICM were shown to
be very close to those reached by CM, provided that a Gray labeling was used. Gray codes were then
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Figure 1.2 Timeline of the CM developments with emphasis on BICM

conjectured to be the optimal binary labeling for BICM. These information-theoretic arguments were
important because at the time [10] appeared, capacity-approaching codes (TCs) invented by Berrou
et al. [7] were already being used together with binary modulation. Furthermore, CM inspired by the
turbo principle were being devised at that time, in particular, the so-called turbo trellis-coded modula-
tion (TTCM) [12, 13, 40–43]. In TTCM, coding and modulation were tightly coupled, and thus, changing
the targeted spectral efficiency typically required a change in the CM design.

BICM appeared then as an alternative to “capacity-approaching” CM such as TTCM, where, to elim-
inate the rigidity of such systems, a small decrease in terms of achievable rate was an acceptable price
to pay. In 1994, the combination of a capacity-approaching TC using the BICM paradigm was proposed
for the first time [11]. This combination is based on a fairly simple implementation and turned out to
perform very well, as later shown, e.g., in [44].

In 2003, Le Goff [45] analyzed the relationship between achievable rates and the performance of
practical coding schemes. It was argued that the gap between the CM and BICM rates translates into
performance differences between TCM and BICM when both are based on “capacity-approaching”
codes. However, these differences are in most cases so small that it may be difficult to relate them
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to the performance loss of different practical coding schemes whose “strengths” are difficult to com-
pare. For example, the results in [45, Fig. 6], show that the TTCM of [13, 40] outperforms BICM for
R = 2 bit/symbol (by a fraction of a decibel), however, for R = 3 bit/symbol BICM outperforms the
TTCM of [42]. This comparison illustrates well the fact that using TCM based on a concatenated coding
does not guarantee the “strength” of the resulting system. In fact, this example highlights the flexibility
of BICM whose coding rate was chosen arbitrarily without any implementation hassle, in contrast to
changing the rate for TCM, which usually requires a change of the encoding structure.

Recognizing the bit-to-symbol mapper as an encoder, BICM was later cast into the framework of
serially concatenated codes in [14–16]. This led to the introduction of bit-interleaved coded modulation
with iterative demapping (BICM-ID) studied, e.g., in [46–50]. From the very start, the key role of the
binary labeling for BICM-ID was recognized and extensively studied in the literature; for details about
this, we refer the reader to [47, 48, 51–56] and references therein.

An information-theoretic analysis of BICM1 was always at the forefront of analytical developments.
One of the most important information-theoretic papers in this area is [17], where a formal model to
analyze the rates achievable in BICM was proposed. Later, Martinez et al. [20] recognized BICM as
a mismatched decoder and the model of [17] was refined. It was also shown in [20] that in terms of
achievable rates, the interleaver plays no role, and that the key element is the suboptimal (mismatched)
decoder. This observation is closely linked to the results in [22, 23] where it is shown that when BICM
with CCs is used in nonfading channels, a better error probability can be obtained if the interleaver is
completely removed from the transceivers. BICM in the wideband regime was first studied in [18, 19, 57],
and later generalized to multidimensional constellations and arbitrary input distributions in [25, 26]. The
long-standing Gray code conjecture for BICM was recently proven for one-dimensional constellations
in [24].

1.3 Why Everybody Loves BICM
Striving for a simple and flexible CM, we may need to trade off its performance. Indeed, this is what
happens in practice. BICM is most often the answer to a simplicity and flexibility requirement, while
the performance loss with respect to the potentially optimal/better CM are moderate, or at least accept-
able. In our view, the main reasons that make BICM systems particularly appealing and explain their
omnipresence in practical communication systems are the following.

1. Flexibility: Tributary to the bit-level operation, BICM provides a high design flexibility. Unlike other
CM (e.g., TCM or TTCM) where owing to the well-structured relationship between the encoder and
the modulator, the encoder and coding rate must be carefully matched to the constellation, BICM
allows the designer to choose the constellation and the encoder independently. This is why BICM is
usually considered to be a pragmatic approach to CM. This “unstructured” transmission characteristic
of BICM yields a flexibility so high that it allows for a straightforward implementation of the so-called
irregular modulation (where modulation varies within the transmitted block of symbols) [58] or irreg-
ular coding (where the coding/puncturing may vary within the block of bits) [47]. The flexibility is
particularly important in wireless communications where the stream of data must be matched to the
structures imposed by a multiuser communication context (such as slots and frames) when transmit-
ting over variable channel conditions. The flexibility of BICM can be hardly beaten as all operations
are done at the bit level. For example, to get the most out of a varying channel, puncturing, rate match-
ing, bit padding, and other operations typical in wireless standards can be done with arbitrary (up to
a bit level) granularity. Performing similar operations in other CM paradigms is less straightforward.

1 Throughout this book, we use the acronym BICM to refer to noniterative BICM.
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2. Robustness: As BICM uses one decoder, only one parameter (the rate) is to be adjusted, which makes
AMC not only easy to implement but also more robust to changes in the channel variations. This may
be contrasted with MLC, where multiple decoders are needed (which may or may not collaborate with
each other) and their respective rates have to be jointly adjusted to the channel conditions. Although
BICM and MLC may be ultimately fit into the same framework (see [59] for details), we will maintain
their conventional separation and consider MLC as a different CM paradigm. However, many elements
of the analysis we propose in this book are applicable also to MLC, particularly those related to the
analysis of the reliability metrics for the code bits.

3. Negligible Losses in Scalar Channels: The appearance of “capacity-approaching” binary codes
made the difference between optimal CM systems and BICM negligible for most practical purposes,
when transmitting over scalar channels. The eventual differences of fractions of a decibel (if any) are
not very relevant from a system-level perspective, and in most cases, can be considered a small price
to pay compared to the advantages BICM systems offer.

4. Increased Diversity: When transmitting over fading channels, and thanks to the interleaving, the
L-values used in the decision process are calculated from symbols affected by independent channel
realizations, which increases the so-called transmission diversity. This particular observation (first
made in [10]) spurred the initial interest in BICM. While this property is often evoked as the raison
d’être of BICM, we note that communication systems such as third-generation partnership project
(3GPP) or long-term evolution (LTE) are designed to operate with packetized transmission. As often
the packets are much shorter than the channel coherence time, the time diversity is limited. In multicar-
rier transmission such as orthogonal frequency-divisionmultiplexing (OFDM), the frequency diversity
depends on the frequency selectivity of the channel and may be easier to exploit. Nevertheless, with the
appearance of capacity-approaching codes such as TCs or LDPC codes, the diversity is less relevant
than other parameters of the channel, such as the capacity, which these codes approach closely.

Nothing comes for free, and there are some drawbacks to using BICM:

1. Suboptimality: Owing to the bitwise processing, the BICM decoder is suboptimal. From an
information-theoretic point of view, this translates into a decrease in achievable rates when
compared to those obtained using an optimal decoder. These losses are small for transmission over
scalar channels where a constellation with a Gray labeling is used. On the other hand, the losses
become more important in multiple-input multiple-output (MIMO) channels, where the effective
bit-to-symbol mapping is affected by the random channel variations. In these cases, the use of
nonbinary codes might offer advantage over BICM. When using “weak” codes such as CCs, the
suboptimality is observed also in nonfading scalar channels but may be remedied to some extent by
appropriate modification (or even removal) of the interleaver.

2. Long Interleavers/Delays: To ensure independence of the L-values which the demapper calculates
and passes to the channel decoder, relatively long interleavers might be required. This, in turn, causes
a mandatory packet-based decoding, i.e., no symbol-after-symbol decoding can be performed. This
fact, however, is less important with the presence of “capacity-approaching” codes, which rely on
iterative decoding, and thus, inherently require packet-based processing.

1.4 Outline of the Contents
This book provides an exhaustive analysis of BICM, paying special attention to those properties that are
of particular interest when compared to other CM paradigm. The book is therefore intended for those
interested in theoretical aspects of CM transmission in general, and BICM in particular.

In order to give an overview of the chapters in this book, we consider the simple model of BICM
transmission in Fig. 1.3. A block of binary data of length Nb is encoded by a binary encoder (ENC) which
produces binary codewords of length Nc. The codewords are interleaved at bit level, and the resulting
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Figure 1.3 The BICM encoder is formed by a serial concatenation of a binary encoder (ENC), a
bit-level interleaver (Π), and a memoryless mapper (Φ). The BICM decoder is based on a demapper
(Θ) that computes L-values, a deinterleaver, and a channel decoder (DEC)

bitstream is separated into groups of m bits that are mapped to symbols of an M -ary constellation S,
where M = 2m. The symbols are transmitted over the channel whose outcome is used at the receiver
to calculate a posteriori probabilities for the transmitted bits, which are then used for decoding. Instead
of probabilities, reliability metrics are most often expressed in the form of an LLR, also known as an
L-value. These L-values are then deinterleaved and passed to the channel decoder.

• Chapter 2 introduces the basic definitions, concepts, and notational convention used throughout the
book. CM transmission is discussed, as well as channel models, constellations, and binary labelings
used in the book. A brief summary of CCs and TCs is also presented.

• Chapter 3 defines the L-values and their approximations/simplifications. The well-known maximum a
posteriori (MAP) and ML decoding strategies are compared against the (suboptimal) BICM decoder
shown in Fig. 1.3.

• Chapter 4 takes a closer look at the theoretical limits of CM with special attention paid to BICM.
Achievable rates for BICM as a function of the constellation shape, the input distribution, and the
binary labeling are studied.

• Chapter 5 characterizes the BICM channel in Fig. 1.3 as a binary-input real-output entity focusing on
the probabilistic models of the L-values. PDFs of the L-values for one- and two-dimensional constel-
lations are developed.

• Chapter 6 explains how to evaluate the performance of transmission without coding as well as differ-
ent methods that can be used to approximate the performance of the encoder–decoder pair in BICM
transmission.

• Chapter 7 deals with the problem of mismatched L-values. Suitable strategies for correcting the mis-
matched L-values are presented. Special attention is paid to the correction based on a linear scaling.

• Chapter 8 shows how to exploit unequal error protection (UEP) inherently present in BICM and caused
by the binary labeling of the constellation. The performance evaluation tools developed in the previous
chapters are refined and a design of the interleaver and the encoder is proposed, taking advantage of
UEP.

• Chapter 9 studies the use of a BICM receiver for trellis codes in nonfading channels. This is motivated
by results that show that for the AWGN channel and CENCs, the use of a trellis encoder (without an
interleaver) and a BICM receiver has an improved performance when compared to standard BICM
configurations. Equivalences between different encoders and the optimal selection of CCs are also
analyzed.

There are some important issues related to BICM which are not addressed in this work. In what follows,
we list some of the ones we feel deserve a more in-depth study.

1. BICM for MIMO (or more generally for high-dimensional constellations) has to rely on an efficient
and most likely suboptimal calculation of the L-values. This is caused by the fact that by increasing
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the size of the constellation and the number of antennas, the enumeration of a large number of terms
becomes the computational bottleneck of the receiver. Finding suitable suboptimal detection schemes
as well as methods for their characterization is a challenging issue.

2. BICM-ID devised in the early years of BICM is a theoretically interesting solution treating the BICM
transmitter as a serially concatenated code. A remarkable improvement with iterations is obtained by
custom-tailoring the labeling to the channel and the encoder. However, a complexity–performance
trade-off analysis does not seem to provide a clear-cut answer to their ultimate usefulness in scalar
channels. This is a promising solution when the channel introduces uncontrollable interference, as in
the case of MIMO transmission.

3. Cooperative transmission is an increasingly popular subject and analyzing BICM transmission in
the presence of multiple nodes using cooperative modulation schemes, network coding, and physical
network coding is a promising venue to explore.
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