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1
Principal Laws and Methods in
Electrical Machine Design

1.1 Electromagnetic Principles

A comprehensive command of electromagnetic phenomena relies fundamentally on
Maxwell’s equations. The description of electromagnetic phenomena is relatively easy when
compared with various other fields of physical sciences and technology, since all the field
equations can be written as a single group of equations. The basic quantities involved in the
phenomena are the following five vector quantities and one scalar quantity:

Electric field strength E [V/m]
Magnetic field strength H [A/m]
Electric flux density D [C/m2]
Magnetic flux density B [V s/m2], [T]
Current density J [A/m2]
Electric charge density, dQ/dV ρ [C/m3]

The presence of an electric and magnetic field can be analysed from the force exerted by
the field on a charged object or a current-carrying conductor. This force can be calculated by
the Lorentz force (Figure 1.1), a force experienced by an infinitesimal charge dQ moving at a
speed v. The force is given by the vector equation

dF = dQ(E + v × B) = dQE + dQ

dt
dl × B = dQE + idl × B. (1.1)

In principle, this vector equation is the basic equation in the computation of the torque for
various electrical machines. The latter part of the expression in particular, formulated with a
current-carrying element of a conductor of the length dl, is fundamental in the torque produc-
tion of electrical machines.
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2 Design of Rotating Electrical Machines

i

dF
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B

β

Figure 1.1 Lorentz force dF acting on a differential length dl of a conductor carrying an electric cur-
rent i in the magnetic field B. The angle β is measured between the conductor and the flux density vector
B. The vector product i dl × B may now be written in the form i dl × B = idlB sin β

Example 1.1: Calculate the force exerted on a conductor 0.1 m long carrying a current of
10 A at an angle of 80◦ with respect to a field density of 1 T.

Solution: Using (1.1) we get directly for the magnitude of the force

F = |i l × B| = 10 A · 0.1 m · sin 80◦ · 1 Vs/m2 = 0.98 V A s/m = 0.98 N.

In electrical engineering theory, the other laws, which were initially discovered empirically
and then later introduced in writing, can be derived from the following fundamental laws
presented in complete form by Maxwell. To be independent of the shape or position of the
area under observation, these laws are presented as differential equations.

A current flowing from an observation point reduces the charge of the point. This law of
conservation of charge can be given as a divergence equation

∇ · J = −∂ρ

∂t
, (1.2)

which is known as the continuity equation of the electric current.
Maxwell’s actual equations are written in differential form as

∇ × E = −∂B
∂t

, (1.3)

∇ × H = J + ∂D
∂t

, (1.4)

∇ · D = ρ, (1.5)

∇ · B = 0. (1.6)
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The curl relation (1.3) of an electric field is Faraday’s induction law that describes how
a changing magnetic flux creates an electric field around it. The curl relation (1.4) for mag-
netic field strength describes the situation where a changing electric flux and current pro-
duce magnetic field strength around them. This is Ampère’s law. Ampère’s law also yields a
law for conservation of charge (1.2) by a divergence Equation (1.4), since the divergence of
the curl is identically zero. In some textbooks, the curl operation may also be expressed as
∇ × E = curl E = rot E.

An electric flux always flows from a positive charge and passes to a negative charge. This
can be expressed mathematically by the divergence Equation (1.5) of an electric flux. This law
is also known as Gauss’s law for electric fields. Magnetic flux, however, is always a circulating
flux with no starting or end point. This characteristic is described by the divergence Equation
(1.6) of the magnetic flux density. This is Gauss’s law for magnetic fields. The divergence
operation in some textbooks may also be expressed as ∇ · D = div D.

Maxwell’s equations often prove useful in their integral form: Faraday’s induction law

∮

l

E · dl = d

dt

∫

S

B · dS = −dΦ

dt
(1.7)

states that the change of a magnetic flux Φ penetrating an open surface S is equal to a negative
line integral of the electric field strength along the line l around the surface. Mathematically,
an element of the surface S is expressed by a differential operator dS perpendicular to the
surface. The contour line l of the surface is expressed by a differential vector dl parallel to
the line.

Faraday’s law together with Ampère’s law are extremely important in electrical machine
design. At its simplest, the equation can be employed to determine the voltages induced in the
windings of an electrical machine. The equation is also necessary for instance in the determi-
nation of losses caused by eddy currents in a magnetic circuit, and when determining the skin
effect in copper. Figure 1.2 illustrates Faraday’s law. There is a flux Φ penetrating through a
surface S, which is surrounded by the line l.

B

E

Φ

ldS

Figure 1.2 Illustration of Faraday’s induction law. A typical surface S, defined by a closed line l, is
penetrated by a magnetic flux Φ with a density B. A change in flux density creates an electric current
strength E. The circles illustrate the behaviour of E. dS is a vector perpendicular to the surface S
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4 Design of Rotating Electrical Machines

The arrows in the circles point the direction of the electric field strength E in the case
where the flux density B inside the observed area is increasing. If we place a short-circuited
metal wire around the flux, we will obtain an integrated voltage

∮
l E · dl in the wire, and

consequently also an electric current. This current creates its own flux that will oppose the
flux penetrating through the coil.

If there are several turns N of winding (cf. Figure 1.2), the flux does not link all these turns
ideally, but with a ratio of less than unity. Hence we may denote the effective turns of winding
by kwN, (kw < 1). Equation (1.7) yields a formulation with an electromotive force e of a
multi-turn winding. In electrical machines, the factor kw is known as the winding factor (see
Chapter 2). This formulation is essential to electrical machines and is written as

e = −kw N
d

dt

∫

S

B · dS = −kw N
dΦ

dt
= −dΨ

dt
. (1.8)

Here, we introduce the flux linkage Ψ = kwNΦ = LI, one of the core concepts of electrical
engineering. It may be noted that the inductance L describes the ability of a coil to produce
flux linkage Ψ . Later, when calculating the inductance, the effective turns, the permeance Λ

or the reluctance Rm of the magnetic circuit are needed (L = (kwN)2Λ = (kwN)2/Rm).

Example 1.2: There are 100 turns in a coil having a cross-sectional area of 0.0001 m2.
There is an alternating peak flux density of 1 T linking the turns of the coil with a winding
factor of kw = 0.9. Calculate the electromotive force induced in the coil when the flux
density variation has a frequency of 100 Hz.

Solution: Using Equation (1.8) we get

e = −dΨ

dt
= −kw N

dΦ

dt
= −kw N

d

dt
B̂S sin ωt

= −0.9 · 100 · d

dt

(
1

V s

m2
· 0.0001 m2 sin

100

s
· 2πt

)

e = −90 · 2π V cos
200

s
πt = −565 V cos

200

s
πt.

Hence, the peak value of the voltage is 565 V and the effective value of the voltage
induced in the coil is 565 V/

√
2 = 400 V.

Ampère’s law involves a displacement current that can be given as the time derivative of
the electric flux ψ . Ampère’s law

∮

l

H · dl =
∫

S

J · dS + d

dt

∫

S

D · dS = i (t) + dψe

dt
(1.9)
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J

i

B, H l
dS

E ⋅ dS
S 0e = ∫ψ

E ⋅ dS
S 0e = ∫ψ

Figure 1.3 Application of Ampère’s law in the surroundings of a current-carrying conductor. The line
l defines a surface S, the vector dS being perpendicular to it

indicates that a current i(t) penetrating a surface S and including the change of electric flux
has to be equal to the line integral of the magnetic flux H along the line l around the surface
S. Figure 1.3 depicts an application of Ampère’s law.

The term

d

dt

∫

S

D · dS = dψe

dt

in (1.9) is known as Maxwell’s displacement current, which ultimately links the electromag-
netic phenomena together. The displacement current is Maxwell’s historical contribution to
the theory of electromagnetism. The invention of displacement current helped him to explain
the propagation of electromagnetic waves in a vacuum in the absence of charged particles or
currents. Equation (1.9) is quite often presented in its static or quasi-static form, which yields

∮

l

H · dl =
∫

S

J · dS =
∑

i (t) = Θ (t) . (1.10)

The term ‘quasi-static’ indicates that the frequency f of the phenomenon in question is low
enough to neglect Maxwell’s displacement current. The phenomena occurring in electrical
machines meet the quasi-static requirement well, since, in practice, considerable displace-
ment currents appear only at radio frequencies or at low frequencies in capacitors that are
deliberately produced to take advantage of the displacement currents.

The quasi-static form of Ampère’s law is a very important equation in electrical machine
design. It is employed in determining the magnetic voltages of an electrical machine and
the required current linkage. The instantaneous value of the current sum

∑
i (t) in Equation

(1.10), that is the instantaneous value of current linkage Θ , can, if desired, be assumed to
involve also the apparent current linkage of a permanent magnet ΘPM = H ′

chPM. Thus, the
apparent current linkage of a permanent magnet depends on the calculated coercive force H ′

c
of the material and on the thickness hPM of the magnetic material.
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The corresponding differential form of Ampère’s law (1.10) in a quasi-static state (dD/dt
neglected) is written as

∇ × H = J. (1.11)

The continuity Equation (1.2) for current density in a quasi-static state is written as

∇ · J = 0. (1.12)

Gauss’s law for electric fields in integral form

∮

S

D · dS =
∫

V

ρV dV (1.13)

indicates that a charge inside a closed surface S that surrounds a volume V creates an electric
flux density D through the surface. Here

∫
V ρV dV = q (t) is the instantaneous net charge

inside the closed surface S. Thus, we can see that in electric fields, there are both sources and
drains. When considering the insulation of electrical machines, Equation (1.13) is required.
However, in electrical machines, it is not uncommon that charge densities in a medium prove
to be zero. In that case, Gauss’s law for electric fields is rewritten as

∮

S

D · dS = 0 or ∇ · D = 0 ⇒ ∇ · E = 0. (1.14)

In uncharged areas, there are no sources or drains in the electric field either.
Gauss’s law for magnetic fields in integral form

∮

S

B · dS = 0 (1.15)

states correspondingly that the sum of a magnetic flux penetrating a closed surface S is zero;
in other words, the flux entering an object must also leave the object. This is an alternative way
of expressing that there is no source for a magnetic flux. In electrical machines, this means for
instance that the main flux encircles the magnetic circuit of the machine without a starting or
end point. Similarly, all other flux loops in the machine are closed. Figure 1.4 illustrates the
surfaces S employed in integral forms of Maxwell’s equations, and Figure 1.5, respectively,
presents an application of Gauss’s law for a closed surface S.

The permittivity, permeability and conductivity ε, µ and σ of the medium determine the de-
pendence of the electric and magnetic flux densities and current density on the field strength.
In certain cases, ε, µ and σ can be treated as simple constants; then the corresponding pair
of quantities (D and E, B and H, or J and E) are parallel. Media of this kind are called
isotropic, which means that ε, µ and σ have the same values in different directions. Other-
wise, the media have different values of the quantities ε, µ and σ in different directions, and
may therefore be treated as tensors; these media are defined as anisotropic. In practice, the
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Figure 1.4 Surfaces for the integral forms of the equations for electric and magnetic fields. (a) An
open surface S and its contour l, (b) a closed surface S, enclosing a volume V . dS is a differential surface
vector that is everywhere normal to the surface

permeability in ferromagnetic materials is always a highly nonlinear function of the field
strength H: µ = f (H).

The general formulations for the equations of a medium can in principle be written as

D = f (E), (1.16)

B = f (H), (1.17)

J = f (E). (1.18)

S

J

E

B

Q

dS

V

(a)               (b)

Figure 1.5 Illustration of Gauss’s law for (a) an electric field and (b) a magnetic field. The charge Q
inside a closed object acts as a source and creates an electric flux with the field strength E. Correspond-
ingly, a magnetic flux created by the current density J outside a closed surface S passes through the
closed surface (penetrates into the sphere and then comes out). The magnetic field is thereby sourceless
(div B = 0)
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8 Design of Rotating Electrical Machines

The specific forms for the equations have to be determined empirically for each medium
in question. By applying permittivity ε [F/m], permeability µ [V s/A m] and conductivity
σ [S/m], we can describe materials by the following equations:

D = εE, (1.19)

B = µH, (1.20)

J = σE. (1.21)

The quantities describing the medium are not always simple constants. For instance, the
permeability of ferromagnetic materials is strongly nonlinear. In anisotropic materials, the
direction of flux density deviates from the field strength, and thus ε and µ can be tensors. In a
vacuum the values are

ε0 = 8.854 · 10−12 F/m, A s/V m and

µ0 = 4π · 10−7 H/m, V s/A m.

Example 1.3: Calculate the electric field density D over an insulation layer 0.3 mm thick
when the potential of the winding is 400 V and the magnetic circuit of the system is at
earth potential. The relative permittivity of the insulation material is εr = 3.

Solution: The electric field strength across the insulation is E = 400 V/0.3 mm =
133 kV/m. According to Equation (1.19), the electric field density is

D = εE = εrε0E = 3 · 8.854 · 10−12 A s/V m · 133 kV/m = 3.54 µA s/m2.

Example 1.4: Calculate the displacement current over the slot insulation of the previous
example at 50 Hz when the insulation surface is 0.01 m2.

Solution: The electric field over the insulation is ψe = DS = 0.0354 µA s.
The time-dependent electric field over the slot insulation is

ψe (t) = ψ̂e sin ωt = 0.0354 µA s sin 314t.

Differentiating with respect to time gives

dψe (t)

dt
= ωψ̂e cos ωt = 11 µA cos 314t.

The effective current over the insulation is hence 11/
√

2 = 7.86 µA.

Here we see that the displacement current is insignificant from the viewpoint of the ma-
chine’s basic functionality. However, when a motor is supplied by a frequency converter and
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the transistors create high frequencies, significant displacement currents may run across the
insulation and bearing current problems, for instance, may occur.

1.2 Numerical Solution

The basic design of an electrical machine, that is the dimensioning of the magnetic and elec-
tric circuits, is usually carried out by applying analytical equations. However, accurate per-
formance of the machine is usually evaluated using different numerical methods. With these
numerical methods, the effect of a single parameter on the dynamical performance of the
machine can be effectively studied. Furthermore, some tests, which are not even feasible
in laboratory circumstances, can be virtually performed. The most widely used numerical
method is the finite element method (FEM), which can be used in the analysis of two- or
three-dimensional electromagnetic field problems. The solution can be obtained for static,
time-harmonic or transient problems. In the latter two cases, the electric circuit describing the
power supply of the machine is coupled with the actual field solution. When applying FEM
in the electromagnetic analysis of an electrical machine, special attention has to be paid to the
relevance of the electromagnetic material data of the structural parts of the machine as well as
to the construction of the finite element mesh.

Because most of the magnetic energy is stored in the air gap of the machine and important
torque calculation formulations are related to the air-gap field solution, the mesh has to be
sufficiently dense in this area. The rule of thumb is that the air-gap mesh should be divided
into three layers to achieve accurate results. In the transient analysis, that is in time-stepping
solutions, the selection of the size of the time step is also important in order to include the
effect of high-order time harmonics in the solution. A general method is to divide one time
cycle into 400 steps, but the division could be even denser than this, in particular with high-
speed machines.

There are five common methods to calculate the torque from the FEM field solution. The
solutions are (1) the Maxwell stress tensor method, (2) Arkkio’s method, (3) the method
of magnetic coenergy differentiation, (4) Coulomb’s virtual work and (5) the magnetizing
current method. The mathematical torque formulations related to these methods will shortly
be discussed in Sections 1.4 and 1.5.

The magnetic fields of electrical machines can often be treated as a two-dimensional case,
and therefore it is quite simple to employ the magnetic vector potential in the numerical so-
lution of the field. In many cases, however, the fields of the machine are clearly three dimen-
sional, and therefore a two-dimensional solution is always an approximation. In the following,
first, the full three-dimensional vector equations are applied.

The magnetic vector potential A is given by

B = ∇ × A; (1.22)

Coulomb’s condition, required to define unambiguously the vector potential, is written as

∇ · A = 0. (1.23)
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The substitution of the definition for the magnetic vector potential in the induction law (1.3)
yields

∇ × E = −∇ × ∂

∂t
A. (1.24)

Electric field strength can be expressed by the vector potential A and the scalar electric
potential φ as

E = −∂A
∂t

− ∇φ (1.25)

where φ is the reduced electric scalar potential. Because ∇ × ∇φ ≡ 0, adding a scalar po-
tential causes no problems with the induction law. The equation shows that the electric field
strength vector consists of two parts, namely a rotational part induced by the time dependence
of the magnetic field, and a nonrotational part created by electric charges and the polarization
of dielectric materials.

Current density depends on the electric field strength

J = σE = −σ
∂A
∂t

− σ∇φ. (1.26)

Ampère’s law and the definition for vector potential yield

∇ ×
(

1

µ
∇ × A

)
= J. (1.27)

Substituting (1.26) into (1.27) gives

∇ ×
(

1

µ
∇ × A

)
+ σ

∂A
∂t

+ σ∇φ = 0. (1.28)

The latter is valid in areas where eddy currents may be induced, whereas the former is valid
in areas with source currents J = Js, such as winding currents, and areas without any current
densities J = 0.

In electrical machines, a two-dimensional solution is often the obvious one; in these cases,
the numerical solution can be based on a single component of the vector potential A. The field
solution (B, H) is found in an xy plane, whereas J, A and E involve only the z-component.
The gradient ∇φ only has a z-component, since J and A are parallel to z, and (1.26) is valid.
The reduced scalar potential is thus independent of x- and y-components. φ could be a linear
function of the z-coordinate, since a two-dimensional field solution is independent of z. The
assumption of two-dimensionality is not valid if there are potential differences caused by
electric charges or by the polarization of insulators. For two-dimensional cases with eddy
currents, the reduced scalar potential has to be set as φ = 0.
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In a two-dimensional case, the previous equation is rewritten as

−∇ ·
(

1

µ
∇ Az

)
+ σ

∂ Az

∂t
= 0. (1.29)

Outside eddy current areas, the following is valid:

−∇ ·
(

1

µ
∇ Az

)
= Jz . (1.30)

The definition of vector potential yields the following components for flux density:

Bx = ∂ Az

∂y
, By = −∂ Az

∂x
. (1.31)

Hence, the vector potential remains constant in the direction of the flux density vector. Con-
sequently, the iso-potential curves of the vector potential are flux lines. In the two-dimensional
case, the following formulation can be obtained from the partial differential equation of the
vector potential:

−k
[

∂

∂x

(
ν
∂ Az

∂x

)
+ ∂

∂y

(
ν
∂ Az

∂y

)]
= kJ. (1.32)

Here ν is the reluctivity of the material. This again is similar to the equation for a static electric
field

∇ · (ν∇A) = −J. (1.33)

Further, there are two types of boundary conditions. Dirichlet’s boundary condition indi-
cates that a known potential, here the known vector potential

A = constant, (1.34)

can be achieved for a vector potential for instance on the outer surface of an electrical machine.
The field is parallel to the contour of the surface. Similar to the outer surface of an electrical
machine, also the centre line of the machine’s pole can form a symmetry plane. Neumann’s
homogeneous boundary condition determined with the vector potential

ν
∂A
∂n

= 0 (1.35)

can be achieved when the field meets a contour perpendicularly. Here n is the normal unit
vector of a plane. A contour of this kind is for instance part of a field confined to infinite
permeability iron or the centre line of the pole clearance.



P1: OTA/XYZ P2: ABC

c01 JWBK312-Pyrhonen March 24, 2010 13:42 Printer Name: Yet to Come

12 Design of Rotating Electrical Machines

x

y

z0=
∂
∂

n

A
ν

A is constant,
corresponds to a flux line

Dirichlet

Neumann

l

A is constant,
corresponds to Dirichlet´s
boundary condition

Φ12

A1,A2

Figure 1.6 Left, a two-dimensional field and its boundary conditions for a salient-pole synchronous
machine are illustrated. Here, the constant value of the vector potential A (e.g. the machine’s outer
contour) is taken as Dirichlet’s boundary condition, and the zero value of the derivative of the vector po-
tential with respect to normal is taken as Neumann’s boundary condition. In the case of magnetic scalar
potential, the boundary conditions with respect to potential would take opposite positions. Because of
symmetry, the zero value of the normal derivative of the vector potential corresponds to the constant
magnetic potential Vm, which in this case would be a known potential and thus Dirichlet’s boundary
condition. Right, a vector-potential-based field solution of a two-pole asynchronous machine assuming
a two-dimensional field is presented

The magnetic flux penetrating a surface is easy to calculate with the vector potential.
Stoke’s theorem yields for the flux

Φ =
∫

S

B · dS =
∫

S

(∇ × A) · dS =
∮

l

A · dl. (1.36)

This is an integral around the contour l of the surface S. These phenomena are illustrated with
Figure 1.6. In the two-dimensional case of the illustration, the end faces’ share of the integral
is zero, and the vector potential along the axis is constant. Consequently, for a machine of
length l we obtain a flux

Φ12 = l (A1 − A2) . (1.37)

This means that the flux Φ12 is the flux between vector equipotential lines A1 and A2.

1.3 The Most Common Principles Applied to Analytic Calculation

The design of an electrical machine involves the quantitative determination of the magnetic
flux of the machine. Usually, phenomena in a single pole are analysed. In the design of a mag-
netic circuit, the precise dimensions for individual parts are determined, the required current
linkage for the magnetic circuit and also the required magnetizing current are calculated, and
the magnitude of losses occurring in the magnetic circuit are estimated.
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If the machine is excited with permanent magnets, the permanent magnet materials have to
be selected and the main dimensions of the parts manufactured from these materials have to
be determined. Generally, when calculating the magnetizing current for a rotating machine,
the machine is assumed to run at no load: that is, there is a constant current flowing in the
magnetizing winding. The effects of load currents are analysed later.

The design of a magnetic circuit of an electrical machine is based on Ampère’s law (1.4)
and (1.8). The line integral calculated around the magnetic circuit of an electrical machine,
that is the sum of magnetic potential differences

∑
Um,i , is equal to the surface integral of the

current densities over the surface S of the magnetic circuit. (The surface S here indicates the
surface penetrated by the main flux.) In practice, in electrical machines, the current usually
flows in the windings, the surface integral of the current density corresponding to the sum of
these currents (flowing in the windings), that is the current linkage Θ . Now Ampère’s law can
be rewritten as

Um,tot =
∑

Um,i =
∮

l

H · dl =
∮

S

J · dS = Θ =
∑

i. (1.38)

The sum of magnetic potential differences Um around the complete magnetic circuit is
equal to the sum of the magnetizing currents in the circuit, that is the current linkage Θ . In
simple applications, the current sum may be given as

∑
i = kw Ni , where kwN is the effective

number of turns and i the current flowing in them. In addition to the windings, this current
linkage may also involve the effect of the permanent magnets. In practice, when calculating
the magnetic voltage, the machine is divided into its components, and the magnetic voltage
Um between points a and b is determined as

Um,ab =
∫ b

a
H · dl. (1.39)

In electrical machines, the field strength is often in the direction of the component in ques-
tion, and thus Equation (1.39) can simply be rewritten as

Um,ab =
∫ b

a
Hdl. (1.40)

Further, if the field strength is constant in the area under observation, we get

Um,ab = Hl. (1.41)

In the determination of the required current linkage Θ of a machine’s magnetizing winding,
the simplest possible integration path is selected in the calculation of the magnetic voltages.
This means selecting a path that encloses the magnetizing winding. This path is defined as the
main integration path and it is also called the main flux path of the machine (see Chapter 3).
In salient-pole machines, the main integration path crosses the air gap in the middle of the
pole shoes.
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Example 1.5: Consider a C-core inductor with a 1 mm air gap. In the air gap, the flux
density is 1 T. The ferromagnetic circuit length is 0.2 m and the relative permeability of
the core material at 1 T is µr = 3500. Calculate the field strengths in the air gap and the
core, and also the magnetizing current needed. How many turns N of wire carrying a 10 A
direct current are needed to magnetize the choke to 1 T? Fringing in the air gap is neglected
and the winding factor is assumed to be kw = 1.

Solution: According to (1.20), the magnetic field strength in the air gap is

Hδ = Bδ/µ0 = 1 V s/m2/
(
4π · 10−7 V s/A m

) = 795 kA/m.

The corresponding magnetic field strength in the core is

HFe = BFe
/

(µrµ0) = 1 V s/m2
/(

3500 · 4π · 10−7 V s/A m
) = 227 A/m.

The magnetic voltage in the air gap (neglecting fringing) is

Um,δ = Hδδ = 795 kA/m · 0.001 m = 795 A.

The magnetic voltage in the core is

Um,Fe = HFelFe = 227 A/m · 0.2 m = 45 A.

The magnetomotive force (mmf) of the magnetic circuit is

∮

l

H · dl = Um,tot =
∑

Um,i = Um,δ + Um,Fe = 795 A + 45 A = 840 A.

The current linkage Θ of the choke has to be of equal magnitude with the mmf Um,tot,

Θ =
∑

i = kw Ni = Um,tot.

We get

N = Um,tot

kwi
= 840 A

1 · 10 A
= 84 turns.

In machine design, not only does the main flux have to be analysed, but also all the leakage
fluxes of the machine have to be taken into account.

In the determination of the no-load curve of an electrical machine, the magnetic voltages of
the magnetic circuit have to be calculated with several different flux densities. In practice, for
the exact definition of the magnetizing curve, a computation program that solves the different
magnetizing states of the machine is required.

According to their magnetic circuits, electrical machines can be divided into two main cate-
gories: in salient-pole machines, the field windings are concentrated pole windings, whereas in
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nonsalient-pole machines, the magnetizing windings are spatially distributed in the machine.
The main integration path of a salient-pole machine consists for instance of the following
components: a rotor yoke (yr), pole body (p2), pole shoe (p1), air gap (δ), teeth (d) and ar-
mature yoke (ya). For this kind of salient-pole machine or DC machine, the total magnetic
voltage of the main integration path therefore consists of the following components

Um,tot = Um,yr + 2Um,p2 + 2Um,p1 + 2Um,δ + 2Um,d + Um,ya. (1.42)

In a nonsalient-pole synchronous machine and induction motor, the magnetizing winding
is contained in slots. Therefore both stator (s) and rotor (r) have teeth areas (d)

Um,tot = Um,yr + 2Um,dr + 2Um,δ + 2Um,ds + Um,ys. (1.43)

With Equations (1.42) and (1.43), we must bear in mind that the main flux has to flow twice
across the teeth area (or pole arc and pole shoe) and air gap.

In a switched reluctance (SR) machine, where both the stator and rotor have salient poles
(double saliency), the following equation is valid:

Um,tot = Um,yr + 2Um,rp2 + 2Um,rp1 (α) + 2Um,δ (α) + 2Um,sp1 (α) + 2Um,sp2 + Um,ys.

(1.44)

This equation proves difficult to employ, because the shape of the air gap in an SR machine
varies constantly when the machine rotates. Therefore the magnetic voltage of both the rotor
and stator pole shoes depends on the position of the rotor α.

The magnetic potential differences of the most common rotating electrical machines can be
presented by equations similar to Equations (1.42)–(1.44).

In electrical machines constructed of ferromagnetic materials, only the air gap can be
considered magnetically linear. All ferromagnetic materials are both nonlinear and often
anisotropic. In particular, the permeability of oriented electrical steel sheets varies in different
directions, being highest in the rolling direction and lowest in the perpendicular direction.
This leads to a situation where the permeability of the material is, strictly speaking, a tensor.

The flux is a surface integral of the flux density. Commonly, in electrical machine design,
the flux density is assumed to be perpendicular to the surface to be analysed. Since the area
of a perpendicular surface S is S, we can rewrite the equation simply as

Φ =
∫

BdS. (1.45)

Further, if the flux density B is also constant, we obtain

Φ = BS. (1.46)

Using the equations above, it is possible to construct a magnetizing curve for each part of
the machine

Φab = f
(
Um,ab

)
, B = f

(
Um,ab

)
. (1.47)



P1: OTA/XYZ P2: ABC

c01 JWBK312-Pyrhonen March 24, 2010 13:42 Printer Name: Yet to Come

16 Design of Rotating Electrical Machines

In the air gap, the permeability is constant µ = µ0. Thus, we can employ magnetic conduc-
tivity, that is permeance Λ, which leads us to

Φab = ΛabUm,ab. (1.48)

If the air gap field is homogeneous, we get

Φab = ΛabUm,ab = µ0S

δ
Um,ab. (1.49)

Equations (1.38) and (1.42)–(1.44) yield the magnetizing curve for a machine

Φδ = f (Θ), Bδ = f (Θ), (1.50)

where the term Φδ is the air-gap flux. The absolute value for flux density Bδ is the maximum
flux density in the air gap in the middle of the pole shoe, when slotting is neglected. The mag-
netizing curve of the machine is determined in the order Φδ, Bδ → B → H → Um → Θ

by always selecting a different value for the air-gap flux Φδ, or for its density, and by cal-
culating the magnetic voltages in the machine and the required current linkage Θ . With the
current linkage, it is possible to determine the current I flowing in the windings. Correspond-
ingly, with the air-gap flux and the winding, we can determine the electromotive force (emf)
E induced in the windings. Now we can finally plot the actual no-load curve of the machine
(Figure 1.7)

E = f (I ). (1.51)

Im Im

E Ψ

0
0

0
0

Figure 1.7 Typical no-load curve for an electrical machine expressed by the electromotive force E or
the flux linkage Ψ as a function of the magnetizing current Im. The E curve as a function of Im has been
measured when the machine is running at no load at a constant speed. In principle, the curve resembles
a BH curve of the ferromagnetic material used in the machine. The slope of the no-load curve depends
on the BH curve of the material, the (geometrical) dimensions and particularly on the length of the
air gap
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1S
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1Φ

2Φ

3S

Figure 1.8 Laminated tooth and a coarse flux tube running in a lamination. The cross-sections of the
tube are presented with surface vectors �Si. There is a flux �Φ flowing in the tube. The flux tubes
follow the flux lines in the magnetic circuit of the electrical machine. Most of the tubes constitute the
main magnetic circuit, but a part of the flux tubes forms leakage flux paths. If a two-dimensional field
solution is assumed, two-dimensional flux diagrams as shown in Figure 1.6 may replace the flux tube
approach

1.3.1 Flux Line Diagrams

Let us consider areas with an absence of currents. A spatial magnetic flux can be assumed to
flow in a flux tube. A flux tube can be analysed as a tube of a quadratic cross-section �S. The
flux does not flow through the walls of the tube, and hence B · dS = 0 is valid for the walls.
As depicted in Figure 1.8, we can see that the corners of the flux tube form the flux lines.

When calculating a surface integral along a closed surface surrounding the surface of a flux
tube, Gauss’s law (1.15) yields

∮
B · dS = 0. (1.52)

Since there is no flux through the side walls of the tube in Figure 1.8, Equation (1.52) can
be rewritten as

∮
B1 · d�S1 =

∮
B2 · d�S2 =

∮
B3 · d�S3, (1.53)
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indicating that the flux of the flux tube is constant

�Φ1 = �Φ2 = �Φ3 = �Φ. (1.54)

A magnetic equipotential surface is a surface with a certain magnetic scalar potential Vm.
When travelling along any route between two points a and b on this surface, we must get

b∫

a

H · dl = Um,ab = Vma − Vmb = 0. (1.55)

When observing a differential route, this is valid only when H · dl = 0. For isotropic materials,
the same result can be expressed as B · dl = 0. In other words, the equipotential surfaces are
perpendicular to the lines of flux.

If we select an adequately small area �S of the surface S, we are able to calculate the flux

�Φ = B�S. (1.56)

The magnetic potential difference between two equipotential surfaces that are close enough
to each other (H is constant along the integration path l) is written as

�Um = Hl. (1.57)

The above equations give the permeance Λ of the cross-section of the flux tube

Λ = �Φ

�Um
= B · dS

Hl
= µ

dS

l
. (1.58)

The flux line diagram (Figure 1.9) comprises selected flux and potential lines. The selected
flux lines confine flux tubes, which all have an equal flux �Φ. The magnetic voltage between
the chosen potential lines is always the same, �Um. Thus, the magnetic conductivity of each
section of the flux tube is always the same, and the ratio of the distance of flux lines x to the
distance of potential lines y is always the same. If we set

x

y
= 1, (1.59)

the field diagram forms, according to Figure 1.9, a grid of quadratic elements.
In a homogeneous field, the field strength H is constant at every point of the field. According

to Equations (1.57) and (1.59), the distance of all potential and flux lines is thus always the
same. In that case, the flux diagram comprises squares of equal size.

When constructing a two-dimensional orthogonal field diagram, for instance for the air gap
of an electrical machine, certain boundary conditions have to be known to be able to draw
the diagram. These boundary conditions are often solved based on symmetry, or also because
the potential of a certain potential surface of the flux tube in Figure 1.8 is already known.
For instance, if the stator and rotor length of the machine is l, the area of the flux tube can,
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Vm2

Vm1

y

potential line

flux lines x
z

Φ

1S

Um

2S

Figure 1.9 Flux lines and potential lines in a three-dimensional area with a flux flowing across an area
where the length dimension z is constant. In principle, the diagram is thus two dimensional. Such a
diagram is called an orthogonal field diagram

without significant error, be written as dS = l dx. The interface of the iron and air is now
analysed according to Figure 1.10a. We get

dΦy = Byδldx − ByFeldx = 0 ⇒ Byδ = ByFe. (1.60)

Here, Byδ and ByFe are the flux densities of air in the y-direction and of iron in the y-direction.

µFe

x

y

By

Bx

z

iron, e.g.  rotor surface

air gap
δ

l

z

dy

x

Φ

air

iron

µ

dx

yΦ

By

Bx

y

Fe

µ0

µ0

(a) (b)

Figure 1.10 (a) Interface of air δ and iron Fe. The x-axis is tangential to the rotor surface. (b) Flux
travelling on iron surface
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In Figure 1.10a, the field strength has to be continuous in the x-direction on the iron–air
interface. If we consider the interface in the x-direction and, based on Ampère’s law, assume
a section dx of the surface has no current, we get

Hxδdx − HxFedx = 0, (1.61)

and thus

Hxδ = HxFe = BxFe

µFe
. (1.62)

By assuming that the permeability of iron is infinite, µFe → ∞, we get HxFe = Hxδ = 0
and thereby also Bxδ = µ0 Hxδ = 0.

Hence, if we set µFe → ∞, the flux lines leave the ferromagnetic material perpendicularly
into the air. Simultaneously, the interface of iron and air forms an equipotential surface. If
the iron is not saturated, its permeability is very high, and the flux lines can be assumed to
leave the iron almost perpendicularly in currentless areas. In saturating areas, the interface of
the iron and air cannot strictly be considered an equipotential surface. The magnetic flux and
the electric flux refract on the interface.

In Figure 1.10b, the flux flows in the iron in the direction of the interface. If the iron is not
saturated (µFe → ∞) we can set Bx ≈ 0. Now, there is no flux passing from the iron into air.
When the iron is about to become saturated (µFe → 1), a significant magnetic voltage occurs
in the iron. Now, the air adjacent to the iron becomes an appealing route for the flux, and
part of the flux passes into the air. This is the case for instance when the teeth of electrical
machines saturate: a part of the flux flows across the slots of the machine, even though the
permeability of the materials in the slot is in practice equal to the permeability of a vacuum.

The lines of symmetry in flux diagrams are either potential or field lines. When drawing a
flux diagram, we have to know if the lines of symmetry are flux or potential lines. Figure 1.11
is an example of an orthogonal field diagram, in which the line of symmetry forms a potential
line; this could depict for instance the air gap between the contour of an magnetizing pole of
a DC machine and the rotor.

The solution of an orthogonal field diagram by drawing is best started at those parts of the
geometry where the field is as homogeneous as possible. For instance, in the case of
Figure 1.11, we start from the point where the air gap is at its narrowest. Now, the surface
of the magnetizing pole and the rotor surface that is assumed to be smooth form the potential
lines together with the surface between the poles. First, the potential lines are plotted at equal
distances and, next, the flux lines are drawn perpendicularly to potential lines so that the area
under observation forms a grid of quadratic elements. The length of the machine being l, each
flux tube created this way carries a flux of �Φ.

With the field diagram, it is possible to solve various magnetic parameters of the area under
observation. If nΦ is the number (not necessarily an integer) of contiguous flux tubes carrying
a flux �Φ, and �Um is the magnetic voltage between the sections of a flux tube (nU sec-
tions in sequence), the permeance of the entire air gap Λδ assuming that �b = �δ can be
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Figure 1.11 Drawing an orthogonal field diagram in an air gap of a DC machine in the edge zone of a
pole shoe. Here, a differential equation for the magnetic scalar potential is solved by drawing. Dirichlet’s
boundary conditions for magnetic scalar potentials created on the surfaces of the pole shoe and the rotor
and on the symmetry plane between the pole shoes. The centre line of the pole shoe is set at the origin
of the coordinate system. At the origin, the element is dimensioned as �δ0, �b0. The �δ and �b in
different parts of the diagram have different sizes, but the �Φ remains the same in all flux tubes. The
pole pitch is τ p. There are about 23.5 flux tubes from the pole surface to the rotor surface in the figure

written as

Λδ = Φ

Umδ

= nΦ�Φ

nU �Um
=

nΦ�blµ0
�Um

�δ

nU �Um
= nΦ

nU
µ0l. (1.63)

The magnetic field strength in the enlarged element of Figure 1.11 is

H = �Um

�δ
, (1.64)

and correspondingly the magnetic flux density

B = µ0
�Um

�δ
= �Φ

�bl
. (1.65)

With Equation (1.56), it is also possible to determine point by point the distribution of flux
density on a potential line; in other words, on the surface of the armature or the magnetizing
pole. With the notation in Figure 1.11, we get

�Φ0 = B0�b0l = �Φ(x) = B(x)�b(x)l. (1.66)

In the middle of the pole, where the air-gap flux is homogeneous, the flux density is

B0 = µ0 H0 = µ0
�Um

�δ0
= µ0

Um,δ

δ0
. (1.67)
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Thus, the magnitude of flux density as a function of the x-coordinate is

B(x) = �b0

�b(x)
B0 = �b0

�b(x)
µ0

Um,δ

δ0
. (1.68)

Example 1.6: What is the permeance of the main flux in Figure 1.11 when the air gap
δ = 0.01 m and the stator stack length is l = 0.1 m? How much flux is created with Θf =
1000 A?

Solution: In the centre of the pole, the orthogonal flux diagram is uniform and we see that
�δ0 and �b0 have the same size; �δ0 = �b0 = 2 mm. The permeance of the flux tube in
the centre of the pole is

Λ0 = µ0
�b0l

�δ0
= µ0

0.02 m · 0.1 m

0.02 m
= 4π · 10−8 V s

A
.

As we can see in Figure 1.11, about 23.5 flux tubes travel from half of the stator pole
to the rotor surface. Each of these flux tubes transmits the same amount of flux, and hence
the permeance of the whole pole seen by the main flux is

Λ = 2 · 23.5 · Λ0 = 47 · Λ0 = 47 · 4π · 10−8 V s

A
= 5.9

µV s

A
.

If we have Θf = 1000 A current linkage magnetizing the air gap, we get the flux

Φ = ΛΘf = 5.9
µV s

A
· 1000 A = 5.9 mV s.

1.3.2 Flux Diagrams for Current-Carrying Areas

Let us first consider a situation in which an equivalent linear current density A [A/m] covers
the area under observation. In principle, the linear current density corresponds to the surface
current Js = n × H0 induced in a conducting medium by an alternating field strength H0

outside the surface. The surface normal unit vector is denoted by n.
In an electrical machine with windings, the ‘artificial surface current’, that is the local value

of the linear current density A, may for instance be calculated as a current sum flowing in a
slot divided by the slot pitch. Equivalent linear current density can be employed in approxima-
tion, because the currents flowing in the windings of electrical machines are usually situated
close to the air gap, and the current linkages created by the currents excite mainly the air gaps.
Thus, we can set µ = µ0 in the observed area of equivalent linear current density. The utiliza-
tion of equivalent linear current density simplifies the manual calculation of the machine by
idealizing the potential surfaces, and does not have a crucial impact on the field diagram in
the areas outside the area of linear current density. Figure 1.12 illustrates an equivalent linear
current density.

The value for equivalent linear current density A is expressed per unit length in the direc-
tion of observation. The linear current density A corresponds to the tangential magnetic field
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Figure 1.12 (a) General representation of linear current density A [A/m] and (b) its application to the
field diagram of a magnetizing pole of a DC machine. It is important to note that in the area of the
pole body, the potential lines now pass from air to iron. Dirichlet’s boundary conditions indicate here a
known equiscalar potential surface

strength Hyδ. Assuming the permeability of iron to be infinite, Ampère’s law yields for the
element dy of Figure 1.12a

∮
H · dl = dΘ = Hyairdy − HyFedy = Ady. (1.69)

Further, this gives us

Hyair = A and Byair = µ0 A. (1.70)

Equation (1.70) indicates that in the case of Figure 1.12 we have a tangential flux density
on the pole body surface. The tangential flux density makes the flux lines travel inclined to
the pole body surface and not perpendicular to it as in currentless areas.

If we assume that the phenomenon is observed on the stator inner surface or on the
rotor outer surface, the x-components may be regarded as tangential components and the
y-components as normal components. In the air gap δ, there is a tangential field strength Hxδ

along the x-component, and a corresponding component of flux density Bxδ created by the
linear current density A. This is essential when considering the force density, the tangential
stress σ Ftan, that generates torque (Maxwell stresses will be discussed later). On iron surfaces
with linear current density, the flux lines no longer pass perpendicularly from the iron to the
air gap, as Figure 1.12 depicting the field diagram of a DC machine’s magnetizing pole also
illustrates. The influence of a magnetizing winding on the pole body is illustrated with the
linear current density. Since the magnetizing winding is evenly distributed over the length
of the pole body (the linear current density being constant), it can be seen that the potential
changes linearly in the area of linear current density in the direction of the height of the pole.
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Figure 1.13 Current-carrying conductor in a slot and its field diagram. The illustration on the left
demonstrates the closed line integral around the surface �S; also some flux lines in the iron are plotted.
Note that the flux lines travelling across the slot depict leakage flux

As evidence of this we can see that in Figure 1.12 the potential lines starting in the air gap
enter the area of linear current density at even distances.

In areas with current densities J, the potential lines become gradient lines. This can be seen
in Figure 1.13 at points a, b and c. We could assume that the figure illustrates for instance a
nonsalient-pole synchronous machine field winding bar carrying a DC density. The magnetic
potential difference between Vm4 and Vm0 equals the slot current.

The gradient lines meet the slot leakage flux lines orthogonally, which means that∫
H · dl = 0 along a gradient line. In the figure, we calculate a closed line integral around

the area �S of the surface S

∮
H · dl = Vm3 − Vm2 =

∫
�S

J · dS, (1.71)

where we can see that when the current density J and the difference of magnetic potentials
�Um are constant, the area �S of the surface S also has to be constant. In other words, the
selected gradient lines confine areas of equal size from the surface S with a constant current
density. The gradient lines meet at a single point d, which is called an indifference point. If
the current-carrying area is confined by an area with infinite permeability, the border line is a
potential line and the indifference point is located on this border line. If the permeability of
iron is not infinite, then d is located in the current-carrying area, as in Figure 1.13. If inside a
current-carrying area the line integral is defined for instance around the area �S, we can see
that the closer to the point d we get, the smaller become the distances between the gradient
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lines. In order to maintain the same current sum in the observed areas, the heights of the areas
�S have to be changed.

Outside the current-carrying area, the following holds:

�Φ = Λ�Um = µ0l
h

b

∫
S

J · dS. (1.72)

Inside the area under observation, when a closed line integral according to Equation (1.71)
is written only for the area �S (<S), the flux of a flux tube in a current-carrying area becomes

�Φ ′ = µ0l

(
h

b

)′ ∫
�S

J · dS (1.73)

and thus, in that case, if (h/b)′ = (h/b), then in fact �Φ ′ < �Φ. If the current density J in
the current-carrying area is constant, �Φ ′ = �Φ�S/S is valid. When crossing the bound-
ary between a current-carrying slot and currentless iron, the flux of the flux tube cannot
change. Therefore, the dimensions of the line grid have to be altered. When J is constant and
�Φ ′ = �Φ, Equations (1.72) and (1.73) yield for the dimensions in the current-carrying area

(
h

b

)′
= Sh

�Sb
. (1.74)

This means that near the indifference point d the ratio (h/b) increases. An orthogonal field dia-
gram can be drawn for a current-carrying area by correcting the equivalent linear current den-
sity by iterating the created diagram. For a current-carrying area, gradient lines are extended
from potential lines up to the indifference point. Now, bearing in mind that the gradient lines
have to divide the current-carrying area into sections of equal size, next the orthogonal flux
lines are plotted by simultaneously paying attention to changing dimensions. The diagram is
altered iteratively until Equation (1.74) is valid to the required accuracy.

1.4 Application of the Principle of Virtual Work in the Determination
of Force and Torque

When investigating electrical equipment, the magnetic circuit of which changes form during
operation, the easiest method is to apply the principle of virtual work in the estimation of force
and torque. Examples of this kind of equipment are double-salient-pole reluctant machines,
various relays and so on.

Faraday’s induction law presents the voltage induced in the winding, which creates a current
that tends to resist the changes in flux. The voltage equation for the winding is written as

u = Ri + dΨ

dt
= Ri + d

dt
Li, (1.75)

where u is the voltage connected to the coil terminals, R is the resistance of the winding and
Ψ is the coil flux linkage, and L the self-inductance of the coil consisting of its magnetizing
inductance and leakage inductance: L = Ψ /i = NΦ/i = N2Λ = N2/Rm (see also Section 1.6).
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If the number of turns in the winding is N and the flux is Φ, Equation (1.75) can be rewritten
as

u = Ri + N
dΦ

dt
. (1.76)

The required power in the winding is written correspondingly as

ui = Ri2 + Ni
dΦ

dt
, (1.77)

and the energy

dW = P dt = Ri2 dt + Ni dΦ. (1.78)

The latter energy component Ni dΦ is reversible, whereas Ri2 dt turns into heat. Energy cannot
be created or destroyed, but may only be converted to different forms. In isolated systems,
the limits of the energy balance can be defined unambiguously, which simplifies the energy
analysis. The net energy input is equal to the energy stored in the system. This result, the first
law of thermodynamics, is applied to electromechanical systems, where electrical energy is
stored mainly in magnetic fields. In these systems, the energy transfer can be represented by
the equation

dWel = dWmec + dWΦ + dWR (1.79)

where

dWel is the differential electrical energy input,
dWmec is the differential mechanical energy output,
dWΦ is the differential change of magnetic stored energy,
dWR is the differential energy loss.

Here the energy input from the electric supply is written equal to the mechanical energy
together with the stored magnetic field energy and heat loss. Electrical and mechanical energy
have positive values in motoring action and negative values in generator action. In a magnetic
system without losses, the change of electrical energy input is equal to the sum of the change
of work done by the system and the change of stored magnetic field energy

dWel = dWmec + dWΦ, (1.80)

dWel = ei dt. (1.81)

In the above, e is the instantaneous value of the induced voltage, created by changes in
the energy in the magnetic circuit. Because of this electromotive force, the external electric
circuit converts power into mechanical power by utilizing the magnetic field. This law of
energy conversion combines a reaction and a counter-reaction in an electrical and mechanical
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Φ

R

F

i

u

x

N turns

FΦ

, eΨ

Figure 1.14 Electromagnetic relay connected to an external voltage source u. The mass of a moving
yoke is neglected and the resistance of the winding is assumed to be concentrated in the external resistor
R. There are N turns in the winding and a flux Φ flowing in the magnetic circuit; a flux linkage Ψ ≈
NΦ is produced in the winding. The negative time derivative of the flux linkage is an emf, e. The force
F pulls the yoke open. The force is produced by a mechanical source. A magnetic force FΦ tries to close
the air gap

system. The combination of Equations (1.80) and (1.81) yields

dWel = ei dt = dΨ

dt
i dt = i dΨ = dWmec + dWΦ. (1.82)

Equation (1.82) lays a foundation for the energy conversion principle. Next, its utilization
in the analysis of electromagnetic energy converters is discussed.

As is known, a magnetic circuit (Figure 1.14) can be described by an inductance L deter-
mined from the number of turns of the winding, the geometry of the magnetic circuit and the
permeability of the magnetic material. In electromagnetic energy converters, there are air gaps
that separate the moving magnetic circuit parts from each other. In most cases – because of
the high permeability of iron parts – the reluctance Rm of the magnetic circuit consists mainly
of the reluctances of the air gaps. Thus, most of the energy is stored in the air gap. The wider
the air gap, the more energy can be stored. For instance, in induction motors this can be seen
from the fact that the wider is the gap, the higher is the magnetizing current needed.

According to Faraday’s induction law, Equation (1.82) yields

dWel = i dΨ. (1.83)

The computation is simplified by neglecting for instance the magnetic nonlinearity and iron
losses. The inductance of the device now depends only on the geometry and, in our example,
on the distance x creating an air gap in the magnetic circuit. The flux linkage is thus a product
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of the varying inductance and the current

Ψ = L(x)i. (1.84)

A magnetic force FΦ is determined as

dWmec = FΦ dx . (1.85)

From Equations (1.83) and (1.85), we may rewrite Equation (1.80) as

dWΦ = i dΨ − FΦ dx . (1.86)

Since it is assumed that there are no losses in the magnetic energy storage, dWΦ is deter-
mined from the values of Ψ and x. dWΦ is independent of the integration path A or B, and the
energy equation can be written as

WΦ (Ψ0, x0) =
∫

path A

dWΦ+
∫

path B

dWΦ. (1.87)

With no displacement allowed (dx = 0), Equations (1.86) now (1.87) yield

WΦ (Ψ, x0) =
Ψ∫

0

i (Ψ, x0)dΨ. (1.88)

In a linear system, Ψ is proportional to current i, as in Equations (1.84) and (1.88). We there-
fore obtain

WΦ (Ψ, x0) =
Ψ∫

0

i (Ψ, x0)dΨ =
Ψ∫

0

Ψ

L (x0)
dΨ = 1

2

Ψ 2

L (x0)
= 1

2
L (x0) i2. (1.89)

The magnetic field energy can also be represented by the energy density wΦ = WΦ/V =
B H/2 [J/m3] in a magnetic field integrated over the volume V of the magnetic field. This
gives

WΦ =
∫

V

1

2
(H · B) dV . (1.90)

Assuming the permeability of the magnetic medium constant and substituting B = µH
gives

WΦ =
∫

V

1

2

B2

µ
dV . (1.91)
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This yields the relation between the stored energy in a magnetic circuit and the electrical
and mechanical energy in a system with a lossless magnetic energy storage. The equation for
differential magnetic energy is expressed in partial derivatives

dWΦ (Ψ, x) = ∂WΦ

∂Ψ
dΨ + ∂WΦ

∂x
dx . (1.92)

Since Ψ and x are independent variables, Equations (1.86) and (1.92) have to be equal at all
values of dΨ and dx, which yields

i = ∂WΦ (Ψ, x)

∂Ψ
, (1.93)

where the partial derivative is calculated by keeping x constant. The force created by the
electromagnet at a certain flux linkage level Ψ can be calculated from the magnetic energy

FΦ = −∂WΦ (Ψ, x)

∂x
. (1.94a)

The minus sign is due to the coordinate system in Figure 1.14. The corresponding equation is
valid for torque as a function of angular displacement θ while keeping flux linkage Ψ constant

TΦ = −∂WΦ (Ψ, θ )

∂θ
. (1.94b)

Alternatively, we may employ coenergy (see Figure 1.15a), which gives us the force directly
as a function of current. The coenergy W ′

Φ is determined as a function of i and x as

W ′
Φ (i, x) = iΨ − WΦ (Ψ, x) . (1.95)

B

00 i H

Ψ
energy
density

coenergy
densitycoenergy

(a)            (b)                                                     (c)

0 i

Ψ

energy energy

coenergy

W' W'

W Wx, 
co

ns
t. 

x, 
co

nst.
 

Figure 1.15 Determination of energy and coenergy with current and flux linkage (a) in a linear case
(L is constant), (b) and (c) in a nonlinear case (L saturates as a function of current). If the figure is used
to illustrate the behaviour of the relay in Figure 1.14, the distance x remains constant
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In the conversion, it is possible to apply the differential of iΨ

d(iΨ ) = i dΨ + Ψ di. (1.96)

Equation (1.95) now yields

dW ′
Φ (i, x) = d (iΨ ) − dWΦ (Ψ, x) . (1.97)

By substituting Equations (1.86) and (1.96) into Equation (1.97) we obtain

dW ′
Φ (i, x) = Ψ di + FΦ dx . (1.98)

The coenergy W ′
Φ is a function of two independent variables, i and x. This can be represented

by partial derivatives

dW ′
Φ (i, x) = ∂W ′

Φ

∂i
di + ∂W ′

Φ

∂x
dx . (1.99)

Equations (1.98) and (1.99) have to be equal at all values of di and dx. This gives us

Ψ = ∂W ′
Φ (i, x)

∂i
, (1.100)

FΦ = ∂W ′
Φ(i, x)

∂x
. (1.101a)

Correspondingly, when the current i is kept constant, the torque is

TΦ = ∂W ′
Φ(i, θ )

∂θ
. (1.101b)

Equation (1.101) gives a mechanical force or a torque directly from the current i and dis-
placement x, or from the angular displacement θ . The coenergy can be calculated with i
and x

W ′
Φ (i0, x0) =

i∫

0

Ψ (i, x0)di. (1.102)

In a linear system, Ψ and i are proportional, and the flux linkage can be represented by the
inductance depending on the distance, as in Equation (1.84). The coenergy is

W ′
Φ (i, x) =

i∫

0

L (x)i di = 1

2
L (x) i2. (1.103)
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Using Equation (1.91), the magnetic energy can be expressed also in the form

WΦ =
∫

V

1

2
µH 2dV . (1.104)

In linear systems, the energy and coenergy are numerically equal, for instance 0.5Li2 =
0.5Ψ 2/L or (µ/2)H2 = (1/2µ)B2. In nonlinear systems, Ψ and i or B and H are not pro-
portional. In a graphical representation, the energy and coenergy behave in a nonlinear way
according to Figure 1.15.

The area between the curve and flux linkage axis can be obtained from the integral i dΨ ,
and it represents the energy stored in the magnetic circuit WΦ . The area between the curve
and the current axis can be obtained from the integral Ψ di, and it represents the coenergy W ′

Φ .
The sum of these energies is, according to the definition,

WΦ + W ′
Φ = iΨ. (1.105)

In the device in Figure 1.14, with certain values of x and i (or Ψ ), the field strength has to
be independent of the method of calculation; that is, whether it is calculated from energy or
coenergy – graphical presentation illustrates the case. The moving yoke is assumed to be in
a position x so that the device is operating at the point a, Figure 1.16a. The partial derivative
in Equation (1.92) can be interpreted as �WΦ /�x, the flux linkage Ψ being constant and
�x → 0. If we allow a change �x from position a to position b (the air gap becomes smaller),
the stored energy change −�WΦ will be as shown in Figure 1.16a by the shaded area, and
the energy thus becomes smaller in this case. Thus, the force FΦ is the shaded area divided by
�x when �x → 0. Since the energy change is negative, the force will also act in the negative
x-axis direction. Conversely, the partial derivative can be interpreted as �W ′

Φ

/
�x , i being

constant and �x → 0.

Ψ Ψ

0 0i i

a a
b b

c

initial state

x, const. 

after

displ.

after

displ.

initial state

x, const.

xx − xx −

Ψ

ΦW− ΦW'+

i

(a)Ψ  is constant, i decreases                      (b) i is constant, flux linkage increases

Figure 1.16 Influence of the change �x on energy and coenergy: (a) the change of energy, when Ψ is
constant; (b) the change of coenergy, when i is constant
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The shaded areas in Figures 1.16a and b differ from each other by the amount of the small
triangle abc, the two sides of which are �i and �Ψ . When calculating the limit, �x is allowed
to approach zero, and thereby the areas of the shaded sections also approach each other.

Equations (1.94) and (1.101) give the mechanical force or torque of electric origin as partial
derivatives of the energy and coenergy functions WΦ (Ψ, x) and W ′

Φ (x, i).
Physically, the force depends on the magnetic field strength H in the air gap; this will be

studied in the next section. According to the study above, the effects of the field can be repre-
sented by the flux linkage Ψ and the current i. The force or the torque caused by the magnetic
field strength tends to act in all cases in the direction where the stored magnetic energy de-
creases with a constant flux, or the coenergy increases with a constant current. Furthermore,
the magnetic force tends to increase the inductance and drive the moving parts so that the
reluctance of the magnetic circuit finds its minimum value.

Using finite elements, torque can be calculated by differentiating the magnetic coenergy W ′

with respect to movement, and by maintaining the current constant:

T = l
dW ′

dα
= d

dα

∫

V

H∫

0

(B · dH) dV . (1.106)

In numerical modelling, this differential is approximated by the difference between two suc-
cessive calculations:

T = l
(
W ′ (α + �α) − W ′ (α)

)
�α

. (1.107)

Here, l is the machine length and �α represents the displacement between successive field
solutions. The adverse effect of this solution is that it needs two successive calculations.

Coulomb’s virtual work method in FEM is also based on the principle of virtual work. It
gives the following expression for the torque:

T =
∫

Ω

l

⎡
⎣(−BtJ−1) dJ

dϕ
H +

H∫

0

B dH |J|−1 d |J|
dϕ

⎤
⎦dΩ, (1.108)

where the integration is carried out over the finite elements situated between fixed and moving
parts, having undergone a virtual deformation. In Equation (1.108), l is the length, J denotes
the Jacobian matrix, dJ/dϕ is its differential representing element deformation during the
displacement dϕ, |J| is the determinant of J and d |J| /dϕ is the differential of the determinant,
representing the variation of the element volume during displacement dϕ. Coulomb’s virtual
work method is regarded as one of the most reliable methods for calculating the torque and it
is favoured by many important commercial suppliers of FEM programs. Its benefit compared
with the previous virtual work method is that only one solution is needed to calculate the
torque.
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Figure 1.17 Flux solution of a loaded 30 kW, four-pole, 50 Hz induction motor, the machine rotating
counterclockwise as a motor. The figure depicts a heavy overload. The tangential field strength in this
case is very large and produces a high torque. The enlarged figure shows the tangential and normal
components of the field strength in principle. Reproduced by permission of Janne Nerg

1.5 Maxwell’s Stress Tensor; Radial and Tangential Stress

Maxwell’s stress tensor is probably the most generic idea of producing magnetic stresses,
forces and torque. We discussed previously that the linear current density A on a metal sur-
face creates tangential field strength components on the metal surfaces. Such tangential field
strength components are essential in both tangential stress generation and torque generation
in rotating-field electrical machines.

In numerical methods, Maxwell’s stress tensor is often employed in the calculation of forces
and torque. The idea is based on Faraday’s statement according to which stress occurs in the
flux lines. Figures 1.17 depict the flux solution for an air gap of an asynchronous machine,
when the machine is operating under a heavy load. Such a heavy load condition is selected in
order to illustrate clearly the tangential routes of the flux lines. When we compare Figure 1.17
with Figure 1.6, we can see the remarkable difference in the behaviour of the flux lines in the
vicinity of the air gap.

In the figures, the flux lines cross the air gap somewhat tangentially so that if we imagine
the flux lines to be flexible, they cause a notable torque rotating the rotor counterclockwise.
According to Maxwell’s stress theory, the magnetic field strength between objects in a vacuum
creates a stress σ F on the object surfaces, given by

σF = 1

2
µ0 H 2. (1.109)

The stress occurs in the direction of lines of force and creates an equal pressure perpendic-
ularly to the lines. When the stress term is divided into its normal and tangential components
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with respect to the object in question, we obtain

σFn = 1

2
µ0

(
H 2

n − H 2
tan

)
, (1.110)

σF tan = µ0 Hn Htan. (1.111)

Considering torque production, the tangential component σ Ftan is of the greatest interest.
The total torque exerted on the rotor can be obtained by integrating the stress tensor for in-
stance over a cylinder Γ that confines the rotor. The cylinder is dimensioned exactly to enclose
the rotor. The torque is obtained by multiplying the result by the radius of the rotor. Note that
no steel may be left inside the surface to be integrated. The torque can be calculated by the
following relationship:

T = l

µ0

∫

Γ

r ×
(

(B · n) BdS − B2n
2

)
dΓ , (1.112)

where l is the length, B is the flux density vector, n the normal unit vector in the elements
and r the lever arm, in other words the vector which connects the rotor origin to the midpoint
of the segment dΓ . The former term contains the tangential force contributing to the torque.
Since n and r are parallel the latter term does not contribute to the torque but represents the
normal stress.

Maxwell’s stress tensor illustrates well the fundamental principle of torque generation. Un-
fortunately, because of numerical inaccuracies, for instance in the FEM, the obtained torque
must be employed with caution. Therefore, in the FEM analysis, the torque is often solved
by other methods, for instance Arkkio’s method, which is a variant of Maxwell’s stress tensor
and is based on integrating the torque over the whole volume of the air gap constituted by the
layers of radii rs and rr. The method has been presented with the following expression for the
torque:

T = l

µ0 (rs − rr)

∫

S

r Bn BtandS, (1.113)

in which l is the length, Bn and Btan denote the radial and tangential flux densities in the
elements of surface S and formed between radii rr and rs. dS is the surface of one element.

The magnetizing current method is yet another variant of Maxwell’s stress method used in
FEM solvers. This method is based on the calculation of the magnetizing current and the flux
density over the element edges that constitute the boundary between the iron or permanent
magnet and the air. Here the torque can be determined by the following expression:

T = l

µ0

∫

Γc

{
r × [(

B2
tan,Fe − B2

tan,air

)
n − (

Btan,Fe Btan,air − B2
n,air

)
t
]}

dΓc, (1.114)

where l is the machine length, Γc denotes all the interfaces between the iron or permanent
magnet and the air, and dΓc is the length of the element edge located at the boundary. The
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vector r is the lever arm, in other words the vector connecting the rotor origin to the midpoint
of dΓc. Btan and Bn denote the tangential and normal flux densities with respect to dΓ c. The
subscript Fe refers to the iron or permanent magnet. The normal unit vector is n and tangential
unit vector t.

Equation (1.70) states that a linear current density A creates a tangential field strength in an
electrical machine: Htan,δ = A and Btan,δ = µ0 A. According to Equation (1.111), the tangen-
tial stress in an air gap is given by

σF tan = µ0 Hn Htan = µ0 Hn A = Bn A. (1.115)

This equation gives a local time-dependent value for the tangential stress when local instanta-
neous values for the normal flux density Bn and the linear current density A are given. Air-gap
flux density and linear current density thereby determine the tangential stress occurring in
electrical machines. If we want to emphasize the place and time dependence of the stress, we
may write the expression in the form

σF tan (x, t) = µ0 Hn (x, t) Htan (x, t) = µ0 Hn (x, t) A (x, t) = Bn (x, t) A (x, t) . (1.116)

This expression is a very important starting point for the dimensioning of an electrical ma-
chine. The torque of the machine may be directly determined by this equation when the rotor
dimensions are selected.

Example 1.7: Assume a sinusoidal air-gap flux density distribution having a maximum
value of 0.9 T and a sinusoidal linear current density with a maximum value of 40 kA/m
in the air gap. To simplify the case, also assume that the distributions are overlapping; in
other words, there is no phase shift. This condition may occur on the stator surface of a
synchronous machine; however, in the case of an induction machine, the condition never
takes place in the steady state, since the stator also has to carry the magnetizing current. In
our example, both the diameter and the length of the rotor are 200 mm. What is the power
output, if the rotation speed is 1450 min−1?

Solution: Because σF tan (x) = B̂n sin (x) Â sin (x), the average tangential stress becomes
σ F tan (x) = 0.5B̂n Â = 18 kPa. The active surface area of the rotor is πDl = 0.126 m2.
When we multiply the rotor surface area by the average tangential stress, we obtain
2270 N. This tangential force occurs everywhere at a radial distance of 0.1 m from the
centre of the axis, the torque being thus 227 N m. The angular velocity is 151 rad/s, which
produces a power of approximately 34 kW. These values are quite close to the values of a
real, totally enclosed 30 kW induction machine.

In electrical machines, the tangential stresses typically vary between 10 and 50 kPa de-
pending on the machine construction, operating principle and especially on the cooling. For
instance, the values for totally enclosed, permanent magnet synchronous machines vary typi-
cally between 20 and 30 kPa. For asynchronous machines, the values are somewhat lower. In
induction machines with open-circuit cooling, the value of 50 kPa is approached. Using direct
cooling methods may give notably higher tangential stresses.
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Example 1.8: Calculate the force between two iron bodies when the area of the air gap
between the bodies is 10 cm2, and the flux density is 1.5 T. The relative permeability of
iron is assumed to be 700. It is also assumed that the tangential component of the field
strength is zero.

Solution:

σFn = 1

2
µ0

(
H 2

n

) = 1

2
µ0

(
Bn

µ0

)2

= 8.95 · 105 V s

A m

(
A

m

)2

= 8.95 · 105 V A s

m3
= 8.95 · 105 N

m2
.

This is the stress in the air gap. The force acting on the iron can be approximated by
multiplying the stress by the area of the air gap. Strictly speaking, we should investigate
the permeability difference of the iron and air, the force acting on the iron therefore
being

FFn = SσFn

(
1 − 1

µrFe

)
=

(
1 − 1

700

)
0.001 m2 · 8.95 · 105 N

m2
= 894 N.

No magnetic force is exerted on the air (a nonmagnetic material (µr = 1)), although some
stress occurs in the air because of the field strength. Only the part of air-gap flux that is caused
by the magnetic susceptibility of the iron circuit creates a force. By applying the stress tensor,
we may now write for a normal force

FFn = B2
δSδ

2 µ0

(
1 − 1

µr

)
. (1.117)

For iron, 1/µr � 1, and thus, in practice, the latter term in Equation (1.117) is of no sig-
nificance, unless the iron is heavily saturated.

From this example, we may conclude that the normal stress is usually notably higher than
the tangential stress. In these examples, the normal stress was 895 000 Pa, and the tangential
stress 18 000 Pa. Some cases have been reported in which attempts have been made to apply
normal stress in rotating machines.

1.6 Self-Inductance and Mutual Inductance

Self-inductances and mutual inductances are the core parameters of electrical machines. Per-
meance is generally determined by

Λ = Φ

Θ
= Φ

Ni
(1.118)
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and inductance by

L = N
Φ

i
= Ψ

i
= N 2Λ. (1.119)

Inductance describes a coil’s ability to produce flux linkage. Therefore, also its unit H
(henry) is equal to V s/A. Correspondingly, the mutual inductance L12 is determined from the
flux linkage Ψ12, created in winding 1 by the current i2 that flows in winding 2,

L12 = Ψ12

i2
. (1.120)

In the special case where the flux Φ12, created by the current of winding 2, penetrates all
the turns of windings 1 and 2, the mutual permeance between the windings is written as

Λ12 = Φ12

N2i2
, (1.121)

and the mutual inductance as

L12 = N1 N2Λ12. (1.122)

Here, N1 is the number of turns of the winding in which the voltage is induced, and N2 is the
number of turns of the winding that produces the flux.

The energy equation for a magnetic circuit can be written with the flux linkage as

WΦ =
t∫

0

i L
di

dt
dt =

t∫

0

i
dΨ

dt
dt =

Ψ∫

0

i dΨ . (1.123)

If an integral has to be calculated, the volume under observation can be divided into flux
tubes. A flux flowing in such a flux tube is created by the influence of N turns of the winding.
By taking into account the fact that the field strength H is created by the current i according
to the equation

∮
H · dl = kw Ni , the equation for the sum of the energies of all flux tubes in

the volume observed, that is the total energy of the magnetic circuit that was previously given
by the current and flux linkage, may be written as

WΦ =
Ψ∫

0

i dΨ =
Φ∫

0

kw Ni dΦ =
B∫

0

∮
H · dl · S dB =

B∫

0

∫
V

H dV dB =
∫

V

B∫

0

H dB dV .

(1.124)

The volume integration has to be performed over the volume V in which the flux in question
is passing. Energy per volume is thus written in the familiar form

dWΦ

dV
=

B∫

0

HdB, (1.125)
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the energy stored in the complete magnetic circuit being

WΦ =
∫

V

B∫

0

H dB dV . (1.126)

As the flux linkage is proportional to the current i, Ψ = Li, the energy can be given also as

WΦ = L

i∫

0

i di = 1/2Li2. (1.127)

Equation (1.126) yields

dWΦ

dV
= 1

2
HB, (1.128)

WΦ = 1

2

∫
V

HB dV = 1

2

∫
V

µH 2 dV . (1.129)

From Equations (1.119), (1.127) and (1.129), we can calculate an ideal overall magnetic
permeance for a magnetic circuit of volume V

Λ = 1

N 2i2

∫
V

HB dV = 1

N 2i2

∫
V

µH 2 dV . (1.130)

Let us now investigate two electric circuits with a common magnetic energy of

WΦ =
Ψ1∫

0

i1 dΨ1 +
Ψ2∫

0

i2 dΨ2. (1.131)

Also in this case, the magnetic energy can be calculated from Equations (1.125) and (1.126).
We can see that the common flux flowing through the flux tube n is

Φn = Ψn1

N1
= Ψn2

N2
= BSn. (1.132)

This flux tube is magnetized by the sum current linkage of two windings N1 and N2

∮
H · dl = i1 N1 + i2 N2. (1.133)

In a linear system, the fluxes are directly proportional to the sum magnetizing current link-
age i1 N1 + i2 N2, and thus we obtain an energy

WΦ = 1

2
(i1Ψ1) + 1

2
(i2Ψ2) . (1.134)
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Because the flux linkages are created with two windings together, they can be divided into
parts

Ψ1 = Ψ11 + Ψ12 and Ψ2 = Ψ22 + Ψ21. (1.135)

Now, the flux linkages and inductances can be linked

Ψ11 = L11i1, Ψ12 = L12i2, Ψ22 = L22i2, Ψ21 = L21i1. (1.136)

In Equation (1.136), there are the self-inductances L11 and L22, and the mutual inductances
L12 and L21. The magnetic energy can now be rewritten as

WΦ = 1
2

(
L11i2

1 + L12i1i2 + L22i2
2 + L21i2i1

)
= W11 + W12 + W22 + W21.

(1.137)

The magnetic energy of the magnetic field created by the two current circuits can thus be
divided into four parts, two parts representing the energy of the self-inductances and two parts
representing the energy of the mutual inductances. Correspondingly, the magnetic energy den-
sity in a certain volume can be written according to Equation (1.128), after the substitution

H = H1 + H2 and B = B1 + B2, (1.138)

in the form

dWΦ

dV
= 1

2
(H1 B1 + H1 B2 + H2 B2 + H2 B1) . (1.139)

Since in this equation H1B2 = H2B1, the energies and inductances have to behave as W12 =
W21 and L12 = L21. This gives

WΦ = W11 + 2W12 + W22 = 1

2
L11i2

1 + L12i1i2 + 1

2
L22i2

2 . (1.140)

Equations (1.137) and (1.139) yield

W12 = 1

2
L12i1i2 = 1

2

∫
V

H1 B2 dV . (1.141)

Now, we obtain for the permeance between the windings Λ12 = Λ21, which corresponds to
the mutual inductance, by comparing Equation (1.122),

Λ12 = 1

N1i1 N2i2

∫
V

µH1 H2 dV . (1.142)

If the field strengths are created by sinusoidal currents with a phase difference γ

i1 = î1 sin ωt and i2 = î2 sin (ωt + γ ) , (1.143)
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the mutual average energy of the fields created by these currents is obtained from

W12av = 1

2
L12

1

2π

2π∫

0

î1 î2 dωt = 1

2
L12 î1 î2 cos γ. (1.144)

Correspondingly, the permeance between the windings is

Λ12 = 2

N1 î1 N2 î2

∫
V

µH1 H2 cos γ dV . (1.145)

In these equations, γ is the time-dependent phase angle either between the currents in two
windings or between the partial field strengths created by these currents.

Mutual inductances are important in rotating electrical machines. A machine is, however,
usually treated using an equivalent electric circuit in which all the machine windings are
presented at the same voltage level. In such cases the mutual inductances are replaced by
the magnetizing inductance Lm, which can be calculated using the transformation ratio K as
Lm = KL12. Further discussion of the magnetic circuit properties and inductances, such as
magnetizing inductance Lm, will be given in Chapter 3.

1.7 Per Unit Values

When analysing electrical machines, especially in electric drives, per unit values are often
employed. This brings certain advantages to the analysis, since they show directly the relative
magnitude of a certain parameter. For instance, if the relative magnetizing inductance of an
asynchronous machine is lm = 3, it is quite high. On the other hand, if it is lm = 1, it is
rather low. Now it is possible to compare machines, the rated values of which differ from each
other.

Relative values can be obtained by dividing each dimension by a base value. When consid-
ering electric motors and electric drives, the base values are selected accordingly:

� Peak value for rated stator phase current îN. (It is, of course, also possible to select the root
mean square (RMS) stator current as a base value, instead. In such a case the voltage also
has to be selected accordingly.)

� Peak value for rated stator phase voltage ûN.
� Rated angular frequency ωN = 2π fsN.
� Rated flux linkage, corresponding also to the rated angular velocity Ψ̂N.
� Rated impedance ZN.
� Time in which 1 radian in electrical degrees, tN = 1 rad/ωN, is travelled at a rated angular

frequency. Relative time τ is thus measured as an angle τ = ωNt .
� Apparent power SN corresponding to rated current and voltage.
� Rated torque TN corresponding to rated power and frequency.
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When operating with sinusoidal quantities, the rated current of the machine is IN and the
line-to-line voltage is UN:

The base value for current Ib = îN =
√

2IN. (1.146)

The base value for voltage Ub = ûN =
√

2
UN√

3
. (1.147)

Angular frequency ωN = 2π fsN. (1.148)

The base value for flux linkage Ψb = ΨN = ûN

ωN
. (1.149)

The base value for impedance Zb = ZN = ûN

îN
. (1.150)

The base value for inductance Lb = LN = ûN

ωN îN
. (1.151)

The base value for capacitance Cb = CN = îN

ωNûN
. (1.152)

The base value for apparent power Sb = SN = 3

2
îNûN =

√
3UN IN. (1.153)

The base value for torque Tb = TN = 3

2ωN
îNûN cos ϕN =

√
3UN IN

ωN
cos ϕN.

(1.154)

The relative values to be used are

us,pu = us

ûN
, (1.155)

is,pu = is

îN
, (1.156)

rs,pu = Rs îN

ûN
, (1.157)

Ψs,pu = ωNΨs

ûN
, (1.158)

ωpu = ω

ωN
= n

fN
= npu, (1.159)

where n is the rotational speed per second, and

τ = ωNt. (1.160)

The relative values of inductances are the same as the relative values of reactances. Thus,
we obtain for instance

lm.pu = Lm

Lb
= Lm

ûN

ωN îN

= îN

ûN
Xm = xm,pu, (1.161)
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where Xm is the magnetizing reactance.
We also have a mechanical time constant

TJ = ωN

(
ωN

p

)2 2J

3ûN îN cos ϕN
, (1.162)

where J is the moment of inertia. According to (1.162), the mechanical time constant is the
ratio of the kinetic energy of a rotor rotating at synchronous speed to the power of the machine.

Example 1.9: A 50 Hz star-connected, four-pole, 400 V induction motor has the following
nameplate values: PN = 200 kW, ηN = 0.95, cosϕN = 0.89, IN = 343 A, IS/IN = 6.9,
Tmax/TN = 3, and rated speed 1485 min−1. The no-load current of the motor is 121 A.
Give an expression for the per unit inductance parameters of the motor.

Solution:

The base angular frequency ωN = 2π fsN = 314/s.

The base value for flux linkage Ψb = Ψ̂N = ûN

ωN
=

√
2 · 230 V

314/s
= 1.036 V s.

The base value for inductance Lb = LN = Ψ̂N

îN
= 1.036 V s√

2 · 343 A
= 2.14 mH.

The no-load current of the machine is 121 A, and the stator inductance of the machine is
thereby about Ls = 230 V/(121 A · 314/s) = 6.06 mH. We guess that 97% of this belongs
to the magnetizing inductance. Lm = 0.97 · 6.06 mH = 5.88 mH.

The per unit magnetizing inductance is now Lm/Lb = 5.88/2.14 = 2.74 = lm,pu and the
stator leakage lsσ = 0.03 · 6.06 mH = 0.18 mH. lsσ,pu = 0.18/2.14 = 0.084.

We may roughly state that the per unit short-circuit inductance of the motor is, according
to the starting current ratio, lk ≈ 1/ (IS/IN) = 0.145. Without better knowledge, we divide
the short-circuit inductance 50:50 for the stator and rotor per unit leakages: lsσ,pu = lrσ,pu

= 0.0725. This differs somewhat from the above-calculated lsσ,pu = 0.18/2.14 = 0.084.
However, the guess that 97% of the stator inductance ls,pu = lsσ,pu + lm,pu seems to be
correct enough.

The motor per unit slip is s = (nsyn − n)nsyn = (1500 − 1485)/1500 = 0.006 73. The
motor per unit slip at low slip values is directly proportional to the per unit rotor resistance.
Thus, we may assume that the rotor per unit resistance is of the same order, rr,pu ≈ 0.0067.

The rated efficiency of the motor is 95%, which gives 5% per unit losses to the system.
If we assume 1% stator resistance rs,pu ≈ 0.01, and 0.5% excess losses, we have 2.8%
(5 − 1 − 0.5 − 0.67 = 2.8%) per unit iron losses in the motor. Hence, the losses in the
machine are roughly proportional to the per unit values of the stator and rotor resistances.
For more detailed information, the reader is referred to Chapter 7.
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1.8 Phasor Diagrams

When investigating the operation of electrical machines, sinusoidally alternating currents,
voltages and flux linkages are often illustrated with phasor diagrams. These diagrams are
based either on generator logic or on motor logic; the principle of the generator logic is that for
instance the flux linkage created by the rotor magnetization of a synchronous machine induces
an electromotive force in the armature winding of the machine. Here, Faraday’s induction law
is applied in the form

e = −dΨ

dt
. (1.163)

The flux linkage for a rotating-field machine can be presented as

Ψ (t) = Ψ̂ ejωt . (1.164)

The flux linkage is derived with respect to time

e = −dΨ

dt
= −jωΨ̂ ejωt = e−j π

2 ωΨ̂ ejωt = ωΨ̂ ej(ωt− π
2 ). (1.165)

The emf is thus of magnitude ωΨ̂ and its phase angle is 90 electrical degrees behind the
phasor of the flux linkage. Figure 1.18 illustrates the basic phasor diagrams according to
generator and motor logic.

As illustrated in Figure 1.18 for generator logic, the flux linkage Ψ f generated by the rotor
of a synchronous machine induces a voltage Ef to the armature winding of the machine when
the machine is rotating. The stator voltage of the machine is obtained by reducing the pro-
portion of the armature reaction and the resistive voltage loss from the induced voltage. If the
machine is running at no load, the induced voltage Ef equals the stator voltage Us.

Figure 1.18 Basic phasor diagrams for generator and motor logic
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Motor logic represents an opposite case. According to the induction law, the flux linkage
can be interpreted as an integral of voltage. If the stator resistive losses are neglected we can
write

Ψs ≈
∫

usdt =
∫

ûse
jωt dt = 1

jω
ûse

jωt = 1

ω
ûse

j(ωt− π
2 ). (1.166)

The phasor of the flux linkage is 90 electrical degrees behind the voltage phasor. Again,
differentiating the flux linkage with respect to time produces an emf. In the case of Figure
1.18, a flux linkage is integrated from the voltage, which further leads to the derivation of
a back emf now cancelling the supply voltage. As is known, this is the case with inductive
components. In the case of a coil, a major part of the supply voltage is required to overcome
the self-inductance of the coil. Only an insignificant voltage drop takes place in the winding
resistances. The resistive losses have therefore been neglected in the above discussion.

Example 1.10: A 50 Hz synchronous generator field winding current linkage creates at
no load a stator winding flux linkage of Ψ̂s = 15.6 V s. What is the internal induced phase
voltage (and also the stator voltage) of the machine?

Solution: The induced voltage is calculated as

eF = −dΨs

dt
= −jωΨ̂se

jωt = −j314/s · 15.6 V s · ejωt = 4900 V · ejωt .

Thus 4900 V is the peak value of the stator phase voltage, which gives an effective value
of the line-to-line voltage:

Ull = 4900 V√
2

√
3 = 6000 V.

Hence, we have a 6 kV machine at no load ready to be synchronized to the network.

Example 1.11: A rotating-field motor is supplied by a frequency converter at 25 Hz
and 200 V fundamental effective line-to-line voltage. The motor is initially a 400 V star-
connected motor. What is the stator flux linkage in the inverter supply?

Solution: The stator flux linkage is found by integrating the phase voltage supplied to the
stator

Ψs ≈
∫

usdt =
∫

ûse
jωt dt = 1

j25 · 2π

√
2 · 200 V√

3
ejωt = 1.04 V s · ej(ωt− π

2 ).

Consequently, the flux linkage amplitude is 1.04 V s and it is lagging in a 90◦ phase shift
the voltage that creates the flux linkage.
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