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1
Polarization of Monochromatic
Waves. Background of the
Jones Matrix Methods.
The Jones Calculus

1.1 Homogeneous Waves in Isotropic Media

1.1.1 Plane Waves
Light is an electromagnetic radiation with frequencies 𝜈 lying in the range from ∼4 × 1014 to ∼8 ×
1014 Hz. An elementary model of light is a plane monochromatic wave. The electric field of a plane
monochromatic wave can be represented, in complex form, as

E(r, t) = E0ei(kr−𝜔t), (1.1)

where 𝜔 = 2𝜋𝜈 is the circular frequency and k is the wave vector of the wave, r is a position vector,
and t is time. If the wave propagates in an isotropic nonabsorbing medium with refractive index n and is
homogeneous (see Section 8.1.2), the vector k can be expressed as

k = 𝜔

c
nl, (1.2)

where l is the wave normal, a unit vector perpendicular to the wavefronts of the wave and indicating its
propagation direction; c is the velocity of light in vacuum (free space). In this case, the wave is strictly
transverse, satisfying the condition

l ⋅ E0 = 0. (1.3)

The phase velocity of the wave is

cn =
𝜔|k| = c

n
. (1.4)
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The true wavelength (𝜆true) of the wave in the medium is defined as

𝜆true ≡ cn𝜏,

where

𝜏 = 1
𝜈
= 2𝜋

𝜔

is the temporal period of the wave. Along with the true wavelength, one can associate with this wave the
so-called wavelength in free space, defined as follows:

𝜆 ≡ c𝜏 = c
𝜈
= 2𝜋c

𝜔
. (1.5)

Throughout this book, speaking on monochromatic fields or monochromatic components of polychro-
matic fields, we will use the term “wavelength” only in the latter sense (often omitting “in free space”).
Also, we will use the parameter

k0 ≡
𝜔

c
= 2𝜋

𝜆
(1.6)

called the wave number in free space. In terms of 𝜆 and k0, equation (1.1) can be rewritten as follows:

E(r, t) = E0ei(k0nlr−𝜔t) = E0e
i
(

2𝜋
𝜆

nlr−𝜔t
)
. (1.7)

The field (1.1) must satisfy the following wave equation [1]:

∇ × (∇ × E) − k2
0𝜀E = ⌢

0, (1.8)

where 𝜀 is the electric permittivity of the medium, ∇ is the nabla operator, and
⌢
0 is the null vector.

Throughout this book, we use the Gaussian system of units and consider only media that are nonmagnetic
(i.e., having their magnetic permeability 𝜇 equal to 1) at optical frequencies. Substituting (1.1) into (1.8)
gives the equation

k × (k × E) + k2
0𝜀E = ⌢

0, (1.9a)

which can be rewritten as

k ⋅ (k ⋅ E) − k2E + k2
0𝜀E = ⌢

0, (1.9b)

where k2 ≡ k ⋅ k. Scalarly multiplying any of these equations by k, we see that these equations include
the condition

k ⋅ E = 0; (1.10)

this condition may also be derived from the Maxwell equation ∇ (𝜀E) = 0. We should note that condition
(1.10) is valid for inhomogeneous waves of the form (1.1) as well (see Sections 8.1.2 and 9.2). In the
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case of a homogeneous wave, condition (1.10) is tantamount to (1.3). In view of (1.10), equation (1.9b)
can be reduced to the following one: (

k2
0𝜀 − k2

)
E = ⌢

0. (1.11)

This equation requires that √
k2 = k0

√
𝜀. (1.12)

In the case of a homogeneous wave, equation (1.12) leads to (1.2) with

n =
√
𝜀. (1.13)

With complex n and 𝜀, equations (1.1)–(1.3) and (1.13) can be used to describe homogeneous waves
propagating in absorbing media (see Section 8.1.2).

1.1.2 Polarization. Jones Vectors

Polarization Parameters

Let us consider a plane wave satisfying (1.3). We introduce a rectangular right-handed Cartesian system
(x, y, z) with the z-axis codirectional with the wave normal l. Denote the unit vectors indicating the
positive directions of the axes x, y, and z by x, y, and z. Using this coordinate system, we can represent
the electric field of the wave as follows:

E(r, t) = E(z, t) =
(
xẼx(z) + yẼy(z)

)
e−i𝜔t (1.14a)

or

E(r, t) =
(

x ||Ẽx(z)|| ei𝛿x + y |||Ẽy(z)||| ei𝛿y

)
e−i𝜔t, (1.14b)

where Ẽx and Ẽy are the scalar complex amplitudes, and 𝛿x and 𝛿y are the phases of the x-component and
the y-component of the field. The quantity

𝜒 =
Ẽy

Ẽx

=
|Ẽy||Ẽx| ei𝛿 , (1.15)

where 𝛿 = 𝛿y−𝛿x, fully describes the state of polarization (SOP) of the wave. For completely polarized
waves, which we consider here, the SOP is essentially the shape, orientation, and sense of the trajectory
that is described with time by the end of the true electric vector [Re(E)] associated with a given point in
space (r). It is well known that in general such a trajectory is an ellipse. With the help of Figure 1.1, we
present basic parameters used for description of the SOP of completely polarized waves [1–3]:

1. The azimuth (orientation angle) 𝛾e of a polarization ellipse is defined as the angle between the positive
direction of the x-axis and the major axis of the ellipse (Figure 1.1).

2. The ellipticity ee is defined as

ee = ±b
a

, (1.16)
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Figure 1.1 A polarization ellipse

where a and b are the lengths of the semimajor axis and semiminor axis of the ellipse, respectively.
The ellipticity is taken positive if the polarization is right-handed and negative if the polarization is
left-handed. The handedness of the polarization ellipse determines the sense in which the ellipse is
described. In the literature, different conventions on the handedness of polarization are used. In this
book, we use the convention adopted in the books [1, 2, 4]: the polarization is called right-handed
if the polarization ellipse is described in the clockwise sense when looking against the direction of
propagation of the light [this is the case in Figure 1.1 where the z-axis and the wave normal l are
directed out of the page, toward the viewer] and left-handed otherwise. For a linearly polarized wave,
ee = 0. For right- and left-circularly polarized waves, ee equals 1 and –1, respectively.

3. The ellipticity angle 𝜐e is defined by

ee = tan 𝜐e. (1.17)

The values of 𝜐e lie between −𝜋/4 (left circular polarization) and 𝜋/4 (right circular polarization).

The azimuth 𝛾e and ellipticity angle 𝜐e are related to the complex polarization parameter 𝜒 as follows:

cos 2𝛾e =
1 − |𝜒|2√(

1 − |𝜒|2)2 + (2 Re𝜒)2

, sin 2𝛾e =
2 Re𝜒√(

1 − |𝜒|2)2 + (2 Re𝜒)2

, (1.18)

sin 2𝜐e = −
2 Im(𝜒)

1 + |𝜒|2 . (1.19)

Thus, given 𝜒 , the parameters 𝛾e, 𝜐e, and ee can be calculated by formulas (1.18), (1.19), and (1.17).
Note that for linearly polarized waves 𝜒 is purely real, while for circular polarizations it is purely
imaginary (𝜒 = −i for the right circular polarization and 𝜒 = i for the left circular polarization). We
stress that relations (1.18) and (1.19) and all other relations for polarization parameters presented in this
book correspond to the above choice of the convention on handedness and of the time factor in complex
representation (e−i𝜔t).

The spatial evolution of the amplitudes Ẽx and Ẽy in (1.14) can be described by the following equations:

Ẽx(z) = Ẽx(z
′)eik0n(z−z′), Ẽy(z) = Ẽy(z

′)eik0n(z−z′), (1.20)

where z′ is any given value of z. Even if the wave propagates in an absorbing medium (with complex
n) and, consequently, is damped, its parameter 𝜒 is independent of z. This means that 𝜒 and the other
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polarization parameters listed above are spatially invariant and characterize the wave as a whole, that is,
they are global characteristics of the wave.

Jones Vectors

The column

J̃(z) =

(
Ẽx(z)

Ẽy(z)

)
(1.21)

represents a Jones vector of the wave (1.14). Different kinds of Jones vectors are used in practice. Some
of them are considered in Section 5.4 and Chapter 8. Definition (1.21) corresponds to one of those kinds.
The Jones vector defined by (1.21) is a local characteristic of the wave, being dependent on z. According
to (1.20), its values for two arbitrary values of z, z′ and z′′ (z′′ > z′), are related by

J̃(z′′) = eik0n(z′′−z′)J̃(z′). (1.22)

This relation can be rewritten as

J̃(z′′) = tis,n(z′, z′′)J̃(z′), (1.23)

where

tis,n(z′, z′′) =
(

eik0n(z′′−z′) 0
0 eik0n(z′′−z′)

)
. (1.24)

The 2 × 2 matrix appearing here is a simple example of the Jones matrix.
If the medium where the wave propagates is nonabsorbing, the Jones vector J̃(z) can be represented as

J̃(z) = a𝛿(z)aI J, (1.25)

where

J =

(
Jx

Jy

)
(1.26)

is a spatially invariant Jones vector of the wave (see Section 5.4.3), a𝛿 is a scalar complex phase coefficient
of unit magnitude (a𝛿a

∗
𝛿
= 1), and aI is a real coefficient that makes the following relation valid:

I = J† J, (1.27)

where I represents a quantity (usually called intensity) that is regarded as a measure of irradiance
(see Section 5.2) for waves in a particular problem or a method; the symbol † denotes the Hermitian
conjugation operation (see Section 5.1.1). It is clear that, given J, the complex polarization parameter 𝜒
of the wave can be calculated by the formula

𝜒 =
Jy

Jx

. (1.28)

The use of such “global” and “fitted-to-intensity” [see (1.27)] Jones vectors for waves propagating in
isotropic nonabsorbing media is a feature of the classical Jones calculus (JC) [5] (see Section 1.4). In
JC, the quantity conventionally introduced to characterize irradiance is called intensity. Equation (1.27)
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is a standard expression for the intensity of a wave in terms of its Jones vector in this method. For many
problems, the “global” Jones vector J of a wave contains all the information about the wave that is
required for solving the problem, while the factors a𝛿 and aI can be eliminated from the calculations.
These factors are absent in standard algorithms based on JC. One should remember the differences
between the vectors J̃ and J when trying to use JC in combination with rigorous techniques derived from
electromagnetic theory. Moreover, dealing with Jones vectors like J̃, one should recognize that in many
cases the use of the quantity

Ĩ = J̃
†
J̃ = |Ẽx|2 + |Ẽy|2 (1.29)

as a measure of irradiance is not justified. We will consider this issue in detail in Section 5.4. Here we
restrict ourselves to the following example. Suppose that we use as intensity I FEFD irradiance (see
Section 5.2), which is allowed by electromagnetic theory. In this case, the intensity I of the wave is
expressed in terms of Ĩ as follows:

I = cn
8𝜋

Ĩ. (1.30)

As seen from (1.30), waves of equal Ĩ, propagating in media with different refractive indices, will have
different “true” intensities I. Note that the coefficient aI [see (1.25)] in this case is given by

aI =
√

8𝜋
cn

. (1.31)

Polarization Jones Vector

Both the “global” and “fitted-to-intensity” Jones vector J and the local Jones vector J̃(z) can be represented
as the product of a scalar factor and a unit vector

j =

(
jx

jy

)
, (1.32)

unit in the sense that

j† j = 1. (1.33)

The vector j carries information only on the polarization state of the wave (𝜒 = jy∕jx) and may be called
the polarization Jones vector (see Section 5.4.3). In solving practical problems, the polarization Jones
vectors are often used to specify the polarization state of light incident on an optical system. Table 1.1
shows typical choices of the polarization vectors for different polarization states. The simplest choice of
the vector J for incident light is

J =
√

I j. (1.34)

A vector J′ and the vector J′′ = aJ′, where a is a complex number of unit magnitude, can be
regarded as equivalent apart from their phases. As a rule, when calculations for an optical system are
performed in terms of “global” Jones vectors, the phases of these vectors are unimportant and can be
assigned and transformed arbitrarily, owing to which there is a certain degree of freedom in choice of
the vectors j and J for incident light and the Jones matrices describing the interaction of light with optical
elements. In particular, this allows using reduced forms of Jones matrices for some kinds of elements
(see, e.g., Sections 1.3.5 and 1.3.6), which simplifies the calculations.
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Table 1.1 Variants of polarization Jones vectors for various polarization states

Polarization Polarization Jones vector j

Arbitrary elliptical jE(𝛾e, 𝜐e) ≡

(
cos 𝛾e cos 𝜐e + i sin 𝛾e sin 𝜐e

sin 𝛾e cos 𝜐e − i cos 𝛾e sin 𝜐e

)

Linear jP(𝛾e) ≡

(
cos 𝛾e

sin 𝛾e

)

Right circular jR ≡

⎛⎜⎜⎜⎜⎝
1√
2

− i√
2

⎞⎟⎟⎟⎟⎠
Left circular jL ≡

⎛⎜⎜⎜⎜⎝
1√
2

i√
2

⎞⎟⎟⎟⎟⎠
Stokes Parameters

In many cases, it is convenient to use Stoke vectors as state characteristics of light. Stokes vector is
a 4 × 1 column composed of the so-called Stokes parameters, four real quantities characterizing the
intensity and polarization state of light. In this subsection we present some useful expressions for Stokes
parameters of monochromatic plane waves in terms of the polarization parameters considered above.
Definitions for different kinds of Stokes vectors are given in Section 5.3. In particular, in Section 5.3
we define two types of Stokes vectors for plane waves. The Stokes vectors of these types for a wave
are simply related. In view of this, we consider here Stokes vectors of only one of these types, namely,
intensity-based Stokes vectors.

Using the x-axis as the polarization reference axis (see Section 5.3), after substitution of (1.14) into
(5.80) it is easy to obtain the following expression for the intensity-based Stokes vector of the wave (1.14):

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
= cn

8𝜋

⎛⎜⎜⎜⎜⎜⎜⎝

|Ẽx|2 + |Ẽy|2|Ẽx|2 − |Ẽy|2
2 Re

(
ẼxẼ

∗
y

)
2 Im

(
ẼxẼ

∗
y

)
⎞⎟⎟⎟⎟⎟⎟⎠
. (1.35)

Since ẼxẼ
∗
y = |Ẽx||Ẽy|e−i𝛿 , we may rewrite this expression as follows:

S(I) =
cn
8𝜋

⎛⎜⎜⎜⎜⎜⎝

|Ẽx|2 + |Ẽy|2|Ẽx|2 − |Ẽy|2
2|Ẽx||Ẽy| cos 𝛿
−2|Ẽx||Ẽy| sin 𝛿

⎞⎟⎟⎟⎟⎟⎠
. (1.36)
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Another useful expression for S(I) can be obtained by using the following representation of the vector
J̃(z):

J̃(z) ≡

(
Ẽx(z)

Ẽy(z)

)
= a(z)

√
Ĩ jE(𝛾e, 𝜐e), (1.37)

where a is a complex phase factor of unit magnitude and jE(𝛾e, 𝜐e) is the polarization Jones vector given
in Table 1.1. Substitution from (1.37) into (1.35) gives

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
= cn

8𝜋

⎛⎜⎜⎜⎜⎜⎝

Ĩ

Ĩ cos 2𝛾e cos 2𝜐e

Ĩ sin 2𝛾e cos 2𝜐e

Ĩ sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

I

I cos 2𝛾e cos 2𝜐e

I sin 2𝛾e cos 2𝜐e

I sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
, (1.38)

where I is the intensity defined as the FEFD irradiance of the wave. This expression is convenient when
there is a need to construct the Stokes vector for given 𝛾e and 𝜐e or, vice versa, to find 𝛾e and 𝜐e from
calculated or measured Stokes parameters. Note that in the case of a quasimonochromatic partially
polarized wave, its Stokes vector can be represented as

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

I

Ip cos 2𝛾e cos 2𝜐e

Ip sin 2𝛾e cos 2𝜐e

Ip sin 2𝜐e

⎞⎟⎟⎟⎟⎟⎠
, (1.39)

where I is the total intensity of the wave and Ip is the intensity of the completely polarized component of
the wave. The intensity Ip is expressed in terms of the Stokes parameters as follows:

Ip =
√

S2
1 + S2

2 + S2
3, (1.40)

which allows one to easily find 𝛾e and 𝜐e from a given Stokes vector in this case as well.
If the Jones vector J is defined by (1.25) with aI given by (1.31), the vector S(I) is expressed in terms

of the J components as follows:

S(I) ≡

⎛⎜⎜⎜⎜⎜⎝

S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

|Jx|2 + |Jy|2|Jx|2 − |Jy|2
2 Re

(
JxJ∗

y

)
2 Im

(
JxJ∗

y

)
⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

|Jx|2 + |Jy|2|Jx|2 − |Jy|2
2|Jx||Jy| cos 𝛿
−2|Jx||Jy| sin 𝛿

⎞⎟⎟⎟⎟⎟⎠
. (1.41)

Poincaré Sphere

Let us introduce the normalized Stokes parameters

s1 =
S1

S0

, s2 =
S2

S0

, s3 =
S3

S0

. (1.42)
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Figure 1.2 Representation of polarization states by points on the Poincaré sphere

According to (1.38), in the case of a completely polarized wave, these parameters can be expressed as
follows:

s1 = cos 2𝛾e cos 2𝜐e, s2 = sin 2𝛾e cos 2𝜐e, s3 = sin 2𝜐e. (1.43)

With 𝛾e and 𝜐e considered as free variables, equations (1.43) describe a unit sphere in a rectangular
Cartesian coordinate system (s1, s2, s3) (see Figure 1.2). This sphere is called the Poincaré sphere. The
points of this sphere represent all possible SOPs of completely polarized light. The north and south
poles on the Poincaré sphere represent the right and left circular polarizations, respectively. The equator
represents linear polarization states and all the other points on the sphere represent elliptical polarization
states. All left-handed polarization states are on the southern hemisphere, and the northern hemisphere
corresponds to right-handed polarizations.

1.1.3 Coordinate Transformation Rules for Jones Vectors. Orthogonal
Polarizations. Decomposition of a Wave into Two Orthogonally
Polarized Waves

Coordinate Transformation Rules for Cartesian Jones Vectors

Let x′ and y′ be unit vectors directed along mutually orthogonal axes x′ and y′ perpendicular to the axis
z. Using the reference frame (x′, y′, z) instead of (x, y, z), we can represent the wave (1.14) as

E(r, t) =
(
x′Ẽx′ (z) + y′Ẽy′ (z)

)
e−i𝜔t. (1.44)

According to (1.44) and (1.14a),

xẼx + yẼy = x′Ẽx′ + y′Ẽy′ . (1.45)

Scalarly multiplying (1.45) by x′ and y′, we obtain the following equations:

Ẽx′ = (x′x)Ẽx + (x′y)Ẽy,

Ẽy′ = (y′x)Ẽx + (y′y)Ẽy.
(1.46)
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Introducing the column vector

J̃′ =

(
Ẽx′

Ẽy′

)
(1.47)

and the matrix

Rxy→x′y′ =

(
x′x x′y

y′x y′y

)
, (1.48)

we may write (1.46) in matrix form(
Ẽx′

Ẽy′

)
=

(
x′x x′y

y′x y′y

)(
Ẽx

Ẽy

)
(1.49)

or

J̃′ = Rxy→x′y′ J̃. (1.50)

Considering the space of Jones vectors as a space of states of a wave where each Jones vector represents
a unique state, we may say that the columns J̃ and J̃′ represent the same Jones vector (as they describe
the same state) referred to different bases. Relation (1.49) represents the law of transformation of the
elements of this Jones vector under the change of basis (x, y) → (x′, y′). In view of this, it would be more
correct to rewrite relation (1.50) as follows:

J̃x′y′ = Rxy→x′y′ J̃xy (1.51)

with obvious notation.
If the system (x′, y′, z), like the system (x, y, z), is right-handed (as in Figure 1.3), the matrix Rxy→x′y′

can be expressed as

Rxy→x′y′ =
⌢
RC(𝜙), (1.52)

where 𝜙 is the angle between the axes x and x′ (Figure 1.3), and
⌢
RC is the rotation matrix defined as

⌢
RC(𝛼) ≡

(
cos 𝛼 sin 𝛼

− sin 𝛼 cos 𝛼

)
(1.53)

z x

x'

yy'

y' y

x

x'

ϕ

Figure 1.3 Reference frames (x, y, z) and (x′, y′, z)
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for any 𝛼. Thus, in this case, the law of coordinate transformation can be expressed by the relation

J̃x′y′ =
⌢
RC(𝜙)J̃xy. (1.54)

For the inverse change (x′, y′) → (x, y),

J̃xy =
⌢
RC(𝜙)−1J̃x′y′ =

⌢
RC(−𝜙)J̃x′y′ . (1.55)

Expression (1.48) for the coordinate transformation matrix Rxy→x′y′ is valid irrespective of the handed-
ness of the systems (x, y, z) and (x′, y′, z). For example, if the system (x, y, z) is, as before, right-handed,
choosing the axes x′ and y′ so that x′ = x and y′ = –y, we will obtain a left-handed system (x′, y′, z). In
this case, equation (1.48) gives

Rxy→x′y′ =

(
1 0

0 −1

)
. (1.56)

We should note that many formulas presented in this book, in particular in the previous section, are
valid for right-handed coordinate systems only. In this book, we deal with left-handed systems very
rarely, and it is always stated; if the handedness of a coordinate system is not specified, this system is
assumed to be right-handed.

Orthogonal Polarizations

Two waves propagating in the same direction are said to be orthogonally polarized if their ellipses of
polarization have the same shape but mutually orthogonal major axes and are traced in opposite senses
(Figure 1.4). The right circular polarization is orthogonal with respect to the left circular polarization.
For a wave with 𝛾e = 𝛾 ′e, 𝜐e = 𝜐′e, and 𝜒 = 𝜒 ′, where 𝛾 ′e, 𝜐′e, and 𝜒 ′ are arbitrary, a wave with the corre-
sponding orthogonal polarization will have 𝛾e = 𝛾 ′e ± 𝜋∕2, 𝜐e = −𝜐′e, and 𝜒 = −1∕𝜒 ′∗ [2]. By checking
that

jE(𝛾 ′e ± 𝜋∕2,−𝜐′e)
† jE(𝛾 ′e, 𝜐′e) = 0,

l

Figure 1.4 Polarization ellipses of mutually orthogonal polarizations
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where jE is the polarization vector defined in Table 1.1, it is easy to verify that the polarization Jones
vectors of two orthogonally polarized waves, these vectors being denoted by j and jort, are orthogonal in
the sense that

j†ort j = j† jort = 0. (1.57)

It is clear that the Jones vectors of the other above-mentioned kinds (J and J̃) for these waves will also
be orthogonal in the same sense (J̃

†
ortJ̃ = 0, J†

ort J = 0).

Decomposition of a Wave into Two Orthogonally Polarized Waves

The equation for the electric field of the wave (1.14) can be rewritten in the form

E(r, t) = E(x)(r, t) + E(y)(r, t), (1.58)

where

E(x)(r, t) = x (xE(r, t)) = xẼx(z)e−i𝜔t,

E(y)(r, t) = y (yE(r, t)) = yẼy(z)e−i𝜔t.

E(x)(r, t) and E(y)(r, t) represent linearly polarized plane waves, each satisfying the wave equation (1.8).
These waves have mutually orthogonal polarizations: the field E(x)(r, t) vibrates along a line parallel to x,
while the field E(y)(r, t) oscillates along a line parallel to y. Thus, we can regard the representation (1.58)
as a decomposition of the wave E(r, t) into two waves with given mutually orthogonal polarizations. A
similar decomposition can be performed with the use of any other pair of orthogonal polarizations.

Let

j1 =

(
j1x

j1y

)
and j2 =

(
j2x

j2y

)

be a pair of mutually orthogonal polarization Jones vectors (j1
†j2 = 0). Introduce the vectors

⌢e1 = j1x x + j1y y,

⌢e2 = j2x x + j2y y,

which are three-dimensional analogs of the vectors j1 and j2. The vectors ⌢e1 and ⌢e2 are unit vectors in
the sense that

⌢e∗j
⌢ej = 1, j = 1, 2, (1.59)

and mutually orthogonal in the sense that

⌢e∗1
⌢e2 =

⌢e∗2
⌢e1 = 0. (1.60)

Using these vectors, we can represent the wave (1.14) as follows:

E(r, t) = E1(r, t) + E2(r, t), (1.61)
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where

E1(r, t) = ⌢e1

(
⌢e∗1E(r, t)

)
= ⌢e1Ã1(z)e−i𝜔t,

E2(r, t) = ⌢e2

(
⌢e∗2E(r, t)

)
= ⌢e2Ã2(z)e−i𝜔t,

Ãj(z) = Ãj(z
′)eik0n(z−z′), j = 1, 2.

(1.62)

E1(r, t) and E2(r, t) represent waves with polarizations j1 and j2, respectively. The column

J̃j1 j2
=

(
Ã1

Ã2

)
(1.63)

is yet another representation of the Jones vector of the wave. From the relation

xẼx + yẼy =
⌢e1Ã1 +

⌢e2Ã2 =
(
j1x x + j1y y

)
Ã1 +

(
j2x x + j2y y

)
Ã2

it follows that(
Ẽx

Ẽy

)
=

(
x⌢e1 x⌢e2

y⌢e1 y⌢e2

)(
Ã1

Ã2

)
=

(
j1x j2x

j1y j2y

)(
Ã1

Ã2

)
=
(

j1 j2

)( Ã1

Ã2

)
= j1Ã1 + j2Ã2. (1.64)

The column J̃j1 j2
can be expressed in terms of the column J̃xy as follows:

(
Ã1

Ã2

)
=
(

j1 j2

)−1

(
Ẽx

Ẽy

)
=

(
j†1

j†2

)(
Ẽx

Ẽy

)
. (1.65)

It is clear that the Cartesian Jones vectors J̃xy and J̃x′y′ can also be defined in the same way as the
vector J̃j1 j2

: the vector J̃xy corresponds to the choice

j1 =

(
1

0

)
, j2 =

(
0

1

)

(⌢e1 = x, ⌢e2 = y), and the vector J̃x′y′ to

j1 =

(
cos𝜙

sin𝜙

)
, j2 =

(
− sin𝜙

cos𝜙

)

(⌢e1 = x′, ⌢e2 = y′) in the coordinate system (x, y, z,).
The representation of wave fields in terms of basis wave modes (basis eigenwaves) is widely used

in rigorous methods of polarization optics and optics of stratified media (see Chapter 8). State vectors
introduced in the same manner as J̃j1 j2

[see (1.61)–(1.63)] are natural elements of these methods, where
they are employed for description of homogeneous waves propagating in isotropic media as well as
homogeneous waves propagating along the optic axis in uniaxial media. Choosing the basis polarization
vectors in such a way that the Jones vector can be treated as a Cartesian Jones vector referred to a right-
handed coordinate system makes it possible to use the formulas relating the components of Cartesian
Jones vectors and the polarization ellipse parameters of Section 1.1.2 in such calculations.
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General Coordinate Transformation Rules for Jones Vectors

The column J̃j1 j2
[see (1.63)] is a particular representation of the Jones vector of the wave; to introduce

this column we used the polarization basis (j1, j2) [or, what is the same, (⌢e1, ⌢e2)]. Let (j′1, j′2) [(⌢e′1, ⌢e′2)] be
another polarization basis [with j′†1 j′2 = 0 (⌢e′∗1

⌢e′2 = 0)], and let the column J̃j′1j′2
represent the same Jones

vector in this new basis. One can show that

J̃j′1 j′2
=

(
j′†1 j1 j′†1 j2

j′†2 j1 j′†2 j2

)
J̃j1 j2

(1.66)

or, equivalently,

J̃j′1 j′2
=

(
⌢e′∗1

⌢e1
⌢e′∗1

⌢e2

⌢e′∗2
⌢e1

⌢e′∗2
⌢e2

)
J̃j1 j2

. (1.67)

Relation (1.66) can readily be derived by using (1.64) and (1.65).

1.2 Interface Optics for Isotropic Media
Many problems of LCD optics involve considering the optical effect of interfaces. In this book, we
will deal with interfaces of different kinds—from interfaces between isotropic media to those between
arbitrary anisotropic media. The simplest problem, the problem on reflection and transmission of a plane
monochromatic wave incident on a plane interface between isotropic media, is considered in detail in
many textbooks (e.g., [1, 4]). In Section 1.2.1, we present, without derivation, the basic laws and formulas
relating to this problem. In Section 1.2.2, we use this problem to show some options of modern variants
of the Jones matrix method.

1.2.1 Fresnel’s Formulas. Snell’s Law
Let a homogeneous plane monochromatic wave propagating in an isotropic homogeneous nonabsorbing
medium with refractive index n1 be obliquely incident at angle 𝛽 inc on a plane surface of another
isotropic homogeneous nonabsorbing medium with refractive index n2. First we consider the case when
n1 < n2, which is illustrated by Figure 1.5. In this case, at any 𝛽 inc, the reflected and transmitted fields
will be homogeneous plane waves. Considering amplitude relations between the incident, reflected,
and transmitted waves, it is convenient to decompose each of these waves into two linearly polarized
constituents: the wave with its electric field vector parallel to the plane of incidence, it is the so-called
p-polarized component, and the wave with electric field vector perpendicular to the plane of incidence, it
is the so-called s-polarized component (the plane of incidence is the plane containing the incident light
wave vector and a normal to the interface). One can use the following variant of decomposition of the
electric fields of the incident, reflected, and transmitted wave fields:

Incident wave: Einc(r, t) =
[
e(inc)

p A(inc)
p (r) + e(inc)

s A(inc)
s (r)

]
e−i𝜔t,

Reflected wave: Eref (r, t) =
[
e(ref)

p A(ref)
p (r) + e(ref)

s A(ref)
s (r)

]
e−i𝜔t,

Transmitted wave: Etr(r, t) =
[
e(tr)

p A(tr)
p (r) + e(tr)

s A(tr)
s (r)

]
e−i𝜔t,

(1.68)

where e(inc)
p , e(inc)

s , e(ref)
p , e(ref)

s , e(tr)
p , and e(tr)

s are unit real vectors which specify vibration directions of the
electric fields of the p- and s-components of the waves and are oriented as indicated in Figure 1.5, and
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Figure 1.5 Transmission and reflection at a plane interface between isotropic media. Geometry of the
problem

A(inc)
p , A(inc)

s , A(ref)
p , A(ref)

s , A(tr)
p , and A(tr)

s are the scalar complex amplitudes of these components. The spatial
evolution of the scalar amplitudes in the regions where the corresponding waves exist can be described
by the equations

A(inc)
j (r) = A(inc)

j (r′)eik0minc(r′−r), A(ref)
j (r) = A(ref)

j (r′′)eik0mref (r′′−r),

A(tr)
j (r) = A(tr)

j (r′′′)eik0mtr(r
′′′−r),

j = s, p,

(1.69)

where minc, mref , and mtr are the refraction vectors (see Section 8.1.2) of the incident, reflected, and
transmitted waves, respectively. The refraction vectors are related to the corresponding wave vectors by
the equations

minc = k−1
0 kinc, mref = k−1

0 kref , mtr = k−1
0 ktr. (1.70)

Using the quantities

𝜁 ≡ mincL = n1 sin 𝛽inc, b = L𝜁 , 𝜎inc ≡ mincN = n1 cos 𝛽inc, (1.71)

where N and L are unit vectors oriented as shown in Figure 1.5 (N is normal to the interface surface; L is
tangent to this surface), one may represent the vector minc as follows:

minc = Ln1 sin 𝛽inc + Nn1 cos 𝛽inc = L𝜁 + N𝜎inc = b + N𝜎inc. (1.72)

According to (1.12),

mincminc = n2
1, mrefmref = n2

1, mtrmtr = n2
2. (1.73)
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It follows from the symmetry of the problem (see Section 8.1.3) that the vectors mref and mtr are coplanar
with the vectors minc and N and have their tangential components equal to the tangential component
(b = L𝜁 ) of the vector minc, that is, the vectors mref and mtr can be represented as follows:

mref = L𝜁 + N𝜎ref , mtr = L𝜁 + N𝜎tr. (1.74)

According to (1.73) and (1.74), 𝜎ref = −𝜎inc and

𝜎tr =
√

n2
2 − 𝜁2. (1.75)

If n2 is real and 𝜁 < n2, as in the case under consideration, the vector mtr can be represented as

mtr = Ln2 sin 𝛽tr + Nn2 cos 𝛽tr. (1.76)

Then from the condition of equality of the tangential components of minc and mtr it follows that

n2 sin 𝛽tr = n1 sin 𝛽inc, (1.77)

which is the well-known Snell’s law.
Let the plane of the interface coincide with the plane zS = zINT in a rectangular Cartesian coordinate

system (xS, yS, zS) with the zS-axis directed as shown in Figure 1.5. From the requirement of continuity
of the tangential components of the electric and magnetic fields across the interface surface (see Sec-
tion 8.1.1), one can find that amplitudes of the p-polarized components of the transmitted and reflected
waves depend only on the amplitude of the p-polarized component of the incident wave and the same is
true for the s-polarized components and that the ratios

tpp ≡
A(tr)

p (xS, yS, zINT + 0)

A(inc)
p (xS, yS, zINT − 0)

, tss ≡
A(tr)

s (xS, yS, zINT + 0)

A(inc)
s (xS, yS, zINT − 0)

,

rpp ≡
A(ref)

p (xS, yS, zINT − 0)

A(inc)
p (xS, yS, zINT − 0)

, rss ≡
A(ref)

s (xS, yS, zINT − 0)

A(inc)
s (xS, yS, zINT − 0)

,

(1.78)

where zS = zINT − 0 and zS = zINT + 0 stand for the sides of the plane zS = zINT facing the half-spaces
zS < zINT and zS > zINT respectively (or for corresponding planes infinitely close to the plane zS = zINT),
are independent of xS and yS and can be expressed as follows:

tpp =
2n1n2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2 𝛽inc + n2
2 cos 𝛽inc

, (1.79)

tss =
2n1 cos 𝛽inc

n1 cos 𝛽inc +
√

n2
2 − n2

1 sin
2 𝛽inc

, (1.80)

rpp = −
n1

√
n2

2 − n2
1 sin

2 𝛽inc − n2
2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2 𝛽inc + n2
2 cos 𝛽inc

, (1.81)

rss =
n1 cos 𝛽inc −

√
n2

2 − n2
1 sin

2 𝛽inc

n1 cos 𝛽inc+
√

n2
2 − n2

1 sin
2 𝛽inc

. (1.82)
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The quantities tpp, tss, rpp, and rss are called the amplitude transmission and reflection coefficients.
Expressions (1.79)–(1.82) are the Fresnel formulas written in a special form.

In the case under consideration (nonabsorbing media, n1 < n2), the coefficients tpp, tss, rpp, and rss

have real values at any 𝛽 inc. At 𝛽 inc ≠ 0, the amount of the reflected light and that of the transmitted light
depend on the polarization state of the incident light.

Transmissivity and Reflectivity of the Interface

Let E(inc)(zINT − 0) be the irradiance produced by the incident wave on the plane zS = zINT − 0, E(ref)(zINT −
0) the irradiance produced by the reflected wave on the same plane, and E(tr)(zINT + 0) the irradiance
produced by the transmitted wave on the plane zS = zINT + 0 (note that we deal here with another kind of
irradiance than FEFD irradiance used in Section 1.1.2; see Sections 5.2, 5.4.2, and 8.5). The quantities

TI ≡
E(tr)(zINT + 0)

E(inc)(zINT − 0)
and RI ≡

E(ref)(zINT − 0)

E(inc)(zINT − 0)
(1.83)

are called respectively the transmissivity and reflectivity of the interface. In the case under consideration,
the irradiances entering into (1.83) can be expressed as follows:

E(inc)(zINT − 0) =
cn1 cos 𝛽inc

8𝜋

(|||A(inc)
p (xS, yS, zINT − 0)|||2 + |||A(inc)

s (xS, yS, zINT − 0)|||2) , (1.84a)

E(ref)(zINT − 0) =
cn1 cos 𝛽inc

8𝜋

(|||A(ref)
p (xS, yS, zINT − 0)|||2 + |||A(ref)

s (xS, yS, zINT − 0)|||2) , (1.84b)

E(tr)(zINT + 0) =
cn2 cos 𝛽tr

8𝜋

(|||A(tr)
p (xS, yS, zINT + 0)|||2 + |||A(tr)

s (xS, yS, zINT + 0)|||2) (1.84c)

at arbitrary xS and yS. Using the above formulas, it is easy to find that if the incident wave is p-polarized,

TI = Tpp ≡
n2 cos 𝛽tr

n1 cos 𝛽inc

|tpp|2, (1.85a)

RI = Rpp ≡ |rpp|2 (1.85b)

and, if the incident wave is s-polarized,

TI = Tss ≡
n2 cos 𝛽tr

n1 cos 𝛽inc

|tss|2, (1.86a)

RI = Rss ≡ |rss|2. (1.86b)

Here we have denoted the transmissivities and reflectivities of the interface for a p-polarized incident wave
by Tpp and Rpp and those for an s-polarized incident wave by Tss and Rss. As an illustration, Figure 1.6
shows the dependences of these transmissivities and reflectivities on the angle of incidence 𝛽 inc at
n1 = 1 (vacuum or air) and n2 = 1.5 (e.g., glass).

At any polarization of the incident wave and at any 𝛽 inc,

TI + RI = 1. (1.87)
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Figure 1.6 Transmissivities Tpp and Tss and reflectivities Rpp and Rss versus the angle of incidence 𝛽 inc

at n1 = 1 and n2 = 1.5

The Brewster Angle
The angle

𝛽B = arctan
n2

n1

(1.88)

is called the polarizing or Brewster angle. As can be seen from (1.81), at 𝛽 inc = 𝛽B the coefficient rpp

is equal to zero, as is the reflectivity Rpp [see (1.85b)]. If 𝛽 inc = 𝛽B, whatever the polarization of the
incident wave, the reflected wave will be s-polarized. In the example illustrated by Figure 1.6 (n1 = 1 and
n2 = 1.5), 𝛽B ≈ 56.3◦.

The Case n1 > n2. Critical Angle

So far it has been assumed that n1 < n2. All the formulas presented above for the case n1 < n2 are also
valid in the case n1 > n2 for 𝛽 inc < 𝛽c, where

𝛽c = arcsin
(

n2

n1

)
(1.89)

is the critical angle of total internal reflection. At 𝛽 inc > 𝛽c, in contrast to the case 𝛽 inc < 𝛽c, the vector
mtr will be complex and have nonparallel real and imaginary parts [from (1.74) and (1.75) it is easy to
see that Re(mtr) and Im(mtr) will be parallel to L and N, respectively], that is, the transmitted wave will
be inhomogeneous (see Section 8.1.2). In this case, decomposing the field Etr [see (1.68)], we can use
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the same real vector e(tr)
s as in the above cases but cannot use a real vector e(tr)

p since with a real e(tr)
p Etr

will not meet (1.10). To satisfy (1.10), one can take the following vector e(tr)
p :

e(tr)
p = 1√

mtrm
∗
tr

e(tr)
s × mtr (1.90)

with e(tr)
s being chosen the same as in the previous cases (i.e., real, unit, and oriented as shown in

Figure 1.5). The vector e(tr)
p given by (1.90) is such that mtre

(tr)
p = 0, which is necessary for (1.10) to be

satisfied, and unit in the sense that
√

e(tr)
p e(tr)∗

p = 1. With the choice of e(inc)
p , e(inc)

s , e(ref)
p , e(ref)

s , and e(tr)
s as in

Figure 1.5 and e(tr)
p as in (1.90) [note that the vector e(tr)

p used above in the case of real mtr satisfies (1.90)],
expressions (1.80)–(1.82) for the coefficients tss, rpp, and rss remain valid in the case 𝛽 inc > 𝛽c (but these
coefficients become complex), while the expression for tpp takes a more general form, namely,

tpp = Cn2

2n1n2 cos 𝛽inc

n1

√
n2

2 − n2
1 sin

2 𝛽inc + n2
2 cos 𝛽inc

, (1.91)

where

Cn2 =
√

C∗
𝛽n2C

𝛽n2 + S∗
𝛽n2S

𝛽n2 (1.92)

with

C𝛽n2 = 1
n2

√
n2

2 − n2
1 sin

2 𝛽inc, S𝛽n2 =
(

n1

n2

)
sin 𝛽inc.

As seen from these formulas, at 𝛽 inc < 𝛽c, Cn2 = 1 and expression (1.91) becomes identical to (1.79).

Total Internal Reflection (TIR)

In the case 𝛽 inc > 𝛽c, it is convenient to rewrite expressions (1.81) and (1.82) as follows:

rpp = −
in1

√
n2

1 sin
2 𝛽inc − n2

2 − n2
2 cos 𝛽inc

in1

√
n2

1 sin
2 𝛽inc − n2

2 + n2
2 cos 𝛽inc

, (1.93)

rss =
n1 cos 𝛽inc − i

√
n2

1 sin
2 𝛽inc − n2

2

n1 cos 𝛽inc + i
√

n2
1 sin

2 𝛽inc − n2
2

. (1.94)

It is easy to see from (1.93) and (1.94) that |rpp|=|rss|=1. Since, as before, the incident and reflected
waves are assumed to be homogeneous and the medium where they propagate to be nonabsorbing,
expressions (1.84a) and (1.84b) and hence (1.85b) and (1.86b) remain applicable. According to (1.85b)
and (1.86b), when |rpp|=|rss|=1, Rpp = Rss = 1, that is, total reflection takes place. Expression (1.84c)
is not applicable when 𝛽 inc > 𝛽c because in this case the transmitted wave is inhomogeneous. One can
show that at 𝛽 inc > 𝛽c, E(tr) = 0 and consequently Tpp = Tss = 0 (although tpp and tss are different from
zero). Even at small deviations 𝛽 inc from 𝛽c and n2 from n1, the transmitted wave, having an imaginary

𝜎tr = i
√

n2
1 sin

2 𝛽inc − n2
2, has an appreciable amplitude only near the interface. Such waves are called

surface or evanescent waves.
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Figure 1.7 A prism reflector using the TIR phenomenon

At 𝛽 inc > 𝛽c, rpp and rss, being complex, are different in phase and the difference of the phases of rpp and
rss gradually changes with 𝛽 inc. This means that the phase shifts introduced into the p- and s-components
of the reflected wave at reflection are different and that the difference of these phase shifts (and hence
the shape of the polarization ellipse of the reflected light) can be controlled by choosing 𝛽 inc. The latter
is used in polarization-transforming devices such as the Fresnel rhomb.

For a glass–air interface with n1 = 1.5 and n2 = 1, 𝛽c ≈ 41.8◦. Therefore a right-angle glass prism can
be used as a high-efficiency reflector as shown in Figure 1.7. Such a reflector may be almost lossless
provided that the entrance and exit surfaces have antireflection coatings. The TIR phenomenon is used
in many kinds of optical elements and devices. It is the principle of waveguides and optical fibers. In
liquid crystal display applications, TIR is exploited in elements of backlight units, in projection systems,
in beam steering, and so on. In Section 4.3, we will deal with an application of the TIR phenomenon in
the intensity-modulating unit of an LCD.

Incidence of a Homogeneous Wave from a Nonabsorbing Medium
on an Absorbing One

Formulas (1.80)–(1.82) and (1.91) can also be used for calculating the amplitude transmission and
reflection coefficients in the case when the second medium is absorbing; in this case, n2 is assumed to
be complex. These formulas correspond to the choice of the vectors e(inc)

p , e(inc)
s , e(ref)

p , e(ref)
s , e(tr)

p , and e(tr)
s

in accordance with the same rules that were just used in the case of TIR. The transmitted wave in the
absorbing medium will be inhomogeneous at any nonzero 𝛽 inc and has nonzero Re 𝜎tr and Im 𝜎tr at any 𝛽 inc.

1.2.2 Reflection and Transmission Jones Matrices for a Plane Interface
between Isotropic Media

In all the above cases, the interaction of the incident light with the interface can be described by the
relations

J̃
(tr)

(xS, yS, zINT + 0) = t̃IJ̃
(inc)

(xS, yS, zINT − 0), (1.95)

J̃
(ref)

(xS, yS, zINT − 0) = r̃IJ̃
(inc)

(xS, yS, zINT − 0), (1.96)

where

J̃
(inc) =

(
A(inc)

p

A(inc)
s

)
, J̃

(tr) =

(
A(tr)

p

A(tr)
s

)
, J̃

(ref) =

(
A(ref)

p

A(ref)
s

)
(1.97)
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are Jones vectors of the incident, transmitted, and reflected waves, and

t̃I =

(
tpp 0

0 tss

)
, r̃I =

(
rpp 0

0 rss

)
(1.98)

are the transmission and reflection Jones matrices of the interface corresponding to the representation
(1.97) of the Jones vectors. The vectors J̃

(inc)
and J̃

(ref)
in all the considered cases as well as the vector J̃

(tr)

when it characterizes a homogeneous wave are Jones vectors of the same kind as the vector J̃ considered
in Section 1.1.2. It is clear that the presented variant of transmission and reflection Jones matrices for
the interface is not unique. Other kinds and representations of Jones matrices for interfaces may be more
suitable in solving particular problems. For example, when considering transmission and reflection at an
interface between nonabsorbing media in a situation where the waves in both media are homogeneous, it
may be convenient to deal with the transmission and reflection matrices corresponding to the following
Jones vectors:

J̃
(inc)

F =
√

2n1 cos 𝛽inc J̃
(inc)

, J̃
(ref)

F =
√

2n1 cos 𝛽inc J̃
(ref)

, J̃
(tr)

F =
√

2n2 cos 𝛽tr J̃
(tr)
. (1.99)

We denote these Jones matrices by t̃I(F) and r̃I(F). From (1.95), (1.96) and the relations

J̃
(tr)

F (xS, yS, zINT + 0) = t̃I(F) J̃
(inc)

F (xS, yS, zINT − 0), (1.100)

J̃
(ref)

F (xS, yS, zINT − 0) = r̃I(F) J̃
(inc)

F (xS, yS, zINT − 0), (1.101)

it follows that

t̃I(F) =
√

n2 cos 𝛽tr√
n1 cos 𝛽inc

t̃I, r̃I(F) = r̃I. (1.102)

According to (1.84), (1.97), and (1.99), the irradiances E(inc), E(ref), and E(tr)can be expressed as follows:

E(inc) =
cn1 cos 𝛽inc

8𝜋
J̃

(inc)†
J̃

(inc) = c
16𝜋

J̃
(inc)†
F J̃

(inc)

F ,

E(ref) =
cn1 cos 𝛽inc

8𝜋
J̃

(ref)†
J̃

(ref) = c
16𝜋

J̃
(ref)†
F J̃

(ref)

F ,

E(tr) =
cn2 cos 𝛽tr

8𝜋
J̃

(tr)†
J̃

(tr) = c
16𝜋

J̃
(tr)†
F J̃

(tr)

F .

(1.103)

Substitution of these expressions into (1.83) gives the following expressions for the transmissivity TI and
reflectivity RI of the interface in terms of the Jones vectors:

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

)
J̃

(tr)
(r+INT)†J̃

(tr)
(r+INT)

J̃
(inc)

(r−INT)†J̃
(inc)

(r−INT)
=

J̃
(tr)

F (r+INT)†J̃
(tr)

F (r+INT)

J̃
(inc)

F (r−INT)†J̃
(inc)

F (r−INT)
, (1.104)

RI =
J̃

(ref)
(r−INT)†J̃

(ref)
(r−INT)

J̃
(inc)

(r−INT)†J̃
(inc)

(r−INT)
=

J̃
(ref)

F (r−INT)†J̃
(ref)

F (r−INT)

J̃
(inc)

F (r−INT)†J̃
(inc)

F (r−INT)
, (1.105)
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where r−INT =
(
xS, yS, zINT − 0

)
and r+INT =

(
xS, yS, zINT + 0

)
. Defining the length ||J̃|| of a Jones vector J̃

as

||J̃|| ≡√J̃
†
J̃, (1.106)

we can rewrite expressions (1.104) and (1.105) in the following form:

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

) |||J̃(tr)
(r+INT)|||2|||J̃(inc)
(r−INT)|||2 =

|||J̃(tr)

F (r+INT)|||2|||J̃(inc)

F (r−INT)|||2 , (1.107)

RI =
|||J̃(ref)

(r−INT)|||2|||J̃(inc)
(r−INT)|||2 =

|||J̃(ref)

F (r−INT)|||2|||J̃(inc)

F (r−INT)|||2 . (1.108)

Denote a polarization Jones vector of the incident wave in the basis (e(inc)
p , e(inc)

s ) by j(inc). By definition,

the vectors J̃
(inc)

(r−INT) and J̃
(inc)

F (r−INT) are related to j(inc) as follows:

J̃
(inc)

(r−INT) = a(r−INT)j(inc), J̃
(inc)

F (r−INT) = aF(r−INT)j(inc), (1.109)

where a(r−INT) and aF(r−INT) are scalar factors. Substitution from (1.109) into (1.95), (1.96), (1.100),
and (1.101) gives expressions for the Jones vectors of the transmitted and reflected waves in terms
of j(inc). Substituting these expressions into (1.107) and (1.108) and using the fact that |J̃(inc)

(r−INT)|2 =|a(r−INT)|2 and |J̃(inc)

F (r−INT)|2 = |aF(r−INT)|2, we obtain the following expressions for the transmissivity and
reflectivity: in terms of t̃I and r̃I,

TI =
(

n2 cos 𝛽tr

n1 cos 𝛽inc

) |||t̃I j(inc)|||2 , (1.110)

RI =
|||r̃I j(inc)|||2 (1.111)

and, in terms of t̃I(F) and r̃I(F),

TI =
|||t̃I(F) j(inc)|||2 , (1.112)

RI =
|||r̃I(F) j(inc)|||2 . (1.113)

Employing the Jones vectors and matrices labeled by the subscript F, we include all the information
required for finding TI, apart from that contained in j(inc), in the Jones matrix and can use the uni-
fied and algebraically simplest expressions for calculating the transmissivity and reflectivity from the
corresponding Jones matrices. Note that we could introduce the vectors J̃

(inc)

F , J̃
(tr)

F , and J̃
(ref)

F as

J̃
(inc)

F =

(
A(inc)

p

A(inc)
s

)
, J̃

(tr)

F =

(
A(tr)

p

A(tr)
s

)
, J̃

(ref)

F =

(
A(ref)

p

A(ref)
s

)
(1.114)
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[see (1.68)] by adopting the following normalization conditions for the basis vibration vectors:

e(inc)
p

∗e(inc)
p = e(inc)

s
∗e(inc)

s = e(ref)
p

∗e(ref)
p = e(ref)

s
∗e(ref)

s = 1
2n1 cos 𝛽inc

, (1.115)

e(tr)
p

∗e(tr)
p = e(tr)

s
∗e(tr)

s = 1
2n2 cos 𝛽tr

. (1.116)

Special normalizations of the basis vibration vectors, like this one, able to simplify a problem are
considered in Chapters 8–12.

1.3 Wave Propagation in Anisotropic Media
Needless to say, the propagation of electromagnetic waves in optically anisotropic (birefringent) media
and transmission characteristics of anisotropic layers are extremely important subjects to LCD optics.
These subjects are considered in detail in Chapters 8 and 9, where we discuss rigorous methods of
optics of stratified media applicable to both isotropic and anisotropic media. In the present section, we
want to give an overview of basic features of light propagation in anisotropic media and shortly discuss
transmission properties of anisotropic layers at normal incidence of light. The latter is directly concerned
with the classical Jones matrix method (CJMM). In this section and almost everywhere in this book,
we restrict our attention to anisotropic media that are nonmagnetic and nongyrotropic in the optical
region.

1.3.1 Wave Equations
The basic difference of anisotropic media from isotropic ones from the standpoint of the Maxwell
electromagnetic theory lies in relation between the electric field strength vector E and the electric
displacement vector D (see Section 8.1.1). In the case of an arbitrary nongyrotropic medium, the vector
D can be expressed in terms of the vector E as follows:

D = εE, (1.117)

where ε is the permittivity tensor, ε being symmetric (ε = εT, where T denotes the matrix transposition).
If the medium is isotropic, the tensor ε can be represented as ε = 𝜀U, where 𝜀 is a scalar (the permittivity
coefficient) and U is the unit matrix. This, in particular, means that D is parallel to E and that the ratio
|D|/|E| is independent of the direction of E. In the case of an anisotropic medium, the representation
ε = 𝜀U is not applicable, D and E may be unparallel, and the ratio |D|/|E| depends on the E direction.

An analogue of equation (1.8) for the case of a homogeneous anisotropic medium is

∇ × (∇ × E) − k2
0εE = ⌢

0. (1.118)

The wave vectors and vibration modes of the electric field of plane waves that can exist inside the
anisotropic medium—such waves are called natural waves, eigenwaves, or proper waves—can be found
from the equation

k × (k × E) + k2
0εE = ⌢

0 (1.119)
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which can be obtained by substituting (1.1) into (1.118). It is convenient to rewrite this equation in
terms of the refraction vector m = k/k0 and electric vibration vector e [E(r,t) = eA(r,t), see (8.38) and
definitions in Section 8.1.2]:

m × (m × e) + εe = ⌢
0. (1.120)

This equation can be written in the following form:

QEe = ⌢
0. (1.121)

The matrix QE is expressed in terms of the elements of

m ≡

⎛⎜⎜⎜⎝
m1

m2

m3

⎞⎟⎟⎟⎠ and ε ≡

⎛⎜⎜⎜⎝
𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

⎞⎟⎟⎟⎠
as follows:

QE = Qm + ε =
⎛⎜⎜⎜⎝
𝜀11 − m2

2 − m2
3 𝜀12 + m1m2 𝜀13 + m1m3

𝜀12 + m1m2 𝜀22 − m2
1 − m2

3 𝜀23 + m2m3

𝜀13 + m1m3 𝜀23 + m2m3 𝜀33 − m2
1 − m2

2

⎞⎟⎟⎟⎠ , (1.122)

where

Qm =
⎛⎜⎜⎜⎝
−m2

2 − m2
3 m1m2 m1m3

m1m2 −m2
1 − m2

3 m2m3

m1m3 m2m3 −m2
1 − m2

2

⎞⎟⎟⎟⎠ . (1.123)

In some cases, it is simpler to use the following form of equation (1.120):

QDd = ⌢
0, (1.124)

where d = εe is the displacement vibration vector [D(r,t) = dA(r,t), see (8.38)], and

QD = QEε−1 = Qmε−1 + U. (1.125)

The vector d (as well as D) of a plane wave is always orthogonal to its refraction vector m in the sense
that

m ⋅ d = 0, (1.126)

as it follows from the Maxwell equation ∇D = 0. According to (1.120),

d = −m × (m × e) = e(m ⋅ m) − m(m ⋅ e),

that is, the vector d is a linear combination of the vectors e and m. If the wave is homogeneous and
linearly polarized, this means simply that the vectors d, e, and m are coplanar.
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Equations (1.120) and (1.121) have a nontrivial solution only if

det QE = 0. (1.127)

This condition can also be written as

det QD = 0. (1.128)

From (1.127) or (1.128), the refraction vectors of natural waves are found.
In the next two sections we will consider some situations when the above equations are readily solved.

1.3.2 Waves in a Uniaxial Layer
In the case of a uniaxial medium with optic axis parallel to a unit vector c, the tensor ε can be represented
as

ε ≡

⎛⎜⎜⎜⎝
𝜀11 𝜀12 𝜀13

𝜀12 𝜀22 𝜀23

𝜀13 𝜀23 𝜀33

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝜀⊥ + Δ𝜀c2

1 Δ𝜀c1c2 Δ𝜀c1c3

Δ𝜀c1c2 𝜀⊥ + Δ𝜀c2
2 Δ𝜀c2c3

Δ𝜀c1c3 Δ𝜀c2c3 𝜀⊥ + Δ𝜀c2
3

⎞⎟⎟⎟⎠ ,

Δ𝜀 = 𝜀|| − 𝜀⊥,

(1.129)

where 𝜀∥ and 𝜀⟂ are the principal permittivities of the medium (D = 𝜀∥E if E∥c, and D = 𝜀⟂E if E⟂c),

and cj (j = 1,2,3) are the elements of the vector c ≡

⎛⎜⎜⎝
c1

c2

c3

⎞⎟⎟⎠. The principal permittivities are related to the

principal refractive indices of the medium, n∥ and n⟂, by

𝜀|| = n2||, 𝜀⊥ = n2
⊥
. (1.130)

Ordinary and Extraordinary Waves

Natural waves in uniaxial media are divided into two classes: ordinary waves and extraordinary waves.
The refraction vectors of the ordinary waves are independent of the optic axis orientation and satisfy
the equation m⋅m = 𝜀⟂. The refraction vectors of the extraordinary waves depend on the optic axis
orientation and meet the equation m⋅(εm) = 𝜀⟂𝜀∥ (see Section 9.3). Let mo and eo be the refraction
vector and an electric vibration vector of an ordinary wave, and let me and ee be those of an extraordinary
wave. In general, the vector eo satisfies the conditions c⋅eo = 0 and mo⋅eo = 0, while the vector ee can
be represented as a linear combination of the vectors me and c. If the medium is nonabsorbing and the
waves are homogeneous (not evanescent), the vectors mo and me are real (see Section 9.3). In this case,
the electric field of the ordinary wave performs oscillations along a straight line perpendicular to c and
mo, while the electric field of the extraordinary wave vibrates along a straight line parallel to the plane
spanned by the vectors me and c (Figure 1.8). For homogeneous waves, the plane containing the wave
normal and c is referred to as the principal plane [1].

If a natural wave is homogeneous, one can associate with it a refractive index (see Section 8.1.2). For
a homogeneous wave, the vector m can be represented as m = nwl, where l is the wave normal and nw is
the refractive index for the wave. We will denote refractive indices for ordinary and extraordinary waves
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ordinary wave 

ee

eo

l

l

extraordinary wave 

⊥

Θ⊥ c

optic axis

l

n||>n
n||<n

Figure 1.8 Homogeneous natural waves in a nonabsorbing uniaxial medium. l is the wave normal

by no and ne, respectively. The refractive indices of a homogeneous ordinary wave and a homogeneous
extraordinary wave can be expressed as

no =
√
𝜀⊥ = n⊥, (1.131)

ne =
√
𝜀⊥𝜀||√

𝜀⊥ + Δ𝜀 cos2 Θ
=

n||n⊥√
n2|| cos2 Θ + n2

⊥
sin2 Θ

, (1.132)

where Θ is the angle between the wave normal of the extraordinary wave and the optic axis (Figure 1.8).
At Θ = 90◦, ne = n∥. At Θ = 0, ne = n⟂, and the extraordinary wave turns into an ordinary one. Waves
propagating along the optic axis (m∥c) can have different polarizations (linear, elliptical, circular) as if
the medium were isotropic.

Geometry of the Problem for a Layer

Let us consider a homogeneous uniaxial layer whose boundaries coincide with the planes zc = z1 and
zc = z2 (z2 > z1) in a coordinate system (xc, yc, zc) and whose optic axis is parallel to the xc−zc plane
(Figure 1.9a). In this case, the vector c can be represented as

c =
⎛⎜⎜⎜⎝
cos 𝜃

0

sin 𝜃

⎞⎟⎟⎟⎠ , (1.133)

where 𝜃 is the angle between the xc–yc plane and the vector c, and, according to (1.129),

ε =
⎛⎜⎜⎜⎝
𝜀⊥ + Δ𝜀 cos2 𝜃 0 Δ𝜀 cos 𝜃 sin 𝜃

0 𝜀⊥ 0

Δ𝜀 cos 𝜃 sin 𝜃 0 𝜀⊥ + Δ𝜀 sin2 𝜃

⎞⎟⎟⎟⎠ (1.134)

in the system (xc, yc, zc). Let this layer be surrounded by a homogeneous nonabsorbing isotropic medium
with refractive index n1, and let a plane homogeneous wave with refraction vector minc fall on this layer
from the half-space zc < z1. As in Section 1.2.1, we represent the vector minc as

minc = Ln1 sin 𝛽inc + Nn1 cos 𝛽inc = L𝜁 + N𝜎inc (1.135)
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⊥n

n||, ⊥n

Figure 1.9 Geometry of the problem. The dotted arrows in sketch (b) show the directions of wave
normals of the incident and induced waves

[see (1.72)], the unit vectors L and N being oriented as in Figure 1.5 (Figure 1.9b). The symmetry of
the problem (see Section 8.1.3) implies that the refraction vector of any of natural waves produced by
the incident wave inside or outside the layer will have the form m = L𝜁 + N𝜎, where 𝜁 = n1 sin 𝛽inc. In
particular, this means that all emergent waves in the half-space zc > z2, the components of the transmitted
field, will have the same refraction vector, which allows considering any combination of these waves as
a single plane wave. The same can be said about emergent waves propagating in the half-space zc < z1.

Normal Incidence

In the case of normal incidence (𝛽inc = 0), the refraction vectors of the waves propagating inside the
layer, being represented in the system (xc, yc, zc), will have the form

m =
⎛⎜⎜⎜⎝

0

0

𝜎

⎞⎟⎟⎟⎠ . (1.136)
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With such m,

Qm =
⎛⎜⎜⎜⎝
−𝜎2 0 0

0 −𝜎2 0

0 0 0

⎞⎟⎟⎟⎠ (1.137)

and, according to (1.122) and (1.134),

QE =
⎛⎜⎜⎜⎝
𝜀⊥ + Δ𝜀 cos2 𝜃 − 𝜎2 0 Δ𝜀 cos 𝜃 sin 𝜃

0 𝜀⊥ − 𝜎2 0

Δ𝜀 cos 𝜃 sin 𝜃 0 𝜀⊥ + Δ𝜀 sin2 𝜃

⎞⎟⎟⎟⎠ . (1.138)

Equation (1.127) is a quartic equation in 𝜎. It is easy to find that the roots of this equation with QE

given by (1.138) are

𝜎1 =
√
𝜀⊥𝜀||√

𝜀⊥ + Δ𝜀 sin2 𝜃

, 𝜎2 =
√
𝜀⊥, 𝜎3 = −

√
𝜀⊥𝜀||√

𝜀⊥ + Δ𝜀 sin2 𝜃

, 𝜎4 = −
√
𝜀⊥. (1.139)

The first two roots correspond to waves propagating in the +zc-direction, and in particular to the waves
transmitted through the frontal interface of the layer. The waves reflected from the rear interface will
have 𝜎 = 𝜎3 and 𝜎 = 𝜎4. The roots 𝜎1 and 𝜎3 correspond to extraordinary waves, and 𝜎2 and 𝜎4 to
ordinary waves. In the situation under consideration, be the uniaxial medium nonabsorbing or absorbing,
the induced natural waves in the layer are homogeneous, which allows one to associate with each of
them a refractive index. As seen from (1.139), (1.136), and (1.130), for both ordinary modes, as it must,
no = n⊥. For both extraordinary modes,

ne =
√
𝜀⊥𝜀||√

𝜀⊥ + Δ𝜀 sin2 𝜃

=
n||n⊥√

n2|| sin2 𝜃 + n2
⊥
cos2 𝜃

, (1.140)

which conforms with (1.132)—in this example, the angle Θ can expressed as Θ = 90◦−𝜃.
Substituting solutions (1.139) into (1.121), one can check that the electric vibration vectors of the

ordinary waves must be chosen parallel to the yc-axis, while those of the extraordinary waves must be
perpendicular to the yc-axis. It can also be seen that the electric vibration vector of any of the extraordinary
waves can be represented as the product of the vector

e𝜀 =
⎛⎜⎜⎜⎝
𝜀⊥ + Δ𝜀 sin2 𝜃

0

−Δ𝜀 cos 𝜃 sin 𝜃

⎞⎟⎟⎟⎠ (1.141)

[in the system (xc, yc, zc)] and a scalar. Note that the vector e𝜀 is parallel to the xc-axis only when either
cos𝜃 or sin𝜃 is equal to zero. In any other case, this vector is not perpendicular to the refraction vectors.
If the medium is nonabsorbing, the vector e𝜀 is real and the electric fields of the extraordinary modes
vibrate along a line parallel to e𝜀. The fact that the vibration direction of the electric field of such a wave
is not perpendicular to its refraction vector, in particular, suggests that the direction of energy transfer by
the wave—this direction is perpendicular to the electric field vector [see (8.16)]—is different from the
direction of the refraction vector. For any homogeneous ordinary wave, the direction of energy transfer
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coincides with the direction of its refraction vector. A difference of the directions of energy transfer for
an ordinary wave and an extraordinary wave having codirectional refraction vectors is a manifestation of
the phenomenon of double refraction or birefringence. A difference in refractive indices for these waves
is another manifestation of this phenomenon.

If the uniaxial medium is absorbing and the vector e𝜀 is not parallel to the xc-axis, the vector e𝜀 is
complex and Re e𝜀 is in general not parallel to Ime𝜀. It implies that the end of the true (real) electric
field vector of the wave describes with time an ellipse in the plane parallel to the xc−zc plane. In
contrast to the elliptically polarized waves considered in Section 1.1, for which the plane of the vibration
ellipse is perpendicular to the refraction vector, in this case the vibration ellipse plane is parallel to
the refraction vector. Really, we have dealt with waves having a similar polarization in some examples
of Section 1.2.1. These are the “p-polarized” waves in the second medium in the cases where these
waves are inhomogeneous (TIR mode, absorbing medium at oblique incidence). Such waves cannot be
called linearly polarized. At the same time, the term “plane-polarized wave” as applied to them seems
acceptable. The linearly polarized waves are also often called plane-polarized. Where convenient, we
will also do so.

Thus, if the optic axis is not perpendicular to the layer boundaries, be the layer nonabsorbing or
absorbing, all natural waves induced inside it by a normally incident plane wave are plane-polarized.
The plane of polarization of the extraordinary waves is the xc−zc plane (the principal plane), and that of
the ordinary waves is the yc−zc plane.

Oblique Incidence

When a plane wave falls obliquely from an isotropic medium on a plane interface with an anisotropic
medium, it produces in general two transmitted waves with nonparallel wave normals in the anisotropic
medium. This is one more manifestation of double refraction. As an illustration, returning to the uniaxial
layer, we consider the simple situation when the plane of incidence is parallel to the xc−zc plane, that
is, the optic axis is parallel to the plane of incidence. Let the vector L be codirectional with the positive
xc-axis (Figure 1.10). In this case, the refraction vectors of the natural waves induced in the layer, being
represented in the system (xc, yc, zc), have the form

m =
⎛⎜⎜⎜⎝
𝜁

0

𝜎

⎞⎟⎟⎟⎠ , (1.142)

ordinary waveoptic axis
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Figure 1.10 Double refraction at oblique incidence
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where 𝜁 = n1 sin 𝛽inc. As seen from (1.123), (1.122), and (1.134), with such m,

QE =
⎛⎜⎜⎜⎝
𝜀⊥ + Δ𝜀 cos2 𝜃 − 𝜎2 0 Δ𝜀 cos 𝜃 sin 𝜃 + 𝜁𝜎

0 𝜀⊥ − 𝜁2 − 𝜎2 0

Δ𝜀 cos 𝜃 sin 𝜃 + 𝜁𝜎 0 𝜀⊥ + Δ𝜀 sin2 𝜃 − 𝜁2

⎞⎟⎟⎟⎠ .
The solutions of (1.127) with this QE that correspond to waves propagating away from the frontal
boundary of the layer are

𝜎1 =
−𝜁Δ𝜀 cos 𝜃 sin 𝜃 +

√
(𝜁Δ𝜀 cos 𝜃 sin 𝜃)2 +

(
𝜀⊥ + Δ𝜀 sin2 𝜃

) [
𝜀⊥𝜀|| − 𝜁2

(
𝜀⊥ + Δ𝜀 cos2 𝜃

)]
𝜀⊥ + Δ𝜀 sin2 𝜃

(1.143)

for extraordinary waves and

𝜎2 =
√
𝜀⊥ − 𝜁2 =

√
n2
⊥
− 𝜁2 (1.144)

for ordinary waves. If the optic axis is parallel to the layer boundaries (𝜃 = 0), 𝜎1 can be expressed as
follows:

𝜎1 =

√
𝜀|| (𝜀⊥ − 𝜁2

)
𝜀⊥

=
n||
n⊥

√
n2
⊥
− 𝜁2. (1.145)

If the uniaxial medium is nonabsorbing and 𝜁 is such that the radicands in the above expressions for 𝜎1

and 𝜎2 are positive (e.g., this is the case at any 𝛽inc when n∥ and n⟂ is greater than n1), the corresponding
waves are homogeneous. In this case, the angle of refraction for the transmitted extraordinary wave, 𝛽e,
and that for the transmitted ordinary wave, 𝛽o (see Figure 1.10), can be calculated by the formulas

𝛽e = arctan 𝜁

𝜎1

, 𝛽o = arctan 𝜁

𝜎2

. (1.146)

As clearly seen from (1.144)–(1.146), the difference between 𝛽e and 𝛽o increases with increasing the
ratio 𝛿n = |n∥ – n⟂|/n⟂. At 𝛿n values of the order of 0.1, which is typical of the liquid crystals used in
LCDs, the difference between 𝛽e and 𝛽o may be appreciable. For example, taking n1 = 1, n∥ = 1.7, n⟂ =
1.5, 𝜃 = 0, and 𝛽 inc = 60◦, we obtain 𝛽o ≈ 35.3◦ and 𝛽e ≈ 32◦.

1.3.3 A Simple Birefringent Layer and Its Principal Axes

A Biaxial Layer at Normal Incidence

As noted in the previous section, the natural waves induced in a uniaxial layer by a normally incident
plane wave are in general plane-polarized, and each of these waves has its polarization plane coincident
with one of two fixed, mutually perpendicular, planes. The same can be said about natural waves in a
biaxial layer if the biaxial medium

(i) is nonabsorbing or
(ii) being absorbing has a plane of symmetry perpendicular to the layer boundaries.
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To show this we refer to (1.124). If any of the two conditions is satisfied, there exists a coordinate
system (xc, yc, zc), with the zc-axis perpendicular to the layer boundaries, such that the components
�̄�12 and �̄�21 of the tensor ε−1 ≡ [�̄�jk] in this system are zero1. In this coordinate system, the matrix Qm

[see (1.123)] has the form (1.137), and, according to (1.125), the matrix QD can be written as follows:

QD =
⎛⎜⎜⎜⎝

1 − 𝜎2�̄�11 0 −𝜎2�̄�13

0 1 − 𝜎2�̄�22 −𝜎2�̄�23

0 0 1

⎞⎟⎟⎟⎠ . (1.147)

The roots of equation (1.128) in this case are

𝜎1 =
1√
�̄�11

, 𝜎2 =
1√
�̄�22

, 𝜎3 = − 1√
�̄�11

, 𝜎4 = − 1√
�̄�22

. (1.148)

It is easily seen from (1.147) that at �̄�22 ≠ �̄�11, the displacement vibration vectors d for the waves with 𝜎

equal to 𝜎1 and 𝜎3 are parallel to the xc-axis, and, consequently, the electric vibration vectors (e = ε−1d)
of these waves lie in the xc−zc plane [recall that �̄�12 = �̄�21 = 0 in the system (xc, yc, zc)], while the waves
with 𝜎 equal to 𝜎2 and 𝜎4 have displacement vibration vectors parallel to the yc-axis, and, consequently,
their electric vibration vectors lie in the yc−zc plane, which is what we set out to prove.

A Simple Birefringent Layer and Its Principal Axes. Fast and Slow Axes

Thus, there is a broad class of homogeneous anisotropic layers such that any natural wave induced in the
layer by a normally incident plane monochromatic wave is plane-polarized and has its polarization plane
parallel to one of two fixed mutually perpendicular planes. Such layers will be called simple birefringent
layers. The two fixed planes showing the possible orientations of the polarization planes of natural waves
will be called the basic planes of the layer. Two mutually orthogonal axes each of which is parallel to
the layer boundaries and one of the basic planes of the layer are called the principal axes of the layer.
The principal axes of a layer should not be confused with the principal axes of the medium in the layer,
although in many cases a principal axis of a layer is parallel to a principal axis of the medium. For
example, the principal axis of a uniaxial medium is its optic axis. For the uniaxial layer considered in
the previous section (see Figure 1.9a), one of the principal axes of the layer is parallel to the xc-axis, and
the other to the yc-axis (as well as in the above example for a biaxial layer). If the optic axis is parallel
to the layer boundaries, the former principal axis of the layer is parallel to its optic axis. A principal
axis of a simple birefringent layer is called the fast axis or the slow axis according to whether the phase
velocity of the natural waves with polarization plane parallel to this axis is greater or smaller than that of
the natural waves whose polarization plane is perpendicular to this axis. For a layer of a nonabsorbing
positive uniaxial medium (n∥ > n⟂), the fast axis is perpendicular to the optic axis. For a layer of a
nonabsorbing medium with negative birefringence (n∥ < n⟂), the slow axis is perpendicular to the optic
axis (in both cases, we assume that the optic axis is not perpendicular to the layer boundaries).

If the wave normally incident on a simple birefringent layer is linearly polarized along one of the
principal axes of the layer, this wave induces in the layer only waves with polarization plane coincident
with the polarization plane of the incident wave, and the wave transmitted by the layer has the same
polarization state as the incident wave. The truth of this assertion can be proved by using the requirement
of continuity of the tangential components of the electric and magnetic fields across interfaces (see
Sections 8.1.1 and 12.2). This property of the simple birefringent layers is one of the cornerstones of
the classical JC [5] where it is used in the mathematical description of the optical action of anisotropic

1 In the presence of the plane of symmetry, the xc-axis of such a system is parallel or perpendicular to this plane.
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homogeneous layers (plates, films, etc.) functioning as linear retarders and linear polarizers in optical
systems.

1.3.4 Transmission Jones Matrices of a Simple Birefringent Layer at
Normal Incidence

Consider a simple birefringent layer sandwiched between nonabsorbing isotropic media. As in the above
examples, we assume that the boundaries of the layer coincide with the planes zc = z1 and zc = z2 (z2 >

z1) in a coordinate system (xc, yc, zc) whose xc-axis and yc-axis are parallel to the principal axes of the
layer. Let a plane monochromatic wave fall in the normal direction on the boundary zc = z1 of the layer
from the medium of refractive index n1. The refractive index of the medium beyond the layer will be
denoted by n2. Let reference frames (x, y, z) and (x′, y′, z) be introduced as in Section 1.1 (Figure 1.3)
to represent the Jones vectors of the incident and transmitted waves. In the case under consideration, the
z-axis is codirectional with the zc-axis. Let the axes of the frame (x′, y′) be parallel to the principal axes
of the layer (the x′-axis may be parallel to the xc-axis or yc-axis). We denote the Jones vectors—of the
kind (1.21), referred to the system (x′, y′)—of the incident and transmitted waves by

J̃
′(inc)

≡

(
J̃(inc)

x′

J̃(inc)
y′

)
and J̃

′(tr)
≡

(
J̃(tr)

x′

J̃(tr)
y′

)
, (1.149)

respectively. Since the axes x′ and y′ are parallel to the principal axes, the components of the vector J̃
′(tr)

are related to those of J̃
′(inc)

by

J̃(tr)
x′

(z2 + 0) = t̃Lx′ J̃
(inc)
x′

(z1 − 0), J̃(tr)
y′

(z2 + 0) = t̃Ly′ J̃(inc)
y′

(z1 − 0), (1.150)

where t̃Lx′ and t̃Ly′ are transmission coefficients depending on parameters of the layer and the wavelength
𝜆. Here the Jones vectors are considered as functions of zc. According to (1.150),

J̃
′(tr)

(z2 + 0) = t̃′LJ̃
′(inc)

(z1 − 0), (1.151)

where

t̃′L =

(
t̃Lx′ 0

0 t̃Ly′

)
. (1.152)

The matrix t̃′L is the transmission Jones matrix of the layer, corresponding to the chosen kind and
representation of the Jones vectors. Let us find the equivalent Jones matrix relating the input and output
Jones vectors referred to the frame (x, y). Denote the Jones vectors of the incident and transmitted waves
referred to the (x, y) frame by J̃

(inc)
and J̃

(tr)
, respectively. According to (1.54),

J̃
′(inc) = ⌢

RC(𝜙)J̃
(inc)

, J̃
′(tr) = ⌢

RC(𝜙)J̃
(tr)

, (1.153)

where 𝜙 is the angle between the axes x and x′ (see Figure 1.3). On substituting (1.153) into (1.151) and
premultiplying the obtained equation by

⌢
RC(−𝜙) [recall that

⌢
RC(−𝜙) = ⌢

RC(𝜙)−1], we have

J̃
(tr)

(z2 + 0) = ⌢
RC(−𝜙)t̃′L

⌢
RC(𝜙)J̃

(inc)
(z1 − 0). (1.154)
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The transmission Jones matrix t̃L of the layer for the input and output Jones vectors represented in the
system (x, y) is defined by the relation

J̃
(tr)

(z2 + 0) = t̃LJ̃
(inc)

(z1 − 0). (1.155)

From (1.154) it is seen that the matrix t̃L can be expressed in terms of the matrix t̃′L as follows:

t̃L = ⌢
RC(−𝜙)t̃′L

⌢
RC(𝜙). (1.156)

In principle, in modeling of a polarization system, the matrix t̃′L of an optical element can be defined
in such a way as to take account of the whole variety of the optical effects involved in the process
of light propagation through the layer, including multiple reflections from the boundaries of the layer.
But usually, when employing the Jones matrix method, the multiple reflections are neglected and the
transmitted light is considered as a result of the following sequence of operations: transmission of the
frontal boundary of the layer → transmission of the bulk of the layer → transmission of the rear boundary
of the layer. In this case, the amplitude transmission coefficients t̃Lx′ and t̃Ly′ [see (1.150)] of the layer
can be expressed as follows:

t̃Lx′ = t̃LBx′ exp
(
ik0nwx′d

)
, t̃Ly′ = t̃LBy′ exp

(
ik0nwy′d

)
, (1.157)

where the factors t̃LBx′ and t̃LBy′ describe the transmission of the boundaries, nwx′ is the refractive index
for the natural waves of the layer that have polarization planes parallel to the x′-axis, nwy′ is that for the
natural waves whose polarization planes are parallel to the y′-axis, and d = z1 − z2 is the thickness of the
layer. The zc-dependences of the electric fields of the natural waves traveling inside the layer from the
plane zc = z1 toward the plane zc = z2 are given by

E(x′)(xc, yc, zc, t) = E(x′)(xc, yc, z1 + 0, t) exp
[
ik0nwx′

(
zc − z1

)]
(1.158)

for a wave polarized in the plane parallel to the x′-axis and

E(y′)(xc, yc, zc, t) = E(y′)(xc, yc, z1 + 0, t) exp
[
ik0nwy′

(
zc − z1

)]
(1.159)

for a wave polarized in the plane parallel to the y′-axis, which explains the presence and the form of the
exponential factors in (1.157). If in the above examples for the uniaxial and biaxial layers we direct the
x′-axis along the xc-axis, the refractive indices nwx′ and nwy′ can be expressed as

nwx′ = ne =
n||n⊥√

n2|| sin2 𝜃 + n2
⊥
cos2 𝜃

, nwy′ = no = n⊥ (1.160)

for the uniaxial layer and

nwx′ = 𝜎1, nwy′ = 𝜎2 (1.161)

with 𝜎1 and 𝜎2 given by (1.148) for the biaxial layer.
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The transmittance2 (or the transmissivity) of the layer can be expressed as

TL =
n2

n1

|||t̃L j(inc)|||2 = n2

n1

|||t̃′L j′(inc)|||2 (1.162)

[cf. (1.110)], where j(inc) is the polarization Jones vector of the incident wave referred to the frame (x, y)
and j′(inc) is the same vector but referred to the frame (x′, y′).

Let us consider analogous relations for other kinds of Jones vectors, namely, for the local “fitted-to-
irradiance” (see Section 5.4.2) Jones vectors of the incident and transmitted waves defined by analogy
with (1.99) as

J̃
(inc)

F =
√

2n1J̃
(inc)

, J̃
(tr)

F =
√

2n2J̃
(tr)

(1.163)

and the “global” Jones vectors of these waves, J(inc) and J(tr), defined in the same way as the vector J in
Section 1.1.2. Neglecting the multiple reflections, the matrix t̃L(F) such that

J̃
(tr)

F (z2 + 0) = t̃L(F) J̃
(inc)

F (z1 − 0) (1.164)

can be represented as follows:

t̃L(F) =
⌢
RC(−𝜙)t̃′L(F)

⌢
RC(𝜙), (1.165)

where

t̃′L(F) =

(
t̃Lx′(F) 0

0 t̃Ly′(F)

)
(1.166)

with

t̃Lx′(F) = t̃LBx′(F) exp
(
ik0nwx′d

)
, t̃Ly′(F) = t̃LBy′(F) exp

(
ik0nwy′d

)
. (1.167)

The transmittances of the layer for waves linearly polarized along its principal axes will be referred to
as the principal transmittances of the layer. In the case under consideration, the principal transmittances
can be expressed as TLx′ = t̃∗

Lx′(F)
t̃Lx′(F) and TLy′ = t̃∗

Ly′(F)
t̃Ly′(F). For any given polarization of the incident

wave, the transmittance of the layer can be calculated by the formula

TL = |||t̃L(F) j(inc)|||2 = |||t̃′L(F) j′(inc)|||2 . (1.168)

One of the principal transmittances is equal to the maximum value of TL over all possible polarization
states of the incident wave, and the other to the minimum one. The quantities TLBx′ ≡ t̃∗

LBx′(F)
t̃LBx′(F) and

TLBy′ ≡ t̃∗
LBy′(F)

t̃LBy′(F) are equal to the products of the transmittances of the frontal and rear boundaries
of the layer for the corresponding polarizations of the incident wave. If the layer is nonabsorbing, t̃LBx′(F)

and t̃LBy′(F) are real. For absorbing layers, these coefficients are in general complex but most often have

2 The term “transmittance” which is commonly used in CJMM corresponds to the treatment of the incident light
as a beam of finite diameter (see Section 7.1). At the same time, CJMM uses a plane-wave approximation which
involves the possibility to evaluate a transmittance as the corresponding transmissivity (see Section 7.1). The notion
of transmittance is closer to practice than transmissivity and we will use it where convenient, even when this implies
an approximation (as in this case).
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very small imaginary parts and, to a good approximation, can be considered real (see examples in Section
12.2). Therefore, almost always, the matrix t̃′L(F) can be represented as

t̃′L(F) =

(√
TLBx′ exp

(
ik0nwx′d

)
0

0
√

TLBy′ exp
(
ik0nwy′d

)) . (1.169)

The representations (1.166) and (1.169) take into account polarization-dependent losses (diattenuation)
at the interfaces. However, in most cases of practical interest the coefficients t̃LBx′(F) and t̃LBy′(F) are of the
order of 1 and very close to each other (see Section 12.2), which allows one to neglect the diattenuation
at the interfaces and to use the following approximation:

tLBx′ = tLBy′ = tLB, (1.170)

where tLB is the average over the actual values of
√

TLBx′ and
√

TLBy′ . With this approximation, the
matrix t̃′L(F) can be written as

t̃′L(F) = tLB

(
exp

(
ik0nwx′d

)
0

0 exp
(
ik0nwy′d

)) . (1.171)

On omitting the factor tLB, we arrive at the form of t̃′L(F) usual for the classical JC, namely,

t̃′L(F) = t̃′LU, (1.172)

where

t̃′LU ≡

(
exp

(
ik0nwx′d

)
0

0 exp
(
ik0nwy′d

)) . (1.173)

Omission of the factor tLB is often quite a reasonable step, but one should remember that, almost always,
this step is far out of the rigorous theory. In the case of a nonabsorbing layer, one can avoid serious
contradictions with the rigorous theory by using the matrix t̃′LU as the operator relating the polarization
Jones vectors of the incident and transmitted waves:

j′(tr) = t̃′LU j′(inc), (1.174)

where both vectors are referred to the frame (x′, y′). In terms of the polarization Jones vectors of the
incident and transmitted waves referred to the frame (x, y), respectively j(inc) and j(tr), the same relation
can be written as

j(tr) = t̃LU j(inc), (1.175)

where

t̃LU = ⌢
RC(−𝜙)t̃′LU

⌢
RC(𝜙). (1.176)

Jones matrices relating polarization Jones vectors will be called polarization Jones matrices. Note that
polarization Jones matrices are always unitary because polarization Jones vectors are unit in the sense
(1.33) (see Section 5.1.3).
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The Jones matrix tL intended for linking the “global” Jones vectors of the incident and transmitted
waves,

J(tr) = tL J(inc), (1.177)

can be taken equal to t̃L(F). Since the phase of “global” Jones vectors is unimportant, any other matrix
tL representable as tL = aP t̃L(F), where aP is a complex number of unit magnitude (||aP

|| = 1), can also be
used for this purpose. The same can be said about matrices relating polarization Jones vectors.

The above representations are used in constructing transmission Jones matrices of various polarization
elements, in particular linear retarders and linear absorptive polarizers.

In closing, we note the following relations. In general, the coefficients t̃LBx′ and t̃LBy′ entering into
(1.157) are related to the coefficients t̃LBx′(F) and t̃LBy′(F) as follows:

t̃LBx′ =
√

n1

n2

t̃LBx′(F), t̃LBy′ =
√

n1

n2

t̃LBy′(F). (1.178)

When the refractive indices n1 and n2 differ greatly from each other, the coefficients t̃LBx′ and t̃LBy′ , even
when the reflection losses are small and t̃LBx′(F) and t̃LBy′(F) are close to unity, may differ greatly from
unity. For example, if n1 = 1, n2 = 1.5, and the principal refractive indices of the layer are real and about
1.5, the coefficients t̃LBx′(F) and t̃LBy′(F) will be about 0.98, while the coefficients t̃LBx′ and t̃LBy′ will be
close to 0.8. If, with the same layer, n1 = 1.5 and n2 = 1, t̃LBx′ and t̃LBy′ will be about 1.2, while the
coefficients t̃LBx′(F) and t̃LBy′(F) will be the same as in the previous case. The matrices t̃L and t̃L(F) are
related by

t̃L =
√

n1

n2

t̃L(F) (1.179)

and are equal to each other at n1 = n2. Let (x′′, y′′) be a reference frame with the x′′-axis parallel to the
x′-axis and the y′′-axis parallel to the y′-axis. Whatever the values of n1 and n2, the transmission Jones
matrix of the layer for the local “fitted-to-irradiance” Jones vectors referred to the system (x′′, y′′) for
the reverse propagation direction (that is, for the case when the incident wave normally falls on the layer
from the half-space zc > z2) is equal to the matrix t̃′L(F). For the Jones matrices associated with the Jones
vectors of the kind (1.21), such a relation will take place only at n1 = n2.

1.3.5 Linear Retarders

Linear retarders—retardation films and retardation plates—are common optical elements used to convert
the polarization state of passing light. Retardation films are used in LCDs for color dispersion compen-
sation and to improve the viewing angle characteristics. Detailed discussion of the standard applications
of retarders in polarization optics and terminology connected with retarders can be found in the books
[2, 6] and many others. Here we briefly discuss the action of linear retarders at normal incidence.

A simple linear retarder is a nonabsorbing birefringent layer. When light enters such a layer, in general it
splits into two plane-polarized natural waves propagating through the layer with different phase velocities.
These waves experience different phase retardation as they propagate through the layer and, upon exiting
the layer, recombine into a new wave with a new polarization state. This is the operating principle of
linear retarders. The most important characteristic of a retarder is the relative phase retardation

Γ =
2𝜋(ns − nf )d

𝜆
, (1.180)
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where ns and nf are the refractive indices for the natural waves with polarization planes parallel to the
slow axis and to the fast axis, respectively; d is the thickness of the birefringent layer. If, at a given 𝜆,
(ns – nf)d = 𝜆/4 and, consequently, Γ = 𝜋/2, the retarder is called a quarter-wave plate (film) for the
given 𝜆. The retarders with (ns – nf)d = 𝜆/2 (Γ = 𝜋) are called half-wave plates (films).

Let the x′-axis of the frame (x′, y′) attached to the principal axes of a nonabsorbing simple birefringent
layer be oriented along its slow axis. In this case, the polarization Jones matrix of the layer for the input
and output Jones vectors referred to the frame (x′, y′) [see (1.174)] may be written as

t̃′LU =
⎛⎜⎜⎝

ei
2𝜋nsd

𝜆 0

0 ei
2𝜋nf d

𝜆

⎞⎟⎟⎠ (1.181)

or

t̃′LU = ei
𝜋(ns+nf )d

𝜆

(
ei𝛿 0

0 e−i𝛿

)
, (1.182)

where

𝛿 ≡
Γ
2
=

𝜋(ns − nf )d

𝜆
. (1.183)

Since the phase of a polarization Jones vector is inessential, we can omit the common exponential factor
in expression (1.182) to deal with the mathematically simplest expression for t̃′LU:

t̃′LU =

(
ei𝛿 0

0 e−i𝛿

)
. (1.184)

On substituting (1.184) into (1.176), we obtain

t̃LU = ⌢
RC(−𝜙)t̃′LU

⌢
RC(𝜙) =

(
cos 𝛿 + i sin 𝛿 cos 2𝜙 i sin 𝛿 sin 2𝜙

i sin 𝛿 sin 2𝜙 cos 𝛿 − i sin 𝛿 cos 2𝜙

)
; (1.185)

here 𝜙 can be treated as the angle between the x-axis of the frame (x, y), to which the input and output
polarization Jones vectors are referred [see (1.175)], and the slow axis of the layer. This is a general
expression for the polarization Jones matrix of the linear retarder in a reference frame arbitrarily oriented
with respect to its principal axes.

Let us illustrate the ability of retarders to convert polarization by some examples, using the Jones
matrix method.

Half-Wave Plate

In this case, 𝛿 = 𝜋/2 and the matrix t̃′LU can be written as

t̃′LU = i

(
1 0

0 −1

)
. (1.186)
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Suppose that the frame (x, y) coincides with the frame (x′, y′), so that t̃LU = t̃′LU. Assume that the incident
wave has an arbitrary elliptical polarization. Taking the polarization vector j(inc) in the form

j(inc) = jE(𝛾inc, 𝜐inc) (1.187)

(see Table 1.1), where 𝛾inc and 𝜐inc are the values of the azimuth 𝛾e and ellipticity angle 𝜐e (see Section
1.1.2) of the incident wave, it is easy to find that

j(tr) = t̃LU j(inc) = i

(
1 0

0 −1

)
jE(𝛾inc, 𝜐inc) = ijE(−𝛾inc,−𝜐inc). (1.188)

Since the vector jE(−𝛾inc,−𝜐inc) represents just the same polarization state as the vector j(tr) =
ijE(−𝛾inc,−𝜐inc), we may conclude that the transmitted wave will have an azimuth 𝛾e = −𝛾inc and an
ellipticity angle 𝜐e = −𝜐inc. If the incident wave is linearly polarized, the transmitted wave will also be
linearly polarized, the polarization plane of the transmitted wave being the mirror image of that of the
incident wave with respect to the x′–z plane. If the incident wave has the left circular polarization, the
transmitted wave will have the right circular polarization and vice versa.

Quarter-Wave Plate

The main application of quarter-wave plates is in transforming linearly polarized light into circularly
polarized one and vice versa. To illustrate these options, we again, for simplicity, assume that the frames
(x, y) and (x′, y′) are coincident. For a quarter-wave plate, 𝛿 = 𝜋/4 and the matrix t̃LU can be represented
as

t̃LU = ei 𝜋
4

(
1 0

0 −i

)
. (1.189)

It is easy to verify that the polarization vectors from Table 1.1 satisfy the following relations:(
1 0

0 −i

)
jP

(
𝜋

4

)
= jR,

(
1 0

0 −i

)
jP

(
−𝜋

4

)
= jL,

(
1 0

0 −i

)
jR = jP

(
−𝜋

4

)
,

(
1 0

0 −i

)
jL = jP

(
𝜋

4

)
.

(1.190)

As is seen from these relations, a quarter-wave plate can perform the following conversions:

P𝜋∕4 → R, P−𝜋∕4 → L, R → P−𝜋∕4, L → P𝜋∕4, (1.191)

where the symbols P𝜋∕4, P−𝜋∕4, R, and L denote respectively the linear polarization with 𝛾e = 𝜋∕4, the
linear polarization with 𝛾e = −𝜋∕4, the right circular polarization, and the left circular polarization.

1.3.6 Jones Matrices of Absorptive Polarizers. Ideal Polarizer

Absorptive polarizers are used in most kinds of liquid crystal displays. The main element of the usual
absorptive polarizer is an absorbing anisotropic film exhibiting high diattenuation due to absorption
anisotropy. In the spectral region where this film acts effectively as polarizer, one of the two principal
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transmittances of the film is close to zero, while the other is sufficiently high (ideally, equal to 1). The
principal axis of the film corresponding to the higher principal transmittance is called the transmission
axis of the polarizer [6].

A standard optical model of the polarizing film or the polarizer as a whole is a uniaxial layer whose
optic axis is parallel to the layer boundaries (see Section 7.3). In the rigorous methods which are
considered in Chapters 8–10, the specification of such a model includes the specification of the principal
complex refractive indices of the layer. In calculations performed for the case of normal incidence using
the classical Jones calculus, as a rule, simpler variants of specification of polarizers are used. Here we
consider some of them.

Let the x′-axis of the reference frame (x′, y′) be parallel to the transmission axis of the layer being
a model of the polarizer. We denote the principal transmittances of the layer by t∥ and t⟂, where t∥
corresponds to the polarization along the transmission axis. Assuming that Re(nwx′ ) = Re(nwy′ ), in
accordance with (1.171) we may write the matrix t̃′L(F) of the layer as follows:

t̃′L(F) = exp
[
ik0 Re

(
nwx′

)
d
]( tLB exp

[
−k0 Im

(
nwx′

)
d
]

0

0 tLB exp
[
−k0 Im

(
nwy′

)
d
]) . (1.192)

In this case, the principal transmittances of the layer can be expressed as

t|| = t2
LB exp

[
−2k0 Im

(
nwx′

)
d
]

, t⊥ = t2
LB exp

[
−2k0 Im

(
nwy′

)
d
]

, (1.193)

and consequently the matrix t̃′L(F) can be represented as follows:

t̃′L(F) = exp
[
ik0 Re

(
nwx′

)
d
](√t|| 0

0
√

t⊥

)
. (1.194)

According to (1.194), the simplest variant of the Jones matrix of the polarizer for the “global” Jones
vectors referred to the system (x′, y′) is

t′L =

(√
t|| 0

0
√

t⊥

)
(1.195)

[see the remark after (1.177)]. The corresponding Jones matrix for the “global” Jones vectors referred to
the system (x, y) rotated with respect to the system (x′, y′) can be calculated by the formula

tL = ⌢
RC(−𝜙)t′L

⌢
RC(𝜙), (1.196)

where 𝜙 is the angle between the x-axis and the x′-axis (the transmission axis of the polarizer). Thus, in
this case, to specify the polarizer we need only the principal transmittances and orientation angle 𝜙. It is
sometimes convenient to represent the principal transmittances t∥ and t⟂ as follows:

t|| = Cpt||p, t⊥ = Cpt⊥p, (1.197)

where t||p and t⊥p are the principal bulk transmittances of the layer,

t||p = exp
[
−2k0 Im

(
nwx′

)
d
]

, t⊥p = exp
[
−2k0 Im

(
nwy′

)
d
]

, (1.198)

and Cp = t2
LB is a factor taking account of the reflection losses at the boundaries.
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As a rule, the real parts of the refractive indices nwx′ and nwy′ of a real polarizing film are different. To
take this circumstance into account one can use the following form of the matrix t′L:

t′L =

(√
t|| exp (i𝛿w

)
0

0
√

t⊥ exp
(
−i𝛿w

)) , (1.199)

where 𝛿w = 𝜋
[
Re
(
nwx′

)
− Re

(
nwy′

)]
d∕𝜆. Although the situation when Renwx′ ≠ Renwy′ is common, in

solving typical problems for LCDs, as a rule, there is no need to use the representation (1.199) instead
of (1.195) because the phase factors in (1.199) contribute nothing to the quantities to be estimated, such
as the transmittance of the LCD panel, or their influence on the LCD characteristics is negligible.

The above matrices t′L at t⟂ ≠ 0 describe partial polarizers. All real absorptive polarizers are partial
ones. However, for many practical polarizers, t⟂ is so small that it can be taken as zero in calculations.
In such a case, the matrix t′L can be written as

t′L =

(√
t|| 0

0 0

)
=
√

t||
(

1 0

0 0

)
. (1.200)

Often a still further idealized model of a linear polarizer is used. This model is an ideal linear polarizer
whose matrix t′L is as follows:

t′L =

(
1 0

0 0

)
. (1.201)

The matrix tL (1.196) in this case can be written as

tL =

(
cos2 𝜙 cos𝜙 sin𝜙

cos𝜙 sin𝜙 sin2 𝜙

)
. (1.202)

The concept of an ideal polarizer as an ideal device that transmits the light of a given polarization only,
without losses, is applied to polarizers extracting an elliptical or a circular polarization as well [2].

With a given matrix tL of a polarizer, the transmittance of the polarizer for an incident wave with a
given polarization Jones vectors j(inc) can be calculated by the following general formula:

TL = |||tL j(inc)|||2 . (1.203)

In the case of an ideal polarizer, a simpler expression for the transmittance can be used:

TL = |||j†tp j(inc)|||2 , (1.204)

where jtp is the polarization Jones vector of waves that are transmitted by the polarizer. For example, the
vector jtp for the ideal linear polarizer with matrix tL given by (1.202) can be expressed as jtp = jP(𝜙)
(see Table 1.1) in the system (x, y). Assuming that the light incident on this polarizer is linearly polarized
and taking j(inc) = jP(𝛾), we readily obtain from (1.204)

TL = cos2 𝛾𝜙, (1.205)
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where 𝛾𝜙 = 𝛾 − 𝜙 is the angle between the transmission axis of the polarizer and the polarization direction
of the incident light. Equation (1.205) expresses the familiar law of Malus. For a partial polarizer whose
matrix t′L is expressed by (1.195) or (1.199) the dependence of the polarizer transmittance on 𝛾𝜙 is as
follows:

TL = t|| cos2 𝛾𝜙 + t⊥ sin
2 𝛾𝜙. (1.206)

This expression can easily be derived by using the following representation of TL:

TL = |||t′L jP(𝛾𝜙)|||2 = jP(𝛾𝜙)†
(
t′†L t′L

)
jP(𝛾𝜙). (1.207)

1.4 Jones Calculus
The classical Jones matrix method (CJMM) includes two fundamental methods. The first method is
a calculus for treatment of optical systems containing plane-parallel layers of anisotropic materials,
homogeneous or with continuously varying parameters [5, 7, 8]. The second is a general method of
description of the interaction of polarized light with nondepolarizing linear optical systems [9]: an action
of the optical system is described by a 2 × 2 matrix (t) relating the Jones vector of a wave incident on
the system (Jinc) and the Jones vector of the wave emerging from the system that is considered as the
result of this action with respect to the incident wave (Jout) as follows:

Jout = tJinc. (1.208)

Jones matrices are adequate characteristics in any situation where waves incident on a system and
emerging from it can be adequately represented by Jones vectors. For instance, in optics of stratified
media, Jones matrices are commonly used to characterize transmission and reflection of such media, as
transmission and reflection operators, including the case of oblique light incidence. If the incident and
emergent waves are homogeneous and propagate in isotropic nonabsorbing media, they can be described
by classical Cartesian Jones vectors. The description in terms of Jones vectors and Jones matrices is
entirely consistent with electromagnetic theory. The rigorous methods discussed in Chapter 8 enable
calculation of transmission and reflection Jones matrices of layered systems in strict accordance with
this theory. The transmission and reflection Jones matrices for the interface between isotropic media in
Section 1.2.2 are examples of exact Jones matrices.

In contrast to the matrix description [9], the Jones calculus (JC) is a semiempirical method and is limited
to the case of normal incidence. This method was developed for calculating transmission characteristics
of optical systems consisting of retarders and polarizers and other systems for which the transformation
of the polarization state of the passing light by their elements is of paramount importance. In JC, the
effect of an optical element of an optical system on a light beam is considered as a transformation of a
plane wave incident on the element into a plane wave emerging from it and is characterized by a Jones
matrix that relates Jones vectors of these waves. The action of an optical system consisting of two or
more elements is considered as a chain of such transformations. JC is not strongly tied to electromagnetic
theory and takes into account only basic functions of the elements and basic optical effects connected
with performing these functions by the elements. In contrast to the electromagnetic methods where
elements of an optical system are specified by their material parameters, in JC the elements are specified
through description of their transfer characteristics which are specified using material parameters where
it is convenient. When JC is used in solving optimization problems for finding optimal values of key
parameters of polarization elements (such as orientation angles for polarizers, orientation angles and
retardances for retarders, the twist angle and thickness for an LC layer), as a rule, the model system
for direct analysis is composed of ideal elements such as an ideal polarizer, an ideal retarder, an ideal
lossless LC cell, and so on.
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JC has played and is playing a very important role in LCD optics. Many fundamental formulas in
optics of liquid crystals and LCD optics were derived and many optimization problems were solved
using this method. A lot of extremely useful and beautiful mathematics have appeared in polarization
optics thanks to JC. That is why much attention in this book is given to this method and its applications
in modeling and optimization of LCDs.

There are many points in JC that seem to be or really are inconsistent with the rigorous theory. On the
other hand, based on the rigorous theory, one can prove that JC gives accurate results for many practical
optical systems including LCDs. Starting from Maxwell’s equations, using approximations that are fully
justified in the context of electromagnetic theory, one may arrive at a technique which is mathematically
(but not in every respect physically) equivalent to JC. This will be shown in Chapters 8, 11, and 12. The
formal equivalence of JC and the more rigorous technique allows one to use the mathematical apparatus
of JC, very rich and convenient, in the latter technique, or, what is practically the same, to use JC as it is
but taking into account the amendments and refinements concerning the physical interpretation of some
quantities and procedures involved in this method. Note that many helpful mathematical elements of
JC are successfully used within the more rigorous method in considering both normal and oblique light
incidence (see Chapter 11 and Section 12.4).

In this section, we consider some basic concepts of JC as well as some mathematical tricks useful
when JC is applied to LCDs.

1.4.1 Basic Principles of the Jones Calculus

As has been said, in JC the action of an optical system is considered as a series of transformations to
which the light is subjected as it passes through the system. Each of these elementary transformations
is characterized by a Jones matrix. The Jones matrices are chosen in such a way that the output Jones
vector for the Jones matrix describing the first or any intermediate transformation is the input Jones
vector for the Jones matrix of the next transformation, which allows one to relate the Jones vector of the
light incident on the system (Jinc) and that of the light emerging from the system (Jout) by the following
chain of equations:

J1 = t1Jinc, J2 = t2J1,… , JM−1 = tM−1JM−2, Jout = tMJM−1, (1.209)

where M is the number of the elementary transformations and tj is the Jones matrix of the jth transfor-
mation (j = 1,2,… , M). The substitutions of the expression for J1 in (1.209) (the first equation) into the
second equation, of the obtained expression for J2 in terms of Jinc into the third equation, and so on lead
to the following relation:

Jout = tMtM−1 … t2t1Jinc. (1.210)

Due to the associativity of the matrix product, this relation can be rewritten as

Jout = (tMtM−1 … t2t1)Jinc (1.211)

or

Jout = tsysJinc, (1.212)

where

tsys = tMtM−1 … t2t1 (1.213)
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is the matrix that is regarded in JC as the Jones matrix of the system. Thus, the validity of (1.209) allows
one to calculate the Jones matrix of the system by multiplying the Jones matrices of the elementary
transformations in accordance with (1.213).

In Sections 1.3.4–1.3.6, we gave many expressions for Jones matrices of different optical elements,
which can be used in such calculations. In all the cases considered in those sections, we assumed that
the light incident on an element and the light emerging from the element propagate in isotropic media,
so that we could legitimately use usual Cartesian Jones vectors to describe the waves regarded as the
operand and the result of the transformation performed by the element. A peculiarity of the classical JC
is that in any case the Jones matrix describing the transformation performed by an element is calculated
as if the input and output media for this transformation (i.e., the medium from which the light falls on
the element and the medium into which the transformed light passes leaving the element) were isotropic.
Thus, for example, the transmission Jones matrix of a system consisting of two contiguous anisotropic
layers is calculated as if there were an isotropic layer between the anisotropic layers but ignoring the
effect of this intermediate isotropic layer on the passing light. It is clear that this approach is somewhat
artificial. Some arguments for this approach from the standpoint of electromagnetic theory can be found
in Chapter 12.

In principle, in considerations using the above algorithm, different kinds of Jones vectors (see Section
1.1.1) can be used. In the classical JC, the ordinary Jones vectors are assumed to be “fitted-to-intensity,”
the following relation between the Jones vector J and intensity I of a wave being adopted:

I = |J|2 ≡ J†J. (1.214)

In the further consideration of JC and its applications, we will adhere to this convention and other
prescriptions and principles of the classical variant of this method.

Standard Definition and Usual Representations of Transmittance in the Jones
Calculus. Average Transmittance. “Unpolarized” Transmittance

The transmittance t of a device (a system or an element) is defined as

t ≡ Iout∕Iinc, (1.215)

where Iinc and Iout are the intensities of the light incident on the device and the light transmitted by the
device, respectively. According to (1.214) and (1.215), the transmittance t can be expressed as

t = |Jout|2∕|Jinc|2, (1.216)

where Jinc and Jout are the Jones vectors of the incident light and transmitted light, respectively.
The substitution of the expression

Jout = tJinc, (1.217)

where t is the Jones matrix of the device, into (1.216) gives the following expression for t:

t = |tJinc|2∕|Jinc|2. (1.218)

Yet another standard expression for the transmittance is

t = |t jinc|2, (1.219)
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where jinc is the polarization Jones vector of the incident light (|jinc| = 1). We have dealt with expressions
of this kind in the previous sections. The product t jinc is a normalized Jones vector whose squared norm
is equal to the transmittance t.

Let t1 = |t j1|2 and t2 = |t j2|2 be the values of the transmittance of the device for two arbitrary
mutually orthogonal polarizations of the incident light, described by polarization Jones vectors j1 and j2

(j2
†j1 = 0). It is easy to verify that the magnitude of the average transmittance of the device defined as

tavr = (t1 + t2)∕2 is independent of the choice of the pair of incident orthogonal polarizations and

tavr =
1
2

(
t∗11t11 + t∗12t12 + t∗21t21 + t∗22t22

)
= 1

2
‖t‖2

E , (1.220)

where tjk are elements of the matrix t and ‖t‖E is the Euclidean norm of t (see Section 5.1.4). The trans-
mittance of the device for quasimonochromatic unpolarized incident light, tunp, according to prescriptions
of JC, is calculated as tavr in (1.220), that is, by the formula

tunp =
1
2

(
t∗11t11 + t∗12t12 + t∗21t21 + t∗22t22

)
. (1.221)

The unpolarized quasimonochromatic incident wave can be represented as a superposition of two mutu-
ally incoherent quasimonochromatic orthogonally polarized waves of equal intensity, with polarization
Jones vectors j1 and j2. Denoting the transmittances of the device for these polarized constituents as t1

and t2, we may express tunp as tunp = (t1 + t2)∕2. Then the assumption that the transmittances t1 and t2

can be calculated as t1 = |t j1|2 and t2 = |t j2|2, that is, just as in the case of monochromatic waves, leads
us to (1.221).

Lossless Transformations and Transformations Without Diattenuation

Solving many problems is significantly simplified by using specific mathematical properties of Jones
matrices describing certain kinds of transformations. Here we consider two important classes of trans-
formations. One of them is the class of transformations for which the output light intensity is equal to
the input light intensity whatever the SOP of the incident light. Such transformations are called lossless.
Definition (1.214) of intensity determines that the Jones matrix describing such a transformation is a
unitary matrix (see Section 5.1.3). Actually, let t be the Jones matrix of an operation, and let Jinc and
Jout = tJinc be the Jones vectors of the incident and output waves for this operation. Then, according to
(1.214), the condition of equality of intensities of the incident and output waves can be written as

J†
outJout = J†

incJinc (1.222)

or

(tJinc)
†tJinc = J†

incJinc. (1.223)

Using the identity (tJinc)
† = Jinc

†t† [see (5.15)], we can rewrite (1.223) as follows:

J†
inc(t

†t)Jinc = J†
incJinc. (1.224)

This relation holds at any Jinc only if

t†t = U, (1.225)
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where U is the unit matrix. A square matrix A satisfying the condition A†A = U is called unitary. A
summary of properties of unitary matrices is given in Section 5.1.3. Devices that are assumed to perform
lossless transformations are often called lossless or unitary.

Lossless transformations belong to the class of transformations without diattenuation (i.e., without
polarization-dependent losses). A transformation can be called a transformation without diattenuation if
the ratio of the output light intensity to the input light intensity is independent of the SOP of the incident
light. This determining condition implies that at any Jinc,

J†
inc(t

†t)Jinc = tlJ
†
incJinc, (1.226)

where t is the Jones matrix of the transformation, tl is a real constant independent of Jinc. In the presence
of losses, tl < 1. The transmittance t [see (1.216)] associated with this transformation in any case is equal
to tl. Relation (1.226) will hold at any Jinc only if

t†t = tlU. (1.227)

Any matrix satisfying (1.227) can be represented as t = 𝜍tU, where tU is a unitary matrix and 𝜍 is a scalar
factor such that 𝜍𝜍∗ = tl. In this book, such matrices are referred to as STU matrices (see Section 5.1.3).

A chain of lossless transformations is a lossless transformation. The product of unitary matrices is
always a unitary matrix. A chain of transformations without diattenuation is a transformation without
diattenuation. The product of STU matrices is always an STU matrix.

An interesting feature of transformations without diattenuation is that under such transformations
orthogonally polarized waves are converted into orthogonally polarized ones: if t is an STU matrix and
Jinc1 and Jinc2 are arbitrary mutually orthogonal Jones vectors (Jinc1

†Jinc2 = 0), the vectors Jout1 = tJinc1

and Jout2 = tJinc2 will be also mutually orthogonal (Jout1
†Jout2 = 0) (see Section 5.1.3). This feature

explains the following well-known property of transmissive devices (layers or layered systems) without
diattenuation. If such a device is placed between linear polarizers (ideal or with zero transmittance for
the unwanted polarization), the transmittance of the polarizer–device–polarizer system is invariant under
rotations of the device about the axis of light propagation by 90◦. Actually, due to the mentioned feature
of transformations without diattenuation, such a rotation changes only the handedness of the polarization
ellipse of the light emerging from the device. The transmittance of a linear polarizer is independent of
the handedness of the polarization of light incident on it. Therefore, the intensity of the light transmitted
by the second polarizer will remain unchanged after the rotation of the device.

Many practical optical elements and systems whose purpose is to convert the SOP of light with
minimal losses (wave plates, polarization rotators, LC layers in most kinds of LCDs, compensation
systems in LCDs, etc.) can be considered to a good approximation as devices that transmit light, at
normal incidence, without diattenuation.

Idealized Systems in the Jones Calculus. Unitary Systems

As a rule, the object for JC is an idealized system whose transmittance multiplied by a certain attenuation
factor is considered to be equal to the transmittance of a real (realistic) lossy system of interest. The
attenuation factor may take account of absorption losses in isotropic layers of the lossy system, reflection
losses, and some other kinds of losses. Almost always, the losses on the polarization-converting elements
that are considered to perform transformations without diattenuation are taken into account in the
attenuation factor, so that these elements are represented in the idealized system by lossless elements. An
idealized system consisting of only lossless elements is clearly lossless. Such systems are called unitary
systems. Representing the Jones matrix of a realistic lossy system with negligible diattenuation in the
form 𝜍tU, where tU is a unitary matrix and 𝜍 is a scalar, we can use the matrix tU as operator relating
polarization Jones vectors of the incident and emergent waves (we have used this in Section 1.3.5). If
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tU is the Jones matrix of a unitary system associated with the lossy system, we may regard this unitary
system as a model system that transforms polarization in the same manner as the realistic lossy system.
The concept of a unitary system is widely used in LCD optics (see Chapters 2, 3, 6, and 12).

The typical idealized optical system for JC is a sequence of elements each of which is able to convert
the polarization state of light. The effect of spaces between the elements is usually disregarded, because,
as a rule, there is no need to trace the changes in the absolute phase of the passing light.

1.4.2 Three Useful Theorems for Transmissive Systems

The usual model of an inhomogeneous LC layer is a pile of homogeneous birefringent layers (see
Sections 2.1 and 11.1.1). The standard idealized model of a transmissive LCD to treat by means of JC is
also a pile of homogeneous anisotropic layers. In this section, we present three theorems showing how
the transmission Jones matrix of such a system changes under certain transformations of the system.
Applied to inhomogeneous LC layers, these theorems are useful when there is a need to compare the
optical properties of similar layers whose structures (LC director fields) are mapped into each other
by a rotation, a reflection, or the inversion (see, e.g., [10]). For systems invariant under any of the
transformations considered here, by using these theorems, it is easy to find restrictions imposed by this
invariance on the Jones matrices of these systems. Knowledge of such restrictions simplifies solving
some optimization problems for LCDs (see Chapter 6).

Consider a system S consisting of N simple birefringent layers (Figure 1.11) (say, a system of linear
polarizers and linear retarders) whose boundaries are perpendicular to an axis z. The effect of spaces
between the layers will be ignored here. Let the elements of the system (birefringent layers) be numbered
as shown in Figure 1.11, and let a light wave X⃗i propagating in the positive z direction be incident on the
system (Figure 1.11a). We can calculate the Jones matrix of the system,

t⃗S ≡

(
t⃗S11 t⃗S12

t⃗S21 t⃗S22

)
, (1.228)

ziXoX

{ } { }io SJ J= tX X

1 2 N

S(b)

iX oX

1 2 NN−1

N−1

{ } { }io SJ J= tX XS(a)

z

Figure 1.11 A transmissive system of birefringent layers. J{X} stands for the Jones vector of a wave
X. Parts (a) and (b) show the two cases compared in Jones’s reversibility theorem
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as

t⃗S = t⃗N t⃗N−1 … t⃗2 t⃗1, (1.229)

where t⃗j is a Jones matrix of layer number j, if the input reference frame3 of the matrix t⃗j (at j=2,… ,

N) is the same as the output reference frame of the matrix t⃗j−1. This condition will be satisfied if we use

a fixed frame as the input and output one for all the matrices t⃗j. Take the frame (xI, yI) of a rectangular
right-handed Cartesian system (xI, yI, zI) with the zI-axis codirectional with the z-axis as such a fixed
frame. Let (x′j , y′j) be a frame whose axes are parallel to the principal axes of the jth layer, and let

t′j =

(
txj 0

0 tyj

)
(1.230)

be the transmission Jones matrix of the jth layer for Jones vectors referred to the frame (x′j , y′j). Then the

matrices t⃗j can be represented as

t⃗j =
⌢
RC(−𝜙j)t

′
j

⌢
RC(𝜙j), (1.231)

where 𝜙j is the angle between the axes xI and x′j .

Note that at any 𝜙j, the matrix t⃗j is symmetric, that is,

t⃗j = t⃗ T
j . (1.232)

Actually, according to (1.231),

t⃗ T
j =

(
⌢
RC(−𝜙j)t

′
j

⌢
RC(𝜙j)

)T
. (1.233)

Using matrix identity (5.14), the relation
⌢
RC(𝜙)T = ⌢

RC(−𝜙), and the fact that t′Tj = t′j , we can rewrite this
expression as

t⃗ T
j = ⌢

RC(𝜙j)
Tt′Tj

⌢
RC(−𝜙j)

T = ⌢
RC(−𝜙j)t

′
j

⌢
RC(𝜙j). (1.234)

Comparing (1.234) and (1.231), we see that t⃗ T
j = t⃗j.

Theorem 1.1 The Jones matrix t⃗S′ of a system S′ that can be obtained from the system S by
the permutation of the elements that provides the inverse order of the elements and, possibly, by
rotating some elements by 180◦ about the z-axis is related to the Jones matrix of the system S as
follows:

t⃗S′ = t⃗ T
S . (1.235)

3 Considering a Jones matrix, we will call the reference frames to which the input and output Jones vectors for this
matrix are referred respectively the input frame and output frame of this Jones matrix. A frame that is used as both
the input one and the output one for a Jones matrix will be called the input and output frame.
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Proof. The rotation of any element about the z-axis by 180◦ does not change the Jones matrix of this
element. Therefore, in any case, the matrix t⃗S′ can be expressed in terms of the Jones matrices of the
elements of the system S as

t⃗S′ = t⃗1 t⃗2 … t⃗N−1 t⃗N . (1.236)

Using the fact that all the matrices t⃗j are symmetric and identity (5.14), we can transform this expression
as follows:

t⃗S′ = t⃗ T
1 t⃗ T

2 … t⃗ T
N−1 t⃗ T

N =
(⃗
tN t⃗N−1 … t⃗2 t⃗1

)T
. (1.237)

As is seen from (1.237) and (1.229), the matrix t⃗S′ is really equal to t⃗ T
S .

If the system S is such that t⃗N = t⃗1, t⃗N−1 = t⃗2, and so on, the inversion of the order of its elements will
give a system whose Jones matrix is equal to t⃗S. It follows from Theorem 1.1 that the matrix t⃗S in this
case satisfies the condition t⃗S = t⃗ T

S , that is, it is symmetric.

Going to the next theorem, denote the values of the azimuthal angles 𝜙j and matrices t⃗j (j=1,2,… , N)

for the system S by 𝜙(S)
j and t⃗(S)

j respectively. With this notation, the matrix t⃗S is expressed as

t⃗S = t⃗(S)
N t⃗(S)

N−1 … t⃗(S)
2 t⃗(S)

1 , (1.238)

where

t⃗(S)
j = ⌢

RC

(
−𝜙(S)

j

)
t′j

⌢
RC

(
𝜙(S)

j

)
. (1.239)

Theorem 1.2 Suppose that a system S′ consists of the same layers as the system S and their order is
the same as in S, but the layers are rotated about the z-axis so that for the jth layer (j = 1,2,… , N) the
angle 𝜙j is equal to −𝜙(S)

j or −𝜙(S)
j + 180◦. Then the Jones matrices of the systems S′ and S are related

by

t⃗S′ = I1 t⃗SI1, (1.240)

where

I1 =

(
1 0

0 −1

)
. (1.241)

Note that I1I1 = U, where, as before, U is the unit matrix, that is, I−1
1 = I1. According to (1.240),

t⃗S′ =

(
t⃗S11 −t⃗S12

−t⃗S21 t⃗S22

)
.

Proof. The Jones matrix t⃗(S′)
j of the jth layer of the system S′ for Jones vectors referred to the frame

(xI, yI), whether 𝜙j for this layer be equal to −𝜙(S)
j or −𝜙(S)

j + 180◦, can be expressed as follows:

t⃗(S′)
j = ⌢

RC

(
𝜙(S)

j

)
t′j

⌢
RC

(
−𝜙(S)

j

)
. (1.242)
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It is easy to check that, at any 𝜙,
⌢
RC (𝜙) = I1

⌢
RC (−𝜙) I1. Using this relation, we can rewrite (1.242) as

t⃗(S′)
j = I1

⌢
RC

(
−𝜙(S)

j

)
I1t′jI1

⌢
RC

(
𝜙(S)

j

)
I1. (1.243)

Since t′j is a diagonal matrix, I1t′jI1 = t′j . Consequently, from (1.243) we have

t⃗(S′)
j = I1

⌢
RC

(
−𝜙(S)

j

)
t′j

⌢
RC

(
𝜙(S)

j

)
I1. (1.244)

From (1.244) and (1.239), we see that

t⃗(S′)
j = I1 t⃗(S)

j I1. (1.245)

In the case under consideration, the matrix t⃗S′ is expressed in terms of the matrices t⃗(S′)
j as follows:

t⃗S′ = t⃗(S′)
N t⃗(S′)

N−1 … t⃗(S′)
2 t⃗(S′)

1 . (1.246)

On substituting from (1.245) into (1.246), we obtain

t⃗S′ = I1 t⃗(S)
N I1I1 t⃗(S)

N−1I1 … I1 t⃗(S)
2 I1I1 t⃗(S)

1 I1 = I1

(⃗
t(S)
N t⃗(S)

N−1 … t⃗(S)
2 t⃗(S)

1

)
I1, (1.247)

where we have made use of the property I1I1 = U.

Theorem 1.3 Suppose that a system S′′ differs from a system S′ that satisfies the conditions of the
previous theorem only in that it has the inverse order of elements, and, consequently, the Jones matrix of
the system S′′, t⃗S′′ , can be expressed in terms of the matrices t⃗(S′)

j as follows:

t⃗S′′ = t⃗(S′)
1 t⃗(S′)

2 … t⃗(S′)
N−1 t⃗(S′)

N . (1.248)

Then the matrix t⃗S′′ is related to the Jones matrix t⃗S of the system S by

t⃗S′′ = I1 t⃗ T
S I1. (1.249)

According to (1.249),

t⃗S′′ =

(
t⃗S11 −t⃗S21

−t⃗S12 t⃗S22

)
. (1.250)

Proof. By Theorem 1.1, t⃗S′′ = t⃗ T
S′

. According to Theorem 1.2, t⃗S′ = I1 t⃗SI1. Therefore,

t⃗S′′ =
(
I1 t⃗SI1

)T
= IT

1 t⃗ T
S IT

1 = I1 t⃗ T
S I1.

Note that a system S′′ satisfying the conditions of Theorem 1.3 can be obtained by the rotation of the
system S by 180◦ about an axis parallel to the xI-axis. Thus, Theorem 1.3 makes clear how the Jones
matrix of a system of birefringent layers is transformed under such a rotation. Starting from Theorem
1.3, by means of standard basis transformations, it is easy to find the rule of transformation of the Jones
matrix of such a system under the 180◦ rotation of this system about a given axis perpendicular to the
light propagation direction for the case of an arbitrary orientation of this axis with respect to the axes of
the reference frame for the Jones matrix.
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If the rotation of the system S by 180◦ about an axis parallel to the xI-axis maps the system S into
itself, that is, yields a system that is equivalent to S in its initial state, then, according to Theorem 1.3,

t⃗S = I1 t⃗ T
S I1, (1.251)

which implies the following form of the matrix t⃗S:

t⃗S =

(
t⃗S11 t⃗S12

−t⃗S12 t⃗S22

)
. (1.252)

Applying this conclusion to the standard model of an inhomogeneous LC layer as a pile of homogeneous
uniaxial layers with a varying, from layer to layer, orientation of the optic axis (see Section 11.1.1), one
can readily show that the transmission Jones matrix of an LC layer that is invariant with respect to the
180◦ rotation about an axis parallel to the layer boundaries (this kind of symmetry is typical of LC layers
of practical LCDs, see Figure 6.7 and Section 6.2.3) has the form (1.252) if the axis xI of a reference
frame (xI, yI) which is used as the input and output one for this Jones matrix is parallel to the symmetry
axis (axis C2 in Figure 6.7).

Certainly, the matrix t⃗S has the form (1.252) not only when the system S is symmetrical in the
mentioned sense. For any variant of S for which t′N−j+1 = t′j and 𝜙(S)

N−j+1 is equal to −𝜙(S)
j or −𝜙(S)

j ± 180◦

(j = 1,2,… , N), the matrix t⃗S will be of the form (1.252).
For completeness, we must also mention here the following obvious relation. If a system S′ is composed

of the same elements as the system S, arranged in the same order, but these elements are rotated about
the z-axis so that for them the angles 𝜙j are equal to 𝜙j

(S) + 𝛼R or 𝜙j
(S) + 𝛼R + 180◦, where 𝛼R is a fixed

angle, the matrices t⃗S′ and t⃗S are related by

t⃗S′ =
⌢
RC(−𝛼R)⃗tS

⌢
RC(𝛼R). (1.253)

1.4.3 Reciprocity Relations. Jones’s Reversibility Theorem
In the previous section, we supposed that light is incident on the system S in the positive direction of
the z-axis. Denote the transmission Jones matrix of this system for light incident on this system from
the other side in the opposite direction (Figure 1.11b) by t⃖S. Using Theorem 1.3 of the previous section,
we can easily determine the relation between the matrices t⃗S and t⃖S. Let a system S′′ be identical to the
system S rotated by 180◦ about an axis parallel to the xI-axis and let a coordinate system (xR, yR, zR)
whose frame (xR, yR) is used as the input and output basis of the matrix t⃖S be identical to the system (xI,
yI, zI) rotated by 180◦ about the xI-axis (Figure 1.12a). With this choice of the frame (xR, yR) the matrix
t⃖S is obviously equal to the matrix t⃗S′′ which is referred to the frame (xI, yI). Since the system S′′ satisfies
the conditions of Theorem 1.3, t⃗S′′ = I1 t⃗ T

S I1 and, consequently,

t⃖S = I1 t⃗ T
S I1.

Considering three choices of the basis (xR, yR, zR) that are shown in Figure 1.12 and named C1, C2, and
C3, the relationship between the matrices t⃗S and t⃖S can be expressed as follows:

t⃖S = Ur t⃗
T

S Ur, (1.254)
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xI

yI

zI

zR

yR

xR
xI

yI

zI

zR

yR

xR

xI

yI

zI

zR

yR

xR

Variant C1 Variant C2 Variant C3

(a) (b) (c)

Figure 1.12 Three choices of reference frames for the Jones vectors of waves propagating in opposite
directions. The axes zI and zR indicate the propagation directions of the waves. The system (xI, yI, zI)
is right-handed. The system (xR, yR, zR) is right-handed in the cases C1 and C2 and left-handed in the
case C3

where

Ur =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 0

0 −1

)
in the case C1

(
−1 0

0 1

)
in the case C2

(
1 0

0 1

)
in the case C3.

(1.255)

In the cases C1 and C2, the matrix t⃖S is expressed in terms of the elements of t⃗S as

t⃖S =

(
t⃗S11 −t⃗S21

−t⃗S12 t⃗S22

)
. (1.256)

In the case C3,

t⃖S =

(
t⃗S11 t⃗S21

t⃗S12 t⃗S22

)
. (1.257)

Equations that relate a transfer characteristic of an optical system to the characteristic of the same kind
but for the reverse passage of light through the system, such as (1.254), are usually called reciprocity
relations.

In the literature, reciprocity relations for Jones matrices of polarization devices are often written in
the form t⃖ = t⃗ T (see, e.g., [11]) and correspond to the situation when the input reference frame for the
matrix t⃗ is the same (geometrically) as the output reference frame for the matrix t⃖ and vice versa (as is
the case in the above example for the variant C3). Devices for which such a reciprocity relation holds are
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sometimes called reciprocal. The usual polarization elements of LCDs—LC layer, film polarizers, and
compensation films—are reciprocal devices. A layer of an isotropic medium with natural optical activity
can also be considered as a reciprocal optical element. An example of a polarization-converting device
that is not reciprocal is a Faraday rotator.

Jones’s Reversibility Theorem

Certainly, relation (1.254) can be deduced by using the only requirement to the elements of the system
S—each of them must be reciprocal. Actually, assuming that the elements of the system S are reciprocal,
we can express the matrix t⃖S as follows:

t⃖S =
(
Ur t⃗

T
1 Ur

) (
Ur t⃗

T
2 Ur

)
…
(
Ur t⃗

T
N−1Ur

) (
Ur t⃗

T
N Ur

)
= Ur t⃗

T
1

(
UrUr

)
t⃗ T
2

(
UrUr

)
…
(
UrUr

)
t⃗ T
N−1

(
UrUr

)
t⃗ T
N Ur,

where the product Ur t⃗
T

j Ur represents the Jones matrix of the jth element for the reverse direction of light
propagation. For all the three variants of Ur, UrUr = U. Consequently,

t⃖S = Ur t⃗
T

1 t⃗ T
2 … t⃗ T

N−1 t⃗ T
N Ur = Ur

(⃗
tN t⃗N−1 … t⃗2 t⃗1

)T
Ur = Ur t⃗

T
S Ur,

which shows that the system S is reciprocal. The statement that a system composed of reciprocal elements
is reciprocal expresses the essence of Jones’s reversibility theorem [5, 11].

In Section 8.6.2, we consider analogous reciprocity relations of the rigorous electromagnetic theory
of light propagation in stratified media.

The reciprocity relations for Jones matrices are used, for example, in calculations for reflective devices,
and in particular RLCDs (see, e.g., [12]).

Application to Reflective Devices

Consider a reflective device consisting of a transmissive system S and a specular reflector (mirror) R

which reflects the light transmitted by the system S back to S (Figure 1.13). Denote the transmission
Jones matrices of the system S for the propagation directions toward the reflector and from it by t⃗S and
t⃖S, respectively. The Jones matrix describing reflection from the mirror will be denoted by rR. Let a
frame (xI, yI), chosen as in the above consideration, be used as the input and output reference frame for
the matrix t⃗S and the input reference frame for the matrix rR, and let a reference frame (xR, yR) be used
as the input and output one for the matrix t⃖S and the output one for the matrix rR. Then we can express

iX

oX

S R

tSX

rRX

{ } { }t iS SJ JX X= t

{ } { }r tR R SJ JX X= r

{ } { }o rS RJ JX X= t

{ } { }o iS R+J JX X= r

Figure 1.13 A reflective system. Geometry and notation
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the Jones matrix rS+R that relates the Jones vector of the wave X⃗i incident on the reflective system and
that of the wave X⃖o emerging from this system (see Figure 1.13) as follows:

rS+R = t⃖SrR t⃗S. (1.258)

For the three variants of the frame (xR, yR) shown in Figure 1.12, the Jones matrix of the reflector can
be represented as

rR = rRUr, (1.259)

where rR =
√

RR with RR being the reflectivity of the reflector, and Ur, as before, is the matrix defined
by (1.255). In the case of an ideal lossless reflector, one can take

rR = Ur. (1.260)

Using the reciprocity relation t⃖S = Ur t⃗
T

S Ur and (1.259), we can modify expression (1.258) as follows:

rS+R = t⃖SrR t⃗S =
(
Ur t⃗

T
S Ur

) (
rRUr

)
t⃗S = rRUr

(⃗
t T
S t⃗S

)
. (1.261)

Thus, one can compute the matrix rS+R without dealing with the matrix t⃖S. Note that the matrix t⃗ T
S t⃗S is

symmetric, as is the matrix rS+R in the case C3. In the cases C1 and C2, the off-diagonal elements of
rS+R are equal but opposite in sign.

The following theorem is also useful in considering RLCDs.

1.4.4 Theorem of Polarization Reversibility for Systems
Without Diattenuation

Let Xd and Xr be plane monochromatic waves of the same frequency propagating in an isotropic medium
in opposite directions. We will say that the polarization of the wave Xr is reverse with respect to the
polarization of the wave Xd, or that the waves Xd and Xr are reversely polarized, if the shape and
orientation of the polarization ellipses of these waves are identical, but these ellipses are described
in opposite senses (Figure 1.14). Note that the handedness of the polarization ellipses of waves with
mutually reverse polarizations is the same (recall that oppositely propagating waves are compared here).
For example, the waves Xd and Xr can be called reversely polarized if they both have the right circular
polarization or left circular polarization. If the waves Xd and Xr are linearly polarized and have the
same polarization plane, they can also be called reversely polarized. If waves Xd and Xr have mutually

Xd Xr

Figure 1.14 Reversely polarized waves. The dotted arrows show the propagation directions of the
waves
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reverse polarizations and reference frames to which the Jones vectors of these waves, J{Xd} and J{Xr},
are referred, are chosen as in Figure 1.12, the relationship between these vectors can be expressed as
follows:

J{Xd} = kUrJ{Xr}
∗, (1.262)

where k is a scalar factor depending on the intensities and phases of the waves; the matrix Ur is defined
in (1.255).

If a reciprocal system is free of polarization-dependent losses, for this system a theorem, which we
will call the theorem of polarization reversibility, is valid [11, 12]. With the notation of Figure 1.11
for the incident (X⃗i, X⃖i) and transmitted (X⃗o, X⃖o) waves, this theorem can be formulated as follows:
whatever the polarization of X⃗i, if the polarization of X⃖i is reverse with respect to the polarization of
X⃗o, the polarization of X⃖o will be reverse with respect to that of X⃗i. This theorem can be proved in the
following way.

Suppose that the polarization of the wave X⃖i is reverse to that of the wave X⃗o. By making use of
(1.262), we can express the Jones vector of X⃖i as follows:

J
{

X⃖i

}
= kUrJ

{
X⃗o

}∗
. (1.263)

By definition,

J
{

X⃗o

}
= t⃗SJ

{
X⃗i

}
, (1.264)

J
{

X⃖o

}
= t⃖SJ

{
X⃖i

}
. (1.265)

On substituting (1.263) into (1.265), we have

J
{

X⃖o

}
= k t⃖SUrJ

{
X⃗o

}∗
. (1.266)

According to (1.264) and identity (5.13),

J
{

X⃗o

}∗
= t⃗∗SJ

{
X⃗i

}∗
.

Substitution of this expression into (1.266) leads to the following relation:

J
{

X⃖o

}
= k t⃖SUr t⃗

∗
SJ
{

X⃗i

}∗
. (1.267)

Using (1.254), we can rewrite this relation as follows:

J
{

X⃖o

}
= kUr

(⃗
t T
S t⃗∗S
)

J
{

X⃗i

}∗
. (1.268)

Since the system under consideration is free of polarization-dependent losses, the matrix t⃗S satisfies the
relations

t⃗†S t⃗S = (⃗t†S t⃗S)∗ = t⃗ T
S t⃗∗S = tSU, (1.269)
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where tS is the transmittance of the system. From (1.268) and (1.269), we obtain

J
{

X⃖o

}
= k′UrJ

{
X⃗i

}∗
, (1.270)

where k′ = ktS. Relation (1.270) [cf. (1.262)] shows that with the chosen polarization of X⃖i, the polar-
ization of X⃖o is really reverse to that of X⃗i.

This theorem explains the following properties of reflective systems without diattenuation, which are
very important in considering single-polarizer reflective LCDs and transflective LCDs.

Two Important Properties of Reflective Systems Without
Polarization-Dependent Losses

To present these properties, we return to the problem illustrated by Figure 1.13 and assume that the
system S is free of diattenuation.

Property 1 Suppose that the wave X⃗i incident on the reflective system is linearly polarized and the
transmitted wave X⃗tS is also linearly polarized. Then the reflected wave X⃖rR is linearly polarized and has
the same polarization plane as X⃗tS, that is, the waves X⃖rR and X⃗tS are reversely polarized. According to
the theorem of polarization reversibility, the wave X⃖o in this case is linearly polarized and has the same
polarization plane as the incident wave X⃗i.

Property 2 Let the wave X⃗i incident on the system be linearly polarized and let the transmitted
wave X⃗tS be circularly polarized. In this case, the output wave X⃖o will be linearly polarized and have a
polarization plane perpendicular to that of X⃗i. To elucidate this situation, we assume, for definiteness,
that the wave X⃗tS has the right circular polarization. In this case, the reflected wave X⃖rR will have the
left circular polarization. It follows from the theorem of polarization reversibility that if the wave X⃖rR

had the right circular polarization, the output wave X⃖o would have the linear polarization and the same
polarization plane as X⃗i. However, X⃖rR has polarization orthogonal to the right circular one, and the
wave X⃖o, being linearly polarized, will have its polarization plane orthogonal to the polarization plane
of X⃗i, which is clear in view of the fact that transformations without diattenuation convert orthogonally
polarized waves into orthogonally polarized ones (see item Lossless transformations and transformations
without diattenuation in Section 1.4.1).

1.4.5 Particular Variants of Application of the Jones Calculus. Cartesian
Jones Vectors for Wave Fields in Anisotropic Media

Reduced Transmittance of a System

When dealing with optical devices in which the input and output elements are polarizers (e.g., double-
polarizer LCDs, single-polarizer reflective LCDs, reflective LCDs with polarizing beam splitters), the
following approach is often used.

A scheme of light passage through an idealized system used in considering such a device can be
written as follows: input polarizer → polarization-converting system → output polarizer. As for LCDs,
typical elements of polarization-converting systems (PCSs), along with LC layer, are compensation films
(retarders) and reflector in the case of reflective LCDs. On the assumption that the polarizers are ideal,
the transmittance T defined as

T ≡ Iout∕IincPCS, (1.271)



JWST441-c01 JWST441-Yakovlev Printer: Markono December 30, 2014 7:44 Trim: 244mm × 170mm

56 Modeling and Optimization of LCD Optical Performance

where IincPCS is the intensity of the light incident on the PCS and Iout is the intensity of the light emerging
from the output polarizer, is considered as a key characteristic of the system. This kind of transmittance
will be referred to as reduced transmittance. The reduced transmittance can be expressed in terms of the
Jones matrix of the PCS, tPCS, as

T = |||j†tp2tPCS jtp1
|||2 , (1.272)

where jtp1 and jtp2 are the polarization Jones vectors of waves that are transmitted by the input polarizer
and the output polarizer, respectively [cf. (1.204)]. Sometimes, equation (1.272) is directly used for
computation of T. When using this expression, it should be remembered that the vectors jtp1 and jtp2 must
be referred, respectively, to the input and output reference frames of the matrix tPCS. In Chapter 6, we
give convenient explicit expressions for the reduced transmittance in terms of orientation angles of the
polarizers for different kinds of LCDs and present optimization methods using these expressions.

Unimodular Representation of Unitary Jones Matrices

In Chapters 2 and 3 and some other places of this book, PCSs of LCDs are considered as systems of
lossless optical elements, that is, as unitary systems. The absence of losses allows one to calculate the
Jones matrices of PCSs dealing with only unitary Jones matrices. Such calculations as well as further
analysis and calculations are simplified when all elements of the PCS are represented by unimodular
unitary (UU) Jones matrices, because such matrices are simple in form and their product is a matrix of a
simple form (see Section 5.1.3). Any optical element that can be represented by a unitary Jones matrix
can be represented in such calculations by a UU Jones matrix that describes the same transformation of
polarization. In the most compact and convenient variants of representation of Jones matrices for lossless
elements, these matrices are unimodular (see, e.g., expressions (1.184) and (1.185) for wave plates). The
product of UU matrices is a UU matrix. Therefore, the Jones matrix of a unitary system that is calculated
as the product of UU Jones matrices is also a UU matrix. By definition, the determinant of any unimodular
matrix is equal to 1 or –1. All UU 2 × 2 matrices of determinant 1 have the form (5.31). This is the case,
for example, for rotation matrices

⌢
RC [see (1.53)] and Jones matrices for wave plates given by (1.184) and

(1.185). The product of such UU matrices is always a matrix of determinant 1, that is, a matrix of the form
(5.31). All UU 2 × 2 matrices of determinant −1 have the form (5.33). This is the case, for example, for
the reflection Jones matrix of a lossless reflector given by (1.260) in the cases C1 and C2. In calculations
involving such Jones matrices, the sign of the determinant of the resultant matrix of the system and,
consequently, the form of this matrix can be predicted by using property (5.17) of determinants. In the
context of the optical equivalence theorem that is presented in Section 3.1, it is important that any unitary
system can be represented by a UU Jones matrix with determinant 1 (the multiplication of a UU 2 × 2
matrix by the imaginary unit gives a UU matrix with the opposite sign of the determinant) and that only
three real parameters are in general required to fully specify such a matrix [(see (5.32)].

Cartesian Jones Vector for a Wave Field Propagating in an Anisotropic Medium

So far we dealt only with Cartesian Jones vectors that describe waves propagating in isotropic media, for
example, in an isotropic medium surrounding an optical system or in isotropic spaces between optical
elements. In the classical JC, Cartesian Jones vectors are used to characterize wave fields propagating
inside anisotropic regions as well. In particular, this variant of description underlies the differential JC
[8] (see Sections 2.1 and 11.1.1) which is used for treatment of inhomogeneous layers whose local
optical parameters are continuous functions of spatial coordinates, such as inhomogeneous LC layers.
The use of Cartesian Jones vectors for describing wave fields propagating in anisotropic media raises
some questions. To explain, we return to the example illustrated by Figure 1.9a.
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Suppose that the light falls on the uniaxial layer in the normal direction and is polarized so that both
ordinary and extraordinary waves are induced. In accordance with the classical JC, the state of the wave
field consisting of the forward propagating ordinary and extraordinary waves at an arbitrary point inside
the layer can be described by a “fitted-to-intensity” Cartesian Jones vector J = (Jx′′ Jy′′ )

T referred to
an arbitrary rectangular coordinate system (x′′, y′′, z′′) with the z′′-axis directed along the wave normal
of the incident wave. A Cartesian Jones vector of any kind is a column composed of two Cartesian
components of a vector collinear to the complex electric field strength vector of the wave field to be
characterized. In our case, the wave field to be characterized is a superposition of two waves and its
electric field strength vector, we denote it by Ee+o, is equal to Ee + Eo, where Ee and Eo are the electric
fields strength vectors of the extraordinary wave and ordinary wave, respectively. By definition, we have

Jx′′ = b(x′′Ee+o), Jy′′ = b(y′′Ee+o), (1.273)

where x′′ and y′′ are unit vectors along the axes x′′ and y′′, and b is a complex coefficient. If the optic
axis of the layer is parallel to its boundaries and, consequently, the vector Ee+o is perpendicular to the
z′′-axis, the Jones vector J characterizes the wave field to the same extent as the Jones vector, of the same
kind, characterizing a wave propagating in an isotropic medium. However, there is a serious difference.
The contributions of the extraordinary and ordinary components into the intensity, with any reasonable
choice of the physical quantity considered as intensity (see Sections 5.2 and 5.4), depend on their phase
velocities which are different. Therefore the ratio of |J|2 to the intensity is dependent on J. This means that
the vector J cannot be “fitted-to-intensity” in principle. This vector can be considered to be approximately
“fitted-to-intensity” only when the principal refractive indices of the anisotropic medium are very close
to each other or, more precisely, when |n∥ – n⟂| ≪ n∥,n⟂. Thus, defining a Cartesian Jones vector as in
(1.273) and postulating that this vector is “fitted-to-intensity,” we thereby restrict the consideration to the
case of a weakly anisotropic medium. The assumption that the medium is weakly anisotropic also allows
us to disregard the fact that at 𝜃 ≠ 0, 90◦ the field Ee has a nonzero z′′-component [see (1.141)], since
at |n∥ – n⟂| ≪ n∥,n⟂ this component is very small compared with the transverse constituent of Ee. Note
that liquid crystals in most display applications cannot be considered as a weakly anisotropic medium.

It is possible to remove the mentioned restriction by using another, somewhat artificial, definition of
Cartesian Jones vector for anisotropic media. To illustrate this, we proceed with the above example.

To define the Cartesian vector J(𝜉) at points of a plane zc = 𝜉 inside the uniaxial layer, we may imagine
that we replaced the rest of the layer beyond this plane by an isotropic medium and let the light pass
the boundary zc = 𝜉 without losses. Then we may take as J(𝜉) the Jones vector of the emergent wave
just beyond the plane zc = 𝜉. It is clear that this kind of definition of Jones vectors is applicable in
considering inhomogeneous layers as well. We should note that this definition, where the Jones vector
characterizes the wave field inside the anisotropic medium indirectly, is to the greatest extent consistent
with the standard apparatus of JC developed for considering continuously inhomogeneous media, which
is used in LCD optics for calculating Jones matrices for inhomogeneous LC layers (see Sections 2.1 and
11.1.1).
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