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   1.1   Introduction 

 First, a defi nition must be given for what constitutes a star.  A star can be defi ned as a 
self - gravitating celestial object in which there is, or there once was (in the case of dead 
stars), sustained thermonuclear fusion of hydrogen in their core.  For example, in the Sun, 
hydrogen, which is the most abundant element in the Universe, is fused into helium via 
the nuclear reaction 4 1 H  →   4 He   +   energy. Fusion is only present in the central regions of 
stars, because there exists a minimum threshold temperature at which this exothermic 
reaction can be ignited (which is of the order of ten million degrees for this particular 
reaction). For hydrogen nuclei (protons) to be fused, they must have a close approach on 
the order of distance at which the strong nuclear force comes into play. 1  The strong nuclear 
force is responsible for binding the nucleons (protons and neutrons) in the nucleus and 
contrary to gravity, for instance, its fi eld of action is limited to a distance on the order of 
10  − 15    m. At the high temperatures found in the centres of stars, the kinetic energy of the 
protons is suffi cient to vanquish the repulsive Coulomb force between them and bring the 
protons within the distance where the attractive strong nuclear force becomes dominant. 
Protons can then fuse together while emitting energy. 

 The energy emitted by thermonuclear reactions is given by Einstein ’ s famous  E     =     ∆  mc  2  
formula, where  ∆  m  is the difference in mass between the species on the left - hand and 
right - hand sides of the arrow found in the nuclear reaction given above and  c  is the 
speed of light in vacuum. However, the hydrogen burning reaction given above can be 
a bit misleading, since it suggests that four protons meet to form a helium nucleus. 
In reality, a series of nuclear reactions is needed to give this global reaction. On another 
note, even though only a small fraction of a star ’ s mass will be transformed to energy 
during its lifetime, it will suffi ce to compensate for the energy irradiated at its surface. 

  1 

  1      Here, a simple phenomenological explanation of nuclear fusion is given. In reality, quantum tunnelling intervenes. This will 
be discussed in more detail in Chapter  6 . 

CO
PYRIG

HTED
 M

ATERIA
L
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Details concerning various nuclear reactions of importance in stars will be discussed in 
Chapter  6 . 

 Stars are formed following the gravitational collapse of cold molecular clouds found in 
the Universe. As the cloud or portions of it collapses, it can be shown (see Chapter  2 ) that 
approximately half of the gravitational energy gained is used to increase the internal tem-
perature of the cloud and the remaining energy is irradiated as electromagnetic radiation 
in space. If the mass of the collapsed cloud is suffi cient (i.e. more than approximately 8   % 
of the mass of the Sun), the central temperatures will attain a value superior to the threshold 
temperature for sustained hydrogen fusion, which would by defi nition, lead to star birth. 
The solar mass is  M   �     =   1.989    ×    10 33    g, where the symbol  �  represents the Sun. 2  The 
physical properties of stars are often given in units of the corresponding value for the Sun. 
The gravitational collapse will continue until equilibrium is reached, where the nuclear 
energy generated per unit time (or its power) at the centre of the star equals the power 
output at its surface due to radiation emission. A star at this stage of its life is commonly 
called a main - sequence star. Since gravity has radial symmetry, a star will have a spherical 
shape (unless it has a high rotational speed). More details concerning stellar formation 
will be given in Chapter  2 . 

 A star shines (or emits radiation) because of its high surface temperature. For example, 
the surface temperature of the Sun is approximately 5800   K, while its central temperature 
is approximately 16 million K. The decrease of the temperature as a function of distance 
from the centre is a natural occurrence that causes energy transport from the central regions 
to the surface of the Sun. Since the gas composing a star is characterized by an opacity 
to radiation, an observer looking at a star can only see its exterior regions, which is com-
monly called the photosphere or stellar atmosphere, having a geometrical depth of up to 
a few per cent of the stellar radius. This is similar to looking in a cloud of fog, being able 
to see only a certain distance before light signals are attenuated. The radiative fi eld exiting 
a star depends on the temperature of these outer layers and is associated to their blackbody 
spectra. The physical properties of blackbodies will be discussed in Section  1.3  and will 
lead to an explanation why stars have different colours. 

 There are three modes of transportation of energy in stars. The most important is radia-
tion. For this mode, the energy is transported when electromagnetic radiation diffuses from 
the central regions of stars towards its exterior. In regions where the radiative opacity 
becomes large, convection can dominate energy transport. Convection is the transport of 
energy by the vertical movements of cells of matter in the stars. Conduction is the third 
mode of transportation of energy in stars. However, this mode is rarely important. More 
details concerning energy transport will be discussed in Chapters  3  and  5 . 

 As mentioned above, a star begins its life by transforming hydrogen to helium in its 
core. As time passes, the abundance of hydrogen gradually decreases in the star ’ s core, 
and eventually, the fuel for this particular nuclear process, namely hydrogen, will all be 
spent. As hydrogen is transformed into helium, the structure of the star readjusts. The core 
contracts causing an increase of the central temperatures until possibly, depending on the 
initial mass of the star, helium fuses to produce carbon via the well - known triple -  α  reac-
tion: 3 4 He  →   12 C   +   energy. Meanwhile, the outer regions of the star expand. The star then 
becomes what is called a red giant. The fi nal destiny of a star depends almost solely on 

  2      Other physical properties of the Sun are given in Appendix C. 
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its initial mass; it will either become a white dwarf, a neutron star or a black hole. More 
details concerning stellar evolution will be given in Chapter  6 . 

 For massive stars, a succession of nuclear reactions will occur during their different 
stages of evolution. The thermonuclear reactions in these stars are responsible for the 
synthesis of various elements, such as carbon, oxygen, silicon, etc. up to iron. This process 
is called nucleosynthesis. As known from the Big - Bang theory, at the beginning of the 
Universe, only hydrogen, helium and trace amounts of lithium were created. The formation 
of the other elements takes place in stars. Stars can therefore be seen as the Universe ’ s 
production factories, generating all atoms heavier than helium, except for some lithium. 
In astronomy, elements heavier than helium are called metals and the fraction of the mass 
composed of metals is called the metallicity ( Z ). The metallicity of outer layers of the Sun 
is approximately  Z    =   0.0169. Meanwhile, the mass fraction of hydrogen ( X  ) and helium 
( Y  ) at the surface of the Sun are, respectively,  X    =   0.7346 and  Y    =   0.2485 (and therefore 
 X    +    Y    +    Z    =   1). All of the atoms of these heavy elements found on Earth were created in 
stars, which then exploded in the form of supernovae ejecting this enriched matter into 
space. Some of this enriched matter was later found in the primordial cloud from which 
the Sun and the Earth were created. Life itself would be impossible without the creation 
of the elements in stars. 

 This is why stars are fundamental for our existence and can be considered as the main 
building blocks of the Universe. It is then crucial to understand them via the study of 
stellar astrophysics. This fi eld of study is fascinating since it incorporates all major fi elds 
of physics (see Figure  1.1 ): nuclear, atomic, molecular and quantum physics, electromag-
netism, relativity, thermodynamics, hydrodynamics, etc. This book aims to give the reader 
an introduction to this fundamental subject by emphasising the physical concepts involved 
and their specifi c importance in stars.    

  1.2   The Electromagnetic Spectrum 

 As is known from quantum mechanics, electromagnetic radiation has two personalities. It 
sometimes behaves like waves and at other times like particles. These particles are called 
photons. These two aspects of radiation are known as the wave – particle duality. For most 
radiative processes in stars, like an atomic absorption of a photon for example, radiation 
will act like a photon, rather than a wave. The wave – particle duality also applies to matter. 

 The energy ( E ) of photons is related to the frequency (  ν  ) and wavelength (  λ  ) of the 
associated electromagnetic wave via the following expression

   E h
hc= =ν
λ

    (1.1)  

where  h  is the Planck constant and  c  is the speed of light in vacuum. 
 Even though a photon of wavelength   λ   has no mass, it possesses momentum  p  equal to

   p
E

c

h= =
λ

    (1.2)   
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     Figure 1.1     Figure illustrating the various fi elds of physics that intervene in stars.  

 As will be shown later, this physical quantity is of great importance in stars. Momentum 
transfer occurs from the radiation fi eld to the stellar plasma following atomic absorption 
of photons, and this causes what is called radiation pressure. 

 The electromagnetic spectrum can be divided into a number of regions (see Table  1.1 ). 
It should be noted that the boundaries of these regions can vary from one source to another. 
For example, in astronomy the radio region often includes microwaves (0.1   cm    <      λ      <    100   cm). 
The visible part of the electromagnetic spectrum is in the range 4000  Å     <      λ      <    7000  Å  
where  Å  represents a unit of length called the angstrom and is equal to 10  − 8    cm. Within 
the visible part of the spectrum, several colours (blue, yellow, etc.) can be observed that 
are defi ned by wavelength. The approximate (or representative) wavelengths of these 
colours are given in Table  1.2 . The most energetic photons in the visible spectrum are 
violet; whereas the least energetic are red.   

 Earth ’ s atmosphere is opaque to most wavelengths except those in the visible part of 
the spectrum and in some parts of the radio. This is why Earth - based observatories detect 
either visible or radio waves, while ultraviolet or X - ray observatories are placed in orbit 
around the Earth. Since the vast majority of the information gathered from the Universe 
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  Table 1.1    The electromagnetic spectrum. 

   Region     Wavelength range  

  Radio     > 0.1   cm  
  Infrared    7000    Å  to 0.1   cm  
  Visible    4000 to 7000    Å   
  Ultraviolet    100 to 4000    Å   
  X - ray    0.1 to 100    Å   
  Gamma - ray     < 0.1    Å   

  Table 1.2    Approximate wavelength of colours. 

   Colour     Wavelength ( Å )  

  Violet    4200  
  Blue    4700  
  Green    5300  
  Yellow    5800  
  Orange    6100  
  Red    6600  

  3      The unit erg is the unit of energy in the cgs system while sr is the unit of solid angle (see Chapter  3  for more details). One erg 
equals 10  − 7  J (see Appendix B). 

comes in the form of electromagnetic radiation, it is imperative to properly understand the 
interaction between radiation and matter.  

  1.3   Blackbody Radiation 

 In everyday life, when observing an object, what is detected is the light that it is refl ecting. 
For instance, if when looking at a red object, the reason why it is red is that the object in 
question is absorbing most colours except red, which is being refl ected. In sunlight or light 
emitted by most household bulbs, there exist all of the colours of visible part of the elec-
tromagnetic spectrum. That is why it is preferable to wear light clothing (optimally white) 
in hot weather, since it will refl ect most of the light that falls upon it. Meanwhile, black 
objects absorb most of the visible light they receive. 

 A body will also emit radiation whose spectra will depend on its temperature. By defi ni-
tion, a blackbody is a physical entity that absorbs all radiation that falls upon it. Radiation 
emanating from a blackbody is due uniquely to its thermal energy. 

 The German physicist Max Planck (1858 – 1947) showed that a blackbody with tempera-
ture  T  emits a continuous spectrum of radiation characterized by a function  B  ν   ( T ), com-
monly called the Planck function. The units of this function are 3  erg/s/Hz/cm 2 /sr and are 
those of the physical quantity called specifi c intensity ( I  ν   , see Section  3.3  for more details). 
In the fi eld of astrophysics the cgs (standing for centimetre - gram - second) unit system is 



6 An Introduction to Stellar Astrophysics

     Figure 1.2     Planck distributions ( B   λ  ) as a function of wavelength for  T    =   2000, 6000 and 12   000   K. 
The   λ   max  associated to each function and the visible part of the spectrum are also identifi ed in this 
fi gure.  

the norm. The main physical constants in cgs used throughout this book can be found in 
Appendix A, while both cgs and S.I. (or the international system) units and conversion 
factors are given in Appendix B. 

 The monochromatic fl ux ( F  ν   ) is defi ned as the quantity of energy in the spectral range 
between   ν   and   ν      +    d  ν   emitted per unit surface, per unit time in units of erg/s/Hz/cm 2 . In 
Chapter  3 , it will be shown that for a blackbody, this quantity is given by the simple rela-
tion  F  ν       =     π  B  ν   . It should be noted that in some physics textbooks, the Planck function given 
is the fl ux instead of the specifi c intensity and a factor  π  will then appear there. 

 The Planck function depends only on  T  and   ν   and is given by the following 
expression

   
B T

h

c h

kT

ν ν
ν( ) =

−

2 1

1

3

2

e

    
(1.3)

  

where  k  is the Boltzmann constant. This function is isotropic and thus independent of the 
direction. 

 The Planck distribution can also be written per unit wavelength ( B  λ   ). Since, for a given 
blackbody, the integration over the entire spectra of  B  ν    and  B  λ    must be equal

   B Bν λν λd d= −     (1.4)  

and

   
B B

c
B

hc
hc

kT

λ ν ν

λ

ν
λ λ λ
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(1.5)

   

 The cgs units of  B  λ    are erg/s/cm/cm 2 /sr. Sometimes, units per unit wavelength in  Å , erg/s/ 
Å /cm 2 /sr are used instead. Figure  1.2  illustrates Planck functions for several temperatures.   
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 The energy distribution emitted by a blackbody leads to two laws. The fi rst, the Stefan –
 Boltzmann law, gives the total power output per unit area  F  (or integrated fl ux in units of 
erg/s/cm 2 ) of a blackbody with temperature  T  is

   F F B T= = =
∞ ∞

∫ ∫ν νν π ν σd d
0 0

4     (1.6)  

where   σ   is the Stefan – Boltzmann constant. To obtain this result, an integration of the 
monochromatic fl ux over the entire electromagnetic spectrum has been carried out (see 
Exercise 1.1). It shows that the energy output of a blackbody increases very rapidly with 
temperature. It should be noted that a blackbody with a higher temperature emits more 
energy at  all  wavelengths than a cooler one (see Figure  1.2 ). Since a star can be approxi-
mated by a blackbody (see Figure  1.8  in Section  1.6 ), a massive star having a high surface 
temperature, will emit much more power than a low - mass star that possesses a lower 
surface temperature. Massive stars will then have a shorter lifespan than smaller ones, 
since they burn their hydrogen at a much faster rate to compensate for their high brightness 
(this higher rate of nuclear burning is actually due to higher central temperatures). This 
topic will be discussed in more detail in Chapter  6 . 

 A second law can also be derived from  B  λ   . It can be shown (see Exercise 1.2), that the 
wavelength   λ   max , at which the function  B  λ    is at its maximum, varies inversely with tem-
perature (see Figure  1.2 )

   λmax
.= 0 290K cm

T
    (1.7)   

 This equation is called Wien ’ s law. It explains why hotter blackbodies (or stars) are 
blue and cooler ones are red. For example, when a blacksmith puts a piece of iron in 
the fi re, it fi rst starts glowing red. Then, as it gets hotter, it becomes white and even 
blue, hence the term  white hot . When the piece of iron is at room temperature, it emits 
almost no visible light since the maximum of its energy distribution is found in the infrared. 
For that reason, when a person is lost in the forest, a search can be undertaken using 
infrared detectors. The body of a human being has a temperature of about 310   K (or 37    ° C) 
and is hotter than the surrounding nature with a temperature of about 293   K (or 20    ° C) 
depending on the season. A human body emits much more infrared radiation than these 
surroundings. 

 Figure  1.2  shows that a blackbody with a temperature of 2000   K has its   λ   max  in the 
infrared part of the electromagnetic spectrum, a 6000 - K blackbody has its maximum emis-
sion in the visible region of the spectrum, while a 12   000 - K blackbody has its   λ   max  in the 
ultraviolet. Since the human eye is more sensitive to photons with wavelengths in the blue 
part of the electromagnetic spectrum than those in the violet portion, the hottest stars in 
the sky seem blue, even though the maximum of the energy distribution of these stars is 
in the violet or even in the ultraviolet. They seem blue, because they emit more blue light 
than the other less energetic colours, due to the slope of the Planck distribution. The Sun 
is yellow, because its   λ   max  lies in the visible part of the electromagnetic spectrum (see 
Example  1.1 ).      
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 Special Topic  –  The Greenhouse Effect 

    The average temperature on the Earth ’ s surface is regulated by the amount of 
energy it receives from the Sun and the amount irradiated to space. The Earth ’ s 
atmosphere is transparent to the visible part of the electromagnetic spectrum. Since 
the temperature at the Sun ’ s surface is approximately 5800   K, its spectrum 
maximum is in the visible region and thus a lot of energy crosses the atmosphere 
and reaches the Earth ’ s surface. Meanwhile the Earth ’ s surface has an approximate 
temperature of 290   K and emits mostly infrared radiation. However, molecules 
such as H 2 O and CO 2  can absorb infrared radiation and thus keep some heat in the 
terrestrial system. If it wasn ’ t for the atmosphere, the temperature at our planet ’ s 
surface would be more than 30 degrees cooler than it is now. 

 Unfortunately, human activity, such as the burning of fossil fuels, has increased 
the amount of pollutants (mostly CO 2 ) in our atmosphere. The increase of the 
abundances of these gases, called greenhouse gases, amplifi es the opacity of the 
atmosphere to infrared radiation, which decreases the amount of energy lost to 
space. This process leads to a slight increase of the Earth ’ s temperature and is 
called the greenhouse effect. Even the relatively small temperature increases 
expected are predicted to have important negative ecological impacts.  

  Example 1.1:    Calculate    λ    max  for the Sun. 

  Answer: 

 The surface temperature of the Sun is approximately 5800   K. If the radiation fi eld 
of the Sun is approximated by that of a blackbody

   λmax
. .= = = × =−0 290 0 290

5800
5 10 50005K cm K cm

K
cm

T
Å     (1.8)   

 This wavelength lies in the green part of the visible region of the spectrum. But 
since the Sun also emits a lot of blue, yellow and red light, the human eye, which 
is not equally sensitive to all wavelengths, incorporates all of these colours and sees 
the Sun as yellow.  

  1.4   Luminosity, Effective Temperature, Flux and Magnitudes 

 The luminosity of a star is defi ned as the radiative power output emanating from its surface 
and is given in units of erg/s. The luminosity is an intrinsic value of a star and is not related 
to its distance from the observer. To obtain the luminosity, one must integrate the radiation 
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fi eld emitted over the entire electromagnetic spectrum and over the entire surface of the 
star. In the cases treated here, the fl ux will be assumed to be constant over the entire stellar 
surface. The luminosity is then obtained by simply multiplying the integrated fl ux ( F ) by 
the value of the star ’ s surface area. 

 The effective temperature  T  eff  of a given star is defi ned as being the temperature needed 
for a blackbody with the same radius  R   *   as this star, to have the same luminosity  L   *   as 
this star. Since the integrated fl ux at the surface of this hypothetical blackbody is   σ T  eff  4 , 
its luminosity is

   L R T* * eff= 4 2 4π σ     (1.9)  

and the effective temperature of a star is

   T
L

R
eff

*

*
=






4 2

1 4

π σ
    (1.10)   

 The integrated radiative fl ux at the surface of a star, in units of erg/s/cm 2 , can also be 
written as a function of luminosity

   F
L

R
T= =*

*
eff

4 2
4

π
σ     (1.11)   

 At a distance  r  larger than  R   *   from the centre of the star, the integrated fl ux is

   F r T
R

r
( ) =







σ eff
*4

2

    (1.12)   

 Contrarily to the luminosity, the fl ux depends on the distance of the observer from the 
star. This equation shows the effect of the geometrical dilution of the fl ux as a function 
of distance from a star. This results from the fact that the luminosity is being distributed 
over a spherical surface of value 4 π  r  2 . 

 The human eye has a nonlinear response to light intensity. For example, a star that has 
an observed fl ux 10 times greater than a neighbouring star will not seem ten times brighter 
to the human eye. Thus, for practical and technological reasons, ancient astronomers 
divided the visible stars into a number of magnitude classes that better measures brightness 
with respect to the human eye than does fl ux. Unfortunately, these astronomers chose an 
unconventional scale such that the brighter stars have a lower magnitude. Magnitude is a 
relative scale that measures the logarithmic value of the radiative fl ux. A modern defi nition 
of magnitude is given by the formula

   m m
F

F
1 2

2

1

2 5− = 



. log     (1.13)   

 which gives the difference of magnitudes of two stars as a function of their observed fl ux. 
This formula was chosen so that two stars with fl ux ratio of 100 will have a magnitude 
difference of 5 and, again for historical reasons, so that magnitude decreases when 
fl ux increases. Since the magnitude depends on the fl ux, it also depends on the distance 
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separating the observer from the star. The magnitude  m  observed from Earth is called 
the apparent magnitude. An absolute magnitude  M  is then defi ned as the magnitude at a 
distance of 10 parsecs (1   pc   =   3.26 light years 4 ). Since the formula above is given on 
a relative scale, its usefulness is limited unless it is calibrated by fi xing a magnitude for 
a given fl ux. Historically, the star Vega was chosen to have a magnitude of zero, so any 
object brighter than this standard star will have a negative magnitude. 

 It can be easily demonstrated (see Example  1.2 ) that the difference between the apparent 
and the absolute magnitude of a star is related to its distance  d  (in parsecs) to the observer 
via the equation

   m M
d− = 



5

10
log     (1.14)  

    The value  m – M  is often called the distance modulus. 

  Example 1.2:    Demonstrate the distance modulus equation given above. 

  Answer: 

 The defi nition of the magnitude is

   m m
F

F
1 2

2

1

2 5− = 



. log     (1.15)   

 For a given star with an apparent magnitude of  m  and an absolute magnitude of  M , 
the magnitudes in the equation above may be defi ned as  m  1     =     m  and  m  2    =    M . Also, 
the fl ux at distance  d  from the star of luminosity  L  is  F  1    =    L  /(4 π  d  2 ). Finally, the fl ux 
at a distance  d  10    =   10   pc,  F  2    =    L  /(4 π  d  10  2 ). Therefore

   m M
d

d
− = 



2 5

10

2

. log     (1.16)  

and if  d  is expressed in parsecs, this equation becomes

   m M
d− = 



5

10
log     (1.17)    

  4      The parsec is a unit of distance defi ned in Section  6.9.5 , while the light year is the distance travelled by light in vacuum during 
a one - year period. 

 However, since it is impossible to observe the entire spectrum of a star, it is useful to 
defi ne a magnitude for a given portion of the electromagnetic spectrum. The study of 
radiation inside a certain range of wavelength, commonly called a photometric band, is 
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     Figure 1.3     Response of U, B and V photometric indices  (data from Arp, H.C., The Astrophysical 
Journal , 133, 874 ( 1961 )).   

  Table 1.3    Visual magnitudes of various astronomical objects. 

   Object name      m  V   

  Sun     − 26.73  
  Full Moon     − 12.7  
  Venus  #       − 4.5  
  Jupiter  #       − 2.5  
  Sirius     − 1.44  
  Rigel    0.12  
  Saturn  #      0.7  
  Deneb    1.23  
  Polaris    1.97  

    #    At maximum brightness.   

called photometry. To obtain the fl ux inside a given photometric band, a fi lter that is 
transparent to the radiation found inside this band and opaque to the photons outside of 
it, is placed in front of a photon detector. 

 Since radiation at different energies reacts with materials in different ways, telescopes 
and detectors must be adapted to the energy range of interest. Naturally, in the visible 
region of the spectrum, an optical telescope is used to accumulate the light on the detector. 
Figure  1.3  illustrates the transparency of such fi lters in the visible   (V), blue (B) and ultra-
violet (U) portions of the visible spectrum. These transparency functions must be taken 
into account when comparing observed magnitudes to theoretical values.   

 The brightest star in the sky is Sirius, while the faintest stars that are visible by the 
human eye have an apparent visual magnitude of approximately 6. Table  1.3  shows the 
apparent visual magnitudes of several well - known astronomical objects.     
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     Figure 1.4     Monochromatic fl ux ( F  λ   ) as a function of wavelength for two stars with  T  eff    =   4000 
and 15   000   K approximated by blackbody radiation. The approximate positions of two photometric 
fi lters (U and V) are also shown.  

  Example 1.3:    Knowing that the apparent visual magnitude of the Sun is  − 26.73, 
calculate its absolute magnitude. 

  Answer: 

 The Sun is by defi nition at a distance of one astronomical unit (AU) from the Earth. 
Since 1   AU   =   1.496    ×    10 13    cm   =   4.848    ×    10  − 6    pc, the distance modulus equation

   m M
d

V V− = 



5

10
log     (1.18)  

may be used to fi nd the solution. 
 Replacing the known values in the equation above

   − − = ×





−

26 73 5
4 848 10

10

6

. log
.

MV
pc

pc
    (1.19)   

 leads to  M  V    =   4.84.  

 Later, it will be shown that the absolute magnitude of a star can be determined by 
spectroscopy. Spectroscopy is defi ned as the study of radiation with respect to wavelength. 
Since the apparent magnitude can be obtained by photometric observations, the distance 
to stars can then be determined with the distance modulus equation (Eq.  1.14 ). 

 The defi nition of magnitude given above (Eq.  1.13 ) can also be applied to magnitudes of 
two photometric bands of a single star. If one obtains photometric measurements of two 
photometric bands for a star, the fl ux ratio of these bands can be used to obtain its effective 
temperature. To better illustrate this, an example is shown in Figure  1.4 , where the fl ux of 
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a star is approximated by that of a blackbody with temperature  T  eff . Two photometric bands 
for two blackbodies of different temperatures are shown. From this illustration, it is found 
that the ratio  F  U / F  V  (and thus  m  V    –  m  U ) increases with temperature. Since the blackbody 
fl ux is a well - known quantity, a value  F  U / F  V  is associated to each temperature. Assuming 
that the theoretical fl uxes of stars with various effective temperatures can be calculated 
via the study of stellar atmospheres (see Chapter  4 ), the observed values of two apparent 
photometric magnitudes can be used to obtain  T  eff . If nothing obstructs the light coming 
from the stars (interstellar clouds for example),  m  V    –  m  U  is independent of distance to the 
observer. Typically, however, the presence of interstellar absorption or scattering necessi-
tates certain corrections to be brought to the observed photometric magnitudes.    

  1.5   Boltzmann and Saha Equations 

 A star is composed of gaseous plasma containing both neutral and ionised atoms as well 
as free electrons. These free electrons come from ionisation. Ionisation is a process by 
which an atom loses one or more of its bound electrons. The atoms of a given element in 
various states of ionisation are called ions. In spectroscopy, ions are represented by the 
elemental nomenclature followed by a roman number. For example, CI is neutral carbon, 
CII is singly ionised carbon, and CVII is carbon ionised six times (i.e. a bare nucleus). 
Each ion of an element has its specifi c atomic energy levels. For reasons that will become 
clearer in later chapters, it is important to know the relative population of the various states 
of ionisation for each element present as a function of stellar depth, as well as the popula-
tion among the various atomic energy levels for each of these ions. These quantities are 
critical for calculating the radiative opacity, which is the capacity of matter to absorb 
electromagnetic radiation. Opacity affects how radiation is transported from the inner to 
the outer portions of a star (see Chapter  3  for more details). 

 The fi eld of statistical physics shows that the atomic energy levels of a given ion are 
populated inversely exponentially as a function of their energy: lower energy levels are 
naturally more populated than higher - lying energy levels. This being said, a bound electron 
can be excited to a higher energy level by two processes. Firstly, the energy needed for 
the bound electron to change levels can be obtained during a collision of the atom with 
another particle, for instance, a free electron. In this case, the kinetic energy of the free 
electron is used to excite the bound electron. The second process that can cause an excita-
tion of an ion, is the absorption of a photon with energy equal to that of the electron transi-
tion (i.e. of energy equal to the difference between the two levels under consideration). 
These are called bound – bound transitions, since an electron goes from one bound state to 
another; whereas ionisation is a bound – free transition since the electron goes form a bound 
to a free state (see Figure  1.5 ). When collisions are the dominant processes that infl uence 
the energy - level populations (which is often the case in stars), the ratio of the population 
of two energy levels of a given ion in a gas at temperature  T  is given by the Boltzmann 
equation

   n
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     Figure 1.5     Energy levels of hydrogen in eV. Various bound - bound transitions are also shown, as 
well as a bound – free transition from level  n    =   2 (see Section  1.6  for more details).  

where  k  is the Boltzmann constant,  n i   is the number of atoms per unit volume (or popula-
tion) in energy level  i  of the ion under consideration and  g i   is the degeneracy of this level. 
The reader is reminded that the degeneracy of an energy level is the number of quantum 
states with the same energy. The quantity  E i   is the energy of level  i  relative to the funda-
mental level,  which is set to zero . 

 However, this form of the Boltzmann equation is not often useful. Instead, the ratio of 
the population of a given energy level to the total population of the ion under considera-
tion is more useful. This quantity, which is useful for radiative opacity calculations (see 
Chapter  3 ), can be written (see Example  1.4 )
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with
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where  U  ion  is called the partition function of the ion under consideration, and  n  ion  is its 
total population. This form of the Boltzmann equation shows that the fraction of ions in 
a given energy level is equal to the portion of the partition function related to this level. 

  Example 1.4:    Demonstrate the equation     
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ion ion
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−     (1.23)    

  Answer: 

 From the equation
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 To better understand these concepts, it is instructive to apply them to hydrogen, which 
has well - known energy levels that can be calculated analytically via Bohr ’ s atomic model. 
In units of electronvolts (eV), 5   E n   for the hydrogen atom is

   E
n

n = −





13 6 1
1

2
.     (1.28)  

where  n  is the principal quantum number of the atomic energy level under consideration. 
Figure  1.5  shows the energy levels of hydrogen, and some transitions that can take place 
among them (see next section for more details). The degeneracy of a given level  n  is equal 
to  g n      =    2 n  2  for hydrogen. 

 To calculate the partition function, an infi nite number of terms, related to the energy 
levels, must be summed. Unfortunately, for large values of  n , the degeneracy ( g n  ) increases 

rapidly while the exponential found in the partition function equation (  e
− E

kT
n

) tends towards 
a constant value. The sum will then diverge for any temperature. Luckily, some simple 
physical considerations can alleviate this problem.     

 To better illustrate this problem, the case of hydrogen will be discussed. According to 
the Bohr model of the atom, the radius of the hydrogen atom in level  n  is  r    =    a  0  n  2 , where 
 a  0    =   0.529  Å  is the radius of the fundamental level of hydrogen (called the Bohr radius). 
The infi nite sum needed to calculate the partition function is not physical, since for high -
 lying levels, the electron will eventually be closer to another nucleus than its own. An 
infi nite sum for the partition function makes sense only if the atom in question is alone in 
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and since  E  1    =   0,  n i   with respect to the population of the fundamental level  n  1  
is written
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 Meanwhile, the total population of the ion under consideration is
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 The two equations above can be used to show that
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  5      1 eV   =   1.6    ×    10  − 12  erg. 
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the Universe, which is obviously not the case! It should also be noted that in the analytical 
development leading to the Bohr radius equation, it is usually supposed that the only force 
on the electron is the attractive Coulomb force between the nucleus and the electron. 
So here again, the Universe is approximated to be composed only of the atom under 
consideration. A cut - off level of quantum number  n  max,  where the levels superior to this 
energy level are no longer bound to the nucleus, can be defi ned and used to approximate 
the value of the partition function. This can also be interpreted as a lowering of the con-
tinuum shown in Figure  1.5 . It can be shown that for a pure hydrogen gas,  n  max    =   (2 a  0 )  − 1/2 ( N )  − 1/6  
where  N  is the number density of hydrogen atoms (see Example  1.5 ). The partition func-
tion can then be approximated by a fi nite sum

   U gn

E

kT
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n n

=
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=
∑ e

1

max

    (1.29)  

  Example 1.5:    Show that for a pure hydrogen gas the cut - off value of the energy 
levels can be approximated by  n  max    =   (2 a  0 )  − 1/2 ( N )  − 1/6  when calculating the partition 
function and where  N  is the number density of hydrogen atoms in the gas. 

  Answer: 

 By supposing that the average distance between two hydrogen atoms in the gas is 
2 d , the number density is thus one atom per (2 d  ) 3  volume

   N
d

=
( )

1

2 3
    (1.30)   

 The maximum value of  n  where the electron is still closer to the initial nucleus than 
a neighbouring one is  r n      ≤     d  where  r n     =    a  0  n  2 . The variable  n  max  may be defi ned by 
the following

   r a n d
N

max max= = =0
2

1 3

1

2
    (1.31)  

and thus

   n
a N

max = 1

2 0
1 6

    (1.32)    

    Since ionised hydrogen has no atomic energy levels because it has lost its only electron, 
its partition function equals unity (i.e. it may be assumed that this ion has a single state 
of energy equal to 0   eV). This partition function is necessary to solve the equations describ-
ing ionisation of hydrogen shown below. At low temperatures, the partition function of 
neutral hydrogen can be approximated by the statistical weight of the fundamental energy 
level  g  1    =   2 since the other terms in the sum (see Eq.  1.29 ) become small. 
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  Example 1.6:  Find the temperature at which the number density of hydrogen atoms 
in the fundamental state is equal to that of its second excited state ( n    =   3). 

  Answer: 

 From the Boltzmann equation

   n

n

g

g

E E

kT1

3

1

3

1 3

1= =
− −( )

e     (1.33)  

and since  g  1    =   2,  g  3    =   18,  E  1    =   0   eV and  E  3    =   12.09   eV,

   2

18
1

12 09

e
eV.

kT =     (1.34)  
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and by using the value  k    =   8.617    ×    10  − 5    eV/K, the temperature is thus  T    =   63   900   K.  

 In stars, the local temperature increases as a function of depth. Moreover, deeper inside 
the stars, more energetic collisions will take place. This is due to the fact that according 
to statistical physics, the average thermal velocity of the particles in the stellar plasma is 
proportional to  T  1/2 . These collisions will cause excitations of atoms to higher energy 
levels (as described by the Boltzmann equation) and can also lead to ionisation of these 
atoms. Another process that can lead to an atom losing an electron is the absorption of a 
suffi ciently energetic photon (see Figure  1.5 ). This process is called photoionisation. The 
freed electrons will contribute to the total gas pressure  P . The reader is reminded that for 
an ideal gas, the equation of state is  P     =     n  tot  kT , where  n  tot  is the total number density of 
particles in the gas. This number density includes both the free electrons and the ions that 
are present in the plasma. A new physical quantity   µ   called the mean molecular weight

of the particles in the gas may be defi ned by writing   n
m

tot
H

= ρ
µ

, where   ρ   is the gas mass 

density (often simply called the density) and  m  H  is the mass of the hydrogen atom. 
Therefore, since density is given by the following equation

   ρ = ∑ n mi i
i

    (1.36)   

 the mean molecular weight is

   µ = ∑1

m n
n mi i

iH tot

    (1.37)  
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where the sum over  i  runs over all types of particles present in the plasma including free 
electrons. The mean molecular weight gives the average mass of the particles in units of 

 m  H . For instance, in a completely ionised hydrogen gas,   µ =
+

≈
m m

m
p e

H2

1

2
, where  m  p  and 

 m  e  are respectively the proton and electron masses. The mean molecular weight is a useful 
concept that is used in stellar astrophysics and will be employed on several occasions in 
this book. 

 When collision processes dominate (which is often the case inside stars), the equation 
that regulates ionisation is called the Saha equation. It can be written
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where  n i   and  n i   +1  are the populations of neighbouring ions of a given element,  n  e  is the 
number density of free electrons in the gas (often called the electronic density),  T  the local 
temperature,  U i   and  U i   +1  are the corresponding partition functions and  E  ion  is the ionising 
energy of ion  i from its fundamental energy level . Here, ion  i    +   1 is the more highly ionised 
ion. 

 From this equation, it may be deduced that ionisation increases with temperature. This 
is related to the fact that more energetic collisions are possible in hotter plasma. Also, for 
a given temperature, ionisation decreases with increasing electronic density. An increase 
in  n  e  fi lls the phase space of free electrons and increases recombination of free electrons 
with ions (i.e. deionisation). 

 The equation shown above gives the relative populations of two neighbouring ionisation 
states. However, this quantity is not often useful in astrophysical applications. As will be 
discussed in Chapter  3 , to calculate the radiative opacity for a given elemental species, 
the population of each energy level needs to be known, which necessitates the knowledge 
of the population of each ionisation state. A quantity that is critical for such calculations 
is the ionisation fraction. The ionisation fraction is the portion of atoms in a given ionisa-
tion state of the element under consideration. The ionisation fraction  f i   of ionisation state 
 i  can be written
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and by dividing both the numerator and the denominator by the neutral state ’ s 
population  n  1 
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 A series of multiplications of Saha equations (Eq.  1.38 ) is thus obtained, that once calcu-
lated, will give the value of the ionisation fraction (assuming  n  e  and  T  are known).   
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 Of course, the ionisation fraction will vary with depth in stars, with more highly 
ionised ions appearing in deeper stellar layers. Figure  1.7  shows the ionisation fractions 
of the fi rst 13 calcium ions in a star with  T  eff    =   7600   K. In this fi gure, there exists a 
large plateau for CaIII and CaXI ionisation fractions. These ions have large ionisation 
energies since they are in noble - gas confi gurations (respectively, those of Ar and Ne). 
These noble - gas confi gurations stay populated for a large domain of temperatures 
compared to other electronic confi gurations because of their large ionisation energy. 
Since the atomic energy levels (and therefore the absorption transitions) are different 
for each ionisation state, the radiative opacity of a given element will also vary with 
depth.     

 Special Topic  –  Ionisation Energies 

    Ionisation energies for the fi rst fi ve ionisation stages for a large number of ele-
ments are given in Appendix D. Figure  1.6  shows the ionisation energy for 
neutral atoms as a function of atomic number. It is shown that there exists a local 
maximum of the ionisation energy for noble gases (He, Ne, Ar, etc  … ). These 
maxima are shifted to other elements for higher stages of ionisation. For example, 
for the singly ionised ion, maxima are found for LiII, NaII and KII (see Appendix 
D). These ions possess electronic confi gurations having respectively 2, 10 and 20 
electrons and have fi lled electronic shells. They are also called noble gas electronic 
confi gurations.    

     Figure 1.6     Ionisation energy (from the fundamental atomic energy state) as a function of 
atomic number for neutral atoms.  
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  Example 1.7:    For a given star, calculate the fraction of neutral atoms in a gas 
composed of pure hydrogen at a depth where  T    =   12   000   K and  n  e    =   2.0    ×    10 15    cm  − 3  
(assume that the partition function of neutral hydrogen  U  I    =   2). 

  Answer: 

 In a pure hydrogen gas, the free electrons come exclusively from hydrogen ionisation 
and therefore  n  e    =    n  II  where  n  II  represents the population of HII ions. 
 From the Saha equation
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where  E  ion    =   13.6   eV and  U  II    =   1. By inserting the appropriate values into this equa-
tion,  n  I  is obtained
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 The ionisation fraction of neutral hydrogen is then
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= 0 245 24 5. . %     (1.43)    

     Figure 1.7     Ionisation fractions ( f i   ) of Ca ions as a function of temperature (or depth) in the 
interior of a star with  T  eff    =   7600   K. The surface of the star is found at the left side of the horizontal 
axis.  
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  Example 1.8:    Calculate the electronic density ( n  e ) in a gas at  T    =   14   000   K composed 
of pure hydrogen where 70   % of the atoms are ionised (assume  U  I    =   2). 

  Answer: 

 Since

   
n

n n
II

I II+
= 0 7.     (1.44)  

    therefore,  n  I    =   0.428  n  II . Also, since the gas under consideration is made of pure 
hydrogen  n  II    =    n  e . 
 From the Saha equation
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where  E  ion    =   13.6   eV and  U  II    =   1. By inserting the appropriate values into this 
equation
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and  n  e    =   2.18    ×    10 16    cm  − 3 .  

 It will be shown in Chapter  4  that the application of the Saha equation in real stars is 
more complex than the relatively simple examples shown above. In stellar models, since 
a large number of elements are present a large series of Saha equations has to be solved 
simultaneously. Atomic data included in the calculation of the partition functions and the 
Saha equations must then be known for all elements present. Such calculations therefore 
necessitate considerable computing resources. 

 Finally, it should be mentioned that the Boltzmann and Saha equations, respectively, 
give, statistically speaking, the portion of atoms in a given atomic level and in the various 
ionisation states. However, a single atom ’ s state (atomic or ionisation) will constantly 
change as a function of time due to interactions with other particles. Generally, these 
interactions are induced by collisions, but radiative excitations and ionisations can some-
times be important. This will be discussed further in Chapter  3 .  

  1.6   Spectral Classifi cation of Stars 

 In astronomy, many objects, be it meteorites, galaxies or stars are classifi ed. These classi-
fi cations aim at a better understanding of the group of objects under consideration. In this 
section, one such classifi cation will be discussed, namely the spectral classifi cation of stars. 
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 As photons diffuse towards the surface of a star, they can interact with the atoms 
present in the stellar plasma. A photon can, for example, be absorbed when its energy 
is used to excite an electron from a lower to an upper bound state of an atom. The 
absorption features seen in the spectrum from these transitions are called atomic lines (see 
Figure  1.8 ). If the atomic energy levels were precisely defi ned, only photons with a single 
value of   λ   could be absorbed by the transition under consideration. The value of   λ   is 
related to the energy difference between the upper and lower levels associated to the 
transition. The photon wavelength necessary for an electronic excitation from level  n  to 
level  m  is

   λn m
m n

hc

E E
→ =

−
    (1.47)     

 However, because of the uncertainty principle of the quantum theory, the energy levels 
cannot be precisely defi ned, thus giving an absorption profi le with a certain width. 
Additionally, since the atoms in the star have a velocity distribution associated to the local 
temperature, called the Maxwell distribution, the Doppler effect as well as broadening by 
pressure (or collisions) will also play a role in the widening of the atomic lines (see Chapter 
 4  for more details). 

 For a given absorption line of an ion to be present in the spectra, the lower (or initial) 
level must be populated (i.e. Boltzmann equation) and of course, the ion must also be 
present (i.e. the Saha equation). Since a star ’ s spectrum emerges from its photosphere, its 
effective temperature will play a pivotal role in determining which atomic lines are present 
in the spectrum. 

     Figure 1.8     Theoretical monochromatic fl ux emerging form an A type star with  T  eff    =   8000   K. The 
fi rst four Balmer absorption lines, as well as the Balmer jump, are identifi ed in this fi gure. Thousands 
of other absorption atomic lines can also be seen. This theoretical fl ux was obtained with the Phoenix 
stellar atmosphere code (Hauschildt, P.H., Allard, F. and Baron, E.,  The Astrophysical Journal , 512, 
377 ( 1999 )) while using the elemental abundances found in the Sun. The fl ux at the surface of a 
blackbody with  T    =   8000   K (dotted curve) is also shown.  
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     Figure 1.9     Approximate line intensity as a function of  T  eff  for several ions. The spectral types 
(these are positioned at the coolest temperature for each class) and the intensity of the TiO molecular 
bands are also shown.  

  Table 1.4    Lyman and Balmer series. 

   Lyman Series     Balmer Series  

  Name    Transition  
   ( n  →  m )  

   Wavelength    Name    Transition  
   ( n  →  m )  

   Wavelength  

  L  α      1  →  2    1216  Å     H  α      2 →  3    6563  Å   
  L  β      1  →  3    1025  Å     H  β      2 →  4    4861  Å   
  L  γ      1  →  4    972  Å     H  γ      2 →  5    4341  Å   
   ·      ·   
   ·      ·   
   ·      ·   
  Lyman    1  →   ∞     911  Å     Balmer    2 →   ∞     3646  Å   
  jump            jump          

 Let ’ s fi rst discuss the behaviour of hydrogen lines in stellar spectra. Figure  1.5  shows the 
energy levels of hydrogen and some of the transitions that can occur. These transitions can 
be grouped as per their initial level. The lines emanating from the  n    =   1 level are called the 
Lyman lines (L  α  , L  β  , L  γ  , etc.) and are found in the ultraviolet part of the spectrum. The 
Balmer series (H  α  , H  β  , H  γ  , etc.) emanate from  n    =   2 and are in the visible part of the spec-
trum, while the Paschen lines (from  n    =   3) are found in the infrared. More details concerning 
the Lyman and Balmer series are given in Table  1.4 . At the surface of cool stars, almost all 
of the hydrogen atoms are in the fundamental level and the Balmer lines (found in the 
visible spectrum) are very weak. The Lyman lines are also weak since relatively few ultra-
violet photons exist in the spectrum of such a cool star. For hotter stars (say  T  eff    =   8000   K 
or so), the hydrogen atoms   found in the  n    =   2 level begin to be signifi cantly populated and 
the Balmer lines are then quite intense (see Figure  1.9 ). For even hotter stars, the intensity 
of the Balmer lines decreases, owing to the fact that the quantity of neutral hydrogen atoms 
contributing to the presence of the Balmer lines diminishes due to ionisation.     
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 Figure  1.10  illustrates the two contributing factor explaining why hydrogen Balmer lines 
are at their strongest for stars with surface temperatures around 10   000   K. The portion of 
neutral hydrogen atoms found in the  n    =   2 level increases with temperature, while the 
neutral ionisation fraction decreases. The line strength depends on the product of these 
two factors which has a maximum at  T     ≈    10   000   K.   

 Similar tendencies are observed for the atomic lines of the other elements (see Figure 
 1.9 ). For example, FeI lines are strong in cool stars. But for hotter stars, FeII, FeIII, etc., 
eventually dominate. The position, with respect to  T  eff , of maximum strength of the atomic 
lines of various ions is related to their ionisation energy. For example, the ionisation energy 
of FeI is 7.9   eV, while it is 24.6   eV for HeI, the FeI atomic transitions are thus at lower 
energies than those of HeI. This explains why FeI lines are more prominent in cooler stars 
than those of HeI. The relative strength of atomic lines of different ions (either of the same 
or of a different element) can be used to estimate the surface temperature of stars. Such 
studies fall in the fi eld of research called stellar spectroscopy. 

 Photons can also be absorbed during photoionisation. For hydrogen, the ionisation 
energy from its fundamental level is 13.6   eV, whereas it is 3.4   eV from its fi rst excited 
state. The synthetic spectrum of Figure  1.8  shows a large fl ux decrease near   λ     =   3646    Å , 
due to the ionisation of hydrogen from level  n    =   2. This spectral feature is called the 
Balmer jump. As mentioned previously, the minimum energy of photons that can ionise 
hydrogen from this level is 3.4   eV. When more energetic photons are absorbed by this 
bound – free transition, the excess of energy is transformed to kinetic energy transferred to 
the ejected electron. 

 Stars are generally divided into seven spectral classes or types: O, B, A, F, G, K and 
M going from hotter (bluer) to cooler (redder) effective temperatures. This classical cat-
egorization of stellar spectra, based mainly on the strength of hydrogen Balmer lines, is 
called the Harvard classifi cation. The A - type stars fall where the strongest (or deepest) 

      Figure 1.10    Illustration showing the portion of neutral hydrogen atoms found in the  n    =   2 level 

( n  2 / n  I ), the neutral ionisation fraction (  f
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  Table 1.5    Spectral classes. 

   Spectral class      T  eff      Spectral characteristics     Colour     Example  

  O     > 30   000   K    HeII strong, H faint, 
multiply - ionised metals 
strong  

  blue     λ  Ori  

  B    10   000 – 30   000   K    HeI strong, H moderate    blue - white    Rigel  
  A    7500 – 10   000   K    H lines at their maximum    white    Vega  
  F    6000 – 7500   K    Singly ionised metals strong, 

H moderate  
  white - yellow    Procyon  

  G    5000 – 6000   K    Singly ionised metals strong, 
H faint  

  yellow    Sun  

  K    3500 – 5000   K    Strong neutral and Singly 
ionised metals, H faint  

  orange    Arcturus  

  M     < 3500   K    Strong molecule bands (i.e. 
TiO), strong neutral 
metals, H very faint  

  red    Betelgeuse  

hydrogen lines are observed. As discussed above, two processes, excitation and ionisation, 
conspire to give the largest portion of hydrogen atoms in the  n    =   2 level in A - type stars 
(see Figure  1.10 ). A useful mnemonic to remember the order of the spectral classes is   ‘ Oh 
Be A Fine Girl (or Guy, depending on the reader ’ s preference), Kiss Me ’  . The spectral 
features and  T  eff  of the different spectral classes are given in Table  1.5 .   

 Simple molecules (TiO, CH, H 2 O, etc.) can also exist in cooler stars and may absorb 
radiation not only through electronic transitions but also via rotational or vibrational transi-
tions. These transitions are called bands instead of lines and are found in the infrared 
region of the spectrum. In hotter stars, the molecules are destroyed by photodissociation 
due to energetic photons, or by energetic collisions; hence, no molecular bands are 
observed in the spectra of such stars. 

 Hot stars are often called early - type stars, while cooler stars are called late - type stars. 
These terms came about when astronomers erroneously thought that stars began their lives 
as hot stars and cooled down during their lifespan. 

 The spectral classes can also be subdivided into 10 partitions. These subdivisions are 
identifi ed by a single Arabic digit increasing from the hotter end to the cooler end of the 
spectral class (i.e. F0 stars are hotter than F9 stars). The spectral class of the Sun is G2. 

 All spectral types are not equally populated. There are fewer high - mass stars (i.e. type 
O and B) than less massive ones (i.e. type K and M). This is associated to the process of 
stellar formation that does not uniformly create stars with respect to their mass. This will 
be discussed in Chapter  2 . 

 Several types of stars do not fi t into the classical spectral classifi cation given above. For 
instance, ApBp stars (p standing for peculiar) are A and B type stars with strong magnetic 
fi elds and large observed abundance anomalies. Abundance anomalies, are defi ned as 
when the abundances of some elements are very different from those expected (either 
those found in the Sun, or in the vicinity of the star under consideration). These abundance 
anomalies or peculiarities strongly modify their spectra which differentiate them from 
normal A - type stars. For example, in the case of an overabundance for a given element, 
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  Table 1.6    Solar abundances of the most abundant elements. 

   Element      N  elem / N  tot   

  H    9.097    ×    10  − 1   
  He    8.890    ×    10  − 2   
  O    7.742    ×    10  − 4   
  C    3.303    ×    10  − 4   
  Ne    1.119    ×    10  − 4   
  N    1.021    ×    10  − 4   
  Mg    3.458    ×    10  − 5   
  Si    3.228    ×    10  − 5   
  Fe    3.154    ×    10  − 5   
  S    1.475    ×    10  − 5   

its lines are much stronger. Abundances are often given relative to those of the Sun. 
Table  1.6  shows the abundances of the most abundant elements found in the Sun. A more 
complete set of solar - abundance data is given in Appendix E.   

 Abundance anomalies are believed to be caused by diffusion of the elements within the 
star, caused partly by the radiative force transferred to ions. The radiative force is due to 
momentum transfer from photons to atoms during line absorption for instance. The diffu-
sion process can cause an accumulation or depreciation of certain species at different 
depths (see Chapter  7  for more details). Abundances observed at the surface of a star are 
not always indicative of the average abundances of the elements within the whole star. 

 Among other types of stars with peculiar spectra are Am (m standing for metallic) and 
HgMn stars (where Hg and Mn are generally overabundant by several orders of magni-
tudes at their surface as compared to their solar abundance). Another example of stars that 
can ’ t be classifi ed in the types shown in Table  1.5  are Be stars (e standing for emission). 
These stars are surrounded by gas, and emission lines are observed in their spectra. 
Emission lines are spectral features that resemble inverted absorption lines or spikes in 
the fl ux. Many other peculiar spectral types not mentioned here also exist. 

 Abundances found in stars are also used to defi ne their population. There are three types 
of stellar populations. Population I stars are young stars with relatively large metallicity, 
while population II stars are older stars with a smaller value of metallicity. Population III 
stars are the oldest stars that, hypothetically, have zero metallicity. However, the stars of 
this population have never been directly observed. The Sun is a population I star. The 
relation between the age of a star and its metallicity can be explained by results from 
the Big - Bang theory and stellar evolution. As mentioned previously, at the beginning of 
the Universe, only hydrogen and helium were present, with the exception of a trace 
of lithium. Therefore, the fi rst generation of stars (population III) did not contain any 
metals except for this trace element. As this generation of stars evolved, some become 
supernovae thereby enriching the interstellar medium with the newly synthesized heavy 
elements. Following generations of stars were then composed of this enriched matter, 
which translated into increasing metallicities. This process will be explained in more detail 
in Chapter  6 .  
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  1.7   The Hertzsprung – Russell Diagram 

 As discussed in Section  1.4 , the luminosity of a star depends on both its radius and effec-
tive temperature. A famous diagram, called the Hertzsprung – Russell (hereafter H – R) 
diagram, shows the relation between the luminosity and the effective temperature of stars. 
In such diagrams, the direction of the abscissa ( T  eff ) is reversed (see Figures  1.11  and  1.12 ). 
This tool for studying stars was developed by the Danish astronomer Ejnar Hertzsprung 

     Figure 1.12     The main sequence on an H – R diagram. Several values of the mass are given. The 
spectral types are also shown (these are positioned at the coolest temperature for each class).  

     Figure 1.11     A sample taken among the 1000 nearest stars on a color - magnitude H – R diagram. 
The spectral types are also shown (these are positioned at the coolest temperature for each 
class).  



28 An Introduction to Stellar Astrophysics

(1873 – 1967) and the American astronomer Henry Norris Russell (1877 – 1957) at the 
beginning of the twentieth century. The H – R diagram is extremely useful when studying 
the evolution of stars, since there are well - determined paths along which stars should travel 
as they evolve. These paths depend mostly on stellar mass (see Figure  6.10 ). During evo-
lution, both the  T  eff  and the radius of a star change. Its spectral type will also be time 
dependent. Observational astronomers often use an absolute magnitude scale instead of 
luminosity, and  m  B    –  m  V  instead of effective temperature. These are called colour - 
magnitude diagrams (see Figure  1.11 ). The colour index  m  B    –  m  V  is usually written as 
 B   –   V   .   

 Figure  1.11  represents an observational H – R diagram containing a sample taken among 
the 1000 nearest stars, obtained from the Gleise star catalogue. A large portion of these 
stars are concentrated on a branch called the main sequence. This is where stars begin 
their lives and stay while burning hydrogen in their core. In this fi gure, the stars found 
above the main sequence are red giants; whereas those below are white dwarfs. These 
regions of the H – R diagram are often called branches. During its evolution, a star eventu-
ally leaves the main sequence, its radius increases and its  T  eff  at fi rst decreases, giving a 
red giant star. It can then become a supergiant and possibly a white dwarf, depending on 
the value its initial mass (see Chapter  6  for more details). 

 For many reasons, a certain scatter is observed along each branch. For example, as time 
evolves, stars move in the H – R diagram. Even stars on the main sequence branch move 
slightly during their hydrogen - burning phase, their structure changes as more helium is 
produced in their core. Another factor that causes scatter is the varying metallicity among 
the stars. This leads to structural changes that modify their position on the H – R diagram. 
Observational errors can also add to the observed scatter. 

 When moving from the upper left to the lower right along the main sequence, the stars 
found there have lower masses and  T  eff  (see Figure  1.12 ). High - mass stars are more lumi-
nous because their central temperatures are higher and therefore they fuse hydrogen and 
produce nuclear energy at a higher rate. Their central temperatures are higher due to the 
large amount of gravitational energy that can be released during their formation (see 
Chapter  2 ). Figure  1.12  shows main - sequence stars of various masses within an H – R 
diagram. The range of masses for stars is approximately 0.08  M   �      ≤     M     ≤    120  M   �  . The upper 
limit is related to the fact that high radiation pressure present at the surface of such massive 
stars pushes out any additional mass that would otherwise be gravitationally attracted to 
the star during its formation. However, the value of this upper limit is quite uncertain. The 
lower limit of this range exists because the central temperature of astronomical objects 
with  M     ≤    0.08  M   �   does not attain the value needed for   substantive and sustained hydrogen 
fusion. Objects with masses just below this limit are called brown dwarfs. These astro-
nomical objects will be described in Chapter  6 . Meanwhile, the range of effective tem-
perature of main - sequence stars is approximately 2000   K    ≤     T  eff     ≤    60   000   K. 

 For main - sequence stars, the relation between the mass and radius is nearly linear (see 
Figure  1.13 ); whereas the luminosity increases much faster than mass (see Figure  1.12 ). 
This stems from the dependence of luminosity on  R   *   and  T  eff ,   L R T* * eff= 4 2 4π σ . As mentioned 
previously, more fundamentally, the luminosity of a star is determined by the nuclear 
power generated in its core, which itself depends on the central temperature. The relation 
between the luminosity and stellar mass is critical for estimating the lifespan of main -
 sequence stars (see Chapter  6 ).   
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     Figure 1.14     Luminosity classes of the H – R diagram. These are identifi ed in Table  1.7 . The spectral 
types are also shown (these are positioned at the coolest temperature for each class).  

     Figure 1.13     Relation between mass and radius for main - sequence stars (dots). Also shown is a 
curve fi tted to the data.  

 For a given  T  eff , stars can have very different luminosities due to differing radii. A star 
of a given  T  eff  can, for instance, be a white dwarf, a main - sequence, or a supergiant star. 
A supergiant can have a radius up to the order of 1000  R   �   (where  R   �     =   6.955    ×    10 10    cm), 
while white dwarfs typically have  R     ≈    0.01  R   �  . This explains their position in the H – R 
diagram vis -  à  - vis the luminosity axis. The spectral class of a star is thus not suffi cient to 
correctly specify its evolutionary status, since its spectral type depends solely on the physi-
cal properties of its photosphere. To solve this problem, luminosity classes (see Figure 
 1.14  and Table  1.7 ) are defi ned as a second parameter to the spectral classifi cation of stars. 
These luminosity classes are related to differing evolutionary stages. For example, the Sun 
has a spectral type G2V, V being the luminosity class of a main - sequence star.     
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  Table 1.7    Luminosity classes. 

  Ia    Bright supergiants  
  Ib    Supergiants  
  II    Bright giants  
  III    Giants  
  IV    Subgiants  
  V    Main - sequence stars (or dwarfs)  
  VI (or sd)    Subdwarfs  
  D (or VII)    White dwarfs  

 It should be noted that the  T  eff  range given in Table  1.5  for the spectral classes and 
shown in the fi gures found in this chapter are those of main - sequence stars. These  T  eff  
ranges are slightly shifted for other luminosity classes (see Exercise 1.14). 

 Main - sequence stars are also called dwarfs. As shown in Figure  1.14 , there exists a class 
of stars called subdwarfs found just below the main sequence. Subdwarf stars have low 
metallicities. This leads to a smaller radius and higher  T  eff  than a main - sequence star with 
the same mass. This larger  T  eff  can be explained by the fact that the outer layers are closer 
to the stellar core. In other words, the smaller radius leads to a higher fl ux, thus a larger  T  eff . 

 In conclusion, the global properties of a star can be defi ned by three fundamental param-
eters: mass, radius and luminosity. With the luminosity and the radius, the effective tem-
perature is defi ned by Eq.  1.10 . A star found at a given point in the H – R diagram (i.e. with 
known luminosity and effective temperature) isn ’ t completely defi ned since stars with dif-
ferent masses can pass at a same point in the H – R diagram during their lifetime. Its mass is 
needed to defi ne it completely. Secondary parameters such as the abundances of the ele-
ments present in the star, the presence of magnetic fi elds, stellar rotation, etc. can also come 
into play. The fundamental parameters for main - sequence stars are given in Appendix G.  

  1.8   Summary 

 Modes of energy transport in stars: radiation, convection and conduction  
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 Spectral types (in order of decreasing  T  eff ): O, B, A, F, G, K and M 

 Three fundamental parameters of stars: mass, radius and luminosity      

       1.9   Exercises    

   1.1   Demonstrate the Stefan – Boltzmann law.   

   1.2   Demonstrate Wien ’ s law (numerical problem).   

   1.3   A binary star system is observed, and since the separation between the two stars is 
much smaller that the distance of the system from the observer, it can be supposed that 
both stars are found at the same distance from Earth. The absolute magnitude in a given 
photometric band of the fi rst star is determined to be  − 0.5, while its apparent magnitude 
is 3.5. If the apparent magnitude of the second star is 4.5, what is its absolute magnitude? 
At what distance (in light - years) is the binary system from the observer?   

   1.4   What is the numerical difference between the absolute magnitudes of two stars 
having the same  T  eff , where one of these stars is in the giant phase and has a radius 15 
times larger than the other star, which fi nds itself on the main sequence?   

   1.5   At what distance would the Sun have to be to have the same apparent magnitude as 
a 100 - W light bulb found 100 m away? Express your answer in ly.   
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     Figure 1.15     Illustration of the spectra of two stars showing the line H  γ   and an atomic line from 
the ion FeI. These spectra are vertically shifted for visual effect (see Exercise 1.13).  

   1.6   Assuming a fl ux equal that of a blackbody, calculate the percentage of the fl ux for 
stars with  T  eff    =   5000, 10   000 and 20   000   K, capable of ionising hydrogen from level  n    =   2 
(numerical problem)?   

   1.7   Calculate the temperature at which the number density of hydrogen atoms in the fi rst 
excited state is ten times less than the number density of those in the fundamental level.   

   1.8   A hypothetical ion of an element has a degeneracy equal to 4 n  2 , where  n  is the 
principal quantum number. At  T    =   40   000   K, the ratio of the number density in level  n    =   3 
to that of the fundamental ( n    =   1) is 0.25. Find the energy of level  n    =   3, assuming  E  1    =   0.   

   1.9   What is the ionisation fraction of HI at a depth where  T    =   9000   K and  P    =   140   
dyn/cm 2  in a star composed of pure hydrogen (assume  U  I    =   2)?   

   1.10   Calculate the total number density ( n  tot ) and the density (  ρ  ) at a depth in a star 
composed of pure hydrogen where  T    =   9500   K and 35   % of the atoms are ionised (assume 
 U  I    =   2). What percentage of hydrogen atoms are in the energy level  n    =   2?   

   1.11   Calculate the pressure in a pure hydrogen gas at  T    =   12   000   K that has 20   % of its 
atoms in the ionisation state HII (assume  U  I    =   2).   

   1.12   At a certain depth in a star, three ions of a given element have the following ionisa-
tion fractions:  f  1    =   0.10,  f  2    =   0.85 and  f  3    =   0.05. Their partition functions are:  U  1    =   1,  U  2    =   2 
and  U  3    =   8. The ionisation energy from the fundamental level for ion 1 is 30   eV and it is 
55   eV for ion 2. Calculate  n  e  and  T  at this depth.   

   1.13   Figure  1.15  shows a portion of the spectra for two stars named A and B. The two 
curves shown in this fi gure are vertically shifted for visual effect. Using the relative inten-
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sities of the hydrogen (H  γ  ) line and an atomic line from the ion FeI, which of these two 
stars is hotter? Why?     

   1.14   The effective temperature of a main - sequence star with spectral type B2 is approxi-
mately 22   000   K. Whereas, the effective temperature for a luminosity III class star of the 
same spectral type (i.e. with the same relative intensities of the various lines) possesses 
an effective temperature almost 2000   K lower than this value. Using the theoretical con-
cepts seen in this chapter, explain the reason for the discrepancy.     

  
 

 

 
 




