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Introduction to moments

1.1 Motivation

In our everyday life, each of us almost constantly receives, processes and analyzes a
huge amount of information of various kinds, significance and quality and has to make
decisions based on this analysis. More than 95% of information we perceive is optical in
character. Image is a very powerful information medium and communication tool capable of
representing complex scenes and processes in a compact and efficient way. Thanks to this,
images are not only primary sources of information, but are also used for communication
among people and for interaction between humans and machines.

Common digital images contain an enormous amount of information. An image you can
take and send in a few seconds to your friends by a cellphone contains as much information as
several hundred pages of text. This is why there is an urgent need for automatic and powerful
image analysis methods.

Analysis and interpretation of an image acquired by a real (i.e. nonideal) imaging system
is the key problem in many application areas such as robot vision, remote sensing, astronomy
and medicine, to name but a few. Since real imaging systems as well as imaging conditions
are usually imperfect, the observed image represents only a degraded version of the original
scene. Various kinds of degradation (geometric as well as graylevel/color) are introduced into
the image during the acquisition process by such factors as imaging geometry, lens aberration,
wrong focus, motion of the scene, systematic and random sensor errors, etc. (see Figures 1.1,
1.2 and 1.3).

In general, the relation between the ideal image f (x, y) and the observed image g(x, y)
is described as g =D(f ), where D is a degradation operator. Degradation operator D can
usually be decomposed into radiometric (i.e. graylevel or color) degradation operator R
and geometric (i.e. spatial) degradation operator G. In real imaging systems R can usually
be modeled by space-variant or space-invariant convolution plus noise while G is typically
a transform of spatial coordinates (for instance, perspective projection). In practice, both
operators are typically either unknown or are described by a parametric model with unknown
parameters. Our goal is to analyze the unknown scene f (x, y), an ideal image of which
is not available, by means of the sensed image g(x, y) and a-priori information about the
degradations.
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Figure 1.1 Perspective distortion of the image caused by a nonperpendicular view.

Figure 1.2 Image blurring caused by wrong focus of the camera.

By the term scene analysis we usually understand a complex process consisting of
three basic stages. First, the image is preprocessed, segmented and objects of potential
interest are detected. Second, the extracted objects are “recognized”, which means they
are mathematically described and classified as elements of a certain class from the set of
predefined object classes. Finally, spatial relations among the objects can be analyzed. The
first stage contains traditional image-processing methods and is exhaustively covered in
standard textbooks [1–3]. The classification stage is independent of the original data and is
carried out in the space of descriptors. This part is comprehensively reviewed in the famous
Duda–Hart–Stork book [4]. For the last stage we again refer to [3].
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Figure 1.3 Image distortion caused by a nonlinear deformation of the scene.

1.2 What are invariants?

Recognition of objects and patterns that are deformed in various ways has been a goal of
much recent research. There are basically three major approaches to this problem – brute
force, image normalization and invariant features. In the brute-force approach we search
the parametric space of all possible image degradations. That means the training set of
each class should contain not only all class representatives but also all their rotated, scaled,
blurred and deformed versions. Clearly, this approach would lead to extreme time complexity
and is practically inapplicable. In the normalization approach, the objects are transformed
into a certain standard position before they enter the classifier. This is very efficient in the
classification stage but the object normalization itself usually requires the solving of difficult
inverse problems that are often ill-conditioned or ill-posed. For instance, in the case of image
blurring, “normalization” means in fact blind deconvolution [5] and in the case of spatial
image deformation, “normalization” requires registration of the image to be performed to
some reference frame [6].

The approach using invariant features appears to be the most promising and has been
used extensively. Its basic idea is to describe the objects by a set of measurable quantities
called invariants that are insensitive to particular deformations and that provide enough
discrimination power to distinguish objects belonging to different classes. From a mathe-
matical point of view, invariant I is a functional defined on the space of all admissible image
functions that does not change its value under degradation operator D, i.e. that satisfies the
condition I (f )= I (D(f )) for any image function f . This property is called invariance.
In practice, in order to accommodate the influence of imperfect segmentation, intra-class
variability and noise, we usually formulate this requirement as a weaker constraint: I (f )
should not be significantly different from I (D(f )). Another desirable property of I , as
important as invariance, is discriminability. For objects belonging to different classes, I
must have significantly different values. Clearly, these two requirements are antagonistic –
the broader the invariance, the less discrimination power and vice versa. Choosing a proper
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tradeoff between invariance and discrimination power is a very important task in feature-
based object recognition (see Figure 1.4 for an example of a desired situation).

Usually, one invariant does not provide enough discrimination power and several invariants
I1, . . . , In must be used simultaneously. Then, we speak about an invariant vector. In this
way, each object is represented by a point in an n-dimensional metric space called feature
space or invariant space.

Figure 1.4 Two-dimensional feature space with two classes, almost an ideal example. Each
class forms a compact cluster (the features are invariant) and the clusters are well separated
(the features are discriminative).

1.2.1 Categories of invariant

The existing invariant features used for describing 2D objects can be categorized from various
points of view. Most straightforward is the categorization according to the type of invariance.
We recognize translation, rotation, scaling, affine, projective, and elastic geometric invariants.
Radiometric invariants exist with respect to linear contrast stretching, nonlinear intensity
transforms, and to convolution.

Categorization according to the mathematical tools used may be as follows:

• simple shape descriptors – compactness, convexity, elongation, etc. [3];

• transform coefficient features are calculated from a certain transform of the image –
Fourier descriptors [7, 8], Hadamard descriptors, Radon transform coefficients, and
wavelet-based features [9, 10];

• point set invariants use positions of dominant points [11–14];

• differential invariants employ derivatives of the object boundary [15–19];

• moment invariants are special functions of image moments.
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Another viewpoint reflects what part of the object is needed to calculate the invariant.

• Global invariants are calculated from the whole image (including background if no
segmentation was performed). Most of them include projections of the image onto
certain basis functions and are calculated by integration. Compared to local invariants,
global invariants are much more robust with respect to noise, inaccurate boundary
detection and other similar factors. On the other hand, their serious drawback is the
fact that a local change of image influences the values of all the invariants and is not
“localized” in a few components only. This is why global invariants cannot be used
when the object studied is partially occluded by another object and/or when a part of it
is out of the field of vision. Moment invariants fall into this category.

• Local invariants are, in contrast, calculated from a certain neighborhood of dominant
points only. Differential invariants are typical representatives of this category. The
object boundary is detected first and then the invariants are calculated for each
boundary point as functions of the boundary derivatives. As a result, the invariants at
any given point depend only on the shape of the boundary in its immediate vicinity. If
the rest of the object undergoes any change, the local invariants are not affected. This
property makes them a seemingly perfect tool for recognition of partially occluded
objects but due to their extreme vulnerability to discretization errors, segmentation
inaccuracies, and noise, it is difficult to actually implement and use them in practice.

• Semilocal invariants attempt to retain the positive properties of the two groups above
and to avoid the negative ones. They divide the object into stable parts (most often
this division is based on inflection points or vertices of the boundary) and describe
each part by some kind of global invariant. The whole object is then characterized
by a string of vectors of invariants and recognition under occlusion is performed by
maximum substring matching. This modern and practically applicable approach was
used in various modifications in references [20–26].

Here, we focus on object description and recognition by means of moments and moment
invariants. The history of moment invariants began many years before the appearance of the
first computers, in the nineteenth century under the framework of group theory and the theory
of algebraic invariants. The theory of algebraic invariants was thoroughly studied by the
famous German mathematicians P. A. Gordan and D. Hilbert [27] and was further developed
in the twentieth century in references [28] and [29], among others.

Moment invariants were first introduced to the pattern recognition and image processing
community in 1962 [30], when Hu employed the results of the theory of algebraic invariants
and derived his seven famous invariants to the rotation of 2D objects. Since that time, hun-
dreds of papers have been devoted to various improvements, extensions and generalizations
of moment invariants and also to their use in many areas of application. Moment invariants
have become one of the most important and most frequently used shape descriptors. Even
though they suffer from certain intrinsic limitations (the worst of which is their globalness,
which prevents direct utilization for occluded object recognition), they frequently serve as
“first-choice descriptors” and as a reference method for evaluating the performance of other
shape descriptors. Despite a tremendous effort and a huge number of published papers, many
problems remain to be resolved.



6 MOMENTS AND MOMENT INVARIANTS IN PATTERN RECOGNITION

1.3 What are moments?

Moments are scalar quantities used to characterize a function and to capture its significant
features. They have been widely used for hundreds of years in statistics for description of the
shape of a probability density function and in classic rigid-body mechanics to measure the
mass distribution of a body. From the mathematical point of view, moments are “projections”
of a function onto a polynomial basis (similarly, Fourier transform is a projection onto a
basis of harmonic functions). For the sake of clarity, we introduce some basic terms and
propositions, which we will use throughout the book.

Definition 1.1 By an image function (or image) we understand any piece-wise continuous
real function f (x, y) of two variables defined on a compact support D ⊂ R× R and having
a finite nonzero integral.

Definition 1.21 General moment M(f )
pq of an image f (x, y), where p, q are non-negative

integers and r = p + q is called the order of the moment, defined as

M
(f )
pq =

∫ ∫
D

ppq(x, y)f (x, y) dx dy, (1.1)

wherep00(x, y), p10(x, y), . . . , pkj (x, y), . . . are polynomial basis functions defined onD.
(We omit the superscript (f ) if there is no danger of confusion.)

Depending on the polynomial basis used, we recognize various systems of moments.

1.3.1 Geometric and complex moments

The most common choice is a standard power basis pkj(x, y)= xkyj that leads to geometric
moments

mpq =
∞∫
−∞

∞∫
−∞

xpyqf (x, y) dx dy. (1.2)

Geometric moments of low orders have an intuitive meaning – m00 is a “mass” of the
image (for binary images, m00 is an area of the object), m10/m00 and m01/m00 define the
center of gravity or centroid of the image. Second-order moments m20 and m02 describe
the “distribution of mass” of the image with respect to the coordinate axes. In mechanics
they are called the moments of inertia. Another popular mechanical quantity, the radius of
gyration with respect to an axis, can also be expressed in terms of moments as

√
m20/m00

and
√
m02/m00, respectively.

If the image is considered a probability density function (pdf) (i.e. its values are
normalized such thatm00 = 1), thenm10 andm01 are the mean values. In case of zero means,
m20 and m02 are variances of horizontal and vertical projections and m11 is a covariance
between them. In this way, the second-order moments define the orientation of the image.
As will be seen later, second-order geometric moments can be used to find the normalized
position of an image. In statistics, two higher-order moment characteristics have been

1In some papers one can find extended versions of Definition 1.2 that include various scalar factors and/or
weighting functions in the integrand. We introduce such extensions in Chapter 6.
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commonly used – the skewness and the kurtosis. The skewness of the horizontal projection is

defined as m30/

√
m3

20 and that of vertical projection as m03/

√
m3

02. The skewness measures
the deviation of the respective projection from symmetry. If the projection is symmetric with
respect to the mean (i.e. to the origin in this case), then the corresponding skewness equals
zero. The kurtosis measures the “peakedness” of the pdf and is again defined separately for
each projection – the horizontal kurtosis as m40/m

2
20 and the vertical kurtosis as m04/m

2
02.

Characterization of the image by means of geometric moments is complete in the
following sense. For any image function, geometric moments of all orders do exist and are
finite. The image function can be exactly reconstructed from the set of its moments (this
assertion is known as the uniqueness theorem).

Another popular choice of the polynomial basis pkj(x, y)= (x + iy)k(x − iy)j , where i is
the imaginary unit, leads to complex moments

cpq =
∞∫
−∞

∞∫
−∞

(x + iy)p(x − iy)qf (x, y) dx dy. (1.3)

Geometric moments and complex moments carry the same amount of information. Each
complex moment can be expressed in terms of geometric moments of the same order as

cpq =
p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ip+q−k−j ·mk+j,p+q−k−j (1.4)

and vice versa2

mpq = 1

2p+qiq
p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ck+j,p+q−k−j . (1.5)

Complex moments are introduced because they behave favorably under image rotation.
This property can be advantageously employed when constructing invariants with respect
to rotation, as will be shown in the following chapter.

1.3.2 Orthogonal moments

If the polynomial basis {pkj (x, y)} is orthogonal, i.e. if its elements satisfy the condition of
orthogonality ∫ ∫

�

ppq(x, y) · pmn(x, y) dx dy = 0 (1.6)

or weighted orthogonality∫ ∫
�

w(x, y) · ppq(x, y) · pmn(x, y) dx dy = 0 (1.7)

for any indexes p �=m or q �= n, we speak about orthogonal (OG) moments. � is the area of
orthogonality.

2While the proof of (1.4) is straightforward, the proof of (1.5) requires, first, x and y to be expressed as x =
((x + iy)+ (x − iy))/2 and y = ((x + iy)− (x − iy))/2i.
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In theory, all polynomial bases of the same degree are equivalent because they generate
the same space of functions. Any moment with respect to a certain basis can be expressed in
terms of moments with respect to any other basis. From this point of view, OG moments of
any type are equivalent to geometric moments.

However, a significant difference appears when considering stability and computational
issues in a discrete domain. Standard powers are nearly dependent both for small and large
values of the exponent and increase rapidly in range as the order increases. This leads to
correlated geometric moments and to the need for high computational precision. Using lower
precision results in unreliable computation of geometric moments. OG moments can capture
the image features in an improved, nonredundant way. They also have the advantage of
requiring lower computing precision because we can evaluate them using recurrent relations,
without expressing them in terms of standard powers.

Unlike geometric moments, OG moments are coordinates of f in the polynomial basis in
the common sense used in linear algebra. Thanks to this, the image reconstruction from OG
moments can be performed easily as

f (x, y)=
∑
k,j

Mkj · pkj(x, y).

Moreover, this reconstruction is “optimal” because it minimizes the mean-square error when
using only a finite set of moments. On the other hand, image reconstruction from geometric
moments cannot be performed directly in the spatial domain. It is carried out in the Fourier
domain using the fact that geometric moments form Taylor coefficients of the Fourier
transform F(u, v)

F (u, v)=
∑
p

∑
q

(−2πi)p+q

p!q! mpqu
pvq .

(To prove this, expand the kernel of the Fourier transform e−2πi(ux+vy) into a power series.)
Reconstruction of f (x, y) is then achieved via inverse Fourier transform.

We will discuss various OG moments and their properties in detail in Chapter 6. Their
usage for stable implementation of implicit invariants will be shown in Chapter 4 and practical
applications will be demonstrated in Chapter 8.

1.4 Outline of the book

This book deals in general with moments and moment invariants of 2D and 3D images and
with their use in object description, recognition, and in other applications.

Chapters 2–5 are devoted to four classes of moment invariant. In Chapter 2, we introduce
moment invariants with respect to the simplest spatial transforms – translation, rotation, and
scaling. We recall the classical Hu invariants first and then present a general method for
constructing invariants of arbitrary orders by means of complex moments. We prove the
existence of a relatively small basis of invariants that is complete and independent. We also
show an alternative approach – constructing invariants via normalization. We discuss the
difficulties which the recognition of symmetric objects poses and present moment invariants
suitable for such cases.

Chapter 3 deals with moment invariants to the affine transform of spatial coordinates. We
present three main approaches showing how to derive them – the graph method, the method
of normalized moments, and the solution of the Cayley–Aronhold equation. Relationships
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between invariants from different methods are mentioned and the dependency of generated
invariants is studied. We describe a technique used for elimination of reducible and dependent
invariants. Finally, numerical experiments illustrating the performance of the affine moment
invariants are carried out and a brief generalization to color images and to 3D images is
proposed.

In Chapter 4, we introduce a novel concept of so-called implicit invariants to elastic
deformations. Implicit invariants measure the similarity between two images factorized by
admissible image deformations. For many types of image deformation traditional invariants
do not exist but implicit invariants can be used as features for object recognition. We present
implicit moment invariants with respect to the polynomial transform of spatial coordinates
and demonstrate their performance in artificial as well as real experiments.

Chapter 5 deals with a completely different kind of moment invariant, with invariants
to convolution/blurring. We derive invariants with respect to image blur regardless of the
convolution kernel, provided that it has a certain degree of symmetry. We also derive so-called
combined invariants, which are invariant to composite geometric and blur degradations.
Knowing these features, we can recognize objects in the degraded scene without any
restoration.

Chapter 6 presents a survey of various types of orthogonal moments. They are divided
into two groups, the first being moments orthogonal on a rectangle and the second orthogonal
on a unit disk. We review Legendre, Chebyshev, Gegenbauer, Jacobi, Laguerre, Hermite,
Krawtchouk, dual Hahn, Racah, Zernike, Pseudo–Zernike and Fourier–Mellin polynomials
and moments. The use of orthogonal moments on a disk in the capacity of rotation invariants
is discussed. The second part of the chapter is devoted to image reconstruction from its
moments. We explain why orthogonal moments are more suitable for reconstruction than
geometric ones and a comparison of reconstructing power of different orthogonal moments
is presented.

In Chapter 7, we focus on computational issues. Since the computing complexity of
all moment invariants is determined by the computing complexity of moments, efficient
algorithms for moment calculations are of prime importance. There are basically two major
groups of methods. The first one consists of methods that attempt to decompose the object
into nonoverlapping regions of a simple shape. These “elementary shapes” can be pixel rows
or their segments, square and rectangular blocks, among others. A moment of the object is
then calculated as a sum of moments of all regions. The other group is based on Green’s
theorem, which evaluates the double integral over the object by means of single integration
along the object boundary.

We present efficient algorithms for binary and graylevel objects and for geometric as well
as selected orthogonal moments.

Chapter 8 is devoted to various applications of moments and moment invariants in
image analysis. We demonstrate their use in image registration, object recognition, medical
imaging, content-based image retrieval, focus/defocus measurement, forensic applications,
robot navigation and digital watermarking.
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