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Introduction

Spatial statistics, like all branches of statistics, is the process of learning
from data. Many of the questions that arise in spatial analyses are common
to all areas of statistics. Namely,

i. What are the phenomena under study.
ii. What are the relevant data and how should it be collected.
iii. How should we analyze the data after it is collected.

iv. How can we draw inferences from the data collected to the
phenomena under study.

The way these questions are answered depends on the type of
phenomena under study. In the spatial or spatio-temporal setting, these
issues are typically addressed in certain ways. We illustrate this from the
following study of phosphorus measurements in shrimp ponds.

Figure 1.1 gives the locations of phosphorus measurements in a
300 m x 100 m pond in a Texas shrimp farm.

i. The phenomena under study are:

a. Are the observed measurements sufficient to measure total
phosphorus in the pond? What can be gained in precision by
further sampling?

b. What are the levels of phosphorus at unsampled locations in the
pond, and how can we predict them?
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Figure 1.1 Sampling locations of phosphorus measurements.

ii.

iil.

c. How does the phosphorus level at one location relate to the
amount at another location?

d. Does this relationship depend only on distance or also on
direction?

The relevant data that are collected are as follows: a total of
n =103 samples were collected from the top 10cm of the soil
from each pond by a core sampler with a 2.5 cm diameter. We see
15 equidistant samples on the long edge (300 m), and 5 equidistant
samples from the short edge (100 m). Additionally, 14 samples
were taken from each of the shallow and deep edges of each pond.
The 14 samples were distributed in a cross shape. Two of the sides
of the cross consist of samples at distances of 1, 5, 10, and 15m
from the center while the remaining two have samples at 1, 5, and
10 m from the center.

The analysis of the data shows that the 14 samples in each of
the two cross patterns turn out to be very important for both the
analysis, (iii), and inferences, (iv), drawn from these data. This
will be discussed further in Section 3.5.
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iv. Inferences show that the answer to (d) helps greatly in answering
question (c¢), which in turn helps in answering question (b) in an
informative and efficient manner. Further, the answers to (b), (c),
and (d) determine how well we can answer question (a). Also, we
will see that increased sampling will not give much better answers
to (a); while addressing (c), it is found that phosphorus levels are
related but only up to a distance of about 15-20 m. The exact
meaning of ‘related,” and how these conclusions are reached, are
discussed in the next paragraph and in Chapter 2.

We consider all observed values to be the outcome of random variables
observed at the given locations. Let {Z(s;), i = 1,...,n} denote the
random quantity Z of interest observed at locations s € D C R?, where
D is the domain where observations are taken, and d is the dimension of
the domain. In the phosphorus study, Z(s;) denotes the log(phosphorus)
measurement at the 7 th sampling location, 7 = 1, ..., 103. The dimension
d is 2, and the domain D is the 300m x 100 m pond. For usual spatial
data, the dimension, d, is 2.

Sometimes the locations themselves will be considered random, but
for now we consider them to be fixed by the experimenter (as they are,
e.g., in the phosphorus study). A fundamental concept for addressing
question (iii) in the first paragraph of the introduction is the covariance
function.

For any two variables Z(s) and Z(t) with means wu(s) and pu(t),
respectively, we define the covariance to be

Cov[Z(s). Z(1)] = E[(Z(s) — u(s))(Z(t) — p(1))].

The correlation function is then Cov[Z(s), Z(t)]/(0s0¢), where o
and o; denote the standard deviations of the two variables. We see,
for example, that if all random observations are independent, then the
covariance and the correlation are identically zero, for all locations s and
t, such that s # t. In the special case where the mean and variances are
constant, that is, i (s) = u and os = o for all locations s, we have

Corr[Z(s), Z(t)] = Cov[Z(s), Z(t)] /o>

The covariance function, which is very important for prediction and
inference, typically needs to be estimated. Without any replication this is
usually not feasible. We next give a common assumption made in order to
obtain replicates.



“9780470699584_4_001" — 2010/9/22 — 6:48 — page 4 — #4 GE

4 SPATIAL STATISTICS AND SPATIO-TEMPORAL DATA

1.1 Stationarity

A standard method of obtaining replication is through the assumption of
second-order stationarity (SOS). This assumption holds that:

i E[Z(s)] = w;
ii. Cov[Z(s), Z(t)] = Cov[Z(s + h), Z(t + h)] for all shifts h.

Figure 1.2 shows the locations for a particular shift vector h. In this case
we can write

Cov[Z(s), Z(t)] = Cov[Z(0), Z(t —s)] =: C(t —s),

so that the covariance depends only on the spatial lag between the
locations, t — s, and not on the two locations themselves. Second-order
stationarity is often known as ‘weak stationarity.” Strong (or strict)
stationarity assumes that, for any collection of k variables, Z(s;),
i=1,...,k,and constants a;, i =1, ..., k, we have

P[Z(s1) <ai,...,Z(sx) < ax]
= P[Z(sy +h) <ay,...,Z(sx +h) < ag],

for all shift vectors h.

/

/:t—s

(0]

Figure 1.2 A depiction of stationarity: two identical lag vectors.
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This says that the entire joint distribution of k variables is invariant
under shifts. Taking k = 1 and k = 2, and observing that covariances
are determined by the joint distribution, it is seen that strong stationarity
implies SOS. Generally, to answer the phenomenon of interest in the
phosphorus study (and many others) only the assumption of weak
stationarity is necessary. Still, we will have occasions to use both concepts
in what follows.

It turns out that the effects of covariance and correlation in estimation
and prediction are entirely different. To illustrate this, the role of
covariance in estimation and prediction is considered in the times series
setting (d = 1). The lessons learned here are more simply derived,
but are largely analogous to the situation for spatial observations, and
spatio-temporal observations.

1.2 The effect of correlation in estimation and
prediction

1.2.1 Estimation

Consider equally spaced observations, Z;, representing the response
variable of interest at time i. Assume that the observations come from
an autoregressive time series of order one. This AR(1) model is given by

Zi=pu+p(Zi-1—p) + €,

where the independent errors, €;, are such that E(e;) = 0 and Var(e;)
= n?. For the sake of simplicity, take s = 0 and 5> = 1, and then the
AR(1) model simplifies to

Zi =pZi—1 + €,

with Var(e;) = 1.

For —1 <p <1, assume that Var(Z;) is constant. Then we
have Var(Z;) = (1 —p?)~!, and thus direct calculations show that
Cov(Zi+1,Z;) = p/(1 — p?). Iteration then shows that, for any time lag
k, we have:

Cov(Zisk, Zi) = p*l/(1 = p?).

Noting that the right hand side does not depend on i, it is seen that
SOS holds, and we can define C(k) := p!*!/(1 — p?). Further, note that
the distribution of Z; conditional on the entire past is the same as the



“9780470699584_4_001" — 2010/9/22 — 6:48 — page 6 — #6

6 SPATIAL STATISTICS AND SPATIO-TEMPORAL DATA

p=0.0

-4

p=05

-4

p=0.9

B T T T T '/\/I
0 10 20 30 40 50

-4

Figure 1.3 Outcomes of three AR(1) time series.

distribution of Z; given only the immediate past, Z;_;. Any such process
is an example of a Markov process. We say that the AR(1) process is a
Markov process of order one, as the present depends only on the one,
immediately previous observation in time.

Figure 1.3 shows the outcomes of three AR(1) time series, the first
an uncorrelated series (p = 0.0), the second with moderate correlation
(p = 0.5), and the third with strong correlation (p = 0.9). Each time
series consists of n = 50 temporal observations. Note that as p increases
the oscillations of the time plots decrease. For example, the number
of crossings of the mean (u = 0) decreases from 22 (p = 0), to 17
(p=0.5), to 8 (p = 0.9). In other words, the ‘smoothness’ of the time
plots increases. This notion of ‘smoothness’ and its importance in spatial
prediction is discussed in Section 3.3.
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To examine the effect of correlation on estimation, assume that SOS
holds. From observations Z;,i = 1,...,n, we seek to estimate and draw
inferences concerning the mean of the process, p. To do this we desire
a confidence interval for the unknown p. Under SOS, it holds that each
observation has the same variability, 02 = Var(Z;), and to simplify we
assume that this value is known. The usual large sample 95 percent
confidence interval for u is then given by

— o = o
(Z. - 1967 Zn + 1.96’117) ,

where
n
Zn=Y Zi/n
i=1
denotes the sample mean of the observations.
We hope that the true coverage of this interval is equal to the nominal
coverage of 95%. To see the true coverage of this interval, continue to

assume that the data come from a (SOS) time series. Using the fact that,
for any constants a@;,i = 1,...,n, we have

n n n
Var (Z a,-Z,-) = Z Z a,'ajCOV(Z,', Zj),
i=1 i=1j=1

and setting a; = 1/n, for all i, gives:

. 1 n n
Var(Z,) = s Z Z Cov(Z;,Zj)

i=1j=1

1 n—1
= = [nCO +23 = /)C() |.
j=1

where the second equality uses SOS and counting. To evaluate this for
large n, we need the following result named after the 19th century
mathematician, Leopold Kronecker:

Lemma 1.1 Kronecker’s lemma

For a sequence of numbers a;, i = 1,..., such that

o0
D lail < oo,

i=1
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we have that

D=1l ai

n

— 0, as n— oo.

In a direct application taking a; = C(i) in Kronecker’s lemma, it is
seen that:

—1
(1/n) ijl jC(j) — 0, as n — co whenever Zjoz_oo [C(j)| < o0,

and thus that

o0

nVar(Z,) — 62 := Z C(j),
j=—o00
whenever Z;’i_oo |C(j)| < oo. This last condition, known as ‘summable
covariances’ says that the variance of the mean tends to O at the same rate
as in the case of independent observations. In particular, it holds for the
AR(1) process with —1 < p < 1. The same rate of convergence does not
mean, however, that the correlation has no effect in estimation.

To see the effects of correlation, note that in the case of independent
observations, it holds that the variance of the standardized mean,
nVar(Z,) = 0% = C(0). It is seen that in the presence of correlation, the
true variance of the standardized mean, G2, is quite different from o2.
In particular, for the stationary AR(1) process (with n = 1), 62 = C(0)
= (1 — p?)~!, while arithmetic shows that 62 = (1 — p)~2, so that the
ratio of the large sample variance of the mean under independence to
the true variance of the mean is R = 02/62 = (1 — p)/(1 + p). In the
common situation where correlation is positive, 0 < p < 1, we see that
ignoring correlation leads to underestimation of the correct variance.

To determine the practical effect of this, let ®(-) denote the cumulative
distribution function of a standard normal variable. The coverage of the
interval that ignores the correlation is given by

S [0} — o
p [Zn ~ 1967 < w7y + 1.96m]
n'2(Z, — )

=P [—1.96(0/6) < < 1.96(0/6)}

— ®(1.96RY?) — d(—1.96R"/?).
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We have assumed that the Central Limit theorem holds for temporary
stationary observations. It does under mild moment conditions on the Z;s
and on the strength of correlation. In particular, it holds for the stationary
AR(1) model. Some details are given in Chapter 10.

Evaluating the approximate coverage from the last expression, we see
that when p = 0.2, the ratio R = 0.667 and the approximate coverage
of the usual nominal 95% confidence interval is 89%. When p = 0.5,
R = 0.333 and the approximate coverage is 74%. The true coverage has
begun to differ from the nominal of 95% so much that the interval is not
performing at all as advertised. When p = 0.9, R = 0.053, and the true
coverage is approximately 35%. This interval is completely unreliable. It is
seen that the undercoverage becomes more severe as temporal correlation
increases.

Using the correct interval, with & replacing o, makes the interval wider,
but we now obtain approximately the correct coverage. Note, however, that
the estimator, Z,, is still (mean square) consistent for its target, /, as we
still have Var(Z,) — 0, as n — oo, whenever Z;‘;_oo [C(j)| < oo.

To generalize this to the spatial setting, first note that we can write
the conditional mean and the conditional variance for the temporal AR(1)
model as:

ElZ)|Zj: ] <i]=pn+p(Zi-1 —p)
and
Var(Z;|Z; : j <i] = n*.

A spatial first-order autoregressive model is a direct generalization
of these two conditional moments. Specifically, conditioning on the past
is replaced by conditioning on all other observations. In the temporal
AR(1) case, it is assumed that the conditional distribution of the present
given the past depends only on the immediate past. The spatial analogue
assumes that the conditional distribution of Z(s) depends only on the
nearest neighbors of s. Specifically, with equally spaced observations in
two dimensions, assume that:

E[ZO|ZO).t#s|=p+y Y [Z(1)—p]
d(s,t)=1

and

Var[Z(s)|Z(t), t £ 5] = 1.
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Note how these two conditional moments are a natural spatial analogue to
the conditional moments in the temporal AR(1) model. If the observations
follow a normal distribution, then we call this spatial model a Gaussian
first-order autoregressive model. The first-order Gaussian autoregressive
model is an example of a (spatial) Markov process. Figure 1.4 shows
sample observations from a first-order Gaussian model on a 100 x 100
grid with y = 0.0 and y = 0.2. Note how high values (and low values)
tend to accumulate near each other for the y = 0.2 data set. In particular,
we find that when y = 0.0, 2428 of the observations with a positive
neighbor sum (of which there are 4891) are also positive (49.6 percent),
while when y = 0.2, we have that 3166 of the observations with a positive
neighbor sum (of which there are 4813) are also positive (65.8 percent).
To see the effects of spatial correlation on inference for the mean, we
again compare the true variances of the mean with the variances that
ignore correlation.

First we need to find the variance of the mean as a function of the
strength of correlation. Analogously to the temporal case, we have that

nVar(Z,) — 62 := Z Cov[Z(0), Z(s)]

s€Z2

as n — oo. Unfortunately, unlike in the temporal case of an AR(1), it is
not a simple matter to evaluate this sum for the conditionally specified
spatial model. Instead, we compute the actual finite sample variance for
any given sample size n and correlation parameter y.

Towards this end, let Z denote the vector of n spatial observations (in
some order). Then Var(Z) is an n X n matrix, and it can be shown using a
factorization theorem of Besag (1974), that Var(Z) := £ = n*(I—T)7!,
where I' is an n x n matrix with elements y5; = y whenever locations s
and t are neighbors, that is, d(s, t) = 1. This model is discussed further in
Chapter 4.

Using this and the fact that nVar(Z,) = (1/n)17X 1, for any sample
size n, we can compute the variance for any value of y (this is simply
the sum of all elements in ¥ divided by the sample size n). Take this
value to be 2. In the time series AR(1) setting, we were able to find the
stationary variance explicitly. In this spatial model this is not simply done.
Nevertheless, observations from the center of the spatial field are close
to the stationary distribution. From the diagonal elements of Var(Z), for
observations near the center of the field we can see the (unconditional)
variance of a single observation, o2, for various values of y.
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Figure 1.4 Output from two 100 x 100 first-order spatial Gaussian
models.
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For a 30 x 30 grid of observations (with n? = 1.0), direct calculation
shows that 62 = 1.24 for y = 0.05 (6% =1.01), 6% = 1.63 for y =0.10
(02 =1.03), and 62 = 4.60 for y = 0.20 (62 = 1.17). It is seen that,
as in the temporal setting, the variance of the mean increases as spatial
correlation increases, and that the ratio R = o2 / 62 =0.813,0.632,
0.254 for y = 0.05,0.10, 0.20, respectively. This leads to approximate
coverages of the usual 95% nominal confidence interval for u of 92%,
88%, and 68%, respectively. We have seen that, as in the temporal
setting, accounting for spatial correlation is necessary to obtain accurate
inferences. Further, it is seen that when correlations are positive, ignoring
the correlation leads to undercoverage of the incorrect intervals. This
corresponds to an increased type-I error in hypothesis testing, and thus
the errors are often of the most serious kind. Further, to obtain accurate
inferences, we need to account for the spatial correlation and use the
correct 62, or a good estimate of it, in place of the incorrect o2

1.2.2 Prediction

To see the effects of correlation on prediction, consider again the temporal
AR(1) process. In this situation, we observe the first n observations in
time, Z;, i = 1,...,n, and seek to predict the unobserved Z,4+;. If
we entirely ignore the temporal correlation, then each observation is an
equally good predictor, and this leads to the predictor 4 nt1 = Zy. Direct
calculation shows that the true expected square prediction error for this
estimator, £ [(2 n+1 — Zn+1)?], is approximately given by

R e Lo 20 20
MSE(Zp41) ~0 [1+n(1 n(l —p) n(l—p)2)}

where the error is in terms of order smaller than 1/72. From this equation
we see that, as n — oo, MSE(?,,H) — 02 # 0. This is in stark contrast
to the situation in Section 1.2.1, where the sample mean estimator has
asymptotic MSE equal to 0. This is generally true in prediction. No amount
of data will make the prediction error approach zero. The reason is that the
future observation Z, 4 is random for any sample size n. Additionally,
unlike in Section 1.2.1, we see that as p increases, MSE (2 n+1) decreases.
So, although strong correlation is hurtful when the goal is estimation (i.e.,
estimation becomes more difficult), strong correlation is helpful when the
goal is prediction (prediction becomes easier).
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Consider the unbiased linear estimator, 7n+1 = Z?zl a;Z;, with
Z?:l a; = 1,that minimizes MSE overay, ..., a,. Then, it can be shown
using the methods in Chapter 2, Section 2.2, that

~ 1—p)2 302 Z;i Zi+ Z
Zns =PZn+( Py 2izy Zi +(1—p
n(l—p)+2p n(l—p)+2p

Note that this predictor is approximately the weighted average of Z,, and
the average of all previous time points. Also, the weight on Z, increases
as correlation increases. The methods in Section 2.2 further show that, for
this predictor,

MSE(Z p41) ~ o> [1 —p*+ w},

n

where the error is in terms of order smaller than 1/n.
Imagine that we ignore the correlation and use the predictor Z, 41 (i.e.,
we assume p = 0). Then we would approximately report

~ 1
MSE*(Z,41) = 0° [1 + ;],

which is approximately equal to MSE (2 n+1) (for large n and/or moderate
p, the error is of order 1/n2), and thus Z n+1 18 approximately accurate.
Accurate means that the inferences drawn using this predictor and
the assumed MSE would be approximately right for this predictor.
In particular, prediction intervals will have approximately the correct
coverage for the predictand Z,4+;. This is in stark contrast to the
estimation setting in Section 1.2.1, where ignoring the correlation led to
completely inaccurate inferences (confidence intervals with coverage far
from nominal). It seems that, in prediction, ignoring the correlation is not
as serious as in estimation. It holds on the other hand, that

MSE(7n+1) ~1—p2
MSE(Z p+1)

This shows that Z n+1 18 not the correct predictor under correlation.
Correct means that the inferences drawn using this predictor are the
‘best” possible. Here ‘best” means the linear unbiased predictor with
minimal variance. The predictor Z,; is both accurate and correct for the
AR(1) model with known AR(1) parameter p. In estimation, the estimator
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~

Z i1 := Z, is approximately correct for all but extremely large |p|, but
is only approximately accurate when we use the correct variance, 2.

The conclusions just drawn concerning prediction in the temporal
setting are qualitatively similar in the spatial setting. Ignoring spatial
correlation leads to predictions which are approximately accurate, but are
not correct. The correct predictor is formed by accounting for the spatial
correlation that is present. This is done using the kriging methodology
discussed in Chapter 2.

In summary, it is seen that, when estimation is the goal, we need to
account for correlation to draw accurate inferences. Specifically, when
positive correlation is present, ignoring the correlation leads to confidence
intervals which are too narrow. In other words, in hypothesis testing there
is an inflated type-I error. When prediction is the goal, we can obtain
approximately accurate inferences when ignoring correlations, but we
need to account for the temporal or spatial correlation in order to obtain
correct (i.e., efficient) predictions of unobserved variables.

We now discuss in the temporal setting a situation where ignoring
correlation leads to inaccurate and surprising conclusions in the estimation
setting.

1.3 Texas tidal data

A court case tried to decide a very fundamental question: where is the
coastline, that is, the division between land and water. In many places of
the world, most people would agree to within a few meters as to where the
coastline is. However, near Port Mansfield, TX (south of Corpus Christi,
TX), there is an area of approximately six miles between the intercoastal
canal and a place where almost all people would agree land begins. Within
this six-mile gap, it could be water or land depending on the season of the
year and on the observer. To help determine a coastline it is informative to
consider the history of this question.

In the 1300s, the Spanish ‘Las Siete Partidas, Law 4 of Title 28,
stated that the *...sea shore is that space of ground ... covered by water
in their ... highest annual swells.” This suggests that the furthest reach
of the water in a typical year determines the coastline. This coastline is
approximately six miles away from the intercoastal canal. In 1935, the US
Supreme Court, in Borax v. Los Angeles, established MHW — ‘Mean High
Water’ as the definition of coastal boundary. This states that the coastline
is the average of the daily high-tide reaches of the water. In 1956, in
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Rudder s. Ponder, Texas adopted MHW as the definition of coastal
boundaries. This coastline is relatively close to the intercoastal canal.
The two definitions of coastline do not agree in this case and we seek
to understand which is more appropriate. The development here follows
that in Sherman et al. (1997).

The hourly data in a typical year are given by Y;, t = 1,...,8760,
where Y; denotes the height of the water at hour ¢ at a station at the
intercoastal canal. The horizontal projection from this height determines
the coastal boundary. The regression model dictated by NOAA (National
Oceanographic and Atmospheric Administration) is

37 37
Y, =a¢ + Zai cos(mtS;)/180) + Zbi sin(rtS;)/180) + ¢,
i=1 i=1

where a; and b; are amplitudes associated with S;, the speed of the i th
constituent, i = 1,...,37, and €;s are random errors. The speeds are
assumed to be known, while the amplitudes are unknown and need to be
estimated. This model is similar to that in classical harmonic analysis and
periodogram analysis as discussed in, for example, Hartley (1949).

The basic question in the coastal controversy is: which constituents
best explain the variability in water levels? If annual or semiannual
constituents explain a large proportion of the overall variability in tidal
levels, this suggests that the flooded regions between the intercoastal
canal and land are an important feature in the data, and suggests that
the contested area cannot be called land. If, however, daily and twice-
daily constituents explain most of the variability in tidal levels, then
the contested area should be considered land. Note that the regression
model is an example of a general linear model, and the amplitudes
can be estimated using least squares estimation. In an effort to assess
goodness of fit, consider the residuals from this fitted model. Figure 1.5
shows (a) the first 200 residuals, e;, t = 1,...,200, and (b) residuals e;,
t =1001,...,1200, from the least squares fit. One typical assumption in
multiple regression is one of independent errors, that is, Cov[es, €,] = 0
whenever s #¢.

Notice that the plot of the first 200 residuals shows a stretch of
approximately 60 consecutive negative residuals. This suggests that the
errors are (strongly) positively correlated. The second residual plot
similarly suggests a clear lack of independence in the errors, as do most
stretches of residuals. From the results in estimation in Section 1.2.1, we
know that ignoring the correlation would likely be a serious error if our
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Figure 1.5 Two sets of residuals from OLS in the tidal data. (a) Residuals
1-200; (b) residuals 1001-1200.

goal is to estimate the mean of the process. The goal here, however, is to
estimate the regression parameters in the harmonic analysis, and it is not
clear in the regression setting what the effect of ignoring the correlation
would be. To explore this, consider the setting of a simple linear regression
model:

Yt=ot+,3xt—|—€t, [=1,...,T,

where Y; is the response, x; denotes a covariate, and €; are stationary
errors. The ordinary least squares (OLS) estimator of j is
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with an associated variance of
T T — —
Zt=1 Zu:l(xt —X)(xy —X)E(er€y)
T —21? ‘
I:Zt=l(xt - x)Z]
It is seen that the variance of the estimated slope depends on the
correlations between errors and on the structure of the design. To see

the effect of the latter, consider AR(1) errors, €; = pe;—1 + n; [with
Var(n;) = 1.0], under the following two designs:

Var(,/B\) =

Design 1: Monotone

Design 2: Alternating

@+ 1)/2, ifiisodd;
T —(i/2)+1, ifiiseven.

1

To numerically compare the variance under these two scenarios,
consider 7" = 10 and p = 0.5. In this case we have

0.0306 in Design 1;

Var(B) =
#) { 0.0031 in Design 2.

If we ignore the correlation, we then report the variance to be:
Var(e;)

— = 0.0162
ZtT=1(xt _f)z

Varind(ﬁ) =

for both designs.

The conclusion is that, in contrast to the stationary case in Section
1.2.1, OLS variance estimates that ignore the positive correlation can
under or over estimate the correct variance, depending on the structure
of the design. In the tidal data, constituents of fast speed (small periods)
correspond to the alternating design, while constituents of low speed (long
periods) correspond to the monotone design.
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Table 1.1 P-value comparison between ignoring
and accounting for correlation in tidal data.

Period Correlation OLS

8765 (annual) 0.550 <0.001
4382 (semiannual) <0.001 <0.001
327 0.690 0.002
25.8 (day) <0.001 <0.001
12 <0.001 0.145

OLS are the p-values for parameter estimates that
ignore correlation. Correlation p-values account for the
correlation.

Table 1.1 gives the p-values for the test that the given constituent is
not present in the model, based on the usual t-statistic for a few selected
constituents for data from 1993. One set of p-values is computed under
an assumption of independent errors, while the second set of p-values is
based on standard errors which account for correlation. Variances in these
cases are constructed using the block bootstrap in the regression setting.

We discuss the block bootstrap in more detail in Chapter 10. The
block bootstrap appears to be a reliable tool in this case, as the residual
process is well approximated by a low-level autoregressive moving-
average (ARMA) process.

From the table we see that the OLS p-values that ignore correlation
cannot be trusted. Further, the errors in ignoring the correlation are as
predicted from the simple linear regression example. Namely that, for
long periods, OLS variance estimates underestimate the correct variance,
and thus lead to large t-statistics and hence p-values which are too small.
For short periods, however, this is reversed and the OLS variances are
too large, leading to small t-statistics and overly large p-values. The block
bootstrap accounts for the temporal correlation and gives reliable variance
estimates and thus reliable p-values. A careful parametric approach that
estimates the correlation from within the ARMA(p, g) class of models
gives results similar to those using the block bootstrap.

Finally, the semiannual period (Period = 4382) is very significant. This
suggests that the flooding of the contested area is a significant feature of
the data and thus this area cannot reasonably be considered as land. This
outcome is qualitatively similar for other years of data as well. Although
the Mean High Water criterion may be reasonable for tides in Los Angeles,
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CA (on which the original Supreme Court decision was based), it does not
appear to be reasonable for tides in Port Manfield, TX.

Much of the discussion in this chapter has focused on the role of
correlation and how the effects of correlation are similar in the time series
and spatial settings. There are, however, several fundamental differences
between time series and spatial observations. Some of these will become
clear as we develop spatial methodology. For now, note that in time there
is a natural ordering, while this is not the case in the spatial setting. One
effect of this became clear when considering the marginal variance of
time series and spatial fields in Section 1.2.1. A second major difference
between the time series and spatial settings is the effect of edge sites,
observations on the domain boundary. For a time series of length 7, there
are only two observations on the boundary. For spatial observations on
a n x n grid, there are approximately 4n observations on the boundary.
The effects of this, and methods to account for a large proportion of
edge sites are discussed in Section 4.2.1. A third fundamental difference
is that, in time series, observations are typically equally spaced and
predictions are typically made for future observations. In the spatial
setting, observations are often not equally spaced and predictions are
typically made for unobserved variables ‘between’ existing observations.
The effects of this will be discussed throughout the text, but especially in
Chapters 3 and 5. Other differences in increased computational burden,
complicated parameter estimation, and unwieldy likelihoods in the spatial
setting will be discussed, particularly in Chapters 4 and 9.
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