
1

Introduction

This chapter looks at the way in which VHDL is used in digital systems design, the historical

reasons why VHDL was created and the international project to maintain and upgrade the

language.

1.1 The VHDL Design Cycle

From its conception, VHDL was intended to support all levels of the hardware design cycle.

This is clear from the preface of the Language Reference Manual (LRM) (IEEE-1076, 2008)

which defines the language, from which the following quote has been taken:

VHDL is a formal notation intended for use in all phases of the creation of electronic systems.

Because it is bothmachine readable and human readable, it supports the development, verification,

synthesis, and testing of hardware designs; the communication of hardware design data; and the

maintenance, modification, and procurement of hardware.

The key phrase is ‘all phases’. This means that VHDL is intended to cover every level of the

design cycle from system specification to netlist. As a result, the language is rather large and

cumbersome. However, this does not necessarily make it difficult to learn. It is best to think of

VHDL as a hybrid language, containing features appropriate to one or more of the stages of the

design cycle, so that each stage is in effect covered by a separate language that also happens to

be a subset of thewhole. Each subset is relatively easy to learn, provided there is guidance as to

what is in, and what is not in, that subset.

In the idealised design process, there are three subsets in use – since there are three stages that

use VHDL. These are: system modelling (specification phase), register-transfer level (RTL)

modelling (design phase) and netlist (implementation phase).

In addition to these VHDL-based phases, there will be an initial requirements phase that is

conventionally in plain (human) language. Thus, there are three stages of transformation of a

design: from requirements to specification, from specification to design and from design to

implementation. The first two phases are carried out by human designers, the last phase is now

largely performed by synthesis.

Figure 1.1 illustrates this idealised design cycle.

VHDL for Logic Synthesis, Third Edition. Andrew Rushton.

� 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L



Typically, the system model will be a VHDL model that represents the algorithm to be

performedwithout any hardware implementation inmind. The purpose is to create a simulation

model that can be used as a formal specification of the design and that can be run in a simulator

to check its functionality. This specification can also be used to confirmwith a customer that the

requirements have been fully understood.

The system model is then transformed into a register-transfer level (RTL) design in

preparation for synthesis. The transformation is aimed at a particular hardware implementation

but at this stage, at a coarse-grain level. In particular, the timing is specified at the clock cycle

level at this stage of the design process. Also, the particular hardware resources to be used in the

implementation are specified at the block level.

The final stage of the design cycle is to synthesise the RTL design to produce a netlist, which

should meet the area constraints and timing requirements of the implementation. Of course, in

practice, this may not be the case, so modifications will be required which will impact on the

earlier stages of the design process. However, this process is the basic, idealised, design process

using VHDL and logic synthesis.

1.2 The Origins of VHDL

VHDL originated from the American Department of Defense, who recognised that they had a

problem in their hardware procurement programmes. The problem was that they were

receiving designs in proprietary hardware description languages, which meant that, not only

was it impossible to transfer design data to other companies for second sourcing, but also there

was no guarantee that these languages would survive for the life expectancy of the hardware

they described.

The solution was to have a single, standard hardware description language, with a

guaranteed future. Specification of such a language went ahead as part of the Very-High

Speed IntegratedCircuits programme (VHSIC) in the early 1980s. For this reason, the language

was later named the VHSIC Hardware Description Language (VHDL).

Figure 1.1 The VHDL-based hardware design cycle.

2 VHDL for Logic Synthesis



If the language had remained merely a requirement for military procurement, it would

quite possibly have remained an obscure language of interest only to DoD contractors.

However, the importance of the language development, and especially the importance of

standardisation of the language, was recognised by the larger electronic engineering commu-

nity and so the formative languagewas passed into the public domain by placing it in the hands

of the IEEE in 1986. The IEEE proceeded to consolidate the language into a standard that was

ratified as IEEE standard number 1076 in 1987. This standard is encapsulated in the VHDL

Language Reference Manual (LRM).

1.3 The Standardisation Process

Part of the standardisation process was to define a standard way of upgrading the language

periodically. Thus, there is a built-in requirement for the language to be re-standardised every

five years. However, in practice updates have been irregular and driven by a desire to improve

the language according to demand rather than this arbitrary 5-year cycle. Because the language

has changed over the years, it is sometimes important to differentiate between versions. This is

done in this book by referring to the year in which the standard was ratified by the IEEE. For

example, the original standard, IEEE standard number 1076, ratified in 1987, is usually referred

to as VHDL-1987. Subsequent revisions of the standard will be referred to in a similar way

according to their year of ratification.

Here is a summary of the different versions and the features that affect the use of the language

for synthesis:

VHDL-1987 The original standard.

VHDL-1993 Added extended identifiers, xnor and shift operators, direct instantiation of

components, improved I/O for writing test benches.

Most of the synthesis subset of VHDL is based on VHDL-1993.

VHDL-2000 (minor revision) Nothing of relevance to synthesis.

VHDL-2002 (minor revision) Nothing of relevance to synthesis.

VHDL-2008 Added fixed-point and floating-point packages.

Added generic types and packages, enabling the use of generics to define

reusable packages and subprograms. Enhanced versions of conditionals. Read-

ing of out ports. Improved I/O for writing test benches.

Unification of VHDL standards.

As you can see, there are only three versions of VHDL relevant to synthesis: VHDL-1987,

VHDL-1993 and VHDL-2008. VHDL-1993 was the last revision to add features useful for

synthesis. So VHDL-2008 is the first significant change in 15 years. A lot has been added in

VHDL-2008 (Ashenden and Lewis, 2008) and most of it has some relevance to synthesis.

However, synthesis tool vendors are historically slow to adopt new language features. This is

for good reasons – the focus of synthesis is the quality of the synthesised circuit and

effectiveness of the synthesis optimisations, not the list of language features supported. This

means that it is expected that several years will pass before the more significant changes in

VHDL-2008 are implemented by synthesis tools and many never will be. In effect, synthesis

users are still using VHDL-1993 and will continue to do so for the foreseeable future.

Introduction 3



As a consequence, this book is based mainly on VHDL-1993. However, the more recent

extensions are discussed where relevant, particularly with regard to the new fixed-point and

floating-point packages added in VHDL-2008 but that have been made available as VHDL-

1993 compatibility packages so that they can be used immediately on synthesisers that do not

yet support the rest of VHDL-2008.

1.4 Unification of VHDL Standards

One of the largest changes in the VHDL-2008 standard is the unification of the many standards

that define parts of the language and its environment.

The management of the standardisation process is down to the VHDL Analysis and

Standardisation Group (VASG), part of the IEEE standardisation structure. In addition to the

main standardisation process of the language itself, there are a number of working-groups

working on standardisation of the ways in which VHDL is used. In the past, these working-

groups have published standards of their own. For example, therewas a groupworking on using

VHDL for analoguemodelling (VHDL-AMS –VHDLAnalogue andMixed-Signal – standard

1076.1), a group working on standard synthesisable numeric packages (VHDL Synthesis

Package – standard 1076.3 (1997)), a group working on accelerating gate-level simulation

(VITAL–theVHDLInitiativeTowardsASICLibraries–standard1076.4), andagroupworking

on the standard interpretation ofVHDL for logic synthesis (VHDLSynthesis Interoperability –

standard 1076.6). In addition, the 9-value logic type std_logic that is almost universally

used for synthesis was developed as a completely different IEEE standard (VHDLMultivalue

Logic Packages – standard 1164).

This separation of the standardisation of the various application domains of VHDL was

effective in the early days of language development, because it allowed the subgroups to get on

with their work independently of the main VHDL standardisation process and furthermore

meant that they could publish their standards when ready, rather than waiting for the next

formal release of the VHDL standard. However, this separation has become a problem as the

working-groups’work has becomemature, stable and in commonuse. For example, a release of

a new standard for VHDL could leave the subgroups’ standards lagging behind, compatible

with the previous version and lacking the new language features.

So, in VHDL-2008, those working group standards that are specific to synthesis have been

partly merged into the VHDL standard itself. Standard 1076 now includes the standard logic

types (1164), the standard numeric types (1076.3) and some parts of the standard synthesis

interpretation (1076.6). This doesn’tmake any difference to the user, but it does formalise these

parts of the language as an integral part of VHDL and ensures that they stay in step with

language developments in the future.

As you can probably imagine, this makes the Language Reference Manual (IEEE-1076,

2008) quite massive.

1.5 Portability

Synthesisable RTL designs can have a long life span due to their technology independence. The

same design can be targeted at different technologies, revised and targeted at a newer

technology and so on for many years after the original design was written. It is a wise designer

4 VHDL for Logic Synthesis



who plans for the long-term support of their designs. It is therefore good practice towrite using

a safe, common style of VHDL that can be expected to be supported for years to come, rather

than use ‘clever’ tool-specific tricks that might not continue to be supported.

Also, it is not unusual for a company to change their preferred tools, or for a designer to be

obliged to use a different synthesis tool because a different technology is being targeted. So it is

good practice to write using a portable subset of synthesisable VHDL that will work across

many different tools.

The problem with this principle is that synthesis relies on an interpretation of VHDL

according to a set of templates, and historically each synthesis vendor has developed their own

set of templates. This means that in practice, each synthesis tool supports a slightly different

subset ofVHDL.However, there has always been a lot of overlap between these subsets and this

book attempts to identify the common denominator.

To make life more complicated, the IEEE Design Automation Standards Committee have

specified a synthesis standard for VHDL (IEEE- 1076.6, 2004) that seems to be a superset

rather than a subset of the VHDL supported by commercial tools. Therefore, adhering to the

standard does not mean that a design will be synthesisable with any specific synthesis tool. It

also seems unlikely that any single tool will implement every detail of this standard.

It is recommended that a subset is used that is common to all synthesis tools. As a

consequence, this book focuses on the common subset and avoids the more obscure tool-

specific features of VHDL, even if those obscure features are in the synthesis standard.

Introduction 5




