
E1C01_1 03/07/2009 1

CHAPTER 1
Preparing to do a PIC Project

1.1 Introduction
1.2 Overview of PIC Microcontroller
1.3 Basics of PIC Assembly Language
1.4 Introduction to C Programming for PIC Microcontroller
1.5 MPLAB Integrated Development Environment (IDE)
1.6 Advanced Debugger Features – Stimulus

1.1 Introduction

The aim of this chapter is to consider a number of issues that need to be
taken into account before doing almost any microcontroller-based pro-
ject. First, the reader will be introduced to a PIC (programmable interface
controller)microcontroller by a brief discussion of one of themodels from
the PIC microcontroller family – the PIC16F627A. This model is now a
common choice for low-cost PIC projects and has practically replaced the
very popular PIC16F84model. The PIC16F627A is therefore a choice for
a large number of projects from this book although some other simpler
and more complex models are also being used. The rest of the PIC family
will be considered briefly, introducing some other models used for the
projects in this book. We will then discuss the basics of two programm-
ing languages commonly used to develop PIC programs in practice and
throughout this book – assembly and C. This will by no means be a
detailed discussion of those two languages; a separate book would be
needed for that. The aim instead is to provide a short overviewof the basic
features of both languages and to enable readers to learn the rest of itwhile
doing projects from the other chapters of this book. Material covered in
this chapter should therefore be sufficient to allow the reader to start with
the first programs and projects from Chapter 2 and gradually build
knowledge to domore complex projects from the rest of the book. Finally,

CO
PYRIG

HTED
 M

ATERIA
L

E1C01_1 03/07/2009 2

we will demonstrate how to develop and test a simple PIC program using
the MPLAB1 -Integrated Development Environment (IDE).

1.2 Overview of PIC Microcontroller

The name PIC denotes several families of microcontrollers manufac-
tured byMicrochip Technology. This range is huge and very versatile so
discussing even a small number of microcontrollers would be a difficult
and time-consuming task. Instead, in this section, we will concentrate on
the basic features and layout of one of the most popular members of the
mid-range PIC16 family: PIC16F627A. Once the basic features of this
device are explained it will be easier to introduce and understand the
operations of more complex PICs used in later chapters of this book.

1.2.1 PIC16F627 Building Blocks

Every computer system, however complicated or simple, consists of a
number of common building blocks. Those are: the CPU (central proces-
sing unit or microprocessor) block, the memory block (RAM and ROM)
and the input/output (I/O) block (interface circuitry). The CPU performs
all the logic and arithmetic functions; memory is used to store programs
and data while the interface provides means of communication and data
exchange between the microcomputer system and the external world.

A microcontroller is a stripped-down version of the computer system
architecture with one important difference – all of the system blocks
are placed on one chip. The microcontroller-based system therefore
requires very little additional circuitry for its proper operation. All that
is needed in most cases is a clock input to provide timing for the system
operation.

The PIC16F27A microcontroller contains all of the previously men-
tioned blocks. Components of this microcontroller, described in slightly
more detail, are:

� The CPU. The ‘brain’ of a microcontroller. It is responsible for finding
and fetching the right instruction to be executed, for decoding that
instruction, and finally for its execution.

� Memory. Split into two physically separate blocks – program and data
memory. This so-called Harvard architecture is used to speed up the
operation of the microcontroller as both data and instructions can be
fetched from separate memories using separate buses simultaneously.

2 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 3

� Program memory. Used to store a program to be executed in the
central processing unit of themicrocontroller. It is of flash type so the
microcontroller can be programmed many times before a system
developer is happy with its performance and the programmed PIC is
finally installed into some bigger system. If the power to the micro-
controller is switched off, the content of the flash-type memory is not
lost. The size of the program memory on the PIC16F27A is 1024
words (1 kwords), where one word holds 14 bits.

� Data memory. Used to store microcontroller data. It is further
divided into EEPROM and RAM memory: EEPROM memory
holds important data that need to be saved when there is no power
supply to the microcontroller; RAM is used by a program to store
inter-results or temporary data during the program execution.
EEPROM contains 128 bytes of data whereas RAM holds 224
bytes (1 byte contains 8 bits so the widths of program and data
memories are different).

� PORTA and PORTB. Physical connections between the microcon-
troller and the outside world. Both of those ports have eight pins and
those pins are bidirectional – they can be used for input or output of
data provided they are properly configured as input or output pins in
the program. The exception is pin 5 of port A (RA5), which is an input-
only type pin. Two special function registers within PIC, TRISA and
TRISB, control the direction of the port pins. Writing ‘1’ in the
particular bit of the TRISA register configures the corresponding
pin of port A as an input pin; ‘0’ in TRISA makes it an output pin.
The same is true for the port B pins and TRISB register. Some of these
port pins are multiple-purpose pins and can be used for other periph-
eral functions of the processor. This will be explained in more detail in
Section 1.2.3 where the layout (pin out) of the PIC16F27A chip is
discussed.

The PIC blocks mentioned above communicate through a complex
system of communication lines called buses. The data buses are used for
the transfer of data through the system and address buses communicate
addresses of data and program instructions to be accessed during pro-
gram execution. Various other communication lines exist in the PIC
and those are usually referred to as control bus lines. Note that since
two separate memories exist in the PIC, both data and address bus
systems are doubled, i.e. PIC16F27A (Figure 1.1) has a data memory
(DM) address bus as well as program memory (PM) address bus.
Similarly, this processor also has a DM data bus and PM data bus.

Preparing to do a PIC Project 3

E1C01_1 03/07/2009 4

1.2.2 EEPROM and RAM Memories on PIC16F27A

The EEPROM memory on the PIC16F27A holds 128 bytes of non-
volatile information. This memory is electronically programmable so it
is not a fast RAM-typememory and it can be awkward to access it within
the program. It is normally used to store data that is not frequently
changed.

TheRAMmemory on the PIC16F27A is actually split into fourmemory
bankswhereeachbankholdsaccess to80memorylocations.This,however,
doesnotmeanthatthetotalcapacityoftheRAMmemoryonthePIC16F27A
is 320 bytes. It is more complicated than that. Here is the explanation.

This memory can be considered to consist of two different types of
registers – special function registers (SFRs) and general purpose registers
(GPRs). The first 32 bytes of eachmemory bank (00h-1Fh) belong to SFRs.
Those registers are used by the CPU to control the desired operation of the
device and to record the operating states of the PIC, the I/O port conditions
and the other conditions. Not all of those registers are implemented on the
PIC16F27Amodel.Thereare21SFRbytes inbank0,18 inbank1andseven
SFRs in banks 2 and 3. Some of these registers will be used and described in
more detail in the remaining chapters of this book.

The GPRs are placed in the first three memory banks – 80 bytes of
GPR in banks 0 and 1 and 48 in bank 2. Those registers can be used to
store results and conditions temporarily while the program is running.
The content of theGPR is lost when the power is switched off. The rest of
the available memory space is not used – if it gets accessed, it reads as 0.
This memory arrangement is shown schematically in Figure 1.2.

CPU
Data

Memory

Program

Memory

Port A Port B

Oscillator

PIC16F27A

Figure 1.1 Main elements of the PIC16F27A microcontroller

4 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 5

Bank 3 Bank 2 Bank 1 Bank 0

00h 80h 100

h

180

h

101OPTION 81h TMR0 01h

h

181TMR0

h

OPTION

102PCL 82h PCL 02h

h

182PCL

h

PCL

103STATUS 83h STATUS 03h

h

183STATUS

h

STATUS

104FSR 84h FSR 04h

h

184FSR

h

FSR

105TRISA 85h PORTA 05h

h

185

h

106TRISB 86h PORTB 06h

h

186PORTB

h

TRISB

07h 87h 107

h

187

h

08h 88h 108

h

188

h

09h 89h 109

h

189

h

10APCLATH 8Ah PCLATH 0Ah

h

18APCLATH

h

PCLATH

10BINTCON 8Bh INTCON 0Bh

h

18BINTCON

h

INTCON

10CPIE1 8Ch PIR1 0Ch

h

18C

h

0Dh 8Dh 10D

h

18D

h

10EPCON 8Eh TMR1L 0Eh

h

18E

h

8Fh TMR1H 0Fh 10F

h

18F

h

90h T1CON 10h

91h TMR2 11h

PR2 92h T2CON 12h

Figure 1.2 Memory map of the PIC16F27A microcontroller

Preparing to do a PIC Project 5

E1C01_1 03/07/2009 6

1.2.3 PIC16F27A Pins

Wewill complete this sectionwith a short description of all 18 pins of the
PIC16F27A microcontroller shown in Figure 1.3.

� RA0 to RA7 are the eight pins of port A. Port A is a bidirectional port,
whichmeans it can be configured as an input or an output. The number
following RA is the bit number (0 to 7). So, we have one 8-bit direc-
tional port where each bit (with the exception of bit 5) can be config-
ured as input or output. As shown in Figure 1.3, all of the port-A pins
have alternative functions.

13h 93h

14h 94h

95h CCPR1L 15h

96h CCPR1H 16h

CCP1CO17h

N

97h

TXSTA 98h RCSTA 18h

SPBRG 99h TXREG 19h

EEDATA 9Ah RCREG 1Ah

1Bh EEADR 9Bh

1Ch EECON1 9Ch

1Dh EECON2 9Dh

1Eh 9Eh

VRCON 9Fh CMCON 1Fh

20h A0h 120

h

General

Purpose

General General

Register

Purpose Purpose

Register 14FRegister

h

(48

bytes)

(80

bytes)

(80

bytes)

6Fh EFh

Figure 1.2 (continued)

6 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 7

� Pins 1, 2, 17 and 18 can be configured and used as analog inputs (AN0
toAN3). Those pins are therefore attached to internal comparators of
the PIC. Voltage in the range 0–5V on those pins is converted into
digital form and further processed by the microcontroller.

� Pin 4 can be used as a master clear – reset pin (MCLR). Reset is used
for putting the microcontroller into a ‘known’ (default) condition.
Upon setting this pin to 0 V, all of its registers will be placed in a
starting position. Here we use internal reset circuitry activated when
the processor is powered up (power-up reset). This option is nor-
mally used when the microcontroller does not behave in an appro-
priate way due to some undesirable condition.

� Pins 16 and 17 (OSC1/CLKIN and OSC2/CLKOUT) can be used
when an external oscillator or crystal/RC timing elements are used to
provide timing for the microcontroller.

� Pin 3 (TOCK1) can be used as an input for the Timer 1 module. It
operates independently from the main clock.

� RB0 to RB7 are the eight I/O pins of port B. Port B is a second
bidirectional port and it behaves in almost the same way as port A.
Alternative functions of port pins are different for port A and port B.

� Pin 6 can be configured and used as an external interrupt pin to
detect external events. An event is detected when the interrupt pin
changes state from ‘1’ to ‘0’ or from ‘0’ to ‘1’ (programmable).

� Pins 7 and 8 can be used for serial communications: TX is the
asynchronous serial transmit pin – data is sent from the chip on this
pin; RX is the serial receive pin and data is sent to the chip on
this pin.

� Pin 9 can be used as a capture/compare pin (CCP1) in order to
measure duration of external events (the length of the PWM – pulse
width modulated pulse).

Figure 1.3 Pin-out diagram of the PIC16F27A microcontroller

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 7

E1C01_1 03/07/2009 8

� Pin 10 is used for a low-voltage programming of the PIC.
� Pins 12 and 13 can be used as an oscillator and as timer inputs for
timer 1.

� VSS and VDD are the power supply pins. VDD is the positive supply
and VSS is the low supply or 0 V. All PIC family members operate off a
5 V supply and some can use supplies down to 2 V.

1.2.4 More on PIC Architecture

Trying to explain the architecture of PIC microcontrollers in more detail
would probably take another book or at least another long and not-very-
interesting chapter of this book. Instead, we will provide a very brief
insight into some of the PIC features useful for understanding and doing
some interesting PIC projects explained in the other chapters.

� Timing. An oscillator (internal or external) is generally used to drive
the PIC by clocking data and instructions into the processor. The
actions of the CPU are caused by every fourth oscillator pulse, which
makes the instruction times easy to calculate. Most instructions take
one clock cycle (four oscillator pulses), so with a 4 MHz oscillator it
will take 1ms to execute each of those one-cycle instructions.

� Program execution control. The program counter is an internal 13-bit
CPU register used to store the current program position. After each
loaded instruction the program counter is incremented automatically
so that it points to the location of the next instruction in the program
memory.

� CPU status. Bits of the status register contain the information about
the status of the arithmetic and logic unit from the CPU. Those bits are
updated after certain instructions that modify the main working
register content of the CPU. The PIC16F27A has an 8-bit status
register, which contains information about thememory bank currently
being accessed, carry, power state of the PIC, borrow or zero results of
the executed instruction.

� Timers. To provide accurate timing for the microcontroller actions a
special function register called a timer can be used. This register is
connected to the internal clock and increments at the clock frequency
divided by four. When it rolls over from its maximum count (255 for
an 8-bit timer, 65535 for a 16-bit timer) to zero, a flag is set to signal
that event. It would not take long to count from 0 to the maximum
count at 1 MHz, so a programmable prescaler can be used in combi-
nation with the timer module. The prescaler can be set to give out

8 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 9

pulses at ratios of 1:2, 1:4 and so forth, up to 1:256, extending
the timeout up to tens of milliseconds range for a 4 MHz oscillator
used in the system.

� Interrupts. An improved solution to exact timing described above is to
set up a timer to generate an interrupt. A routine can be set by the
programmer to be executed automatically every time the timer over-
flows (rolls over at the maximum count). This requires some program-
ming skill and will be explained in more detail in Chapter 5. There
might be other situations that can cause an interrupt routine to be
executed, such as a change of state on the port B pins or some external
event sensed by the interrupt pin RB0.

� Watchdog timer. To provide a means of recovery from some system
problems awatchdog timer is implemented on all PICmicrocontrollers.
During its execution, the program needs to reset the watchdog timer at
predetermined intervals, but if it fails to do so, due to a problem in the
execution, the watchdog timer will initiate the reset itself. This can be a
useful option in case the program goes into an endless loop or some
hardware problem occurs to prevent the program operating correctly.

1.2.5 Brief Overview of the PIC Family

The whole PIC family can be divided in a number of distinct groups:

� Baseline core devices, represented by the PIC10 series, as well as some
PIC12 and PIC16 devices. Baseline devices are available in six-pin to
40-pin packages.

� Midrange core devices, labelled PIC12 and PIC16.
� PIC17 and PIC18 high-end core devices, represented by a not-very-
popular PIC17 series, produced in packages from 40 to 68 pins and
later superseded by the PIC18 architecture.

� PIC24 and dsPIC microcontrollers are 16-bit microcontrollers. The
PIC24 devices are designed as general-purpose microcontrollers and
dsPICs include digital signal processing capabilities.

� PIC32MX – these 32-bit microcontrollers are the latest addition to the
PIC family introduced in November 2007.

1.3 Basics of PIC Assembly Language

Assembly languages are closer than high-level languages to possessing
a one-to-one correspondence between symbolic instructions and execu-
table machine codes. They are also usually more difficult to use. The aim

Preparing to do a PIC Project 9

E1C01_1 03/07/2009 10

of this section is to give a brief introduction to some aspects of PIC
programming using assembler language. Most of the microcontroller
programs spend a lot of time on the actual movement of data through the
device. This is certainly the case for assembler language-type programs
so we will start our introduction to PIC assembler language by looking
into some instructions that are commonly used to move data through the
microcontroller.

1.3.1 Data Movement, Arithmetic and Logical Operations

The PIC16F27A has a very small set of instructions – there are only 37 of
them. Since the width of the program memory is 14 bits and the address
of each register can take up to eight bits, two registers cannot be used in
the same instruction. Remember that we also need to specify what action
we actually want to accomplish with each particular instruction – too
much information to fit into just 14 bits!

Tomove data from one register to the other it is therefore necessary to
use intermediate register storage. The working register, labelled W, is
used to accomplish this task. This is an internal CPU register that does
not have a specific address. Thus, movement of data from one register to
the other will require two assembly language instructions.

Suppose we want to move the value of variable MYDATA to PORTB
in order to output it to some external device connected to PORTB. The
following instruction sequence will accomplish this:

1 movf MYDATA,W; copy MYDATA into working register W
2 movwf PORTB ; copy working register W into PORTB

The first instruction is of the form movf f,d, which moves the
register or memory location f to the destination specified with d. In the
above sequence d is specified as our working register W so the value of
MYDATA is copied to theworking registerW.Other possibilities ford are
1 and 0. Ifd is 0, the result is the same –f is copied over to registerW. Ifd
is 1, theMYDATAregisterwill be copied to itself. This optionwill haveno
effect on the content of the register because we are effectively overwriting
the register fwith the same value. It does however effect the Z flag in the
PIC status register and can therefore be a useful option in some situations.
We will not discuss this effect further in this section.

The second instruction is of the form movwf f and it simply moves
whatever is in W into the register f. Variable MYDATA remains

10 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 11

unchanged in the first instruction and W remains unchanged in the
second. So it is useful to keep in mind that it is a copy rather than a move
action we have achieved through this sequence.

Loading a register with a literal (8-bit value) also takes two instruc-
tions and involves the use of working register W. Here is an example of
loading variable MYDATA with the literal binary number 11110000
(hexadecimal F0, or F0h). This effectively clears lower four bits of the
working register W and sets the upper four bits of the same register:

1 movlw 0xF0 ; put the number/literal F0h into W
2 movf MYDATA ; copy W into MYDATA

To summarize here:

� movf f,d copies the content of specified register (f) to working
register W or to itself, depending on the destination specification d
(W, 0 or 1)

� movwf f copies the content of the working register W to specified
register f

� movlw l copies/moves specified 8-bit literal l to the working
register W.

A common mistake by novice PIC programmers is to confuse loading
some register with a value from W and loading the working register W
with a value from some other register. Care needs to be takenwhen using
the data movement instructions listed above.

A similar approach must be taken when, instead of copying, we want
to apply arithmetic or logical functions (for example, addition, subtrac-
tion, logical AND, OR, XOR and others):

1 movlw k ; move number k into W
2subwff,d;subtractWfromfandputtheresultaccordingtod

The result of the first line of the above sequence should already be
clear to us. Literal k is copied to working register W. The second line
subtracts W from f and stores the result into the destination specified by
d; d can again be specified using one of three options – W, 0 and 1. In
case d is specified as W or 0, the result is stored back to W, f is not
changed and, if d is 0, the result is stored in f and W is unaffected. Of
course, in the above sequence the valuek needs to be replaced with some
real value if the program is to work properly (such as 0xF0).

Preparing to do a PIC Project 11

E1C01_1 03/07/2009 12

Single instructions to accomplish some arithmetic or logical operation
will work if the value to be changed is already in W and the result
destination is again W. Examples are given in Table 1.1.

PIC assembly language also has some instructions where there is no
choice between the number of operands to be used in the instruction –
only one operand can be used. Commonly used single-operand instruc-
tions are given in Table 1.2.

We have seen that the move instruction of type movwf f does not have
a choice of destination – it is always the register f specified in the
instruction. PIC has more ‘WF’-type instructions but the rest of them
have a choice of destination – it can be the working register W or the
other register f, depending on the destination specified. These instruc-
tions are listed in Table 1.3.

Some other useful instructions are listed in Table 1.4. It is important
to remember that the result of those instructions can be stored in the
working register W (when d is specified as W or 0) or in the specified file
register f (when d is specified as 1).

1.3.2 Program Flow Control

The instructions listed and discussed abovewill probably be the ones you
will need to use in order to perform some simple arithmetic and logical

Table 1.1 Common single-operand arithmetic and logic instructions
(W is source and destination register)

Syntax Description

addlw k put the value of ‘kþW’ in W
sublw k put the value of ‘k�W’ in W
andlw k put the value of ‘k and W’ (logical ‘and’ operation) in W
iorlw k put the value of ‘k ior W’ (logical ‘inclusive or’ operation) in W
xorlw k put the value of ‘k xor W’ (logical ‘exclusive or’ operation) in W

Table 1.2 Exclusive single-operand instructions

Syntax Description

clrf f set all bits in specified register f to zero (clear register f)
clrw set all bits in register W to zero (clear register W)
bcf f,b set bit b in register f to zero (bit clear bit b in f)
bsf f,b set bit b in register f to one (bit set bit b in f)

12 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 13

data operations or to move data between the various destinations in the
microcontroller. To make your programs really useful and more com-
plex you also need to be able to control the flow of the program. Normal
sequential execution of the program assumes that the program starts
with the first instruction, then it goes on to the next one in the list and
continues in a similar manner. The instruction to disrupt this kind of
operation would need to involve an abrupt change in the program
counter content. Two instructions from the PIC set can do this –
goto and call. However, those instructions cannot be used interchange-
ably as there is one important difference in the way they operate. The goto
instruction will simply make the program execute the instruction at the
specified location in the program memory; for example, goto 0x123
will set the program counter to the value of 123h. This, in turn, will cause the
instruction at location 123h to be executed by the CPU next. Instructions
following the one at location 123h would be executed and the program would
not return to where it left off before being made to execute the instruction at
location 123h. However, call 0x123 would push the address of the next
instruction in the program on the stack (dedicated memory space for exactly

Table 1.3 WF-type instructions

Syntax Description

addwf f, d put the value of ‘fþW’ in destination d (either W or f)
subwf f,d put the value of ‘f�W’ in destination d (either W or f)
andwf f,d put the value of ‘f and W’ (logical ‘and’ operation) in

destination d (either W or f)
Iorwf f,d put the value of ‘f ior W’ (logical ‘inclusive or’ operation) in

destination d (either W or f)
xorwf f,d put the value of ‘f xor W’ (logical ‘exclusive or’ operation)

in destination d (either W or f)

Table 1.4 Common two-operand type instructions

Syntax Description

incf f,d put the value of ‘fþ 1’ in destination (specified with) d
decf f,d put the value of ‘f� 1’ in destination d
comf f,d put the result of toggling all bits from f in d
swapf f,d put the result of swapping the nibbles in f in destination d
rlf f,d put the result of rotating f left through carry in destination d
rrf f,d put the result of rotating f right through carry in destination d

Preparing to do a PIC Project 13

E1C01_1 03/07/2009 14

this kind of situations) and then set the program counter to 123h, thus making
the program execute the instruction at that location next. Instructions at the
locations following the location 123h will continue to be executed sequen-
tially but only until the return instruction is encountered. This instruction will
cause the retrieval of the address most recently stored on the stack into
program counter. The program will therefore return to the instruction follow-
ing the call 123 instruction and continue execution from there. This is
normally used when writing the subroutine part of the program. The main
program is made to call the subroutine to execute a specific sequence of
instructions and after the execution of the subroutine the program needs to
return to where it left off before the call to the subroutine. It is possible to nest a
number of subroutines within each other: one subroutine can call another
subroutine, which in turn can call another subroutine and so forth. The number
of nested subroutines is determined by the size of the stack. In the PIC16F27A,
the stack consists of eight words used in circular manner: after the eighth
word, it rolls over to the first. It is therefore possible to nest eight subroutine
calls. If we try to nest more than eight subroutines the program will become
lost while trying to return from the subroutine to a proper instruction in the
calling subroutine or the main program. The program cannot find its way back
and will act in a strange and unexpected way. The program will continue to
execute but the expected results will not be there. This is a stack overflow
problem, which is difficult to detect when testing the program.

There are two more versions of the return instruction for PIC16F27A.
All three return instructions are listed in Table 1.5.

Another way to control the flow of the program implemented on the
PIC microcontroller and a number of other microprocessors is simply
to skip the next instructions depending on the result of the current
operation. Those instructions are listed in Table 1.6.

1.3.3 Example Assembler Program

We are now ready to write and understand our first PIC assembler
language program. It is shown in Listing 1.1.

Table 1.5 Return from subroutine instructions

Syntax Description

return return from call, location of the next instruction is retrieved
from the stack and copied into the program counter

retlw k as ‘return’ but literal k is also placed into W
retfie return from interrupt

14 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 15

1 ;***
2 ; this program outputs two binary patterns on port B *
3 ; one after the other - 01010101 and 10101010 *
4 ;***
5
6 include "p16F627A.inc"
7
8 bsf STATUS, RP0 ; set RP0 bit = select bank 1
9 movlw 0x00

10 movwf TRISB ; set port B pins to all outputs
11 bcf STATUS, RP0 ; clear RP0 bit = select bank 0
12
13 loop movlw 0x55
14 movwf PORTB ; PORTB = 0x55 = 0b01010101
15 movlw 0xAA
16 movwf PORTB ; PORTB = 0xAA = 0b10101010
17 goto loop
18 end

Listing 1.1 First assembler program

The first line of the program (line 6 in Listing 1.1) contains the
include statement, which tells the assembler program to include the
specified ‘inc’ type file into assembly procedure. While assembling
the binary version of our program, assembler looks in the quoted file
(p16F627A.inc) for any symbols not defined within the program. The
p16F627A.inc file holds definitions of all SFRs in the PIC together with
their addresses. Each device in the PIC family will have its own .inc file
with definitions specific for that particular device, so care needs to be
taken to include the proper file.

Table 1.6 ‘Skip-the-next-instruction’ type instructions

Syntax Description

incfsz f,d put the value of ‘fþ 1’ in destination d (either W or f) and
skip the next instruction if the result of this increment
is zero

decfsz f,d put the value of ‘f� 1’ in destination d (either W or f) and
skip the next instruction if the result of this decrement
is zero

btfsc f,b test bit b (but do not change it) of register f and skip the
next instruction if the bit is clear – bit test skip clear

btfss f,b test bit b (but do not change it) of register f and skip the
next instruction if the bit is 1 – bit test skip clear

Preparing to do a PIC Project 15

E1C01_1 03/07/2009 16

As long as there is a power supply to the microcontroller, this program
outputs two-bit patterns on eight pins of port B – 01010101 (55h) and
10101010 (AAh). The first bit pattern is moved from the working register
W to port B in line 14 of the program and the second bit pattern is output
to port B in line 16. Previously those two patterns were loaded into
the working register in lines 13 and 15. Line 17 redirects the program
execution back to line 13 and this process is repeated indefinitely.

The first part of the program (lines 8–11) is used to set port B as an
output port. This is done by setting corresponding bits (all of them in this
case) of register TRISB low. This is done in lines 9 and 10 of the program
where 00h is first moved to working register W and then from W to
TRISB register. This register is located in Bank 1 as shown in Figure 1.2
and the default active Bank on PIC is Bank 0. To switch to Bank 1 the
RP0 bit of the STATUS register needs to be set to 1. This is done in line 8
of the program. Bank 0 is again activated at line 11 of the program by
resetting RP0 bit back to 0.

Descriptions of each program line following the semicolon are just
program comments. Everything following the semicolon sign is ignored
by assembler and is only used by the programmer to supply some useful
documentation to the code. This can be extremely helpful when trying to
understand a program that somebody else has written or even a program
that you wrote some time ago.

After typing and saving this code we would need to invoke PIC assem-
bler to assemble the file containing the code – to translate it into machine
code. Machine code is a pattern of 0s and 1s understandable and execu-
table by theCPU.Wewould thenneed to test the programand run it on the
PIC16F27A microcontroller. This process will be explained in the last
section of this chapter where the MPLAB development environment is
considered. The next section will discuss the development of PIC pro-
grams using the C programming language.

1.4 Introduction to C Programming
for PIC Microcontroller

Sometimes, when more complex algorithms need to be implemented,
assembler language programming can lead to cryptic and difficult-to-
understand programs. A lot of programmers nowadays tend to use high-
level languages, rather than assembler, to program microcontrollers.
Although programming in high-level language is generally much easier,
there are also disadvantages. Programs written in high-level language are

16 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 17

larger somore programmemorymight be needed to store them. They can
also be less efficient when it comes to speed of execution – a high-level
language program is typically slower compared to a similar program
written in assembler language. The high-level language most frequently
used for microcontroller programming is C. One of the advantages of
using C compared to some other high-level languages is that various C
compilers (programs that translate C programs into machine code) are
usually very efficient. A lot of manufacturers claim their compiler to be
80% efficient. This basically means that the corresponding assembler
language program will only be 20% smaller in size on average compared
to our program written in C. This tradeoff between the ease of program-
ming and the program size is usually acceptable in most situations,
although you might find that this figure of 80% efficiency is difficult to
achieve in practice. C language efficiency is usually somewhere in the
50%–70% region.

This section will introduce some basics of C programming for PIC
microcontrollers. Even though C is a standard programming language,
there are some specific issues to consider when programming any
microcontroller in C. For a more general and detailed treatment of C
language, the reader is advised to look at some standard C books, while
the main aim of this section remains to introduce the basics of C
language. Enough information will be given to start with some simple
PIC projects explained in Chapter 2 and then build your knowledge
further as you attempt more and more complex PIC projects.

1.4.1 Template C Program for PIC16F27A

C is a function-based language and, in fact, any C program is merely a
function. Functions are sections of code that perform a single, well-
defined task. Functions are the C equivalent of assembly-level sub-
routines. A function in C can take any number of parameters and
return a maximum of one value. A parameter (or argument) is a value
passed to a function that is used to alter its operation or indicate
the extent of its operation. A function consists of a name followed
by the parentheses enclosing arguments, or a keyword ‘void’ if the
function requires no arguments. If there are several arguments to be
passed, the arguments are separated by commas. A simple C function is
detailed in Figure 1.4.

Every C programmust at least have a function named ‘main’, and this
function is the one that executes first when the program is run. Here we
can write the simplest possible version of the main function that can run

Preparing to do a PIC Project 17

E1C01_1 03/07/2009 18

1 // template C program - does nothing useful - starts and
stops

2 #include <pic16f2xa.h>
3 void main(void)
4 {
5
6 // body of the program goes here
7
8 }

Listing 1.2 Template C program for PIC microcontroller

on the PIC16F27A microcontroller. The program given in Listing 1.2
will do almost nothing – it finishes as soon as it starts. However, it
represents a useful template for further development of more com-
plex C programs on our PIC microcontroller.

The second line in Listing 1.2 is the so-called ‘include’ statement. As in
assembler language this line tells the C compiler that during the compi-
lation it should look into header file (pic16f2xa.h) for any symbols not
defined within the program. This file holds definitions of all SFRs in the
PIC and their addresses. Different models of PICmicrocontroller usually
require different .h header files with definitions specific for that parti-
cular device. Various C compiler manufacturers usually provide their
own versions of each header file, specific to and compatible with their
own compiler. Care therefore needs to be taken to include a proper .h file
in your code.

Line 3 from Listing 1.2 declares the main function. The prefix void in
this line means that this function returns no argument and the second

function return type function name parameter list

function body

return value

Figure 1.4 Simple C function

18 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 19

void means that the function also requires no arguments to be supplied
to it. This is almost always the case with PIC C programs, so you will use
this construction very often when programming PIC using C language.
Line 4 announces the beginning of the main function and line 8 is the end
of the function. C functions are always enclosed in curly brackets and the
main function is no exception. The fact that there is no real code between
those two brackets only means that this C program will do nothing
useful – it will start and soon after that it will end. Lines 1 and 6 are
program comments.

Everything starting with a double forward slash is a program com-
ment. Like comments in assembler language programs, comments in C
programs are ignored by the C compiler and are used to clarify some
sections of the code to whoever needs to read, use or modify the
program.

The C program in Listing 1.3 is slightly more meaningful.

1 // this program sets all 8 pins of port B to high (logic 1)
2 #include <pic1684.h>

3 void main(void)
4 {
5
6 TRISB = 0x00;
7 PORTB = 0xFF;
8
9 }

Listing 1.3 Simple C program

This program will set all eight pins of port B to logic 1. Note that the
body of the main program consists of just two statements. The statement
in line 6 configures all pins of PORTB as outputs by writing logic 0s into
the TRISB register and the statement on line 7 sends the number 0xFF to
port B causing all pins of that port to go high (logic 1 state). The common
way to terminate statements in C code is to use a semicolon at the end of
each line, as has been done in the statements in lines 6 and 7 (there are
some exceptions not discussed here).

Tocomplete this brief reviewofC functionswewill rewrite theprogram
from Listing 1.3 by introducing a new function called myfunc. This
function will have a task of sending the number 0xFF to port B. This is, of
course, not a clever thing to do – the program itself is so short that there is
no point in splitting it even further. We just do it here in order to
demonstrate how a C function can be called by the main program, or
how to call a function from any other function in a C language program.

Preparing to do a PIC Project 19

E1C01_1 03/07/2009 20

1 // this program sets all 8 pins of port B to logic level 1
2 // it calls a function myfunc to accomplish this task
3 #include <pic1684.h>
4 void main(void)
5 {
6 TRISB = 0x00;
7 myfunc();
8 }
9

10 void myfunc(void)
11 {
12 PORTB = 0xFF;
13 }

Listing 1.4 Calling another function from the main function in C

In the program from Listing 1.4, the main function contains two
statements. The first statement (line 6) configures PORTB as output and
the second statement is a call to the function,myfunc, which contains a
further, single statement. It copies the hex value of 0xFF to the PORTB
register, thus effectively setting all pins of port B to a logic high state.

1.4.2 Variables

Variables in C are data objects that may change in value during the
program execution. Variables must be declared immediately after the
curly bracketmarking the beginning of a function by specifying the name
and data type of the variable. Variable names in Cmay consist of a single
letter or a combination of a number of letters and numbers. Normally up
to 52 characters can be used for the variable name. Starting a variable
name with a number is not permitted in C and spaces and punctuation
are not allowed as part of a variable name. C is a case-sensitive language
and two variables ‘A’ and ‘a’ are therefore treated as two separate and
different variables. In C, a data type defines the way the program stores
information in memory. Data types with corresponding specifiers
(proper ways of declaring data types in C), allocation sizes and ranges
for C18 compiler available fromMicrochip and designed specifically for
PIC18 devices are given in Table 1.7. This is not a universal table as it
might change depending on the C compiler.

Defining the type of the variables in a PIC C program is an important
factor in the efficiency of a program. The compiler will reserve amemory
space sufficient to save a variable according to its type. Larger data types
will usually mean longer computation time so if speed is more important
than range you should try to make most of the variables in your program

20 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 21

the ‘char’ type. While doing this you need to be careful and keep in mind
the range of the ‘char’-type variables. If, for example, the ‘unsigned char’
variable exceeds the 0–255 range your programwill give incorrect results.
Since most of the registers on PIC16F27A are 8-bit registers, ‘char’ is
usually sufficient for most variables in the program. To give you an idea
how to declare your data in C programs some examples are given below:

1 int goals; // integer variable
2 float x,y,z; // three float variables
3 char p = 0xFF; // char variable is declared and
4 // initialised at the same time
5 double f = 56.3; // double variable

Table 1.7 Basic C data types

INTEGER DATA TYPES

Type Size Minimum Maximum

char1,2 8 bits �128 127
signed char 8 bits �128 127
unsigned char 8 bits 0 255
int 16 bits �32768 32767
unsigned int 16 bits 0 65535
short 16 bits �32768 32767
unsigned short 16 bits 0 65535
short long 24 bits �8,388,608 8,388,607
unsigned short long 24 bits 0 16,777,215
long 32 bits �2,147,483,648 2,147,483,647
unsigned long 32 bits 0 4,294,967,295

FLOAT DATA TYPES

Type Size
Minimum
Exponent

Maximum
Exponent

Minimum
Normalized

Maximum
Normalized

float 32 bits �126 128 2�126

� 1:17549435e
�38

2128 � 2� 2�15
� �

� 6:80564693e
þ38

double 32 bits �126 128 2�126

� 1:17549435e
�38

2128 � 2� 2�15
� �

� 6:80564693e
þ38

Microchip. Reproduced with permission.

Preparing to do a PIC Project 21

E1C01_1 03/07/2009 22

1.4.3 Arrays

Arrays in C are specific data structures used to store multiple variables of
the same data type. An array of 10 character variables named A can be
defined as:

char A[10];

The above declaration actually declares the array with 10 elements:
A[0], A[1], A[2], . . . , A[9], where the value within brackets is called a
subscript. In the C language the array subscript starts from 0, so to access
all elements of the array A, the subscript needs to take values from 0 to 9.
Accessing A[10] is not legal and this can be a source of errors in many
programs!

If we want to assign the initial values to elements of an array, we need
to enter these values between curly brackets:

char days[7] = {1, 2, 3, 4, 5, 6, 7};

To access any value from the array days, we need to use [] separators.

Tuesday = days[1]; // second value from the array days is
// assigned to a variable named Tuesday

Sunday = days[6]; // seventh value from the array days is
// assigned to variable named Sunday

Monday = days[7]; // error!!!, days[7] does not exist
// some random value will be assigned
// to a variable named Monday

1.4.4 Constants

C also allows declaration of constants.When you declare a constant, it is
rather like a variable declaration except the value cannot be changed
later in the program. The attribute ‘const’ is used to declare constant as
shown below:

int const a = 1;
const int b = 4;

22 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 23

1.4.5 C Operators

C has a full set of arithmetic, relational and logical operators. It also has
some useful operators for direct bit-level manipulations on data, which
makes it similar to assembler language. Most important operators are
listed in Table 1.8. These operators can be used to form expressions.
Mathematical operators follow standard precedence rules –multiplication
and division will be executed before any addition or subtraction. Sub-
expressions in parentheses have the highest precedence and are always
evaluated first. Statements may optionally be grouped inside pairs of curly
braces { } and as such are called compound statements.

A common mistake in writing the C statements is to use assignment
operator ‘=’ instead of equality operator ‘==’. ‘i = j’ and ‘i == j’ are both
perfectly legal C statements but the first one will copy the value of
variable j into i while the second compares the values of two statements
and results in a logical value (‘1’ if those two variables are equal, ‘0’ if
i and j are different).

Table 1.8 Common C operators

Operator Action Example

Assignment
operators

¼ Assignment x ¼ y;

Mathematical
operators

þ Addition x ¼ xþ y;

� Subtraction x ¼ x� y;
� Multiplication x ¼ x � y;
/ Division x ¼ x=y;
% Modulus x ¼ x% y;

Logical operators && Logical AND x ¼ true&& false;
jj Logical OR x ¼ true jj false;
& Bitwise AND x ¼ x& 0xFF;
j Bitwise OR x ¼ x j 0xFF;
� Bitwise NOT x ¼� x;
! Logical NOT false ¼ !true
� Shift bits right x ¼ x � 1;
� Shift bits left x ¼ x � 2;

Equality operators ¼¼ Equal to if(x ¼¼ 10) { . . . }
!¼ Not equal to if(x !¼ 10) { . . . }
< Less than if(x < 10) { . . . }
> Greater than if(x > 10) { . . . }
<¼ Less than or equal to if(x <¼ 10) { . . . }
>¼ Greater than or equal to if(x >¼ 10) { . . . }

Preparing to do a PIC Project 23

E1C01_1 03/07/2009 24

1.4.6 Conditional Statements and Iteration

To control the flow of execution in a C program we usually use a
conditional ‘if’ statement as well as ‘for’ and ‘while’ loops.

The ‘if’ statement is used to allow decisions to be made about parts of
the program that will be executed depending on some conditions tested
by the ‘if’ statement in the program. If the condition given to the ‘if’
statement is true then a section of code is executed as outlined below:

if(condition)
{

execute this code if condition is true
}

An example of a simple usage of the ‘if’ statement is given below:

if(x<0)
{

x = -1 * x;
}

Sometimes you might want to perform one action when the condition
is true and another action when the condition is false. Here, an ‘else’
statement needs to be combined with the ‘if’ statement:

if(condition)
{

execute this code if condition is true
}
else
{

execute this code if condition is false
}

It is easy to chain a lot of ‘if–else’ statements:

if(condition 1)
{

execute this code if condition 1 is true
}
else if(condition 2)
{

execute this code if condition 2 is true and condition 1
is false

}

24 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 25

else // optional
{

execute this code if condition 1 and condition 2 are false
}

It is also possible to nest ‘if’ statements:

if(condition 1)
if(condition 2)
{

execute this code if condition 1 and condition 2 are true
}

else
{

execute this code if condition 1 or condition 2 are false
}

While the ‘if’ statement allows branching in the program flow, ‘for’,
‘while’ and ‘do’ statements allow the repeated execution of code in ‘loops’.
It has been proven that the only loop needed for programming is the ‘while’
loopbut sometimes it ismore convenient touse the ‘for’ loop instead.While
the condition specified in the ‘while’ statement is true a statement or group
of statements (compound statements) are executed as outlined below:

while(condition)
{

execute this code while condition is true
}

An example of the simple usage of a ‘while’ statement is given below:

while(x>0)
{

result = result * x;
x = x - 1;

}

The other type of loop is the ‘for’ loop. It takes three parameters: the
starting number, the test condition that determines when the loop stops
and the increment expression.

for(initial; condition; adjust)
{

code to be executed while the condition is true
}

Preparing to do a PIC Project 25

E1C01_1 03/07/2009 26

An example of the simple usage of a ‘for’ statement is given below:

for(counter = 1; counter <= x; counter = counter +1)
{

result = result * x;
}

1.4.7 Example C Program

TostartprogrammingthePICusingClanguage,wewilldevelopaprogram
very similar to the one designed using the assembler language shown in
Listing 1.1. The program will still generate two different bit patterns on
port B but will be slightly more complex. In order to ‘slow down’ the
program and keep each of two bit patterns on port B for a longer period of
time, anadditional delaywill be generated in the program.This program is
given in Listing 1.5.

1 // this program outputs two binary patterns on port B
2 // one after the other - 01010101 and 10101010 -- with
3 // some delay between them
4
5 #include <pic16f62xa.h>
6
7 void delay(void);
8
9 void main(void)

10 {
11 int j;
12
13 TRISB = 0x00; // make port B, all bits, outputs
14 while (1) // do forever, i.e. always true
15 {
16 PORTB = 0x55; // port B = 01010101
17 for(j=0;j<10000;j++) // produce a delay
18 {
19 }
20 PORTB = 0xAA; // port B = 10101010
21 delay();
22 }
23 }
24
25 void delay(void)
26 {
27 int j;
28 for(j=0;j<10000;j++) // produce a delay
29 {
30 }
31 }

Listing 1.5 First C PIC program

26 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 27

The ‘main()’ function of this program is defined between lines 9 and
23. After configuring all pins of port B as output pins on line 13, the
program enters the ‘while(1)’ loop to execute the sequence of statements
in this loop. This type of loop is called an infinite loop. The condition of
this loop is always true (it is 1) so the program will stay in this loop
‘forever’, executing statements in the loop as long as there is a power
supply to PIC. Unlike conventional C programs, embedded microcon-
trollers usually run their software as an infinite (do forever) loop. As
long as the larger system incorporating the microcontroller operates,
it will need the microcontroller to perform its specific task. This task
is described by the C sequence enclosed in ‘{}’ following the while(1)
statement.

Another way to implement the infinite loop is to use the ‘for’ state-
ment without specifying any condition, i.e. ‘for(;;)’.

Having entered the infinite loop, the program first sends the hexa-
decimal value 55h to port B. After that it enters the ‘for’ loop at line 17.
This loop does nothing particularly useful as the curly brackets
following the ‘for’ statement contain no other statements. All it
does is waste some time incrementing the loop counter j before the
next hexadecimal value (AAh) is output to Port B on line 20. Loop
counter j is declared as integer at the beginning of the main program on
line 11.

Line 21 calls the function ‘delay()’, which is declared in line 7 and defined
between lines 25 and 31. This function, like the ‘for’ loop in the main
program, does nothing else but wastes some more time before the program
branches back to line 16 to output value 55h to port B again. In fact the
main body of this function contains just another ‘for’ loop, identical to the
‘for’ loop already executed in the main program. This is certainly not very
good programming practice. A more experienced programmer would
probably call the delay() function after line 16 in the program to follow
the PORTB ¼ 0x55 statement and generate the required time delay. The
‘for’ loop used in the main programwill then become obsolete. This would
reduce the size of the program and make the program somewhat easier to
read and understand. We decided to use this rather clumsy approach to
demonstrate the use of functions in the C program and to compare the
performance of the delay() function with the delay generated by the
‘for’ loop in the main program. With 4 MHz crystal, both time-wasting
approaches – the ‘for’ loop in the main program and the delay() function –
can be expected to generate a delay of approximately 150ms. Amethod to
measure the exact delays generated in this program will be explained
towards the end of this chapter.

Preparing to do a PIC Project 27

E1C01_1 03/07/2009 28

1.5 MPLAB Integrated Development
Environment (IDE)

MPLAB is a Windows-based program that makes writing, developing
and debugging programs for PIC microcontrollers an easier task. This
development environment is produced by Microchip but can incorpor-
ate third-party software tools that can also be used when developing an
embedded PIC-based application. MPLAB is relatively easy to use, has a
friendly graphical interface and can be freely downloaded from the
Microchip web site. This free version can later be easily upgraded with
more powerful C compilers and other additions for more complex tasks.

Installation of this package is a relatively straightforward procedure.
TheMPLAB installation program is provided on theweb site for this book
but can also be downloaded directly from the Microchip web site (http://
www.microchip.com/, accessed 29 December 2008). The reader should
bear inmind that this software is updated frequently by the manufacturer
so themost recent versionof theMPLAB softwarewill always be available
from the Microchip web site and might have a slightly different set of
features from those described in this book. MPLAB is, however, back-
wards compatible, which means that all programs and features described
in this book should also be available and accessible in anynewer versionof
MPLAB. In case the reader is unsure anddoesnotwant to experimentwith
newer versions of MPLAB, the best approach is to stick with version 8 of
MPLAB, provided with this book, download it from the companion web
site and install it on the computer.

The installation procedure is relatively simple. A zip file, ‘MPLAB_v8.
zip’, containing all necessary files for MPLAB installation needs to be
extracted, preferably in an empty or newly created directory. Double
clicking on the extracted installation file ‘Install_MPLAB_v8.exe’ will
start Installation Shield and bring up the MPLAB installation window.

Nothing special needs to be configured for the MPLAB installation.
All that needs to be done is to accept the default settings by choosing the
option NEXT several times and accepting the terms of agreement. After
several minutes, MPLAB should be installed on your computer without
any problems. At the end of the MPLAB installation, you will be offered
an option to add the HI-TECH PICC Lite software suite to your
MPLAB. This is a free version of C compiler produced by the third-
party supplier HI-TECH. Most of the C programs from this book are
compiled using this software, so it is advisable to accept this option and
install PICC at this point. If you do not do it at this point, the HI-TECH

28 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 29

PICC compiler can easily be downloaded from the book web site and
installed at some later time

Select NEXT and accept the terms of agreement and select NEXT
again. Accept the options offered for the installation and click NEXT
again to complete the installation procedure. At this point you will have
the option to complete installation and restart the computer. Accept this
option if you want to use MPLAB immediately. If not, you will need to
restart your computer at some later time before starting to work with

Figure 1.5 Start of the MPLAB installation procedure

Microchip Technology Inc. Reproduced with permission.

Figure 1.6 Addition of the HI-TECH PICC compiler to the MPLAB suite

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 29

E1C01_1 03/07/2009 30

MPLAB. To complete our MPLAB development environment it might be
a good idea to add one more C compiler to it – C18 C compiler.

The installed HI-TECH C compiler is free and can be used to compile
programs for a large number of PIC microcontrollers from the PIC10,
PIC12 and PIC16 group. To compile programs for PIC18 devices we
need to use the C18 C compiler provided by Microchip. This compiler
can also be downloaded from the companion web site for this book or,
alternatively, from the manufacturer’s (Microchip) web site. It installs
easily but some options need to be specified during the installation
procedure. After starting the installation procedure by double clicking
on the ‘MPLAB-C18-Student Edition-v3_16.exe’ installation file, click
NEXT and accept the licence terms.

After selecting the option NEXT, accept the suggested location of the
compiler files and select NEXT again. You will be presented with three
screens of options for this installation.

We recommend accepting the suggested options from the first window
and selecting all options offered (but not selected for you) in the second
and third windows. With this selection you will set the environmental
variables in the Windows operating system, which makes it easier for the
compiler to locate where certain files are on the computer. You will also
add this compiler to theMPLAB environment. Clicking NEXT again will
start the installation of the C18 compiler on your computer. At the end of
the installation, select FINISH to complete it and open the Release Notes
for C18, if you want to read through them at this point. Do not forget to
restart your computer before starting to use MPLAB for the first time.

Figure 1.7 Start of the C18 compiler installation procedure

Microchip Technology Inc. Reproduced with permission.

30 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 31

After successful installation and restarting the computer, the PIC
program can be developed using MPLAB in three main steps – MPLAB
project specification, program writing and conversion of the written
program into executable binary (1-0 code understandable by the
microcontroller).

Figure 1.8 Selecting C18 installation options

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 31

E1C01_1 03/07/2009 32

1.5.1 Creating a PIC Project in MPLAB

Once the MPLAB is started, to create a newMPLAB project click on the
PROJECT option from the menu and select the Project Wizard, which
will open a new MPLAB window, shown in Figure 1.9.

Click on the NEXT button to continue. We now need to choose the
appropriate member of the PIC microcontroller family for this project.
Various PIC types will be discussed briefly later in this chapter. For our
first PIC project we will select the PIC model discussed in this section:
PIC16F627A.

Figure 1.9 Start of the MPLAB Project Wizard procedure

Microchip Technology Inc. Reproduced with permission.

Figure 1.10 Selecting the PIC model during the project definition

Microchip Technology Inc. Reproduced with permission.

32 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 33

In the next step of the project specification procedure we need to
define the programming language to be used in the project. We will use
assembler language for our first project, so we need to select theMPASM
toolsuite for assembler language software as shown in Figure 1.11.

In the final step, we need to select the name and folder for our project.
Usually, we select the project name to somehow reflect the nature and
purpose of the program. It is usually a good idea to create a new folder
for each independent MPLAB project. This is going to be our first PIC
program, so we have created a folder ‘E:\PICprograms\firstprogram’ to
hold our new PIC project called ‘firstPICprogram’.

Figure 1.11 Selecting a language and suitable tools for project

Microchip Technology Inc. Reproduced with permission.

Figure 1.12 Specifying project name and location

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 33

E1C01_1 03/07/2009 34

We can now click on the NEXT button to finalize the project
specification procedure. A new window will offer the possibility of
including some existing files in the newly created PIC project. We are
going to create a new assembler file for this project so we click NEXT at
this stage. This will bring on a new project summary window that
contains the summary specification of our project. At any stage of the
project specification procedure it is possible to step back by clicking
on the BACK button in order to change parameters set in that stage. The
same option exists in the project summary window. By clicking on the
FINISH button, all project parameters will be selected and the project
finally created. This will result in a number of project files being created
in the project folder, which will be discussed later in the book, but we
will now proceed to the second phase of the PIC project development –
program writing.

1.5.2 Writing a PIC Program

By clicking the FINISH button in the project summary window we have
finished the project creation phase and the new screen inMPLAB should
now appear to take us through the program-creation phase. At this point
your newly created project is open and all of the files created in the
previous phase and associated with this project are automatically added
to a project.

Figure 1.13 Project summary window at the end of the project
creation procedure

Microchip Technology Inc. Reproduced with permission.

34 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 35

To create a new file to hold our assembly language program we need
to select FILE and then NEW from the MPLAB menu. This will open a
new window. In this window we will type assembly code for our PIC
program. This code is usually called source code and the file holding the
source code is called the source file. Every PIC project needs to contain at
least one source file.

We can now start typing the source code into the source file window.
The program thatwewill enter at this stage is a simple programdeveloped
inSection1.3.3 andwill only serve thepurposeofdemonstrating theuse of
theMPLAB development environment. This program can be entered into
this window manually, which is a recommended option for the reader at
this stage. Alternatively, all of the programs from this book are also
available from this book’s companionweb site. They can be downloaded,
copied and pasted into the source window or once downloaded into an
appropriate directory on your, computer, included straight into the
project. This will be a recommended option for more complex programs
used in the later chapters of this book.

Figure 1.14 Main project window at the start of source file creation

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 35

E1C01_1 03/07/2009 36

Readers should now retype the program into the newly opened win-
dow. When the new source file is completed, we should save it into our
working folder (E:\PICprograms\firstprogram), for example, using some
meaningful name for it, to reflect the nature of the program. As this is our
first PIC programand the nameof the project is ‘firstPICprogram’we shall
name this file ‘firstprogram.asm’. Note the ‘asm’ extension for this file,
which indicates the assembler language nature of this source file.

The new file, ‘firstprogram.asm’, should be added to our project. To
do this, we need to select the ADD TO THE PROJECT option from
the PROJECT menu. A new browser-type window will open. We now
need to find our PIC folder and select the file ‘firstprogram.asm’, as
shown in Figure 1.16.

The addition of the new source file ‘firstprogram.asm’ to our project
will be reflected in the MPLAB project window shown in Figure 1.17. It
can be seen that ‘firstprogram.asm’ file now appears in the source files
group in that window.

Figure 1.15 Main project window with the newly created source file

Microchip Technology Inc. Reproduced with permission.

36 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 37

Figure 1.17 Main project window with the newly created source
file added to the project

Microchip Technology Inc. Reproduced with permission.

Figure 1.16 Adding source file to a current project

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 37

E1C01_1 03/07/2009 38

1.5.3 Translating the Program into Executable Code

Once the full program is entered into the source code window we can
resave it by choosing the SAVE option from the FILE menu. Alter-
natively we can translate the program into executable form by selecting
the BUILD ALL option from the PROJECT menu or just pressing F10.
This will also save the latest version of the program. If the program is
written properly, a BUILD SUCCEEDEDmessage should appear in the
output window of the MPLAB. This means that our translation was
successful and that there were no errors in the source code we typed.
This should be the case with your first PIC program if you typed it
correctly.

If a syntax error does show up, it needs to be corrected. By double
clicking on the relevant error message in the output window you will be
transferred to the source code window in the assembler code line where
the error was detected. Understanding what the particular error is and
how to correct it is one of the main tasks facing the programmer and the
rest of this book will hopefully help the reader in understanding some of
the issues related to this task more clearly. To be able to do this, the
programmer needs to know more about the hardware of the target
processor he is programming. He also needs to have a good knowledge
of the programming language he is using to program this hardware. The
program you have just entered should be simple enough and errors
should be easily detected using MPLAB help.

1.5.4 Simulating the Program

We will finish this section by introducing one additional feature of the
MPLAB package – the MPSIM simulator. The simulator is part of
the MPLAB environment, which provides a better insight into the work-
ings of a microcontroller. Through a simulator, we can monitor current
variable values, register values and status of port pins. For a simple
program, like the one you have just entered, simulation is not of great
importance as the operation of this program is quite straightforward and
easy to understand even for the PIC beginner. However, the simulator can
be of great help with more complicated programs which include timers,
different conditions where something happens and other similar require-
ments (especiallywithmathematical operations). Simulation, as the name
indicates, ‘simulates the work of a microcontroller’. As the microcon-
troller executes instructions one by one, the simulator moves through a
program step-by-step (line-by-line) and follows what goes on with data

38 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 39

within the microcontroller. When writing is completed, it is advisable to
first test the program in a simulator and then run it in a real situation.
Unfortunately, as with many other good habits, many programmers tend
to avoid this one too, more or less. Reasons for this are partly personality
and partly a lack of good simulators. We will now explain how to use the
MPSIM simulator to simulate and test our first PIC program.

Once our assembler program is successfully built (assembled) we need
to select theMPSIMdebugging tool from the SELECTTOOLoption from
DEBUGGER menu. A new set of icons will appear on the menu bar of
MPLAB and additional menu items will appear in the debugger menu.

Our program is now ready to run. It is usually a good idea to reset the
program before a fresh run. This can be done by selecting the RESET
option from the DEBUGGERmenu. A green arrow should appear at the
left margin of the source-code window indicating that the first line of the
code is to be executed. By selecting RUN from the DEBUGGER menu
the program will start running. A text message ‘Running . . . ’ will
appear on the status bar. To halt the program execution we need to

Figure 1.18 Main project windowwith the source file and invoked simulator

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 39

E1C01_1 03/07/2009 40

select HALT from the DEBUGGER menu. The line of code where the
application halted will be indicated by the green arrow.

We can also execute a program through single steps – executing each
instruction from the program individually. To single-step through the
application program, select the STEP INTOoption. This will execute the
currently indicated line of code and move the arrow to the next line of
code to be executed. Options for program execution using MPSIM are:

� Run – runs the program at the simulation’s full speed but variables
cannot be watched in this mode; this option is normally used with
breakpoints set in the program to stop the execution at one or more
points in the program.

� Animate – runs the program at the speed of only several instructions
per second (rate can be further adjusted from the DEBUGGER-
SETTINGS menu); the program execution is therefore slowed down
so that the effect of each line can be observed.

� Step into – executes one line of the program and steps into subroutine
if the call to subroutine is encountered.

� Step over – executes one line of the program and subroutine in one go
if the call to subroutine is encountered (it steps over the subroutine).

� Step out – when the program is in a subroutine this option will
complete the execution of the subroutine at full speed.

The shortcuts for these commonly used functions in the DEBUGGER
toolbar can be used to speed up this procedure. Those shortcuts are
shown in Figure 1.19.

Another feature of MPSIM is the ability to track changes in variable
or register values in the program and observe those changes during
the program execution. This can be done using the Watch window. A
number of Watch windows can be activated from the VIEW menu. In
our current application we might want to observe more closely the value
of PORTB. This is one of the PIC special function registers, so we can

AnimateHalt Run Reset Step out Step over Step into

Figure 1.19 MPSIM shortcuts

Microchip Technology Inc. Reproduced with permission.

40 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 41

select the SPECIAL FUNCTION REGISTERS option from the VIEW
menu. A new window with all the files appears in MPLAB.

We can now run the program by animating it or by single-stepping
through it. Change on PORTB can be observed clearly in both cases. If we
decide just to run the program, those changes cannot be tracked as this
option runs the program in ‘near real time’, which is too fast for us to spot
anything if the real system is used and too fast for MPLAB to update the
Watch window. This feature can, however, be used in combination with
breakpoints in theprogramto reacha certainpoint in theprogramquickly,
stop the execution of the program and observe the state of the registers or
memory at that point in the program.To set the breakpoint in the program
you need to double-click on that line of the program in the sourcewindow.
Let us set the breakpoint on the last line of our program (line 14) bydouble
clickingonthat line.A‘stop’-typebreakpoint symbol shouldappearnext to
the selected lineof code in the leftmarginof the sourcewindow.Now, reset
theprogramandchoosetheoption‘run’fromtheDEBUGGERtoolbar.The
programwillexecutequicklyandstopatline14ofourprogramasindicated
by thegreenarrowover thebreakpoint sign in the sourcewindow. Ifwerun

Figure 1.20 Main project window with the SFR Watch window

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 41

E1C01_1 03/07/2009 42

theprogramagain,itwillstopatthesameplaceafteronecycleofourendless
loop execution has been completed. Several breakpoints can be set in the
sameprogram.Breakpointsareagoodwaytoget toacertainpoint ina long
and complicated program quickly. They are not so important for a simple
and short program like the one we have in our source window.

Figure 1.21 Program stop at the breakpoint

Microchip Technology Inc. Reproduced with permission.

Another useful option in MPSIM is the possibility of measuring the
execution time of our program or parts of the program. To do this we first
need to set the frequency of the simulator clock. This can be done by
selecting theSETTINGSoption fromthebottomof theDEBUGGERmenu.
Set the value of the processor frequency to 4 MHz and close this window.

Now select the option STOPWATCH from the samemenu to bring up
the stopwatch window. Reset the simulation and run the program again.
Measurement in the stopwatch window will show the time of the execu-
tion of one loop sequence in our programas the programwill again stop at
the breakpoint we set in the previous phase of program testing. The
elapsed time is 8ms. This is the correct measurement and agrees with our
estimation for the program time execution on PIC made in Section 1.2.4.
Our loop consists of eight instructions and each instruction took 1ms to

42 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 43

execute. To confirm this, we can reset the program and start stepping
through it while observing the stopwatch window. Each step through the
program will increment the stopwatch window by 1ms. Notice that the
only deviation from this rule is the execution of the goto instruction in
our program. This is a flow-control type instruction and, like the other
flow-control instruction (call), it takes two clock cycles to execute,
which is 2ms execution time for the 4 MHz clock.

Figure 1.22 Selecting the frequency of the processor for the simulator

Microchip Technology Inc. Reproduced with permission.

Figure 1.23 Stopwatch window with the indicated time of program execution
(up to a breakpoint in the program)

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 43

E1C01_1 03/07/2009 44

At this point you might want to remove the breakpoint from your
program. This can be done by double clicking again on the breakpoint
line or break sign in the margin. Alternatively you can choose the
BREAKPOINTS option from the DEBUGGER menu and remove the
breakpoint by filling in the newly appeared dialogue box. This break-
points dialogue box can also be used to configure (set new, remove some
or all or just disable without permanently removing) breakpoints in your
program.

1.5.5 Creating a PIC C Project in MPLAB

MPLAB can be used in a similar way to create and test project for the PIC
programs written in C programming language. To create a C-type PIC
project after opening MPLAB, start a Project Wizard again and select
the PIC device for your project as described in the previous section. The
next option in the project creation will require specification of the
programming language and compiler tool to be used in the project.
Select the ‘HI-TECH Universal Toolsuite’ and ‘HI-TECH C Compiler’
on this screen and proceed by selecting NEXT.

On the next screen specify the full path and the name of the new
project file as shown in the window below and select NEXT again.

Figure 1.24 Breakpoints control window

Microchip Technology Inc. Reproduced with permission.

44 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 45

On the next screen select NEXT again and FINISH on the project
summary window.

Program creation is very similar to the process for the assembler
language program explained in Section 1.5.2. This time we need to type
the C version of our first PIC program given in Listing 1.5 and save it in
the file with a .c extension. The C source file needs to be added to our
project and the project needs to be built and tested in a similar way to
the assemblerMPLAB project. Figure 1.28 showsMPLABwith a project

Figure 1.26 Project Wizard ready for the creation of the new project

Microchip Technology Inc. Reproduced with permission.

Figure 1.25 Project Wizard window with selected C compiler and specified
project location

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 45

E1C01_1 03/07/2009 46

created and built using the C program from Section 1.4.7. The MPLAB
SIM tool is activated and PORTB is selected in the Watch window. Two
breakpoints are set in the program to stop the execution of the program
so that the change of bit pattern on PORTB can be observed.

Figure 1.28 First C PIC project

Microchip Technology Inc. Reproduced with permission.

Figure 1.27 Project summary window at the end of the C project creation

Microchip Technology Inc. Reproduced with permission.

46 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 47

Time delays generated by the ‘for’ loop and the delay() function can be
measured using those breakpoints and a Stopwatch feature from the
DEBUGGER menu. To do this, first set the Processor Frequency to 4
MHz by selecting the Settings . . . option from the DEBUGGER menu.
In the new Simulator Settings window select Osc/Trace tab and set the
Processor Frequency to 4 MHz. The corresponding screenshot of
MPLAB is shown in Figure 1.29.

Confirm your selection by clicking OK to close the Simulator Settings
dialogue box and select the Stopwatch option fromDebuggermenu. Run
the program to the first breakpoint and reset the stopwatch time by
pressing Zero. Now, run the program again to the second breakpoint
and note the elapsed time – 140ms. Zero and run again. This time the
program was delayed by the delay() function and measured delay was
slightly longer – 150ms. Can you think of any reasons for this? The
number of instruction cycles executed to the first and second break-
points, provided by the Stopwatch window, can give you a clue.

Figure 1.29 Setting the processor frequency

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 47

E1C01_1 03/07/2009 48

1.6 Advanced Debugger Features – Stimulus

We will complete this chapter by demonstrating one more useful feature
of the MPLAB SIM tool – simulation of program stimulus from the
outside world. To do this we will modify our C program according to
Listing 1.6.

The modified program first reads the state of PORTA on line 13 and
stores the result ina variable called ‘temp’ –unsigned character.According
to the value of this variable (the state of PORTA), one of two binary
patterns will be output to PORTB – 55h if all pins of PORTA are set to
logic low (0) or AAh if any of PORTA pins is set to logic high (1). The
test is implemented using if–else statement between lines 15 and 22. Pins
of PORTA are configured as inputs at the beginning of the program,
on line 9.

Figure 1.30 Using the Stopwatch feature to measure delays in the program

Microchip Technology Inc. Reproduced with permission.

48 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 49

1 // thisprogram outputsone oftwo binarypatterns on portB
2 // depending on the state of port A
3
4 #include <pic16f62xa.h>
5
6 void main(void)
7 {
8 unsigned char temp;
9 TRISA = 0xFF; // make port A, all inputs

10 TRISB=0x00; //makeportB,all bits,outputs
11 while (1) // do forever, i.e. always true
12 {
13 temp = PORTA;
14
15 if (temp == 0)
16 {
17 PORTB = 0x55;
18 }
19 else
20 {
21 PORTB = 0xAA;
22 }
23 }
24 }

Listing 1.6 Second C PIC program

Create a new PIC project, type in the C program given in Listing 1.6,
add it to the project and build the project. Open the Watch window and
select PORTB and PORTA to watch during the program animation. In
order to test the operation of this project we would need to somehow
change the state of the PORTA pins during the program animation. This
can be done using the stimulus feature of the MPLAB SIM tool. To open
the Stimulus window, select Debugger-Stimulus-New Workbook from
the MPLAB menu. The Stimulus window should appear in MPLAB as
shown in Figure 1.31.

Three main types of stimulus can be set up in MPLAB using the
Stimulus window:

� Manual triggers – changes in digital signal levels caused by clicking on
a button with a mouse during the program animation or while single-
stepping through the program. These allow you to simulate the action
of closing a switch, or pulsing a pin.

� Sequential data – applied to pins, registers, or bits in registers from a
predefined list.

Preparing to do a PIC Project 49

E1C01_1 03/07/2009 50

� Cyclic stimulus – repeating waveform for a predetermined length of
time or continuously.

In this chapter wewill show how to set up and use the first two types of
stimulus, leaving the cyclic type stimulus for later chapters. We will only
demonstrate the basic configuration for those two stimulus types. It is left
to the reader to investigate this feature of the MPLAB SIM tool further.

A manually triggered stimulus is an asynchronous type of stimulus, so
to configure it we need to select the Asynch tab from the Stimulus
window. By clicking on the first line of the Pin/SFR column in the table
under this tab we can select the pin or register to be affected by the
stimulus. In our example we use PORTA as an input port, select RA0 –
first pin of PORTA, to be manually set during the animation of the
program. By clicking under the Action field we can select one of five
possible types of stimulus for RA0 – ‘Set High’, ‘Set Low’, ‘Toggle’,
‘Pulse High’ or ‘Pulse Low’. Select – ‘Set High’. By pressing the first
button in the same row (under the Fire label in the same table) during the
program animation we will be able to set RA0 high. Without further
action RA0 would remain high until the end of the animation. It might

Figure 1.31 Starting Stimulus in MPLAB

Microchip Technology Inc. Reproduced with permission.

50 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 51

be a good idea to add a second action in order to set this pin low during
the same testing sequence. To do this, go to the second row of this table,
select RA0 again but choose ‘Set Low’ as the action in this case. This
setup is shown in Figure 1.32. Fire buttons used to set or reset pin RA0
during the program animation are highlighted in this figure.

All that needs to be done now is to animate the program by pressing the
button on the MPLAB shortcut bar or by selecting the Animate option

from theDEBUGGERmenu.The programwill run in the slowmode so its
action can be clearly observed.Once the program enters the infinite loop it
circulates between lines 11 and 17 – since all of the PORTA pins are
initially 0, the condition following the ‘if’ statement is true and the
program continuously sends 55h to PORTB. This can be checked in
theWatchwindowwhere PORTB ¼ 0x55 while PORTA ¼ 0x00. Firing
the first event – setting RA0 high –will change this sequence. PORTAwill
change its state to 0x01 and the programwill sendAAh to PORTB instead
of 55h. This can again be checked in theWatchwindow. Firing the second
event during the same animation cycle will set RA0 low. The result in the
Watchwindow is:PORTB ¼ 0x55andPORTA ¼ 0x00again.Morepins
ofPORTAanddifferent actions canbeadded to this basic configuration to
make it more interesting and versatile.

Figure 1.32 Configuration of asynchronous stimulus in MPLAB

Microchip Technology Inc. Reproduced with permission.

Preparing to do a PIC Project 51

E1C01_1 03/07/2009 52

The sequential stimulus can be configured by changing the Pin/Register
Actions tab in the Stimulus window.Here, we first need to select between
different time units (cyc – instruction cycles, h:m:s – hours, minutes,
seconds for longer simulations,ms –milliseconds,ms –microseconds or ns
– nanoseconds for shorter simulations). Select ms to define a sequence in
microseconds. We will define a time interval consisting of four subinter-
vals – each 100ms long. To do this type 0, 100, 200 and 300 in the first
column of the table (Time/dec). To select the register to be affected by the
stimulus action clickon the ‘Clickhere toAddSignals’ heading in the table.
From the list of registers, select PORTAandAdd tomove it from the list of
Available Signals to the list of Selected Signal(s).No other register needs to
be selected for this simple demonstration. After closing the Add/remove
Pin/Registers dialogue box a new column with the heading PORTA is
added to the table. The first four rows under this heading should be filled
with hexadecimal values. Those values will be taken by PORTA at 0, 100,
200 and 300 microseconds after the start of the animation. Fill in the
PORTA fields for each of those times with the appropriate values. We
have used FF, 00, 10 and 00. The final setup is shown in Figure 1.33. A

Figure 1.33 Configuration of cyclic stimulus in MPLAB

Microchip Technology Inc. Reproduced with permission.

52 PIC Projects: A Practical Approach

E1C01_1 03/07/2009 53

Stopwatch feature is also activated to help in following the execution time
of the program. Before starting the animation of the program apply this
sequence by clicking on the Apply button in the Stimulus window.

Start the animation of the program and observe the changes in the
Watch window at specified times. PORTA is changing the value accord-
ing to specification in the Stimulus window and PORTB is following
these changes by switching between two patterns after 100ms, 200ms
and 300ms. The only slightly confusing behaviour might be the value of
PORTA during the first 0–100ms time interval. Although we set it
to FFh, the Watch window shows PORTA ¼ 0	 3F! If you have not
noticed it, try resetting the program and animating it again. Can you
explain this anomaly? If you can, it is time to start with some simple PIC
projects in Chapter 2.

Preparing to do a PIC Project 53

E1C01_1 03/07/2009 54

