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Maxwell Equations

Ten thousand years from now, there can be little doubt that the most significant event of the 19th
century will be judged as Maxwell’s discovery of the laws of electrodynamics.

—Richard Feynman (American physicist, 1918–1988)

To master the theory of electromagnetics, we must first understand its history, and find out
how the notions of electric charge and field arose and how electromagnetics is related to other
branches of physical science. Electricity and magnetism were considered to be two separate
branches in the physical sciences until Oersted, Ampère and Faraday established a connection
between the two subjects. In 1820, Hans Christian Oersted (1777–1851), a Danish professor
of physics at the University of Copenhagen, found that a wire carrying an electric current
would change the direction of a nearby compass needle and thus disclosed that electricity
can generate a magnetic field. Later the French physicist André Marie Ampère (1775–1836)
extended Oersted’s work to two parallel current-carrying wires and found that the interaction
between the two wires obeys an inverse square law. These experimental results were then
formulated by Ampère into a mathematical expression, which is now called Ampère’s law. In
1831, the English scientist Michael Faraday (1791–1867) began a series of experiments and
discovered that magnetism can also produce electricity, that is, electromagnetic induction. He
developed the concept of a magnetic field and was the first to use lines of force to represent a
magnetic field. Faraday’s experimental results were then extended and reformulated by James
Clerk Maxwell (1831–1879), a Scottish mathematician and physicist. Between 1856 and 1873,
Maxwell published a series of important papers, such as ‘On Faraday’s line of force’ (1856),
‘On physical lines of force’ (1861), and ‘On a dynamical theory of the electromagnetic field’
(1865). In 1873, Maxwell published ‘A Treatise on Electricity and Magnetism’ on a unified
theory of electricity and magnetism and a new formulation of electromagnetic equations since
known as Maxwell equations. This is one of the great achievements of nineteenth-century
physics. Maxwell predicted the existence of electromagnetic waves traveling at the speed of
light and he also proposed that light is an electromagnetic phenomenon. In 1888, the German
physicist Heinrich Rudolph Hertz (1857–1894) proved that an electric signal can travel through
the air and confirmed the existence of electromagnetic waves, as Maxwell had predicted.
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2 Maxwell Equations

Maxwell’s theory is the foundation for many future developments in physics, such as special
relativity and general relativity. Today the words ‘electromagnetism’, ‘electromagnetics’ and
‘electrodynamics’ are synonyms and all represent the merging of electricity and magnetism.
Electromagnetic theory has greatly developed to reach its present state through the work of
many scientists, engineers and mathematicians. This is due to the close interplay of physical
concepts, mathematical analysis, experimental investigations and engineering applications.
Electromagnetic field theory is now an important branch of physics, and has expanded into
many other fields of science and technology.

1.1 Experimental Laws

It is known that nature has four fundamental forces: (1) the strong force, which holds a nucleus
together against the enormous forces of repulsion of the protons, and does not obey the inverse
square law and has a very short range; (2) the weak force, which changes one flavor of quark
into another and regulates radioactivity; (3) gravity, the weakest of the four fundamental forces,
which exists between any two masses and obeys the inverse square law and is always attractive;
and (4) electromagnetic force, which is the force between two charges. Most of the forces in our
daily lives, such as tension forces, friction and pressure forces are of electromagnetic origin.

1.1.1 Coulomb’s Law

Charge is a basic property of matter. Experiments indicate that certain objects exert repulsive
or attractive forces on each other that are not proportional to the mass, therefore are not
gravitational. The source of these forces is defined as the charge of the objects. There are two
kinds of charges, called positive and negative charge respectively. Charges are quantitized and
come in integer multiples of an elementary charge, which is defined as the magnitude of
the charge on the electron or proton. An arrangement of one or more charges in space forms
a charge distribution. The volume charge density, the surface charge density and the line
charge density describe the amount of charge per unit volume, per unit area and per unit
length respectively. A net motion of electric charge constitutes an electric current. An electric
current may consist of only one sign of charge in motion or it may contain both positive and
negative charge. In the latter case, the current is defined as the net charge motion, the algebraic
sum of the currents associated with both kinds of charges.

In the late 1700s, the French physicist Charles-Augustin de Coulomb (1736–1806) discov-
ered that the force between two charges acts along the line joining them, with a magnitude
proportional to the product of the charges and inversely proportional to the square of the
distance between them. Mathematically the force F that the charge q1 exerts on q2 in vacuum
is given by Coulomb’s law

F = q1q2

4πε0 R2
uR (1.1)

where R = ∣
∣r − r′∣∣ is the distance between the two charges with r′ and r being the position

vectors of q1 and q2 respectively; uR = (r − r′)/
∣
∣r − r′∣∣ is the unit vector pointing from q1

to q2, and ε0 = 8.85 × 10−12 is the permittivity of the medium in vacuum. In order that the
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distance between the two charges can be clearly defined, strictly speaking, Coulomb’s law
applies only to the point charges, the charged objects of zero size. Dividing (1.1) by q2 gives
a force exerting on a unit charge, which is defined as the electric field intensity E produced
by the charge q1. Thus the electric field produced by an arbitrary charge q is

E(r) = q

4πε0 R2
uR = −∇φ(r) (1.2)

where φ(r) = q/4πε0 R is called the Coulomb potential. Here R = ∣
∣r − r′∣∣, r′ is the position

vector of the point charge q and r is the observation point. For a continuous charge distribution
in a finite volume V with charge density ρ(r), the electric field produced by the charge
distribution is obtained by superposition

E(r) =
∫

V

ρ(r′)
4πε0 R2

uRdV (r′) = −∇φ(r) (1.3)

where

φ(r) =
∫

V

ρ(r′)
4πε0 R

dV (r′)

is the potential. Taking the divergence of (1.3) and making use of ∇2(1/R) = −4πδ(R) leads
to

∇ · E(r) = ρ(r)

ε0
. (1.4)

This is called Gauss’s law, named after the German scientist Johann Carl Friedrich Gauss
(1777–1855). Taking the rotation of (1.3) gives

∇ × E(r) = 0. (1.5)

The above results are valid in a vacuum. Consider a dielectric placed in an external electric
field. If the dielectric is ideal, there are no free charges inside the dielectric but it does contain
bound charges which are caused by slight displacements of the positive and negative charges
of the dielectric’s atoms or molecules induced by the external electric field. These slight
displacements are very small compared to atomic dimensions and form small electric dipoles.
The electric dipole moment of an induced dipole is defined by p = qlul , where l is the
separation of the two charges and ul is the unit vector directed from the negative charge to the
positive charge (Figure 1.1).

Example 1.1: Consider the dipole shown in Figure 1.1. The distances from the charges to a
field point P are denoted by R+ and R− respectively, and the distance from the center of the
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Figure 1.1 Induced dipole

dipole to the field point P is denoted by R. The potential at P is

φ = q

4πε0

(
1

R+
− 1

R−

)

.

If l � R, we have

1

R+
= 1

√

(l/2)2 + R2 − l Rul · uR

≈ 1

R

(

1 + 1

2

l

R
ul · uR

)

,

1

R−
= 1

√

(l/2)2 + R2 + l Rul · uR

≈ 1

R

(

1 − 1

2

l

R
ul · uR

)

,

where uR is the unit vector directed from the center of the dipole to the field point P . Thus the
potential can be written as

φ ≈ 1

4πε0 R2
p · uR . (1.6)

The dielectric is said to be polarized when the induced dipoles occur inside the dielectric. To
describe the macroscopic effect of the induced dipoles, we define the polarization vector P
as

P = lim
�V →0

1

�V

∑

i

pi (1.7)

where �V is a small volume and
∑

i
pi denotes the vector sum of all dipole moments induced

inside �V . The polarization vector is the volume density of the induced dipole moments. The
dipole moment of an infinitesimal volume dV is given by PdV , which produces the potential
(see (1.6))

dφ ≈ dV

4πε0 R2
P · uR .
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The total potential due to a polarized dielectric in a region V bounded by S may be expressed
as

φ(r) ≈
∫

V

P · uR

4πε0 R2
dV (r′) = 1

4πε0

∫

V

P · ∇′ 1

R
dV (r′)

= 1

4πε0

∫

V

∇′ ·
(

P
R

)

dV (r′) + 1

4πε0

∫

V

−∇′ · P
R

dV (r′) (1.8)

= 1

4πε0

∫

S

P · un(r′)
R

dV (r′) + 1

4πε0

∫

V

−∇′ · P
R

dV (r′)

where the divergence theorem has been used. In the above, un is the outward unit normal to
the surface. The first term of (1.8) can be considered as the potential produced by a surface
charge density ρps = P · un , and the second term as the potential produced by a volume charge
density ρp = −∇ · P.Both ρps and ρp are the bound charge densities. The total electric field
inside the dielectric is the sum of the fields produced by the free charges and bound charges.
Gauss’s law (1.4) must be modified to incorporate the effect of dielectric as follows

∇ · ε0E = ρ + ρp.

This can be written as

∇ · D = ρ (1.9)

where D = ε0E + P is defined as the electric induction intensity. When the dielectric is
linear and isotropic, the polarization vector is proportional to the electric field intensity so that
P = ε0χeE, where χe is a dimensionless number, called electric susceptibility. In this case
we have

D = ε0(1 + χe)E = εrε0E = εE

where εr = 1 + χe = ε/ε0 is a dimensionless number, called relative permittivity. Note that
(1.5) holds in the dielectric.

1.1.2 Ampère’s Law

There is no evidence that magnetic charges or magnetic monopoles exist. The source of the
magnetic field is the moving charge or current. Ampère’s law asserts that the force that a
current element J2dV2 exerts on a current element J1dV1 in vacuum is

dF1 = µ0

4π

J1dV1 × (J2dV2 × uR)

R2
(1.10)

where R is the distance between the two current elements, uR is the unit vector pointing from
current element J2dV2 to current element J1dV1, and µ0 = 4π × 10−7 is the permeability in
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vacuum. Equation (1.10) can be written as

dF1 = J1dV1 × dB

where dB is defined as the magnetic induction intensity produced by the current element
J2dV2

dB = µ0

4π

J2dV2 × uR

R2
.

By superposition, the magnetic induction intensity generated by an arbitrary current distribu-
tion J is

B(r) = µ0

4π

∫

V

J(r′) × uR

R2
dV (r′). (1.11)

This is called the Biot-Savart law, named after the French physicists Jean-Baptiste Biot
(1774–1862) and Félix Savart (1791–1841). Equation (1.11) may be written as

B = ∇ × A

where A is known as the vector potential defined by

A(r) = µ0

4π

∫

V

J(r′)
R

dV (r′).

Thus

∇ · B = 0. (1.12)

This is called Gauss’s law for magnetism, which says that the magnetic flux through any closed
surface S is zero

∫

S

B · und S = 0.

Taking the rotation of magnetic induction intensity and using ∇2(1/R) = −4πδ(R) and
∇ · J = 0 yields

∇ × B = µ0J(r). (1.13)

This is the differential form of Ampère’s law.

Example 1.2: Consider a small circular loop of radius a that carries current I . The center of
the loop is chosen as the origin of the spherical coordinate system as shown in Figure 1.2. The
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nu
R

R ′

P

lu

Figure 1.2 Small circular loop

vector potential is given by

A(r) = µ0 I

4π

∫

l

1

R′ uldl(r′)

where ul is the unit vector along current flow and l stands for the loop. Due to the symmetry,
the vector potential is independent of the angle ϕ of the field point P . Making use of the
following identity

∫

l

φuldl =
∫

S

un × ∇φd S

where S is the area bounded by the loop l, the vector potential can be written as

A(r) = µ0 I

4π

∫

S

un × ∇′ 1

R′ d S(r′)

= −µ0 I

4π

∫

S

un × ∇ 1

R′ d S(r′) = µ0 I

4π
∇ ×

∫

S

un
1

R′ d S(r′).

If the loop is very small, we can let R′ ≈ R. Thus

A(r) = µ0 I

4π
∇ ×

∫

S

un
1

R′ d S(r′)

(1.14)
≈ µ0

4π
∇ × m

R
= µ0

4π R2
m × uR

where uR is the unit vector from the center of the loop to the field point P and

m = I
∫

S

un(r′)d S(r′) = I unπa2

is defined as the magnetic dipole moment of the loop.
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The above results are valid in a vacuum. All materials consist of atoms. An orbiting electron
around the nucleus of an atom is equivalent to a tiny current loop or a magnetic dipole. In the
absence of external magnetic field, these tiny magnetic dipoles have random orientations for
most materials so that the atoms show no net magnetic moment. The application of an external
magnetic field causes all these tiny current loops to be aligned with the applied magnetic field,
and the material is said to be magnetized and the magnetization current occurs. To describe
the macroscopic effect of magnetization, we define a magnetization vector M as

M = lim
�V →0

1

�V

∑

i

mi (1.15)

where �V is a small volume and
∑

i
mi denotes the vector sum of all magnetic dipole moments

induced inside �V . The magnetization vector is the volume density of the induced magnetic
dipole moments. The magnetic dipole moments of an infinitesimal volume dV is given by
MdV , which produces a vector potential (see (1.14))

dA = µ0

4π R2
M × uRdV (r′) = µ0

4π
M × ∇′ 1

R
dV (r′).

The total vector potential due to a magnetized material in a region V bounded by S is then
given by

A = µ0

4π

∫

V

M × ∇′ 1

R
dV (r′)

= µ0

4π

∫

V

∇′ × M
R

dV (r′) − µ0

4π

∫

V

∇′ × M
R

dV (r′) (1.16)

= µ0

4π

∫

V

∇′ × M
R

dV (r′) + µ0

4π

∫

S

M × un(r′)
R

d S(r′)

where un is the unit outward normal of S. The first term of (1.16) can be considered as the
vector potential produced by a volume current density JM = ∇ × M, and the second term as
the vector potential produced by a surface current density JMs = M × un . Both JM and JMs

are magnetization current densities. The total magnetic field inside the magnetized material
is the sum of the fields produced by the conduction current and the magnetized current and
Ampère’s law (1.13) must be modified as

∇ × B = µ0(J + JM ).

This can be rewritten as

∇ × H = J (1.17)
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where H = B/µ0 − M is called magnetic field intensity. When the material is linear and
isotropic, the magnetization vector is proportional to the magnetic field intensity so that
M = χmH, where χm is a dimensionless number, called magnetic susceptibility. In this case
we have

B = µ0(1 + χm)H = µrµ0H = µE

where µr = 1 + χm = µ/µ0 is a dimensionless number, called relative permeability. Notice
that (1.12) holds in a magnetized material.

1.1.3 Faraday’s Law

Faraday’s law asserts that the induced electromotive force in a closed circuit is proportional to
the rate of change of magnetic flux through any surface bounded by that circuit. The direction
of the induced current is such as to oppose the change giving rise to it. Mathematically, this
can be expressed as

∫

	

E · ut d	 = − ∂

∂t

∫

S

B · und S

where 	 is a closed contour and S is the surface spanning the contour as shown in
Figure 1.3; un and ut are the unit normal to S and unit tangent vector along 	 respectively,
and they satisfy the right-hand rule.

Γ

nu

tu

Figure 1.3 A two-sided surface

Loosely speaking, Faraday’s law says that a changing magnetic field produces an electric
field. The differential form of Faraday’s law is

∇ × E = −∂B
∂t

. (1.18)

1.1.4 Law of Conservation of Charge

The law of conservation of charge states that the net charge of an isolated system remains
constant. Mathematically, the amount of the charge flowing out of the surface S per second is
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equal to the decrease of the charge per second in the region V bounded by S

∫

S

J · und S = − ∂

∂t

∫

V

ρdV .

The law of charge conservation is also known as the continuity equation. The differential
form of the continuity equation is

∇ · J = −∂ρ

∂t
. (1.19)

1.2 Maxwell Equations, Constitutive Relation, and Dispersion

From (1.18) and (1.17), one can find that a changing magnetic field produces an electric field
by magnetic induction, but a changing electric field would not produce a magnetic field. In
addition, equation (1.17) implies ∇ · J = 0, which contradicts the continuity equation for a
time-dependent field. To solve these problems, Maxwell added an extra term Jd to Equation
(1.17)

∇ × H = J + Jd .

It then follows that

∇ · J + ∇ · Jd = 0.

Introducing the continuity equation yields

∇ · Jd = ∂ρ

∂t
.

Substituting Gauss’s law (1.4) into the above equation, one may obtain Jd = ∂D/∂t . Thus
(1.17) must be modified to

∇ × H = ∂D
∂t

+ J. (1.20)

The term ∂D/∂t is called the displacement current. Equation (1.20) implies that a changing
electric field generates a magnetic field by electric induction. It is this new electric induction
postulate that makes it possible for Maxwell to predict the existence of electromagnetic
waves. The mutual electric and magnetic induction produces a self-sustaining electromagnetic
vibration moving through space.
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1.2.1 Maxwell Equations and Boundary Conditions

It follows from (1.4), (1.12), (1.18) and (1.20) that

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −∂B(r, t)

∂t
, (1.21)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0.

The above equations are called Maxwell equations, and they describe the behavior of electric
and magnetic fields, as well as their interactions with matter. It must be mentioned that the
above vectorial form of Maxwell equations is due to the English engineer Oliver Heaviside
(1850–1925), and is presented with neatness and clarity compared to the large set of scalar
equations proposed by Maxwell. Maxwell equations are the starting point for the investigation
of all macroscopic electromagnetic phenomena. In (1.21), r is the observation point of the
fields in meters and t is the time in seconds; H is the magnetic field intensity measured in
amperes per meter (A/m); B is the magnetic induction intensity measured in tesla (N/A·m); E is
electric field intensity measured in volts per meter (V/m); D is the electric induction intensity
measured in coulombs per square meter (C/m2); J is electric current density measured in
amperes per square meter (A/m2); ρ is the electric charge density measured in coulombs per
cubic meter (C/m3). The first equation is Ampère’s law, and it describes how the electric field
changes according to the current density and magnetic field. The second equation is Faraday’s
law, and it characterizes how the magnetic field varies according to the electric field. The minus
sign is required by Lenz’s law, that is, when an electromotive force is generated by a change of
magnetic flux, the polarity of the induced electromotive force is such that it produces a current
whose magnetic field opposes the change, which produces it. The third equation is Coulomb’s
law, and it says that the electric field depends on the charge distribution and obeys the inverse
square law. The final equation shows that there are no free magnetic monopoles and that the
magnetic field also obeys the inverse square law. It should be understood that none of the
experiments had anything to do with waves at the time when Maxwell derived his equations.
Maxwell equations imply more than the experimental facts. The continuity equation can be
derived from (1.21) as

∇ · J(r, t) = −∂ρ(r, t)

∂t
. (1.22)

Remark 1.1: The charge density ρ and the current density J in Maxwell equations are free
charge density and currents and they exclude charges and currents forming part of the structure
of atoms and molecules. The bound charges and currents are regarded as material, which are
not included in ρ and J. The current density normally consists of two parts: J = Jcon + Jimp.
Here Jimp is referred to as external or impressed current source, which is independent of the
field and delivers energy to electric charges in a system. The impressed current source can be
of electric and magnetic type as well as of non-electric or non-magnetic origin. Jcon = σE,
where σ is the conductivity of the medium in mhos per meter, denotes the conduction current



P1: OTA/XYZ P2: ABC
c01 BLBK281-Wen March 4, 2010 11:57 Printer Name: Yet to Come

12 Maxwell Equations

induced by the impressed source Jimp. Sometimes it is convenient to introduce an external or
impressed electric field Eimp defined by Jimp = σEimp. In a more general situation, one can
write J = Jind (E, B) + Jimp, where Jind (E, B) is the induced current by the impressed current
Jimp.

Remark 1.2 (Duality): Sometimes it is convenient to introduce, magnetic current Jm and
magnetic charges ρm , which are related by

∇ · Jm(r, t) = −∂ρm(r, t)

∂t
(1.23)

and the Maxwell equations must be modified as

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −∂B(r, t)

∂t
− Jm(r, t), (1.24)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = ρm(r, t).

The inclusion of Jm and ρm makes Maxwell equations more symmetric. However, there has
been no evidence that the magnetic current and charge are physically present. The validity
of introducing such concepts in Maxwell equations is justified by the equivalence principle,
that is, they are introduced as a mathematical equivalent to electromagnetic fields. Equations
(1.24) will be called the generalized Maxwell equations.

If all the sources are of magnetic type, Equations (1.24) reduce to

∇ × H(r, t) = ∂D(r, t)

∂t
,

∇ × E(r, t) = −∂B(r, t)

∂t
− Jm(r, t), (1.25)

∇ · D(r, t) = 0,

∇ · B(r, t) = ρm(r, t).

Mathematically (1.21) and (1.25) are similar. One can obtain one of them by simply inter-
changing symbols as shown in Table 1.1. This property is called duality. The importance of

Table 1.1 Duality.

Electric source Magnetic source

E H
H −E
J Jm

ρ ρm

µ ε

ε µ
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duality is that one can obtain the solution of magnetic type from the solution of electric type
by interchanging symbols and vice versa.

Remark 1.3: For the time-harmonic (sinusoidal) fields, Equations (1.21) and (1.22) can be
expressed as

∇ × H(r) = jωD(r) + J(r),

∇ × E(r) = − jωB(r),

∇ · D(r) = ρ(r), (1.26)

∇ · B(r, ω) = 0,

∇ · J(r) = − jωρ(r),

where the field quantities denote the complex amplitudes (phasors) defined by

E(r, t) = Re[E(r)e jωt ], etc.

We use the same notations for both time-domain and frequency-domain quantities.

Remark 1.4: Maxwell equations summarized in (1.21) hold for macroscopic fields. For
microscopic fields, the assumption that the charges and currents are continuously distributed
is no longer valid. Instead, the charge density and current density are represented by

ρ(r) =
∑

i

qiδ(r − ri ), J(r) =
∑

i

qi ṙiδ(r − ri ) (1.27)

where qi denotes the charge of i th particle and ṙi (the dot denotes the time derivative) its
velocity. Correspondingly, Maxwell equations become

∇ × H(r, t) = ε0
∂E(r, t)

∂t
+ J(r, t),

∇ × E(r, t) = −µ0
∂H(r, t)

∂t
,

∇ · E(r, t) = ρ(r, t)

ε0
, (1.28)

∇ · H(r, t) = 0.

All charged particles have been included in (1.27). The macroscopic field equations (1.21) can
be obtained from the microscopic field equations (1.28) by the method of averaging.

Remark 1.5: Ampère’s law and Coulomb’s law can be derived from the continuity equation.
If we take electric charge Q as a primitive smoothly distributed over a volume V , we can define
a charge density ρ(r, t) such that Q = ∫

V
ρ(r′, t)dV (r′). Now the assumption that the electric

charges are always conserved may be applied, which implies that if the charges within a region
V have changed, the only possibility is that some charges have left or entered the region. Based
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on this assumption, it can be shown that there exists a vector J, called current density, such that
the continuity equation (1.22) holds (Duvaut and Lions, 1976; Kovetz, 2000). We can define
a vector D, called electric induction intensity, so that Coulomb’s law holds

∇ · D(r, t) = ρ(r, t).

Then the continuity equation (1.22) implies that the divergence of vector ∂D/∂t + J is zero. As
a result, there exists at least one vector H, called the magnetic field intensity, so that Ampère’s
law holds

∇ × H(r, t) = ∂D(r, t)

∂t
+ J(r, t).

Remark 1.6: Maxwell equations might be derived from the laws of electrostatics (Elliott,
1993; Schwinger et al., 1998) or from quantum mechanics (Dyson, 1990).

Remark 1.7: The force acting on a point charge q, moving with a velocity v with respect to
an observer, by the electromagnetic field is given by

F(r, t) = q[E(r, t) + v(r, t) × B(r, t)] (1.29)

where E and B are the total fields, including the field generated by the moving charge q.
Equation (1.29) is referred to as Lorentz force equation, named after Dutch physicist Hendrik
Antoon Lorentz (1853–1928). It is known that there are two different formalisms in classical
physics. One is mechanics that deals with particles, and the other is electromagnetic field theory
that deals with radiated waves. The particles and waves are coupled through the Lorentz
force equation, which usually appears as an assumption separate from Maxwell equations.
The Lorentz force is the only way to detect electromagnetic fields. For a continuous charge
distribution, the Lorentz force equation becomes

f(r, t) = ρE(r, t) + J(r, t) × B(r, t) (1.30)

where f is the force density acting on the charge distribution ρ, that is, the force acting on the
charge distribution per unit volume. Maxwell equations, Lorentz force equation and continuity
equation constitute the fundamental equations in electrodynamics. To completely determine the
interaction between charged particles and electromagnetic fields, we must introduce Newton’s
second law. An exact solution to the interaction problem is very difficult. Usually the fields are
first determined by the known source without considering the influence of the moving charged
particles. Then the dynamics of the charged particles can be studied by Newton’s second law.
The electromagnetic force causes like-charged things to repel and oppositely charged things
to attract. Notice that the force that holds the atoms together to form molecules is essentially
an electromagnetic force, called residual electromagnetic force.

Remark 1.8: Maxwell equations (1.21) are differential equations, which apply locally at each
point in a continuous medium. At the interfaces of two different media, the charge and current
and the corresponding fields are discontinuous and the differential (local) form of Maxwell
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equations becomes meaningless. Thus we must resort to the integral (global) form of Maxwell
equations in this case. Let 	 be a closed contour and S be a regular two-sided surface spanning
the contour as shown in Figure 1.3. Applying Stokes’s theorem to the two curl equations in
(1.21) yields

∫

	

H · ut d	 =
∫

S

(

J + ∂D
∂t

)

· und S,

∫

	

E · ut d	 = −
∫

S

∂B
∂t

· und S (1.31)

If S is a closed surface, applying Gauss’s theorem to the two divergence equations in (1.21)
gives

∫

S

D · und S =
∫

V

ρdV ,

∫

S

B · und S = 0. (1.32)

Remark 1.9: The boundary conditions on the surface between two different media can be
easily obtained from (1.31) and (1.32), and they are

un × (H1 − H2) = Js,

un × (E1 − E2) = 0,

un · (D1 − D2) = ρs, (1.33)

un · (B1 − B2) = 0,

nu Medium 1 

Medium 2 

Figure 1.4 Interface between two different media

where un is the unit normal of the boundary directed from medium 2 to medium 1 as shown
in Figure 1.4; Js and ρs are the surface current density and surface charge density respec-
tively. These boundary conditions can also be obtained from the differential form of Maxwell
equations in the sense of generalized functions (see Chapter 2).

1.2.2 Constitutive Relations

Maxwell equations are a set of seven equations involving 16 unknowns (that is five vector
functions E, H, B, D, J and one scalar function ρ and the last equation of (1.21) is not
independent). To determine the fields, nine more equations are needed, and they are given
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by the generalized constitutive relations:

D = f1(E, H), B = f2(E, H)

together with the generalized Ohm’s law:

J = f3(E, H)

if the medium is conducting. The constitutive relations establish the connections between field
quantities and reflect the properties of the medium, and they are totally independent of the
Maxwell equations. In most cases, the constitutive relations can be expressed as

Di (r, t) =
∑

j=x,y,z

[a j
i (r)E j (r, t) + b j

i (r)Hj (r, t)]

∑

j=x,y,z

[(G j
i ∗ E j )(r, t) + (K j

i ∗ Hj )(r, t)],

Bi (r, t) =
∑

j=x,y,z

[c j
i (r)E j (r, t) + d j

i (r)Hj (r, t)]

=
∑

j=x,y,z

[(L j
i ∗ E j )(r, t) + (F j

i ∗ Hj )(r, t)],

where i = x, y, z; ∗ denotes the convolution with respect to time; a j
i , b j

i , c j
i , d j

i are independent
of time; and G j

i , K j
i , L j

i , F j
i are functions of (r, t). The medium defined by the above equations

is called bianisotropic. An anisotropic medium is defined by

Di (r, t) = ∑

j=x,y,z
[a j

i (r)E j (r, t) + (G j
i ∗ E j )(r, t)],

Bi (r, t) = ∑

j=x,y,z
[d j

i (r)Hj (r, t) + (F j
i ∗ Hj )(r, t)].

A biisotropic medium is defined by

D(r, t) = a(r)E(r, t) + b(r)H(r, t)

+(G ∗ E)(r, t) + (K ∗ H)(r, t)

B(r, t) = c(r)E(r, t) + d(r)H(r, t)

+(L ∗ E)(r, t) + (F ∗ H)(r, t)

where a, b, c, d are independent of time and G, K , L , F are functions of (r, t). An isotropic
medium is defined by

D(r, t) = a(r)E(r, t) + (G ∗ E)(r, t),

B(r, t) = d(r)H(r, t) + (F ∗ H)(r, t).
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For monochromatic fields, the constitutive relations for a bianisotropic medium are usually
expressed by

D = ↔
ε · E +

↔
ξ · H, B = ↔

ς · E + ↔
µ · H.

For an anisotropic medium, both
↔
ξ and

↔
ς vanish.

Remark 1.10: The effects of the current J = Jimp + Jind can be included in the constitutive
relations by introducing a new vector D′′ such that

D′′(r, t) =
t∫

−∞
J(r, t ′)dt ′ + D(r, t).

Thus (1.21) can be written as

∇ × H(r, t) = ∂D′′(r, t)

∂t
,

∇ × E(r, t) = −∂B(r, t)

∂t
,

∇ · D′′(r, t) = 0,

∇ · B(r, t) = 0.

So the current source has been absorbed in the displacement current ∂D′′(r, t)/∂t , and the
Maxwell equations are defined in a lossless and source-free region.

The constitutive relations are often written as

D(r, t) = ε0E(r, t) + P(r, t) + · · · ,
(1.34)

B(r, t) = µ0[H(r, t) + M(r, t) + · · ·],

where M is the magnetization vector and P is the polarization vector. Equations (1.34) may
contain higher order terms, which have been omitted since in most cases only the magnetization
and polarization vectors are significant. The vectors M and P reflect the effects of the Lorentz
force on elemental particles in the medium and therefore they depend on both E and B in
general. Since the elemental particles in the medium have finite masses and are mutually
interacting, M and P are also functions of time derivatives of E and B as well as their
magnitudes. The same applies for the current density Jind .

A detailed study of magnetization and polarization process belongs to the subject of quantum
mechanics. However, a macroscopic description of electromagnetic properties of the medium
is simple as compared to the microscopic description. When the field quantities are replaced by
their respective volume averages, the effects of the complicated array of atoms and electrons
constituting the medium may be represented by a few parameters. The macroscopic description
is satisfactory only when the large-scale effects of the presence of the medium are considered,
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and the details of the physical phenomena occurring on an atomic scale can be ignored. Since
the averaging process is linear, any linear relation between the microscopic fields remains
valid for the macroscopic fields.

In most cases, M is only dependent on the magnetic field B and its time derivatives while
P and J depend only on the electric field E and its time derivatives. If these dependences are
linear, the medium is said to be linear. These linear dependences are usually expressed as

D = ε̃E + ε̃1
∂E
∂t

+ ε̃2
∂2E
∂t2

+ · · · ,

B = µ̃H + µ̃1
∂H
∂t

+ µ̃2
∂2H
∂t2

+ · · · , (1.35)

Jind = σ̃E + σ̃1
∂E
∂t

+ σ̃2
∂2E
∂t2

+ · · · ,

where all the scalar coefficients are constants. For the monochromatic fields, the first two
expressions of (1.35) reduce to

D = εE, B = µH

where

ε = ε′ − jε′′, µ = µ′ − jµ′′,
ε′ = ε̃ − ω2ε̃2 + · · · , µ′ = µ̃ − ω2µ̃2 + · · · , (1.36)

ε′′ = −ωε̃1 + ω3ε̃3 − · · · , µ′′ = −ωµ̃1 + ω3µ̃3 − · · · .

The parameters ε′ and ε′′ are real and are called capacitivity and dielectric loss factor
respectively. The parameters µ′ and µ′′ are real and are called inductivity and magnetic loss
factor respectively.

Remark 1.11: According to the transformation of electromagnetic fields under the Lorentz
transform (see Chapter 9), the constitutive relations depend on the reference systems.

1.2.3 Wave Equations

The electromagnetic wave equations are second-order partial differential equations that de-
scribe the propagation of electromagnetic waves through a medium. If the medium is homo-
geneous and isotropic and non-dispersive, we have B = µH and D = εE, where µ and ε are
constants. On elimination of E or H in the generalized Maxwell equations, we obtain

∇ × ∇ × E + µε
∂2E
∂t2

= −∇ × Jm − µ
∂J
∂t

,

(1.37)

∇ × ∇ × H + µε
∂2H
∂t2

= ∇ × J − ε
∂Jm

∂t
.
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These are known as the wave equations. Making use of ∇ · E = −ρ/ε and ∇ · H = −ρm/µ,
the equations become

(

∇2 − µε
∂2

∂t2

)

E = ∇ × Jm + µ
∂J
∂t

+ ∇
(ρ

ε

)

,

(1.38)(

∇2 − µε
∂2

∂t2

)

H = −∇ × J + ε
∂Jm

∂t
+ ∇

(
ρm

µ

)

.

In a source-free region, Equations (1.38) reduce to homogeneous equations, which have non-
trivial solutions. The existence of the non-trivial solutions in a source-free region indicates
the possibility of a self-sustaining electromagnetic field outside the source region. For the
time-harmonic fields, Equations (1.37) and (1.38) respectively reduce to

∇ × ∇ × E − k2E = −∇ × Jm − jωµJ,
(1.39)

∇ × ∇ × H − k2H = ∇ × J − jωεJm,

and

(∇2 + k2)E = ∇ × Jm + jωµJ − ∇(∇ · J)

jωε
,

(1.40)
(∇2 + k2)H = −∇ × J + jωεJm − ∇(∇ · Jm)

jωµ
,

where k = ω
√

µε. It can be seen that the source terms on the right-hand side of (1.37) and
(1.40) are very complicated. To simplify the analysis, the electromagnetic potential functions
may be introduced (see Section 2.6.1). The wave equations may be used to solve the following
three different field problems:

1. Electromagnetic fields in source-free region: wave propagations in space and waveguides,
wave oscillation in cavity resonators, etc.

2. Electromagnetic fields generated by known source distributions: antenna radiations, exci-
tations in waveguides and cavity resonators, etc.

3. Interaction of field and sources: wave propagation in plasma, coupling between electron
beams and propagation mechanism, etc.

In a source-free region, Equations (1.39) and (1.40) become

∇ × ∇ × E − k2E = 0,∇ × ∇ × H − k2H = 0, (1.41)

and

(∇2 + k2)E = 0, (∇2 + k2)H = 0, (1.42)
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respectively. It should be noted that Equation (1.41) is not equivalent to Equation (1.42). The
former implies

∇ · E = 0,∇ · H = 0 (1.43)

but the latter does not. Therefore the solutions of (1.41) satisfy Maxwell equations while those
of (1.42) may not. For example, E = uze− jkz is a solution of (1.42) but it does not satisfy
∇ · E = 0. So it is not a solution of Maxwell equations. For this reason, it is imperative that one
must incorporate (1.42) with (1.43). This can be accomplished by solving one of the equations
in (1.42) to get one field quantity, say E, and then using Maxwell equations to get the other
field quantity H. Such an approach guarantees that the fields satisfy (1.43).

If the medium is inhomogeneous and anisotropic so that D = ↔
ε · E and B = ↔

µ · H, the
wave equations for the time-harmonic fields are

∇ × ↔
µ

−1 · ∇ × E(r) − ω2↔
ε · E(r) = − jωJ(r) − ∇ × ↔

µ
−1 · Jm,

(1.44)
∇ × ↔

ε
−1 · ∇ × H(r) − ω2↔

µ · H(r) = − jωJm(r) + ∇ × ↔
ε

−1 · J.

1.2.4 Dispersion

If the speed of the wave propagation and the wave attenuation in a medium depend on the fre-
quency, the medium is said to be dispersive. Dispersion arises from the fact that the polarization
and magnetization and the current density cannot follow the rapid changes of the electromag-
netic fields, which implies that the electromagnetic energy can be absorbed by the medium.
Thus, dissipation or absorption always occurs whenever the medium shows the dispersive
effects. In reality, all media show some dispersive effects. The medium can be divided into
normal dispersive and anomalous dispersive. A normal dispersive medium refers to the situ-
ation where the refractive index increases as the frequency increases. Most naturally occurring
transparent media exhibit normal dispersion in the visible range of electromagnetic spectrum.
In an anomalous dispersive medium, the refractive index decreases as frequency increases.
The dispersive effects are usually recognized by the existence of elementary solutions (plane
wave solution) of Maxwell equations in a source-free region

A(k)e j(ωt−k·r) (1.45)

where A(k) is the amplitude, k is the wave vector and ω is the frequency. When the elementary
solutions are introduced into Maxwell equations, it will be found that k and ω must be related
by an equation

f (ω, k) = 0. (1.46)

This is called the dispersion equation. The plane wave e jωt− jk·r has four-dimensional space-
time orthorgonality properties, and is a solution of Maxwell equations in a source-free region
when it satisfies the dispersion relation. It can be assumed that the frequency can be expressed
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in terms of the wave vector by solving the above dispersion equation

ω = W (k). (1.47)

In general, a number of such solutions exist, which give different functions W (k). Each solution
is called a mode. To ensure that the solution e jωt− jk·r is a plane wave, some restrictions must
be put on the solution of dispersion equation, which are (Whitham, 1974)

det

∣
∣
∣
∣

∂2W

∂ki∂k j

∣
∣
∣
∣
�= 0, W (k) is real. (1.48)

These conditions have excluded all non-dispersive waves. A medium is called dispersive if
there are solutions of (1.45) and (1.47) that satisfy (1.48). This definition applies to uniform
medium. For a non-uniform medium, the definition of dispersive waves can be generalized
to allow more general separable solutions of Maxwell equations, such as A(k, r)e jωt , where
A(k, r) is an oscillatory function (for example, a Bessel function). It is hard to give a general
definition of dispersion of waves. Roughly speaking, the dispersive effects may be expected
whenever oscillations in space are coupled with oscillations in time.

If (1.45) is an elementary solution for a linear equation, then formally

ϕ(r, t) =
∞∫

−∞
A(k)e j(ωt−k·r)dk (1.49)

is also a solution of the linear equation. The arbitrary function A(k) may be chosen to satisfy
the initial or boundary condition. If there are n modes with n different choices of W (k),
there will be n terms like (1.49) with n arbitrary functions A(k). For a single linear differential
equation with constant coefficients, there is a one-to-one correspondence between the equation
and the dispersion relation. We only need to consider the following correspondences:

∂

∂t
↔ jω,∇ ↔ − jk,

which yield a polynomial dispersion relation. More complicated dispersion relation may be
obtained for other different type of differential equations.

Example 1.3: To find the dispersion relation of the medium, the plane wave solutions may
be assumed for Maxwell equations as follows

E(r, t) = Re[E(r, ω)e jωt− jk·r], etc. (1.50)

Similar expressions hold for other quantities. In the following, the wave vector k is allowed to
be a complex vector and there is no impressed source inside the medium. Introducing (1.50)
into (1.26) and using the calculation ∇e− jk·r = − jke− jk·r, we obtain

− jk × H(r, ω) + ∇ × H(r, ω) = jωD(r, ω) + Jcon(r, ω),

− jk × E(r, ω) + ∇ × E(r, ω) = − jωB(r, ω).
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In most situations, the complex amplitudes of the fields are slowly varying functions of space
coordinates. The above equations may reduce to

k × H(r, ω) = −ωD(r, ω) + jJcon(r, ω),
(1.51)

k × E(r, ω) = ωB(r, ω).

If the medium is isotropic, dispersive and lossy, we may write

Jcon = σE, D = (ε′ − jε′′)E, B = (µ′ − jµ′′)H.

Substituting these equations into (1.51) yields

k · k = ω2(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)].

Assuming k = uk(β − jα), then

β − jα = ω
√

(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)]

from which we may find that

β = ω√
2

√

(A2 + B2)1/2 + A, α = ω√
2

√

(A2 + B2)1/2 − A

where A = µ′ε′ − µ′′(ε′′ + σ/ω), B = µ′′ε′ + µ′(ε′′ + σ/ω).

1.3 Theorems for Electromagnetic Fields

A number of theorems can be derived from Maxwell equations, and they usually bring deep
physical insight into the problems. When applied properly, these theorems can simplify the
problems dramatically.

1.3.1 Superposition Theorem

Superposition theorem applies to all linear systems. Suppose that the impressed current source
Jimp can be expressed as a linear combination of independent impressed current sources Jk

imp
(k = 1, 2, · · · , n)

Jimp =
n

∑

k=1

akJk
imp,

where ak (k = 1, 2, · · · , n) are arbitrary constants. If Ek and Hk are fields produced by the
source Jk

imp, the superposition theorem for electromagnetic fields asserts that the fields
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E =
n∑

k=1
akEk and H =

n∑

k=1
akHk are a solution of Maxwell equations produced by the source

Jimp.

1.3.2 Compensation Theorem

The compensation theorem in network theory is well known, which says that any component
in the network can be substituted by an ideal current generator with the same current intensity
as in the element. Similarly the compensation theorem for electromagnetic fields states that
the influences of the medium on the electromagnetic fields can be substituted by the equivalent
impressed sources. Let E, H, M, P and Jind be the field quantities induced by the impressed
current Jimp, which satisfy the Maxwell equations (1.21) and the constitutive relations (1.34)
with J = Jind + Jimp. Suppose that the medium is arbitrary and we can write

M = M1 + M2, P = P1 + P2, J = J1 + J2, (1.52)

Then Equation (1.34) becomes

D = (ε0E + P1) + P2 = D1 + P2,

B = µ0(H + M1) + µ0M2 = B1 + µ0M2,

with B1 = µ0(H + M1) and D1 = (ε0E + P1). Accordingly, the Maxwell equations (1.21) can
be written as

∇ × H = ∂D1

∂t
+ J1 + (Jimp + J′

imp),

∇ × E = −∂B1(r, t)

∂t
− J′

m,imp,

∇ · D1 = ρ + ρ ′, ρ ′ = −∇ · P2, (1.53)

∇ · B1 = ρm, ρm = −µ0∇ · M2,

where the new impressed electric current J′
imp = J2 + ∂P2/∂t and magnetic current J′

m,imp =
µ0∂M2/∂t have been introduced to represent the influences of the medium partly or completely,
depending on how the division is made in (1.52). Equations (1.53) are the mathematical
formulation of compensation theorem. Note that both impressed electric and magnetic current
source are needed to replace the medium, and the magnetic current density and the magnetic
charge density satisfy the continuity equation ∇ · J′

m,imp = −∂ρm/∂t .

1.3.3 Conservation of Electromagnetic Energy

The law of conservation of electromagnetic energy is known as the Poynting theorem,
named after the English physicist John Henry Poynting (1852–1914). It can be found from
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(1.21) that

−Jimp · E − Jind · E = ∇ · S + E · ∂D
∂t

+ H · ∂B
∂t

. (1.54)

In a region V bounded by S, the integral form of (1.54) is

−
∫

V

Jimp · EdV =
∫

V

Jind · EdV +
∫

S

S · und S +
∫

V

(

E · ∂D
∂t

+ H · ∂B
∂t

)

dV , (1.55)

where un is the unit outward normal of S, and S = E × H is the Poynting vector representing
the electromagnetic power-flow density measured in watts per square meter (W/m2). It will
be assumed that this explanation holds for all media. Thus, the left-hand side of Equation
(1.55) stands for the power supplied by the impressed current source. The first term on the
right-hand side is the work done per second by the electric field to maintain the current in the
conducting part of the system. The second term denotes the electromagnetic power flowing
out of S. The last term can be interpreted as the work done per second by the impressed source
to establish the fields. The energy density w required to establish the electromagnetic fields
may be defined as follows

dw =
(

E · ∂D
∂t

+ H · ∂B
∂t

)

dt. (1.56)

Assuming all the sources and fields are zero at t = −∞, we have

w = we + wm, (1.57)

where we and wm are the electric field energy density and magnetic field energy density
respectively

we = 1

2
E · D +

t∫

−∞

1

2

(

E · ∂D
∂t

− D · ∂E
∂t

)

dt,

wm = 1

2
H · B +

t∫

−∞

1

2

(

H · ∂B
∂t

− B · ∂H
∂t

)

dt.

Equation (1.55) can be written as

−
∫

V

Jimp · EdV =
∫

V

Jind · EdV +
∫

S

S · und S + ∂

∂t

∫

V

(we + wm)dV . (1.58)

In general, the energy density w does not represent the stored energy density in the fields: the
energy temporarily located in the fields and completely recoverable when the fields are reduced
to zero. The energy density w given by (1.57) can be considered as the stored energy density
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only if the medium is lossless (that is, ∇ · S = 0). If medium is isotropic and time-invariant,
we have

we = 1

2
E · D, wm = 1

2
H · B.

If the fields are time-harmonic, the Poynting theorem takes the following form

−1

2

∫

V

E · J̄impdV = 1

2

∫

V

E · J̄inddV +
∫

S

1

2
(E × H̄) · und S

(1.59)

+ j2ω

∫

V

(
1

4
B · H̄ − 1

4
E · D̄

)

dV ,

where the bar denotes complex conjugate. The time averages of the Poynting vector, energy
densities over one period of the sinusoidal wave e jωt , denoted T , are

¯̄S = 1

T

T∫

0

E × H̄dt = 1

2
Re(E × H̄),

1

T

T∫

0

1

2
E · Ddt = 1

4
Re(E · D̄),

1

T

T∫

0

1

2
H · Bdt = 1

4
Re(H · B̄),

where the double line indicates the time average.

1.3.4 Conservation of Electromagnetic Momentum

The force acting on a charged particle by electromagnetic fields is given by the Lorentz force
equation

F(r, t) = q[E(r, t) + v(r, t) × B(r, t)],

where v is the velocity of the particle. Let m be the mass of the particle and Gp = mv its
momentum. By Newton’s law, we have

dGp(r, t)

dt
= q[E(r, t) + v(r, t) × B(r, t)]. (1.60)

Let Wp = mv · v/2 denote the kinetic energy of the particle. It follows from (1.60) that

dWp(r, t)

dt
= qv(r, t) · E(r, t). (1.61)
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For a continuous charge distribution ρ, Equations (1.60) and (1.61) should be changed to

dgp

dt
= ρE + J × B = f, (1.62)

dwp

dt
= J · E, (1.63)

where J = ρv; gp = ρmv and wp = ρmv · v/2 are the density of momentum and density of
kinetic energy of the charge distribution respectively, and ρm is the mass density. Equations
(1.62) and (1.63) indicate that the charged system gains energy and momentum from the
electromagnetic fields if dwp/dt > 0 and dgp/dt > 0 or releases energy and momentum
to the electromagnetic fields if dwp/dt < 0 and dgp/dt < 0. From the conservation laws
of energy and momentum, it may be concluded that electromagnetic fields have energy and
momentum. From the Maxwell equations and Lorentz force equation in free space, we obtain

f = ρE + J × B = E∇ · D +
(

∇ × H − ∂D
∂t

)

× B

= − ∂

∂t

(
1

c2
E × H

)

+ ∇ ·
[

ε0EE + µ0HH − 1

2
(ε0E · E + µ0H · H)

↔
I

]

,

where c = 1/
√

µ0ε0, EE and HH are dyads. By means of (1.62), the above equation can be
written as

∇ · ↔
T − ∂

∂t
(g + gp) = 0. (1.64)

where
↔
T = ε0EE + µ0HH − 1

2 (ε0E · E + µ0H · H)
↔
I is referred to as the Maxwell stress

tensor and g = E × H/c2 is known as the electromagnetic momentum density. The integral
form of (1.64) over a region V bounded by S is

∂

∂t

∫

V

(g + gp)dV =
∫

S

un · ↔
Td S, (1.65)

Equation (1.65) indicates that the increase of total momentum (the electromagnetic momentum
plus the momentum of the charged system) inside V per unit time is equal to the force acting

on the fields inside V through the boundary S by the fields outside S. For this reason, un · ↔
T

may be interpreted as the force per unit area acting on the surface. We can also interpret

−un · ↔
T as the momentum flow density into S and call −↔

T the electromagnetic momentum
flow density tensor or the electromagnetic energy-momentum tensor.
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1.3.5 Conservation of Electromagnetic Angular Momentum

It follows from (1.64) that

∇ · (r × ↔
T) + ∂

∂t
(r × g + r × gp) = 0.

The integral form of the above equation over a region V bounded by S is

∂

∂t

∫

V

(r × g + r × gp)dV = −
∫

S

un · (r × ↔
T)d S.

Here r × g may be interpreted as the electromagnetic angular momentum density and r × ↔
T

as the electromagnetic angular momentum flow density tensor.

Remark 1.12: The quantities of a dynamic system that do not change with time play an
important role in theoretical physics. These conserved quantities can be the energy, momen-
tum, and angular momentum. Noether’s theorem, named after the German mathematician
Amalie Emmy Noether (1882–1935), states that the conservation laws are the consequences
of continuous symmetry transformations under which the action integral of the system is left
invariant. For example, time translation symmetry gives conservation of energy; space trans-
lation symmetry gives conservation of momentum; rotation symmetry gives conservation of
angular momentum.

1.3.6 Uniqueness Theorems

It is important to know the conditions under which the solution of Maxwell equations is

unique. Let us consider a multiple-connected region V bounded by S =
N∑

i=0
Si , as shown in

Figure 1.5. Assume that the medium inside V is linear, isotropic and time-invariant, and it
may contain some impressed source Jimp. So we have D = εE, B = µH, and Jind = σE.
Let E1, H1 and E2, H2 be two solutions of Maxwell equations. Then the difference fields
E = E1 − E2 and H = H1 − H2 are a solution of the Maxwell equations free of impressed
source. The requirements that the difference fields must be identically zero are the conditions

nu

NS

1S
2S

0S

impJ

Figure 1.5 Multiple-connected region
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for uniqueness that we seek. According to the Poynting theorem in the time domain, we write
∫

V

(

E · ∂D
∂t

+ H · ∂B
∂t

)

dV +
∫

V

σ |E|2 dV = −
∫

S

(E × H) · und S, (1.66)

where un is the unit outward normal of S. If E1 = E2 or H1 = H2 holds on the boundary S
for t > 0, the above equation reduces to

∂

∂t

∫

V

(
1

2
E · D + 1

2
H · B

)

dV = −
∫

V

σ |E|2 dV .

Suppose that the source is turned on at t = 0. Taking the integration with respect to time
over [0, t] yields

∫

V

(
1

2
ε |E(r, t)|2 + 1

2
µ |H(r, t)|2

)

dV −
∫

V

(
1

2
ε |E(r, 0)|2 + 1

2
µ |H(r, 0)|2

)

dV

= −
t∫

0

dt
∫

V

σ |E|2 dV .

If E1(r, 0) = E2(r, 0) and H1(r, 0) = H2(r, 0) hold in V , the second term on the left-hand side
vanishes. Since the right-hand side is a negative number while the left-hand side is a positive
number, this is possible only when E1(r, t) = E2(r, t) and H1(r, t) = H2(r, t) for all t > 0.

If the region extends to infinity (S0 → ∞), we can assume that E1 = E2 or H1 = H2 on

the boundary
N∑

i=1
Si for t > 0, and E1(r, 0) = E2(r, 0) and H1(r, 0) = H2(r, 0) in V . It follows

from (1.66) that
∫

V

(
1

2
ε |E(r, t)|2 + 1

2
µ |H(r, t)|2

)

dV

= −
t∫

0

dt
∫

V

σ |E|2 dV −
t∫

0

dt
∫

S0

1

η0
|E|2 d S. (1.67)

Here η0 = √
µ0/ε0 is the wave impedance in free space. Equation (1.67) implies E1(r, t) =

E2(r, t) and H1(r, t) = H2(r, t) for all t > 0. Note that the preceding discussions are valid
even if σ is zero. Thus the following uniqueness theorem for electromagnetic fields in time
domain has been proved.

Theorem 1.1 Uniqueness theorem for time-domain fields: Suppose that the electromagnetic
sources are turned on at t = 0. The electromagnetic fields in a region are uniquely determined
by the sources within the region, the initial electric field and the initial magnetic field at t = 0
inside the region, together with the tangential electric field (or the tangential magnetic field)
on the boundary for t > 0, or together with the tangential electric field on part of the boundary
and the tangential magnetic field on the rest of the boundary for t > 0.
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We now derive the uniqueness theorem in the frequency domain. Let E1, H1 and E2, H2 be
two solutions of the time-harmonic Maxwell equations. For the difference fields E = E1 − E2

and H = H1 − H2, we may use the Poynting theorem in the frequency domain to write

∫

S

1

2
(E × H̄) · und S + j2ω

∫

V

(
1

4
B · H̄ − 1

4
E · D̄

)

dV = −1

2

∫

V

σ |E|2 dV . (1.68)

If E1 = E2 or H1 = H2 holds on S, the first term on the left-hand side vanishes and we have

jω
∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV + 1

2

∫

V

σ |E|2 dV = 0.

This implies

ω

∫

V

1

2
Re ε |E|2 dV − ω

∫

V

1

2
Re µ |H|2 dV = 0,

ω

∫

V

1

2
Im ε |E|2 dV + ω

∫

V

1

2
Im µ |H|2 dV = 1

2

∫

V

σ |E|2 dV .

For a dissipative medium, we have Im ε < 0 and Im µ < 0. It is easy to see that if one of the
following two conditions is met

Im ε < 0, Im µ < 0, (1.69)

σ > 0, (1.70)

then the difference fields E and H vanish in V , which implies that the fields in V can be
uniquely determined. Therefore, a loss must be assumed for time-harmonic fields in order to
obtain the uniqueness.

In an unbounded region where S0 → ∞, we may assume that µ → µ0, ε → ε0 on S0. Thus
(1.68) may be written as

N
∑

i=1

∫

Si

1

2
(E × H̄) · und S + jω

∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV

(1.71)
= −

∫

S0

1

2η0
|E|2 d S − 1

2

∫

V

σ |E|2 dV .
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If E1 = E2 or H1 = H2 holds on
N∑

i=1
Si , the first term on the left-hand side of (1.71) vanishes

and (1.71) reduces to

jω
∫

V

1

2
µ |H|2 dV − jω

∫

V

1

2
ε̄ |E|2 dV = −

∫

S0

1

2η0
|E|2 d S − 1

2

∫

V

σ |E|2 dV . (1.72)

This leads to

ω

∫

V

1

2
Re ε |E|2 dV − ω

∫

V

1

2
Re µ |H|2 dV = 0,

(1.73)
ω

∫

V

1

2
Im ε |E|2 dV + ω

∫

V

1

2
Im µ |H|2 dV =

∫

S0

1

2η0
|E|2 d S + 1

2

∫

V

σ |E|2 dV .

The difference fields vanish in the infinite region if either condition (1.69) or (1.70) is satisfied.
We can further show that the difference fields vanish in the infinite region where radiation
exists, even if the medium is lossless. Assuming that the medium is lossless, the second
equation of (1.73) implies

∫

S0

1

2η0
|E|2 d S = 0, S0 → ∞.

It follows that

|E|2 = 0, S0 → ∞. (1.74)

This relation implies E = H = 0 in the region V , which can be proved as follows. Consider
a sufficiently large sphere that contains all the impressed sources and inhomogeneities. The
fields on the sphere may be expanded in terms of the spherical vector wavefunctions as follows
(see Section 4.3)

E = −
∑

n,m,l

(

α
(2)
nmlM

(2)
nml + β

(2)
nmlN

(2)
nml

)

,

H = 1

jη0

∑

n,m,l

(

α
(2)
nmlN

(2)
nml + β

(2)
nmlM

(2)
nml

)

.

A simple calculation gives

|E|2 = 1

k2
0

∑

n,m,l

N 2
nm

(∣
∣
∣α

(2)
nml

∣
∣
∣

2
+

∣
∣
∣β

(2)
nml

∣
∣
∣

2
)

, (1.75)



P1: OTA/XYZ P2: ABC
c01 BLBK281-Wen March 4, 2010 11:57 Printer Name: Yet to Come

Theorems for Electromagnetic Fields 31

where k0 = ω
√

µ0ε0 and Nnm is a constant. Combining (1.74) and (1.75), we obtain α
(2)
nml =

β
(2)
nml = 0. As a result, the fields outside a sufficiently large sphere are identically zero. By

the analyticity of the electromagnetic fields, one must have E = H = 0 in the region V .
Consequently the uniqueness theorem for time-harmonic field may be stated as follows.

Theorem 1.2 Uniqueness theorem for time-harmonic fields: For a region that contains the
dissipation loss or radiation loss, the electromagnetic fields are uniquely determined by the
sources within the region, together with the tangential electric field (or the tangential magnetic
field) on the boundary, or together with the tangential electric field on part of the boundary
and the tangential magnetic field on the rest of the boundary.

The uniqueness for time-harmonic fields is guaranteed if the system has radiation loss, regard-
less whether the medium is lossy or not. This property has been widely validated by the study of
antenna radiation problems, in which the surrounding medium is often assumed to be lossless.

Remark 1.13: The uniqueness for time-harmonic fields fails for a system that contains no
dissipation loss and radiation loss. The uniqueness in a lossless medium is usually obtained by
considering the fields in a lossless medium to be the limit of the corresponding fields in a lossy
medium as the loss goes to zero, which is based on an assumption that the limit of a unique
solution is also unique. However, this limiting process may lead to physically unacceptable
solutions (see Section 3.3.2 and Section 8.2.1). Note that there is no need to introduce loss for
a unique solution in the time-domain analysis.

Example 1.4 (Image principle): To solve the boundary value problem with a perfect electric
conductor, one can use the image principle that is based on the uniqueness theorem. The
perfect electric conductor may be removed by introducing an ‘image’ of the original field
source. The image is constructed in such a way so that the tangential component of the total
electric field produced by the original source and its image vanishes on the perfect electric
conductor. For example, an electric current element parallel to an infinitely large conducting
plane has an image that is positioned symmetrically relative to the conducting plane and has
a reverse orientation. The images for electric and magnetic current elements placed near the
conducting plane are shown in Figure 1.6.

Conducting plane 

Electric current elements Magnetic current elements 

ImagesImages 

Figure 1.6 Image principle
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Figure 1.7 Equivalence theorem

1.3.7 Equivalence Theorems

It is known that there is no answer to the question of whether field or source is primary.
The equivalence principles indicate that the distinction between the field and source is kind
of blurred. Let V be an arbitrary region bounded by S; let S′ be a closed surface pressed
tightly over S from outside; let S′′ be a closed surface pressed tightly to S from inside; let
V ′ be the domain outside S′. A large closed surface S∞ encloses S′ as shown in Figure 1.7.
Two sources that produce the same fields inside a region are said to be equivalent within that
region. Similarly, two electromagnetic fields {E1, D1, H1, B1} and {E2, D2, H2, B2} are said
to be equivalent inside a region if they both satisfy the Maxwell equations and are equal in
that region.

The main application of the equivalence theorem is to find equivalent sources to replace the
influences of substance (the medium is homogenized), so that the formulae for retarding poten-
tials can be used. The equivalent sources may be located inside S (equivalent volume sources)
or on S (equivalent surface sources). The most general form of the equivalent principles is as
follows.

General equivalence principle: Let us consider two electromagnetic field problems in two
different media:

Problem 1 :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H1(r, t) = ∂D1(r, t)/∂t + J1(r, t),

∇ × E1(r, t) = −∂B1(r, t)/∂t − Jm1(r, t),

∇ · D1(r, t) = ρ1(r, t),∇ · B1(r, t) = ρm1(r, t),

D1(r, t) = ε1(r)E1(r, t), B1(r, t) = µ1(r)H1(r, t)

Problem 2 :

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H2(r, t) = ∂D2(r, t)/∂t + J2(r, t),

∇ × E2(r, t) = −∂B2(r, t)/∂t − Jm2(r, t),

∇ · D2(r, t) = ρ2(r, t),∇ · B2(r, t) = ρm2(r, t),

D2(r, t) = ε2(r)E2(r, t), B2(r, t) = µ2(r)H2(r, t).
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If a new set of electromagnetic fields {E, D, H, B} satisfying

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × H(r, t) = ∂D(r, t)/∂t + J(r, t),

∇ × E(r, t) = −∂B(r, t)/∂t − Jm(r, t),

∇ · D(r, t) = ρ(r, t),∇ · B(r, t) = ρm(r, t),

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t),

(1.76)

is constructed in such a way that the sources of the fields {E, D, H, B} and the parameters of
the medium satisfy

⎧

⎪⎨

⎪⎩

J = J1, Jm = Jm1

ρ = ρ1, ρm = ρm1, r ∈ V

µ = µ1, ε = ε2

;

⎧

⎪⎨

⎪⎩

J = J2, Jm = Jm2

ρ = ρ2, ρm = ρm2, r ∈ R3 − V

µ = µ2, ε=ε2

and

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

J = un × (H2+ − H1−)

Jm = −un × (E2+ − E1−)

ρ = un · (D2+ − D1−)

ρm = un · (B2+ − B1−)

, r ∈ S

where un is the unit outward normal to S, and the subscripts + and - signify the values obtained
as S is approached from outside S and inside S respectively, then we have

{E, D, H, B} = {E1, D1, H1, B1} , r ∈ V

{E, D, H, B} = {E2, D2, H2, B2} , r ∈ R3 − V

To prove this theorem, we only need to show that the difference fields

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δE = E − E1

δH = H − H1

δD = D − D1

δB = B − B1

, r ∈ V ;

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

δE = E − E2

δH = H − H2

δD = D − D2

δB = B − B2

, r ∈ R3 − V

in the shadowed region bounded by S′ + S′′ + S∞, denoted by R̃3, are identically zero. The
difference fields satisfy

∇ × δH(r, t) = ∂δD(r, t)/∂t,

∇ × δE(r, t) = −∂δB(r, t)/∂t,

∇ · δD(r, t) = 0,∇ · δB(r, t) = 0, (1.77)

δD(r, t) = εδ(r)E(r, t),

δB(r, t) = µδ(r)δH(r, t),
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where εδ = ε1, µδ = µ1 for r ∈ V and εδ = ε2, µδ = µ2 for r ∈ R3 − V . From

un × (H2+ − H1−) = un × (H+ − H−),

un × (E2+ − E1−) = un × (E+ − E−),

we can find un × δE+ = un × δE− and un × δH+ = un × δH−, which imply that the tangen-
tial components of δE and δH are continuous on S. It follows from (1.77) that

−∇ · (δE × δH) = 1

2

∂

∂t
(εδ |δE|2 + µδ |δH|2).

Taking the integration over the shadowed region R̃3 yields

−
∫

S′+S′′+S∞

(δE × δH) · und S = 1

2

∂

∂t

∫

R̃3

(εδ |δE|2 + µδ |δH|2)dV .

If all the fields are produced after a finite moment t0 > −∞, one may take the integration with
respect to time from −∞ to t

−
t∫

−∞
dt

∫

S′+S′′+S∞

[δE(r, t) × δH(r, t)] · und S

(1.78)
= 1

2

∫

R̃3

(εδ |δE(r, t)|2 + µδ |δH(r, t)|2)dV .

When S′ and S′′ approach S, the values of δE(r, t) × δH(r, t) on S′ and S′′ tend to be the same
since δE(r, t) × δH(r, t) is continuous on S. Thus

∫

S′+S′′

[δE(r, t) × δH(r, t)] · und S = 0.

The electromagnetic wave travels at finite speed. It is thus possible to choose S∞ to be large
enough so that

∫

S∞

[δE(r, t) × δH(r, t)] · und S = 0.

Consequently, Equation (1.78) reduces to

∫

R̃3

(εδ |δE(r, t)|2 + µδ |δH(r, t)|2)dV = 0,

which implies δE(r, t) = 0 and δH(r, t) = 0. The proof is completed.
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By the equivalence principle, the magnetic current Jm and magnetic charge ρm , introduced
in the generalized Maxwell equations, are justified in the sense of equivalence. The difference
between the compensation theorem and equivalence theorem is that the compensation implies
replacement of induced sources or part of them by the imaginary impressed sources at the
same locations. Equivalence implies replacement of any sources (impressed and/or induced)
by another set of impressed sources, usually distributed in a different location.

If E1 = D1 = H1 = B1 = J1 = Jm1 = 0 in the general equivalence theorem, we can choose
µ = µ2, ε = ε2 in (1.76) inside S. If all the sources for Problem 2 are contained inside S, the
following sources

{

Js = un × H2+, Jms = −un × E2+
ρs = un · D2+, ρms = un · B2+

, r ∈ S

produce the electromagnetic fields {E, D, H, B} in (1.76). In other words, the above sources
generate the fields {E2, D2, H2, B2} in R3 − V and a zero field in V . Thus we have:

Theorem 1.3 Schelkunoff–Love equivalence: (named after the American mathematician
Sergei Alexander Schelkunoff, 1897–1992; and the English mathematician Augustus Edward
Hough Love, 1863–1940): Let {E, D, H, B} be the electromagnetic fields with source confined
in S. The following surface sources

{

Js = un × H, Jms = −un × E
ρs = un · D, ρms = un · B

, r ∈ S (1.79)

produce the same fields {E, D, H, B} outside S and a zero field inside S.

It must be mentioned that the electromagnetic fields generated by a single electric source or a
single magnetic source will never be zero within a finite region if the medium is homogeneous.
The fields can be made to vanish inside a region only if both electric source and magnetic
source exist so that the fields generated by both sources cancel each other in the region. In
other words, only the solution of the generalized Maxwell equations can be zero within a finite
region of homogeneous space. However, the solution of Maxwell equations can be zero within
a finite region if the medium is inhomogeneous. Since the sources in (1.79) produce a zero
field inside S, the interior of S may be filled with a perfect electric conductor. By use of the
Lorentz reciprocity theorem (see Example 1.6), it can be shown that the surface electric current
pressed tightly on the perfect conductor does not produce fields. As a result, only the surface
magnetic current is needed in (1.79). Similarly, the interior of S may be filled with a perfect
magnetic conductor, and in this case the surface magnetic current does not produce fields and
only the surface electric current is needed in (1.79). In both cases, one cannot directly apply
the vector potential formula even if the medium outside S is homogeneous.

Example 1.5 (An aperture problem): A general aperture coupling problem between two
regions a and b is shown in Figure 1.8 (a). The impressed electric current Jimp and magnetic
current Jm,imp are assumed to be located in region a only and there is no source in region b.
The conductors in region b are assumed to be extended to infinity. By equivalent principle, the
original problem can be separated into two equivalent problems as shown in Figure 1.8 (b). In
region a, the fields are produced by the impressed sources Jimp and Jm,imp, and the equivalent
magnetic current Jms = −un × E over the aperture region Sa , with the aperture covered by an
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(a) (b)

nu

Conductor

Aperture SaRegion a

,,imp m impJ J

Region b
Region a

,,imp m impJ J

Region b

msJ ms−J

Figure 1.8 An aperture problem

electric conductor. In region b, the field is produced by the equivalent magnetic current −Jms

(the minus sign ensures that the tangential electrical field is continuous across the aperture).
The tangential magnetic field in region a over the aperture, denoted Ha

t , can be decomposed
into two parts (Harrington and Mautz, 1976)

Ha
t = Hi

t + Hm
t (Jms),

where Hi
t is due to the impressed source and Hm

t (Jms) due to the equivalent source Jms , both
being calculated with the aperture covered by an electric conductor. If Hb

t (−Jms) denotes the
tangential magnetic field in region b over the aperture, then the condition that the tangential
magnetic field must be continuous across the aperture yields

Hb
t (−Jms) = Hi

t + Hm
t (Jms).

This can be used to determine the magnetic current Jms .

1.3.8 Reciprocity

A linear system is said to be reciprocal if the response of the system with a particular load
and a source is the same as the response when the source and the load are interchanged. The
earliest study of reciprocity can be traced back to the work done by the English physicist Lord
Rayleigh (1842–1919) in 1894 and the work by Lorentz in 1895. The reciprocity theorems
are the most important analytical tools in the simplification and solution of various practical
problems (Rumsey, 1961; Monteath, 1973; Richmond, 1961).

A linear system is characterized in an abstract way by a known source f , a response u and
a system operator L̂

L̂(u) = f. (1.80)

The system operator L̂ is not unique for a given linear system and it depends on how the source
and the response are defined. In what follows, it is assumed that L̂ is a linear partial differential
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operator, and both f and u are defined in a region V with boundary S. For arbitrary functions
u1 and u2, the following identity can be easily derived using integration by parts (Courant and
Hilbert, 1953)

∫

V

u2 L̂(u1)dV =
∫

V

u1 L̂∗(u2)dV + T (u1, u2; S) (1.81)

for a time-independent system or

T2∫

T1

dt
∫

V

u2 L̂(u1)dV =
T2∫

T1

dt
∫

V

u1 L̂∗(u2)dV + T (u1, u2; S, T1, T2) (1.82)

for a time-dependent system. In (1.81) and (1.82), L̂∗ is known as formal adjoint of L̂;
T (u1, u2; S) and T (u1, u2; S, T1, T2) are bilinear forms (boundary terms); and [T1, T2] is an
arbitrary time interval.

Equations (1.81) and (1.82) may be interpreted as Huygens’ principle, named after the
Dutch physicist Christiaan Huygens (1629–1695). For a time-independent system, Huygens’
principle states that, given a source inside a hypothetical surface S, there is a certain source
spreading over S, which gives the same field outside S as the original source inside S. For
a time-dependent system, it states that the position of a wavefront and the magnitude of the
wave at each point of the wavefront may be determined by the wavefront at any earlier time.
Huygens’ principle can be traced back to 1690 when Huygens published his classical work
Treatise on Light (Huygens, 1690). Huygens was not able to formulate his principle precisely
at that time. A number of famous scientists have worked in this area and elaborated this
principle since then. It should be mentioned that different authors use the term ‘Huygens’
principle’ with different meanings. The best-known representation of Huygens’ principle is to
express the field at some observation point in terms of a surface integral over a closed surface
separating the observation point from the source. Such an expression can easily be obtained
from (1.81) or (1.82), which in general gives a relationship between some volume integrals
defined in the region V and some surface integrals defined on the boundary S. The idea behind
Huygens’ principle could apply not only to electromagnetics but also to any branch of physics,
such as gravitation, elasticity, acoustics and many more (Rumsey, 1959).

One can consider three situations: (1) L̂∗ = L̂ (L̂ is formally self adjoint); (2) L̂∗ �= L̂; and
(3) L̂∗ = −L̂ (L̂ is skew adjoint). For the first two situations, one can choose u2 as a solution
of the adjoint system L̂∗(u2) = f2, where f2 is a known source function. If the boundary term
in (1.81) or (1.82) can be made to vanish, we have

∫

V

u2 f1dV =
∫

V

u1 f2dV ,

T2∫

T1

dt
∫

V

u2 f1dV =
T2∫

T1

dt
∫

V

u1 f2dV , (1.83)

T (u1, u2; S) = 0, T (u1, u2; S, T1, T2) = 0. (1.84)

Equations (1.83) are called reciprocity theorems of Rayleigh-Carson form, and Equations
(1.84) are called reciprocity theorems of Lorentz form. These two forms are equivalent. For
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the situation L̂∗ = −L̂ , we may choose u2 as a solution of the original system L̂(u2) = f2. If
the boundary term in (1.81) or (1.82) can be made to vanish, then

∫

V

u2 f1dV = −
∫

V

u1 f2dV ,

T2∫

T1

dt
∫

V

u2 f1dV = −
T2∫

T1

dt
∫

V

u1 f2dV . (1.85)

The above relations may be called skew-reciprocity theorems of Rayleigh-Carson form.
The quantity

∫

V
u2 f1dV is called the reaction of field u2 on source f1 (Rumsey, 1954).

Equations (1.83) (or (1.85)) simply state that the reaction of field u2 on source f1 is equal
to the reaction (or the negative reaction) of field u1 on source f2. Apparently this kind of
relations exists in various fields of physics and engineering. The concept of reaction is very
useful and it can be used to answer some difficult questions with simplicity. If f1 is a testing
source of unit strength, the reaction

∫

V
u2 f1dV gives the numerical value of response u2 at the

point of the testing source. Thus, a method can be established to solve various boundary value
problems based on the reaction, which is basically a theory of measurement rather than a field
theory (Rumsey, 1963).

A number of reciprocity theorems for electromagnetic fields in both time domain and
frequency domain can be derived by choosing different forms of the operator L̂ . But most of
them are useless. Only one of the reciprocity theorems in frequency domain will be discussed
here, which states that all possible time-harmonic fields of the same frequency are to some
extent interrelated. Suppose that the sources J1(r) and Jm1(r) give rise to the fields E1(r) and
H1(r). Then the Maxwell equations in an isotropic medium can be rewritten in the operator
form L̂(u1) = f1 with

L̂ =
[− jωε· ∇×

∇× jωµ·
]

, u1 =
[

E1

H1

]

, f1 =
[

J1

−Jm1

]

.

For an arbitrary u2 = [E2, H2]T (the superscript T stands for the transpose operation), the
formal adjoint of L̂ and the boundary term may be found through integration by parts as

L̂∗ = L̂,

T (u1, u2; S) =
∫

S

(E1 × H2 − E2 × H1) · und S,

where un is the outward unit normal to S. If u2 = [E2, H2]T is a solution of the transposed
system L̂∗(u2) = f2 with f2 = [J2,−Jm2]T , Equation (1.81) becomes

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

V

(E1 · J2 − H1 · Jm2)dV

+
∫

S

(E1 × H2 − E2 × H1) · und S. (1.86)
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If both sources are outside S, the surface integral in (1.86) is zero. If both sources are inside S,
it can be shown that the surface integral is also zero by using the radiation condition. Therefore
we obtain the Lorentz form of reciprocity

∫

S

(E1 × H2 − E2 × H1) · und S = 0,

and the Rayleigh-Carson form of reciprocity

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

V

(−H1 · Jm2 + E1 · J2)dV (1.87)

If the surface S only contains the sources J1(r) and Jm1(r), Equation (1.86) becomes

∫

V

(E2 · J1 − H2 · Jm1)dV =
∫

S

(E2 · un × H1 − H2 · E1 × un)d S.

This is the familiar form of Huygens’ principle. The electromagnetic reciprocity theorem can
also be generalized to an anisotropic medium (Kong, 1990; Tai, 1961; Harrington, 1958).

Example 1.6: An interesting application of the reciprocity theorem is to prove that a surface
electric (or magnetic) current pressed tightly on a perfect electric (or magnetic conductor) does
not radiate. Let Js1 be a surface electric current pressed tightly on a perfect electric conductor,
which generates electromagnetic fields E1 and H1. Now remove the surface electric current Js1

and place an arbitrary current source J2 in space that produces electromagnetic fields E2 and
H2. According to (1.87), we have

∫

V
E2 · Js1dV = ∫

V
E1 · J2dV , where V denotes the region

outside the conductor. Since E2 only has a normal component on the surface of the conductor
while Js1 is a tangential vector, the left side of the above equation must be zero. Thus, we have
∫

V
E1 · J2dV = 0. For J2 is arbitrary, we obtain E1 = 0.

1.4 Wavepackets

A time-domain field can be expressed as the superposition of individual plane waves of the
form e jωt− jk·r. Each plane wave travels with a phase velocity defined by vp = ukω/ |k|, where
uk = k/ |k| and k is the wave vector. The phase velocity is the velocity at which the points of
constant phase move in the medium. It is well known that, to transmit energy or a signal, the
waves must come in a range of frequencies to form a wavepacket. The wavepacket was first
introduced by Schrödinger and is used to represent a small group of plane waves. There are
two different ways of building wavepackets. A waveform is called a spatial wavepacket (or
paraxial approximation) if it is monochromatic and is confined to a narrow region of space
along the path of propagation. A spatial wavepacket is basically a beam of wave. A waveform is
called a temporal wavepacket (or narrow-band approximation) if it propagates in only one
direction and its frequency spectrum is confined to a narrow band around a central frequency.
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The propagation of wavepackets in an absorbing medium was studied for the first time by the
German physicist, Arnold Johannes Wilhelm Sommerfeld (1868–1951), and the French physi-
cist, Léon Nicolas Brillouin (1889–1969) (Brillouin, 1960). The group velocity, signal velocity
and energy velocity are important quantities for characterizing the propagation of wavepackets
and there are certain relationships among them. The speed of each frequency component is the
phase velocity while the speed of the envelope of the wavepacket is called group velocity. The
velocity at which the main part of the wavepacket propagates is called signal velocity. When a
signal propagates in a dispersive medium, it does not retain its original form. At certain depth
of the medium, very weak signal components appear at first and are called forerunners or
fronts whose speed is always equal to the light speed in vacuum. The energy velocity of the
wavepacket is defined as the ratio of the Poynting vector to the energy density.

1.4.1 Spatial Wavepacket and Temporal Wavepacket

By definition, a spatial wavepacket can be represented by

F(r, t) = 1

(2π )3

∞∫

−∞
F̃(k)e jω(k)t− jk·rdk

(1.88)

= 1

(2π )3

∞∫

−∞

∞∫

−∞
F(ξ, 0)e jω(k)t− jk·(r−ξ)dξdk,

where F̃(k) is given by F̃(k) =
∞∫

−∞
F(r, 0)e jk·rdr and ω is the angular frequency of the

wavepacket. Since F(r, 0) is narrow-band in k-space, a rapid phase variation e− jkc ·r may
be factored out so that one may write F(r, 0) = A(r, 0)e− jkc ·r, where kc is the central wave
vector and A(r, 0) is the complex envelope that describes the slowly varying transverse beam
profile or the spatial modulation as the wave propagates. If the dispersion of the medium is
not strong, we may use the first-order approximation for the dispersion relation

ω(k) ≈ ωc + δk · ∇ω(kc),

where ωc = ω(kc) and δk = k − kc. As a result, Equation (1.88) can be approximated by

F(r, t) =
∞∫

−∞
F(ξ, 0)e j[ωct−kc ·(r−ξ)]δ [∇ω(kc)t − (r − ξ)] dξ

= F(r − vgt, 0)e j(ωct−kc ·vg t),

where vg = ∇ω(kc) is defined as the group velocity. Making use of F(r, 0) = A(r, 0)e− jkc ·r

we have

F(r, t) = A(r − vgt, 0)e j(ωct−kc ·r). (1.89)



P1: OTA/XYZ P2: ABC
c01 BLBK281-Wen March 4, 2010 11:57 Printer Name: Yet to Come

Wavepackets 41

Hence the group velocity represents the speed of the envelope of the wavepacket. In a medium
where the dispersion is not strong, the shape of the envelope of the wavepacket does not
change very much as it propagates. When the wavepacket propagates in a highly dispersive
medium, the shape of the envelope of the wavepacket will not remain the same. The phase
of the wavepacket will change as the propagation distance and time increase. As a result, the
concept of group velocity is no longer valid in a highly dispersive medium.

By definition, an arbitrary temporal wavepacket may be expressed as

F(r, t) = 1

2π

∞∫

−∞
F̃(ω)e j[ωt−k(ω)·r]dω

(1.90)

= 1

2π

∞∫

−∞

∞∫

−∞
F(0, t ′)e j[ω(t−t ′)−k(ω)·r]dt ′dω,

where F̃(ω) =
∞∫

−∞
F(0, t)e− jωt dt . The narrow-band approximation assumes that the frequency

spectrum of the time variation is confined to a narrow band around a carrier. Therefore F(0, t)
is a bandpass signal and can be written as F(0, t) = A(0, t)e jωct , where ωc is the carrier
frequency and A(0, t) is a slowly varying function of time. If the dispersion of the medium is
not very strong we may make the first order approximation

k(ω) ≈ kc + δω
dk(ωc)

dω
,

where δω = ω − ωc and kc is the wave vector at the carrier frequency ωc. Hence (1.90) can
be expressed as

F(r, t) = 1

2π

∞∫

−∞

∞∫

−∞
F(0, t ′)e jωc(t−t ′)− jkc ·r+ jδω

[

(t−t ′)− dk(ωc )
dω

·r
]

dt ′dδω

= F
(

0, t − dk(ωc)

dω
· r

)

e jωc
dk(ωc )

dω
·r− jkc ·r (1.91)

= A
(

0, t − dk(ωc)

dω
· r

)

e jωct− jkc ·r.

If the wavepacket propagates mainly in kc direction, that is, k ≈ kc, we have dk(ωc)/dω =
ukc/vg , where ukc is the unit vector along the direction of kc, and vg = dω(ωc)/dk is the group
velocity. Equation (1.91) indicates that the propagation velocity of the envelope of a temporal
wavepacket is equal to group velocity. Again, the shape of the envelope as well as the phase of
the wavepacket will change as it propagates in a strongly dispersive medium, and the concept
of group velocity becomes invalid.

An analogy exists between the spatial diffraction of beams and temporal dispersion of
pulses. It can be shown that the equation that describes how a wavepacket spreads in time due
to dispersion is equivalent to the equation for the transverse spreading due to diffraction. The
temporal imaging technique is based on this space–time analogy (Kolner, 1994).
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1.4.2 Signal Velocity and Group Velocity

According to Sommerfeld and Brillouin, the signal velocity represents the velocity of the main
part of the signal. Thus we may define signal velocity as vs = drp/dt , where rp is the position
of the main part of the wavepacket F, defined by (Vichnevetsky, 1988)

rp(t) =

∞∫

−∞
r |F(r, t)|2 dr

∞∫

−∞
|F(r, t)|2 dr

. (1.92)

It should be understood that the concept of signal velocity of a wavepacket is useful only
when the dispersion of the medium is not very strong (so that the first-order approximation for
the dispersion relation is valid). Substituting (1.89) into (1.92) and using the transformation
r = u + vgt , we obtain

rp(t) =

∞∫

−∞
r
∣
∣A(r − vgt, 0)

∣
∣
2

dr

∞∫

−∞

∣
∣A(r − vgt, 0)

∣
∣
2

dr
=

∞∫

−∞
(u + vgt) |A(u, 0)|2 du

∞∫

−∞
|A(u, 0)|2 du

.

By taking the time derivative of the above equation, we obtain vs = vg , and the signal velocity
of a spatial wavepacket is equal to the group velocity. Similarly substituting (1.91) into (1.92)
and making use of the transformation r = u + vgtukc yields

rp(t) =

∞∫

−∞
r
∣
∣A(0, t − ukc · r/vg)

∣
∣
2

dr

∞∫

−∞

∣
∣A(0, t − ukc · r/vg)

∣
∣
2

dr
=

∞∫

−∞
(u + vgtukc )

∣
∣A(0,−ukc · u/vg)

∣
∣
2

du

∞∫

−∞

∣
∣A(0,−ukc · u/vg)

∣
∣
2

du
.

Hence vs = vgukc = vg , and the signal velocity of a temporal wavepacket is equal to the group
velocity.

1.4.3 Energy Density for Wavepackets

An expression for the electromagnetic energy density that does not involve any medium prop-
erties (such as isotropic, anisotropic) is useful. Such an expression exists for a monochromatic
wave (Tonning, 1960), and can be generalized to the wavepackets, which are more realistic in
applications. In order to find the general expression of the energy density for a wavepacket,
we have to assume that the dispersion of the medium is not very strong so that the first-order
approximation of the dispersion is valid. From (1.89) and (1.91), the fields for both spatial and
temporal wavepackets can be expressed as

E(r, t) = Re[Een(r, t ; ωc)e jωct ], etc. (1.93)
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where Een etc. are the envelopes and they are slowly varying functions of time compared
to e jωct , and ωc is the angular frequency of the monochromatic paraxial wave or the carrier
wave frequency for the narrow-band signal. We cannot apply (1.57) to a wavepacket directly
because the fields might not be zero at t = −∞. To make use of (1.57), the standard way is to
introduce a damping mechanism for the fields first so that all the fields are zero at t = −∞,
and then let the damping tend to zero after the calculation is finished. To this end, we can
introduce a complex frequency ω̃ = − jα + ωc to replace the real frequency ωc, where α is a
small positive number (the damping factor). Equation (1.93) may be rewritten as

Ẽ(r, t) = Re[Ẽen(r, t ; ω̃)e jω̃t ], etc. (1.94)

which approach zero when t → −∞ and approach the corresponding real fields as α → 0.
Assuming that the fields are analytic functions of frequency, the following first-order expansion
can be made

Ẽen ≈ Een − jα
∂Een

∂ωc
, etc.

for α is assumed to be small. A simple calculation shows that

Ẽ · ∂D̃
∂t

− D̃ · ∂Ẽ
∂t

+ H̃ · ∂B̃
∂t

− B̃ · ∂H̃
∂t

= −ωce2αt Im(Ēen · Den + H̄en · Ben)

+αωce2αt Re

(

Ēen · ∂Den

∂ωc
− Den · ∂Ēen

∂ωc
+ H̄en · ∂Ben

∂ωc
− Ben · ∂H̄en

∂ωc

)

.

From the lossless condition ∇ · (E × H) = 0 and Maxwell equations, we obtain

Im(Een · D̄en − H̄en · Ben) = −Im(Ēen · Den + H̄en · Ben) = 0. (1.95)

Thus the quantity Ēen · Den + H̄en · Ben is real. Consequently the integral of (1.57) can be
expressed as

t∫

−∞

1

2

(

E · ∂D
∂t

− D · ∂E
∂t

+ H · ∂B
∂t

− B · ∂H
∂t

)

dt

= lim
α→0

1

2

t∫

−∞
Ẽ · ∂D̃

∂t
− D̃ · ∂Ẽ

∂t
+ H̃ · ∂B̃

∂t
− B̃ · ∂H̃

∂t
dt (1.96)

= ωc

4
Re

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

.
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The quantity in the bracket is real. Actually taking the derivative of (1.95) with respect to the
frequency gives

Im

(

Ēen · ∂Den

∂ωc
+ Den · ∂Ēen

∂ωc
+ H̄en · ∂Ben

∂ωc
+ Ben · ∂H̄en

∂ωc

)

= 0.

This relation still holds if we take the complex conjugate of the second and the fourth term
and change their sign simultaneously. Since the envelopes can be considered as constants over
one period of the carrier wave e jωct , the time average of (1.96) over one period of the carrier
wave is

1

2

t∫

−∞

(

H · ∂B
∂t

− B · ∂H
∂t

+ E · ∂D
∂t

− D · ∂E
∂t

)

dt

(1.97)

= ωc

4

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

.

The above expression can be interpreted as the energy density related to dispersion and will
be denoted w̄d . Similarly the time average of the rest of (1.57) over one period of the carrier
wave is

1

2
(E · D + H · B) = 1

4
Re(Een · D̄en + Hen · B̄en)

(1.98)
= 1

4
(Een · D̄en + Hen · B̄en).

It follows from (1.57), (1.97) and (1.98) that the time average of the energy density over one
period of the carrier wave e jωct can be expressed as

w = 1

4
(Ēen · Den + H̄en · B)

+ωc

4

(

Ēen · ∂Den

∂ωc
− D̄en · ∂Een

∂ωc
+ H̄en · ∂Ben

∂ωc
− B̄en · ∂Hen

∂ωc

)

(1.99)

= 1

4

[

Ēen · ∂(ωcDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

.

Taking the time average of (1.55) over one period of the carrier wave e jωct , the Poynting
theorem in a lossless medium without impressed sources becomes

∫

S

S · und S +
∫

V

∂w

∂t
dV = 0,

where S = Re(Een × H̄en)/2 is the time average of the Poynting vector over one period of

the wave e jωct and the calculation ∂w/∂t = ∂w/∂t has been used. Note that ∂w/∂t = 0 for
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a monochromatic wave. As a special case, let us consider an isotropic medium defined by
Den = εEen, Ben = µHen . In this case, Equation (1.99) reduces to the well-known expression

w = 1

4

[
∂(ωcε)

∂ωc
|Een|2 + ∂(ωcµ)

∂ωc
|Hen|2

]

.

1.4.4 Energy Velocity and Group Velocity

The energy velocity is defined as the ratio of the Poynting vector to the energy density, that is,

ve = S/w. If the dispersion of the medium is not very strong, a spatial or temporal wavepacket
in its first-order approximation can be expressed as

E(r, t) = Re[E0(r, t ; ωc)e jωct− jkc ·r], etc. (1.100)

where the fast phase variation e− jkc ·r of the fields has been factored out. The new envelopes E0,
etc. are slowly varying functions of both spatial coordinates and time. Introducing (1.100) into
Maxwell equations in a source-free and lossless region and using the calculation ∇e− jkc ·r =
− jkce− jkc ·r, we obtain

kc × H0 + j∇ × H0 = −ωcD0,

kc × E0 + j∇ × E0 = ωcB0.

Since E0 and H0 are slowly varying function of space, we can let ∇ × E0 ≈ 0 and ∇ × H0 ≈ 0.
Thus the above equation may be rewritten as

kc × Hen + ωcDen ≈ 0,
(1.101)

kc × Een − ωcBen ≈ 0.

By letting kc = kcx ux + kcyuy + kczuz and taking the derivative of (1.101) with respect to kcx ,
we obtain

ux × Hen +
[

kc × ∂Hen

∂ωc
+ ∂(ωcDen)

∂ωc

]
∂ωc

∂kcx
≈ 0,

ux × Een +
[

kc × ∂Een

∂ωc
− ∂(ωcBen)

∂ωc

]
∂ωc

∂kcx
≈ 0.

Multiplying the first equation by −Ēen and second by H̄en and adding the resultant equations
and using (1.99), we get

ux · ¯̄S = ∂ωc

∂kcx
· 1

4

[

Ēen · ∂(ωDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

= ∂ωc

∂kcx
w̄.
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Similarly we have uy · S = w∂ωc
/

∂kcy and uz · S = w∂ωc
/

∂kcz . Therefore

vg = S

w
= ∇ωc(kc) = ve.

This indicates that the group velocity is always equal to the energy velocity for a spatial
wavepacket.

Taking the derivative of (1.101) with respect to the frequency, we obtain

dkc

dωc
× Hen + kc × ∂Hen

∂ωc
+ ∂(ωcDen)

∂ωc
≈ 0,

dkc

dωc
× Een + kc × ∂Een

∂ωc
− ∂(ωcBen)

∂ωc
≈ 0.

Multiplying the first equation by −Ēen and second by H̄en and adding the resultant equations
and using (1.99) yields

dkc

dωc
· S = 1

4

[

Ēen · ∂(ωDen)

∂ωc
− ωcD̄en · ∂Een

∂ωc
+ H̄en · ∂(ωcBen)

∂ωc
− ωcB̄en · ∂Hen

∂ωc

]

= w.

It follows that

ve · dkc

dωc
≈ 1 or ve · ukc ≈ vg.

The above equation shows that the projection of the energy velocity in the direction of wave
propagation is always equal to the group velocity for a temporal wavepacket.

Remark 1.14: In deriving the electromagnetic energy density for a wavepacket in a general
lossless medium, a damping mechanism (that is, the small parameter α) has been introduced.
This process appears to be a bit contrived. Nonetheless it is required by the uniqueness
theorem for solutions of Maxwell equations. In a steady state, the information about the initial
condition of the field has been lost and many possible solutions may exist. Introducing the
loss is equivalent to introducing causality.

Remark 1.15: One of the essential assumptions in special relativity is that the light speed is
the greatest speed at which energy, information and signals can be transmitted. This is also the
requirement of causality. Sommerfeld and Brillouin were the first to note that group velocity
could be faster than light in the regions of anomalous dispersion. Some experiments in recent
years have shown that the group velocity can exceed the light speed c or even become negative
(for example, Wong, 2000). In all these experiments, the wavepackets experience a very strong
dispersion when they travel in the medium, and the concept of group velocity that relies on
the first-order approximation of dispersion relation is actually invalid.
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Giving an exact definition for the propagation velocity of wavepackets in a highly dispersive
medium is essentially difficult. Several definitions have been proposed for various specific
situations (Fushchych, 1998; Diener, 1998).

1.4.5 Narrow-band Stationary Stochastic Vector Field

As a linear modulation technique, an easy way to translate the spectrum of low-pass or
baseband signal to a higher frequency is to multiply or heterodyne the baseband signal with a
carrier wave. A narrowband bandpass stochastic vector field F (modulated signal) in the time
domain can be expressed as

F(r, t) =

⎧

⎪⎨

⎪⎩

a(r, t) cos[ωct + ϕ(r, t)],

x(r, t) cos ωct − y(r, t) sin ωct,

Re Fen(r, t)e jωct ,

where ωc = 2π fc, a(r, t) and ϕ(r, t) are the carrier frequency, envelope and phase of the
modulated signal respectively, and

Fen(r, t) = x(r, t) + jy(r, t),

x(r, t) = a(r, t) cos ϕ(r, t),

y(r, t) = a(r, t) sin ϕ(r, t).

Here Fen(r, t), x(r, t) and y(r, t) are the complex envelope, in-phase component, and quadra-
ture component of the modulated signal respectively. The complex envelope Fen(r, t) is a
slowly varying function of time compared to e jωct . It is easy to show that the complex en-
velopes of the electromagnetic fields satisfy the time-harmonic Maxwell equations

∇ × Hen(r, t) = jωcεEen(r, t) + Jen(r, t),
(1.102)

∇ × Een(r, t) = − jωcµHen(r, t).

Therefore the theoretical results about the time-harmonic fields can be applied to the com-
plex envelopes of the fields. Let 〈F〉 denote the ensemble average of F. For a station-
ary and ergodic vector field F, the ensemble average equals the time average, that is,

〈F〉 = F = lim
T →∞

1
T

T/2∫

−T/2
F(t)dt . For a stationary and ergodic electromagnetic field, we may

take the ensemble average of (1.102) to get

∇ × Hen(r) = jωcεEen(r) + Jen(r),

∇ × Een(r) = − jωcµHen(r).
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Hence the theoretical results about the time-harmonic fields can also be applied to the ensemble
averages of the complex envelopes of the fields.

All the mathematical sciences are founded on relations between physical laws and laws of numbers,
so that the aim of exact science is to reduce the problems of nature to the determination of quantities
by operations with numbers.

—James Maxwell




