AUDITING SIMPLE RISK ASSESSMENTS

This chapter introduces the most basic ideas of probability and risk and shows how they can help us audit simple risk assessments.

These are the sort of casual risk assessments that pop up in conversation and on risk registers. Even at this simple level you will find a lot of surprises and helpful insights.

To start with, in the world of business, 'risk' has a high profile and 'probability' is a word a lot of people try to avoid. In the world of mathematics the situation is reversed, with 'probability' the undisputed king and 'risk' an afterthought, sneaking in from theories about investment portfolios.

As you read on, remember how this book is designed. It's a series of concepts and terms, each of which will help you in your work. Tackle them in order, patiently and carefully. Your objective is to learn as much as you can, not to finish the book as quickly as possible.

1 PROBABILITIES

A lot of ideas about probabilities are controversial among theorists or take a while to understand, but what we know for certain is that probabilities work. There are people who talk about and benefit from using probabilities and this has been true for hundreds of years.

One of the great pioneers of the mathematics of probability was Frenchman Pierre-Simon Laplace (1749-1827). In the introduction to his book, Théorie Analytique des Probabilités, he wrote that 'que la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul,' which means 'the theory of probability is just common sense reduced to calculation.'

Probabilities are stated about things that might happen or, more broadly, about things that might be true. For example, consider the statement 'the probability that Happy Boy wins the 3.15 p.m. race at Kempton Park is 0.12 .' The thing that might happen is Happy Boy winning. The statement that might be true is that 'Happy Boy will win'.

It is also generally agreed that probabilities are numbers between 0 and 1 inclusive and that a probability of 0 means something is considered certainly not true or not going to happen, while a probability of 1 means it certainly is true or certainly will happen.

Sometimes probabilities are expressed as percentages between 0 and 100%. Sometimes they are given as odds, as in ' $3: 1$ against', which translates to a probability of 0.25 , or 25% if you prefer. Sometimes they are given as proportions as in 'one in four', which is also a probability of 0.25 .

Take care when translating between different styles. In the song 'Five to One' by the Doors, Jim Morrison equates 'five to one' with 'one in five', but of course that should be one in six.

2 PROBABILISTIC FORECASTER

It is also clear that probabilities come from many sources, which I'll call probabilistic forecasters. Mostly they come from people (e.g. weather forecasters, tipsters, research companies, managers in companies), from mathematical formulae, and from computer systems. Some of these probabilistic forecasters restrict themselves to a very narrow topic, while others are prepared to give probabilities for a wider range of propositions or outcomes.

One question of great interest to auditors and many others is how good the probabilities from a particular probabilistic forecaster are.

3 CALIBRATION (ALSO KNOWN AS RELIABILITY)

How can you assess the probabilities provided by a probabilistic forecaster? There are two ways:

1 Look at how the probabilities are worked out (which includes looking at any data used).
2 Compare the probabilities to reality and see how well they match up.

The second method is the easiest to understand and is easy to do if you have enough data. You can't make any assessment from just one example unless the probabilistic forecaster says something is certain and turns out to be wrong.

However, if you have lots of probabilities from the same source and you know what actually happened or what the truth was then you can calculate various scores that show how good the source is.

There are two main qualities that good probabilities must possess, and one of them is calibration.

If a probabilistic forecaster of some kind is well calibrated then, over time, the frequencies of actual results will agree with the probabilities given. For example, suppose for a year a forecaster gives a probability of rain tomorrow and we record whether or not there was rain. The forecaster is perfectly calibrated if it rained on 10% of the days when the forecaster gave a probability of 0.1 of rain, rained on 20% of the days when the forecaster said the probability of rain was 0.2 , and so on. The extent to which the proportions of days with rain agree with the probabilities given for those days is calibration.

There are a number of formulae for calculating overall calibration across a range of forecasts, but it is a good idea to look at calibration at each level of probability. A good average calibration score may hide problems, most likely with poor calibration for extreme events.

4 RESOLUTION

Furthermore, calibration is not a complete measure of good probabilities.

Imagine that, over a typical year, it rains on half the days over a particular town. Every day the forecaster says the probability of rain is 0.5 , regardless of the season or recent weather, thus demonstrating high calibration. We expect more don't we?

The extra thing we expect is that the forecast is responsive to conditions and when the opportunity arises to give probabilities for rain that are higher or lower than average the forecaster does so, and in the right direction. These more informative probabilities are said to have higher resolution. Again, there are alternative formulae for calculating resolution.

Higher resolution is usually achieved by taking more circumstances into consideration. The weather forecaster could consider not only the identity of the town, but also the season and recent weather. If the
forecaster is clever enough to reach the limit of what can be predicted from these circumstances it might be time to gather additional data, perhaps from rainfall radar, weather stations out to sea, and from satellites.

However, there is a limit to how far this can be taken. The more circumstances the forecaster chooses to use, the harder it is to adjust for them all accurately because there are fewer directly comparable past experiences to use as a guide.

A key point to understand is that there is no such thing as the probability of something happening or being true. We must always think about the probability given what knowledge of circumstances we choose to take into consideration, and there are always options to choose from.

The perfect probabilistic forecaster would give probabilities of rain of 1 or 0 , and would always be right. These probabilities would have maximum possible resolution and calibration.

Incidentally, published examples illustrating calibration and resolution are nearly always in terms of weather forecasting because that is the field of study where these ideas have been developed, but they apply to any probabilities.

5 PROPER SCORE FUNCTION

If you want to motivate a forecaster to give you well calibrated, high resolution probabilities and want to give some kind of bonus as encouragement then you need to use a proper score function.

This is a formula that calculates an overall measure of forecasting skill that gives the forecaster no incentive to lie and every incentive to give the best probabilities possible. The Brier Score and the Ignorance function (a logarithmic score) are both proper score functions.

Ignorance is a function based in information theory and shows the amount of information, in bits, that learning the outcome provides. For example, if you are certain that an outcome will happen and it does then you receive no information, i.e. you learn nothing you don't already know. However, if your probability for that outcome is less than 1 then you will learn something from seeing it happen. If you are convinced that something is impossible and yet it happens then your Ignorance is infinite, an interesting comment on closed mindedness.

Ignorance can also be interpreted as the time to double your money by betting on outcomes where all outcomes carry equal payouts. Even more interesting is that if you are betting against someone else then your Ignorance needs to be lower than theirs to expect to gain money! Clearly, the quality of probabilities has practical importance.

As I mentioned, any approach to assessing probabilities needs lots of examples of probabilities to work with. Even an idiot can guess right occasionally, so probabilistic forecasters need to be judged over a longer term. I often think that probabilities are more helpful as a guide to what we should expect over a long series of outcomes, so they are particularly good for thinking about what policies we should adopt.

Probability assessments also need to be made across a defined set of forecasting tasks. For example, it would be grossly unfair to assess a weather forecaster's calibration using probability judgements for the outcomes of financial investments.

6 AUDIT POINT: JUDGING PROBABILITIES

When people get to practice giving probabilities and receive feedback they usually get better at it.

The ideas of calibration and resolution show that we can judge a person's ability to provide probabilities, even if they are just based on gut feelings.

However, to do this we need a reasonable amount of data about probabilities they have given and what actually happened. It is also inappropriate for forecasts about things that people will try to change in response to the forecasts.

Some organizations would find that they do have these data and could work out calibration and resolution numbers, as well as plot graphs showing how probabilities given compared to reality.

If that's possible and it hasn't been done, shouldn't it be considered? Probabilities might turn out to be surprisingly well calibrated, perhaps even to the extent that people feel they can be used in cost-justifying investments in controls. Alternatively, it may be that feedback would be useful for improving the quality of probabilities people work with.

7 PROBABILITY INTERPRETATIONS

misunderstandings can occur with practical and painful consequences
Not everyone who uses probabilities interprets them in the same way and misunderstandings can occur with practical and painful consequences.
The explanations below focus on what most people actually think and do today, rather than going through all the many proposals made by philosophers, scientists, lawyers, and others down the centuries.
Unless you've studied the meaning of probabilities in great depth do not assume you know this already!

8 DEGREE OF BELIEF

In everyday conversations we often say 'probably'. For example, last weekend I was introduced to a man at a party whose name was 'Charles', though I'm not entirely sure now, it was probably 'Charles'.
This is probability interpreted as a degree of belief. Specifically, it is a measure of how much I believe a statement to be true. In my example, the statement was 'The name of the guy was Charles.'
If I think this statement is certainly true then my probability of it being true is 1 . If I think this is certainly not true then my probability of it being true is 0 . If I'm not sure either way then my probability will be somewhere between these extremes.
This interpretation of probability makes it something personal. To Charles (or whoever it was) the name is quite certain. Indeed I was quite a bit more confident when we were first introduced. Probability interpreted this way depends on information (and memory!).
However, that doesn't mean it is purely subjective, because these probability numbers can still be tested and different people with the same information and instructions should come up with similar numbers.
Interpreting probabilities as degrees of belief is much more common, more important, and more scientifically respectable than many people think.
In 1946, physicist, mathematician, and electric eel expert Richard Threlkeld Cox (1898-1991) showed how some very simple, commonsense requirements for logical reasoning about uncertain statements led to the laws of mathematical probability. He improved on his thinking in 1961 and others have also refined it, notably Edwin Thompson Jaynes (1922-1998), another physicist, writing shortly before his death.
When stating probabilities it is good practice to make clear what information about the circumstances of your prediction you are using. As mentioned earlier, different choices will give different probabilities.

For example, if you are referring to your degree of belief that it will rain on your garden tomorrow you might decide to take into account nothing about the seasons or the weather, or you could say 'given that it is a day in August', or 'given that the weather forecast on TV said it would rain all day', and so on.

You can't say 'given all the facts' because tomorrow's weather would be one of them, and saying 'given all the facts I know now' is likely to lead to confusion as your knowledge continues to increase over time. Ideally you should make a clear, sensible choice, and communicate it.

9 SITUATION (ALSO KNOWN AS AN EXPERIMENT)

Other common interpretations of probability focus on the narrower topic of outcomes. This is the explanation most likely to be shown in a textbook on probability.

The outcomes in question are those of a situation, or experiment (e.g. tossing a coin, drawing a card from a shuffled deck, driving a car for a year and recording the cost of damage to it, paying the total claims on an insurance policy).

The word experiment is rather misleading because it doesn't have to be an experiment in the usual sense. It is really just any situation where the outcome has yet to be discovered by the person who is doing the thinking. This includes things that have yet to happen and also things that have happened but whose outcome is not yet known to the thinker.

In this book I've used the word situation instead of experiment to help you keep an open mind.

Situations are things we have to define, and to some extent they are an arbitrary choice. They define a collection of, perhaps many, episodes in real life that have happened and/or may happen in the future. Each of these episodes will be unique in some way, but if they meet our

clear definition is important

definition of the situation then they are examples of it. For example, 'drawing a card from a shuffled deck' could be our choice of situation, but it might have been 'drawing a card from a shuffled deck of Happy Families cards' or 'drawing the top card from a deck of ordinary playing cards shuffled by a professional conjuror.'

In effect our choice of situation is the same as our choice of which circumstances to take into consideration.

Our choice of situation makes a difference, and clear definition is important.

10 LONG RUN RELATIVE FREQUENCY

Another common interpretation of probabilities focuses on the outcomes from situations we see as inherently difficult or even impossible to predict.

Suppose I vigorously flip a fair coin in the traditional way. What is the probability of getting heads? Most people will answer confidently that it is 50% or $1 / 2$ or 0.5 , or perhaps $50: 50$, or evens, depending on their preferred language. This is a probability we feel we know.

An idea that captures a lot of our intuitions about probability is that it has something to do with what would happen if we could study the outcomes of many examples of a situation.

If we could toss that fair coin billions of times and record the proportion of heads we would expect it to be very close to 50% (see Figure 1). So, when we say the probability of heads next time is 0.5 that is consistent with the idea that if we did the same thing lots of times then half the time the outcome would be heads.

In this interpretation, probability is a property of the real world independent of our knowledge of it.

Figure 1 Gradually converging on the long run relative frequency of heads from flipping a fair coin

For this book I've called this the long run relative frequency (LRRF).

As ever, our choice of which situation we imagine repeating is crucial and any given occasion could be an example of many different situations.

Probability numbers, as always, must lie between zero and one. Zero means that heads never turns up, while one means it always does.

11 DEGREE OF BELIEF ABOUT LONG RUN RELATIVE FREQUENCY

Unfortunately, probability based purely on long run relative frequency doesn't always score well on Ignorance and other forecasting skill scores. The problem is that it ignores an additional source of uncertainty that is often present.

Imagine I vigorously flip a coin that is clearly bent. What would you say is the probability of getting heads this time?

It feels different doesn't it? Our basic schooling on probability tends to focus on situations like card games, dice rolling, and coin tossing where we usually assume we know what the long run relative frequencies should be because we assume that all outcomes are equally likely. Problems set in school textbooks usually say that the coin is 'fair', meaning that you can assume the usual probabilities.

In real life things are rarely so convenient. Individual outcomes aren't always equally likely. We don't know exactly what the long run relative frequencies would be. We're uncertain about them. Coins look a bit bent and are tossed by conjurors we don't

We can't repeat things billions of times. We have to make estimates trust. We can't repeat things billions of times. We have to make estimates.

So, here's another interpretation. Probability can also mean our degree of belief about long run relative frequencies.

In this interpretation probability depends on our knowledge. The real world has a long run relative frequency and statements about that are what the degrees of belief apply to.

Mathematicians sometimes use probability to mean just long run relative frequency. On other occasions they use probability to mean their degree of belief about long run relative frequency. They may even use both ideas in the same problem, calling them both probability. Using the same name both times is confusing so separating the two ideas can be very helpful.

12 DEGREE OF BELIEF ABOUT AN OUTCOME

Mathematicians sometimes use probability to mean degree of belief about an outcome. For example, the statement 'heads next time'
could be true or false. This interpretation of probability applies the degree of belief idea to a statement like that.

The degree of belief about an outcome can be calculated from the long run relative frequency and the degree of belief about long run relative frequency. Alternatively, you can just jump to a degree of belief about an outcome by some other means, such as intuition.
I know the different probability interpretations take a while to sink in but stick at it because this is where some huge practical mistakes have been made. Here's an example that might just do it for you.

Picture that bent coin I flipped a page ago and imagine you had the opportunity to flip it and learn more about its tendency to come up heads. From a handful of flips you couldn't know the true long run relative frequency of that coin. That means you don't know the probability of heads in the long run relative frequency sense.

However, you could start to form a view about what are more likely values for the probability (LRRF interpretation) and you could express this in terms of probabilities (degree of belief about LRRF interpretation) that each LRRF is the true one.

So what is the probability of getting heads next time that you would use for gambling purposes? (This is the one that represents your degree of belief that the outcome will be 'heads' and is your probability in the degree of belief about an outcome interpretation.)
That probability you could get by intuition (the traditional way) or by combining the probability (LRRF interpretation) with the other probabilities (degree of belief about LRRF interpretation) in a particular way to get to a probability (degree of belief about an outcome interpretation).

The theory of probability works fine whichever interpretation you use, but the problems come when different interpretations get confused or inappropriately left out.

13 AUDIT POINT: MISMATCHED INTERPRETATIONS OF PROBABILITY

Obviously things can go wrong if one person means probability in one sense and another thinks they mean something else. We can even confuse ourselves.
Ask someone for the probability of heads from tossing an unfamiliar bent coin and many will answer I I don't know', revealing that they are thinking in Iong run relative frequency terms. They are seeing probabilities os characteristics of the real world, independent of their knowledge of them.
Take that same person to their favourite sporting event and ask them what they think of the odds on a famous competitor and they will happily take a view. This is true even though they still don't know what the long run relative frequency of that competitor winning that event is, and could never know it. In this context they activate the degree of belief about an outcome interpretation, without realizing they have done 50 .
The most dangerous version of this confusion is where one person is thinking in terms of long run relative frequencies and offers probability information to someone else who thinks they are getting degree of belief about an outcome information.
The speaker is giving what could be wild guesses about the real world, without mentioning that they are guesses. The listener does not realize this crucial information is being leff out. In this simple misunderstanding uncertainty is ignored and the listener comes away thinking things are much better understood than they really are. This happens so often that I will be returning to it repectedly in this book.

14 AUDIT POINT: IGNORING UNCERTAINTY ABOUT PROBABILITIES

Focusing on long run relative frequencies and forgetting that we aren't certain of them is a mistake. It may happen due to mismatched interpretations of probability, or it may be that the uncertainty is ignored for some other reason, such as convenience or a desire to seem authoritative.

Whatever the reason, the consequence is that risks are generally underestimated and too little is done to use available data to help get a better view.

15 AUDIT POINT: NOT USING DATA TO ILLUMINATE PROBABILITIES

People often fail to use available data to firm up probabilities. This may be because they think of probabilities as nothing more than subjective guesses about outcomes.

More often it is because they focus on the long run relative frequency idea and think any data used must be from past occurrences of the identica/circumstances to those now expected. Unable to find data that are from identical circumstances in the past, they give up on data altogether.

Identical circumstances never happen; that would require repeating the history of the universe. What does happen is recurrence of circumstances that match the definition of one or more situations that we have chosen. It is also possible to generate quite good probabilities by taking into account the degree of similarity between situations.

The trick is to think of definitions for situations that include the occasion for which we want a probability, seem to capture a lot of what is important, and for which we have data.

In doing so we must accept that the more narrowly we define the situation, the more relevant past data will be, but the fewer data we will have to work with. Put another way, narrow situation definitions give us high uncertainty about highly informative long run relative frequencies.

For example, a construction company that builds houses, flats, and some large buildings like schools might have years of data on estimated and actual costs and times to complete its projects. It would be a mistake to think that, because every project is unique in some way, past experience is no guide to future cost estimates. It might be that using data from its house construction in the last two years gives a helpful distribution of estimates that, at the very least, enables baseless optimism to be challenged.

The key points are that we don't need to repeat identical circumstances and may have more relevant data than we realize.

16 OUTCOME SPACE (ALSO KNOWN AS SAMPLE SPACE, OR POSSIBILITY SPACE)

Having covered the main interpretations of probability it's time to go back to the idea of a situation and explain some more of the thinking and terminology behind the most common textbook version of probability theory.

In this approach, the next thing to define for a situation is its outcome space, otherwise known as its sample space or possibility space. This is the set of all possible elementary outcomes from the situation. We also need a way to name or otherwise refer to the outcomes.

For example, tossing a coin once is usually said to have the outcome space \{heads, tails\} but if you let it drop onto a muddy sports field it might be more accurate to say \{heads, tails, edge\}. If you prefer shorter names then that could instead be $\{\mathrm{h}, \mathrm{t}, \mathrm{e}\}$. It's another option.

What is an elementary outcome? That's something else to be decided and written down. There are options and to some extent the decision is an arbitrary one. However, some choices are easier to work with than others. For example, if you can define your outcomes in such a way that they are equally likely, then that makes life a lot easier.

Sometimes the outcomes are more like combinations of outcomes. For example, the outcomes from tossing two coins one after the other could be defined as $\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})$, (T,H), (T,T)\} with the first letter representing one coin and the second representing the other. Another example would be measurements of newborn babies, where each outcome could be represented by a bundle of facts such as its weight, length, sex, and skin colour.
In real life situations we usually have a number of different ways to characterize what could happen. For example, we might be interested in health and safety, or money, or time. Each possibility, if chosen, will give us a different outcome space.

The phrase sample space is what the mathematicians most often use, for historical reasons, but it is misleading (again) because sampling in the usual sense inn't normally involved. In this book I've used the less common term outcome space so you don't have to keep reminding yourself to forget about sampling.

17 AUDIT POINT: UNSPECIFIED SITUATIONS

Many so-called 'risks' for which people are asked to give a 'probability' do not describe adequately the situation they apply to. For example, there may be a 'risk of theff' but over what time period, involving which assets, and measured in what way? Unless this vagueness is cleared up it's hard to say anything meaningful about how big the 'risk' is, even broadly and without numbers.

Consider reviewing a sample of risk descriptions and recommending some kind of quality improvement work.

Different styles of risk analysis require clarity on different points, so you are looking for any statement that seems vague and should also consider whether important qualifications have been left out altogether. It is very common to forget to state the time period for a 'risk'. For example, 'Risk of theft in the next year' is much less likely than 'Risk of theft at any time in the future.'

18 OUTCOMES REPRESENTED WITHOUT NUMBERS

The outcomes in an outcome space can be represented in a variety of ways. One way is without numbers. For example, if beads of different colours are put into a bag and shaken, and then one

if the risk is 'Loss

 of market share' then surely it matters how much market share is lost is drawn out, the outcomes might be represented by colours, e.g. \{Red, Blue, Green \}.

This is important because some concepts in risk mathematics do not apply if the outcomes are not represented by numbers.

A lot of the things we call risks and put on risk registers are worded so that there are just two outcomes and they're not represented by numbers. Those two outcomes are \{'The risk happens', 'The risk does not happen'\}.

This is simple, but usually much too simple and tends to mean we cannot think about important nuances. For example, if the risk is 'Loss of market share' then surely it matters how much market share is lost. The problem is not lack of numbers but failure to capture the richness of potential outcomes. Most mathematical risk analysis is much more informative.

19 OUTCOMES REPRESENTED WITH NUMBERS

In other outcome spaces the outcomes are represented by numbers.

20 RANDOM VARIABLE

Often what people are interested in is not the outcome but, instead, a number that depends on the outcome. For example, if you roll two dice when playing Monopoly it is the total of the dice you care about.

And when people enter a lottery they are interested in how many of the balls selected at random in the draw match the balls they bet on. They are not really interested in exactly which balls are drawn. A lot of risk management in businesses focuses on money.
A random variable is, strictly speaking, neither random nor a variable, but is a rule that links each outcome to a unique number. Given an outcome it returns the appropriate number. People often talk about random variables as if they represent the actual outcome (which is not yet known). In other words, they treat them as if they are the numbers returned rather than the rule, but this usually doesn't lead to mistakes.

Random variables, by convention, always return what mathematicians call 'real' numbers, which for our purposes just means they don't have to be whole numbers, but can be anywhere on the continuous number line.
Sometimes the way outcomes are linked to numbers can seem a bit arbitrary. For example, when the outcome space is \{success, failure\} these outcomes are often mapped to one and zero respectively.
Traditionally, random variables are usually given names that are capital letters from the English alphabet and the runaway favourite choices are X and Y.

In practice the definition of a random variable is a matter of choice and needs to be clear.

21 EVENT

An event, in mathematics, means a subset of the outcome space. For example, if you've chosen the situation of tossing a coin and letting it fall on a muddy sports field and the outcome space \{heads, tails, edge\} then you could define a number of possible events having one or more outcomes in them, such as an event you could call 'valid outcome' defined as the set \{heads, tails\}.

What events are defined is yet another free choice. The event 'valid outcome' is likely to be useful when talking about coin tossing on a muddy field, but of course you could look at it in other ways.

Events involving discrete outcomes can be defined by listing all the outcomes included or by stating some rule for membership.

Events involving outcomes that could be anywhere on a continuum of numbers are often defined by giving the top and bottom of the range of numbers to be included in the event. Another common technique is to give one number, defining the event as all outcomes with numbers less than or equal to that number.

Random variables can be used to succinctly define events. For example, if the name X is given to a random variable returning the total of two fair dice thrown together then:
$1\{X=4\}$ is the event that contains all the outcomes that add up to 4, i.e. $\{(1,3),(2,2),(3,1)\}$; and
$2\{X<3\}$ is the event that contains all the outcomes that add up to less than 3, i.e. $\{(1,1)\}$.

This is the traditional notation and I hope it is clear what is intended. If not then it may be that you've noticed the mistake, which is to write as if X is the value returned by the random variable, not the random variable itself. Perhaps a clearer notation would be something like
$\{X(w)=4\}$ where w represents the outcome from the situation, and $X(w)$ is the usual way to show the value returned when a function (e.g. X) is applied to an input value (e.g. w).

An event is not necessarily something sudden, dramatic, or memorable. This idea is very different to our ordinary idea of an 'event' and this causes some confusion. Procedures for risk management tend to be written as if 'events' are dramatic things with all or nothing results, like explosions. But in reality most situations where 'risk' needs to be managed are not like this. There are a few explosions but far more slightly surprising outcomes of undramatic situations. It is better to use the mathematical idea of an event and this is more consistent with the vast majority of 'risks' that people think of.

An event is not necessarily something sudden, dramatic, or memorable

22 AUDIT POINT: EVENTS WITH UNSPECIFIED BOUNDARIES

Many 'risks' on risk registers have a form like 'inadequate human resources'. We imagine a scale of human resources and a zone towards the bottom that is 'inadequate'. Unfortunately, the level below which human resources are inadequate is unspecified (and probably unknown) making the 'risk' unspecified too.

23 AUDIT POINT: MISSING RANGES

Another problem with 'risks' like 'inadequate human resources' is that the choice of the word 'inadequate' is rarely the result of careful thought. It could have been replaced by 'less than expected' or 'zero' with little comment by most people. Choosing 'inadequate' as the definition for the event removes from consideration other ranges that might be surprising and require planning for. I call these missing ranges. They are very easy to check for and point out.

24 AUDIT POINT: TOP 10 RISK REPORTING

Many people in senior positions have been encouraged to believe that they need to focus on the 'top 10 risks'. I wonder how they would feel if they understood that events are defined by people and can be redefined to suit their purposes.

Imagine you are a manager in a risk workshop and somebody has just suggested a risk for inclusion in a risk register that (1) you would obviously be responsible for, (2) will probably be in the top 10 , and (3) you can't do much about. You don't want the risk to be in the top 10 and to get beaten up by the Board every quarter so you say, 'That's a really interesting risk, but I think to understand it fully we need to analyse it into its key elements.'

You then start to hack the big 'risk' into smaller 'risks', keeping on until every component is small enough to stay out of the top 10.

The point is that the size of a 'risk' is heavily influenced by how widely it is defined. Most of the time the level of aggregation of risks is something we set without much thought, so whether something gets into the top 10 or not is partly luck.

Auditors should highlight this issue when found and suggest either the level of aggregation of 'risks' be controlled in some way or top 10 reporting be abandoned and replaced by a better way of focusing attention.

25 PROBABILITY OF AN OUTCOME

In researching for this book I consulted several different sources and got several different explanations of probability theory, with slightly different terminology and slightly different notation.

The reason for this is historical and understanding it may help to make sense of it all.

In the beginning, probability theory was focused on winning in games of chance. It concentrated on situations where there was just a finite number of outcomes, such as the roll of a die, or a hand in a card game.

It made perfect sense to talk about the probability of an outcome and to calculate the probability of an event by adding up the probabilities of the outcomes they included. (Remember that an event is a subset of the outcome space, so it's a set of outcomes.)
The sum of the probabilities of all the outcomes from a situation is one, because it is certain that one of those outcomes will result, by definition.

Later, people moved on to think about situations where the outcomes could be any point on a continuum, such as the life of an electric light bulb. In this example the life could be, theoretically, any amount of time. Even between a lifetime of 10 minutes and a lifetime of 11 minutes there is an infinite number of possible lifetimes. (In practice we can't measure accurately enough to recognize that many but in principle it is true.)

This revealed an awkward problem. The probability of the outcome being exactly equal to any particular point on the continuum seemed to drop to zero, and yet the outcome had to be somewhere on the continuum. How can adding up lots of zeroes give the result one?
To get around this problem, probability was defined in a different way specifically for these continuum situations, but still starting with outcomes and building up from there.

26 PROBABILITY OF AN EVENT

Then in 1933 the Russian mathematician Andrey Nikolaevich Kolmogorov (1903-1987) did some very fancy maths and showed how both problems (with and without outcomes on a continuum) could be dealt with using one approach.
Although Kolmogorov's approach has been accepted for decades it still hasn't reached every textbook and website.
Kolmogorov's thinking is a mass of mind-boggling terminology and notation (which I'm not going to go into) and was mostly concerned with applying the fashionable ideas of measure theory to probability. Yet one of the key ideas behind it is simple: since starting with probabilities for outcomes hasn't worked neatly for us, let's start with probabilities for events instead.

27 PROBABILITY MEASURE (ALSO KNOWN AS PROBABILITY DISTRIBUTION, PROBABILITY FUNCTION, OR EVEN PROBABILITY DISTRIBUTION FUNCTION)

The result of Kolmogorov's hard work was the notion of a magical thing called a probability measure that tells you what probability number is associated with each event. (The word 'measure' here indicates Kolmogorov was using measure theory, but you don't have to in order to associate probability numbers with events.)
The alternative name probability function (which lacks the link to measure theory) is a good one because, in mathematics, a function
is simply a rule, table, or formula that takes one or more inputs and consistently replies with a particular output. For example, a function called something like 'square' might return the square of each number given to it. (A random variable is also a function.)
In the case of probability, you tell the probability function which event you are interested in and it returns the probability that goes with it.

The alternative names are used in different ways by different authors, which can be confusing, particularly when probability distribution is used to refer to something that does not give probabilities.
The way the probability measure is designed depends on what type of outcome is involved and what is a convenient way to identify the event.

For example, if the outcome space for coloured balls pulled out of a bag is \{Red, Blue, White, Black\} then a probability function called Pr (one of the common name choices) might be used, as in these examples:
$1 \operatorname{Pr}(\{$ White $\})=0.3$ means that the probability of pulling out a white ball is 0.3.
$2 \operatorname{Pr}(\{$ Black $\})=0.2$, means that the probability of pulling out a black ball is 0.2.
$3 \operatorname{Pr}($ Monochrome $)=0.5$, where Monochrome $=\{$ White, Black $\}$, means that the probability of pulling out a black or white ball is 0.5 .

In writing these examples for you I've been quite strict and made sure that the thing inside the () parentheses is a set of outcomes. However, the notation used is not always so careful.

Remember that events can also be specified using random variables.
The impact of Kolmogorov's work may have been huge for the theoretical foundations of probability, but it has made little impact otherwise so most of us don't need to know any more about it.

28 CONDITIONAL PROBABILITIES

Mathematicians have a habit of leaving out information to keep their formulae looking simple, expecting readers to guess the rest from the context.

Formulae about probabilities give countless examples of this. The usual way to write 'the probability of event A occurring' is:

Mathematicians

 have a habit of leaving out information to keep their formulae looking simple$P(A)$
But what situation are we talking about? What is the outcome space? Or, put it another way, what parts of our knowledge about the circumstances surrounding the event of interest are we choosing to use for the purposes of this probability number? For example, if we are interested in the outcome of tossing a coin, do we say this is an example of coin tossing, of tossing this particular coin, or of coin tossing on a muddy field? If the coin is to be flipped by a conjuror do we take into account the fact that he has just bet us $£ 100$ it will be heads?

Usually, little or even none of this is stated in the formula, with the obvious risk of confusion or mistakes. For good reason, people sometimes point out that all probabilities are conditional probabilities.

However, there is a standard notation for showing information that defines the situation or otherwise shows what parts of our knowledge of circumstances are being used. This is the notation for conditional probabilities. For example, a way to write 'the probability of event A occurring given this is an instance of a situation with outcome space S^{\prime} is this:

$$
P(A \mid S)
$$

You say this to yourself as 'the probability of A given S.'
When new information arrives we are not obliged to use it in every probability we state. However, for probabilities where we do use the new information this effectively redefines the situation.

For example, suppose our initial situation was 'drawing a playing card from a shuffled deck' but later we learn that the deck has been shuffled and the card drawn by a conjuror. This new information redefines the situation quite dramatically.
In symbols, if we want to show 'the probability of event A occurring given this is an instance of a situation with outcome space S, and given the outcome is already known to be within event B, we write:
$P(A \mid S, B)$
In this particular example this makes the new outcome space, in effect, B, because B is entirely within S.

For some, perhaps all, occasions where we want to use probabilities the addition of more and more information might eventually allow us to predict the outcome with complete certainty, in theory.

29 DISCRETE RANDOM VARIABLES

At this point probability theory starts to focus on events defined using random variables.
Random variables are functions that give 'real' values, i.e. numbers that could, in principle, lie anywhere on a continuous number line from zero all the way up to infinity (∞), and indeed from zero all the way down through minus numbers to minus infinity $(-\infty)$. In symbols, they are in the range $(-\infty, \infty)$.
However, when a random variable is defined for the outcome space of a situation, it may well be limited to returning just certain values within that huge range. For example, if the random variable
represents the total of two dice then it can only take the specific values $2,3,4,5,6,7,8,9,10,11$, or 12 , even though it is a real number.
Random variables are classified into three types according to the values they can return once hooked up to an outcome space. The simplest type is the discrete random variable.
Discrete random variables can return only a finite number of values, or an infinite but countable number of values.
To illustrate the meaning of 'countable', the set of numbers $\{1$, $2,3 \ldots$ and so on forever\} has infinitely many elements but they are countable, whereas the number of numbers on the real number line between 0 and 1 is infinite and not countable. Countable infinity is much smaller!

30 CONTINUOUS RANDOM VARIABLES

The other type of random variable that gets a lot of attention is the continuous random variable. This type (1) can return an uncountably infinite number of values but (2) the probability of returning any particular value is always zero.
That usually means that the value is somewhere on a continuum of numbers and no particular value is special.
If your brain is still functioning at this point you may be wondering how the probability can always be zero. Surely an outcome of some kind is inevitable, by definition, so the sum of the probabilities for all the individual outcomes must be one. How can the sum of lots of zeros be anything other than zero?
Good question, and perhaps it makes more sense to think of those zeroes actually being infinitesimally small 'nearly zeroes' so that what is really happening is that infinitely many infinitesimally small things are being added together. Only by cunning mathematical reasoning can the value of such a sum be worked out.

A huge proportion of the applied risk analysis done by mathematicians in business and elsewhere involves continuous random variables (though it is not necessary to go through the reasoning about infinity each time).

Incidentally, the Ignorance function mentioned in connection with proper scoring rules can only be applied to discrete random variables, but applying it to continuous random variables simply involves slicing the continuous case into lots of little pieces. This is just a reminder that in most cases where we model the world with continuous variables the reality is that we cannot and do not measure to infinite accuracy. Money, for example, is usually tracked to two decimal places, not to infinite precision, which would involve quoting some numbers to infinitely many decimal places!

the reality is that we cannot and do not measure to infinite accuracy

31 MIXED RANDOM VARIABLES (ALSO KNOWN AS MIXED DISCRETE-CONTINUOUS RANDOM VARIABLES)

Discrete and continuous random variables get so much attention it is easy to get the impression that they are the only types that exist. Not so, and in fact random variables of the third type are applicable to most of the 'risks' people put on risk registers.

These forgotten random variables are so unloved that it took me a while to find their proper name: mixed random variables.

Like the continuous random variables they can take an uncountably infinite number of values, but these hybrids can give special values whose probability of occurrence is more than zero.
For example, suppose that the random variable is for the useful life of a light bulb. Some light bulbs don't work at all, while others go on for a period we don't know in advance.
This means that the probability of lasting exactly zero seconds is more than zero, but the probability of any particular lifespan beyond this is zero.

32 AUDIT POINT: IGNORING MIXED RANDOM VARIABLES

Perhaps because they don't get much attention mixed random variables tend to get left out.

People don't think of using them in their risk analysis and instead behave as if everything is either discrete or continuous.

This is important because such a high proportion of 'risks' on risk registers are best described by a mixed random variable.

It is true that there are very few well known distribution types that are mixed and software does not support them directly, in most cases. However, a mixed type can easily be built from a combination of discrete and continuous random variables.

For example, to express the lifespan of a light bulb you can use a discrete random variable to say if it fails immediately or not, and then a continuous random variable to show the probability distribution of its lifespan assuming it at least gets started.

Be alert for this mistake when reviewing risk management procedures, templates, and models.

33 CUMULATIVE PROBABILITY DISTRIBUTION FUNCTION

There is one type of probability distribution function that can capture, and graph, the nuances of random variables of any type.

This kind of function is called a cumulative probability distribution function. It gives the probability that the value returned by a random variable will be less than or equal to any particular value.

The graph of a cumulative probability distribution function always rises from left to right, as in Figure 2.

Take a moment to think this through a few times because we are not used to seeing this kind of graph.

Cumulative probability distribution functions are extremely useful in risk analysis because they can be used in many different situations, even when other types of function are too fussy to be applied.

Figure 2 A cumulative probability distribution function shows the probability that the random variable returns a value less than or equal to x

For example, suppose a 'risk' has been written that says 'The cost of fire damage to our warehouses during this year.' Imagine that there's a good chance that this will be zero, because fires are rare. However, if a fire starts then the cost could be anywhere from tiny (a slight scorching) to catastrophic, with a large building burned to the ground.

A cumulative probability distribution function can capture all this. For cost values less than zero (we gain money) the cumulative probability is zero. That's not going to happen. At a cost of exactly zero the probability will be the chance of no fire damage during the year. For higher and higher values of cost the cumulative probability will gradually increase, ultimately getting closer and closer to one (see Figure 3).

Figure 3 Cumulative probability distribution function for cost of fire damage, x

34 AUDIT POINT: IGNORING IMPACT SPREAD

The usual treatment of items on a risk register is to ask people for the probability of 'it' happening and the impact if 'it' does.

But what if the impact could be anything over a wide range? For example, how do you estimate a single impact level for a risk item like 'Loss of market share'? Surely it depends on how much market share is lost, among other things. I call this 'impact spread' and my study of published risk registers shows that virtually all risk register items have impact spread for at least one reason and often for several.

The question on the risk register requires an answer that is a single number or category, and there are several ways people could choose one. They could pick the first level of impact within the range that comes to mind. They could pick the level that seems most representative, or most likely, or is the probability weighted average of the whole range, or a halfway point, take something at random, or pick something that combines with the probability number to give the priority rating they think the 'risk' should have.

If we want the impact ratings to mean something then we need to define how people should reduce the range to a single point, or change our technique.

The two recommendations auditors should consider first are these:

- Define the required impact rating as the probability weighted average impact over the whole range of possibilities. This means that when it is combined with the probability it gives something meaningful.
- Change the rating system so that it asks for a probability of at least some impact, and then the probability of impact greater than one or more other thresholds. This technique elicits a simplified variant of the cumulative probability distribution function and is easier to explain.

35 AUDIT POINT: CONFUSING MONEY AND UTILITY

When we talk about 'impact' another possible confusion is between a measure such as money and how much we value the money. The word 'utility' is often used to mean the real value we perceive in something.

For example, a financial loss like losing $£ 1$ million is surely more important if this amount would destroy your company.

When we talk casually about 'impact' there is always the danger of overlooking this point and flipping from thinking in money terms to acting as if it is really utility we are talking about.

The two ways of thinking give different answers. Suppose we have two 'risks', one of which can lead to losses in a narrow range, with the average being $£ 100,000$. The other also has an average of $£ 100,000$ but the range of possibilities is much larger with a possibility of losses that ruin the company.

Is it fair to treat these two losses as having the same impact? In financial terms their average is the same but if we translate to utility and then take the average the second risk is considerably worse.

Some organizations try to express a 'risk appetite', which is supposed to help employees respond consistently and appropriately to risks, especially the bigger ones. If averages (or other midpoints) from money impact distributions are being used then the risk appetite initiative is seriously undermined.

36 PROBABILITY MASS FUNCTION

A fussier probability distribution is the probability mass function, which only applies to discrete random variables (see Figure 4).

A probability mass function gives the probability that the random variable will return any particular value.

The importance of probability mass functions perhaps goes back to the early focus on the probabilities of outcomes as opposed to events.

Figure 4 A probability mass function

Also, if you have the probability mass function then you can calculate the probability of any event.

37 PROBABILITY DENSITY FUNCTION

Obviously a probability mass function won't work with a continuous random variable because the probability of any particular value being returned is always zero, and that's a problem with the mixed type too.
For continuous random variables only it is possible to create a function called a probability density function that returns not probability, but something called probability density.

Graphs like the one in Figure 5 have probability density on the vertical axis, not probability, so in that sense they are not probability distributions at all.

The area under one of these probability density function graphs is what represents the probability. If you want to know the probability that the random variable will return a value somewhere between two

Figure 5 A probability density function

Figure 6 The area, A, under the curve is the probability of x being between -5000 and 0
numbers then you need the area under the probability density function curve that lies between those two values. The total area under the curve is always one (see Figure 6).

Again, the importance of probability density functions perhaps goes back to the days when probability theory was focused on outcomes. They are an attempt to give a number for each possible outcome, which is sort of like probability even though it isn't probability. If you have the probability density function then you can calculate the probability of any event.

38 SHARPNESS

One quality of probabilities that tends to contribute to high resolution is sharpness. Sharpness is simply use of probabilities that are near to zero or one, and it does not imply that those probabilities are also well calibrated.

The choice of the word sharpness is now easy to understand in terms of probability density functions.

Imagine Figures 7(a) and 7(b) represent forecasts for the change in value of a portfolio of investments over two periods of 24 hours. In Figure 7(a), which is for the first period of 24 hours, one forecast-

Figure 7 (a) Forecasts for the first day with a wide distribution and a much sharper distribution, equally well calibrated

Figure 7 (b) Forecasts for the second day with the wide distribution unchanged but the sharp distribution more responsive to circumstances

The more we try to take into consideration, the less directly relevant past experience we can draw on 5
ing approach gives a well calibrated but widely spread probability distribution while the other, equally well calibrated, distribution is much sharper. Figure 7(b) shows the forecasts for the second period of 24 hours and the widely spread distribution is unchanged while the sharp forecast has taken more circumstances into account and is different from the previous day.
The more we try to take into consideration, the less directly relevant past experience we can draw on. We have the chance to achieve high resolution, but without much history as a guide we risk poor calibration. It's a balancing act and understanding it is a hot research topic.

39 RISK

Finally, we have arrived at risk. The reason for your long wait is that mathematicians don't really have much use for the word in either of its main senses.

In everyday conversations we often talk about 'risks', meaning nasty possibilities that can be listed and counted. Mathematicians have events and random variables instead, and they are much better defined ideas, free from the associations with danger and losses that tend to make 'risk' an entirely negative idea.

In everyday conversations we also talk about how much 'risk' we face, meaning a quantity of some nasty possibility. The concept of probability was invented centuries ago and when combined with values of outcomes it does everything that 'risk' does and so much more.

However, there is a mathematically oriented concept of risk. Its development may owe something to influential work on portfolio theory by American economist Harry Markowitz (1927-), in which he used a number to represent the spread of possible returns from investments and called it 'risk'. This was done to make some
 a number that

represents some

 notion of 'risk' has caught on of his mathematics more convenient and is justified only by some rather specific assumptions about how investors value investment returns and about how those returns are distributed. However, these finer points have long been ignored and the idea of applying a formula to a probability distribution to produce a number that represents some notion of 'risk' has caught on.
In this approach, risk is a number calculated using a function that takes as its input the probability distribution of a random variable.

There is no agreed function for calculating risk. There are already several to choose from and more will probably be invented in future. Under close scrutiny all of these have shortcomings.

Before I explain some of these alternative risk functions it will be helpful to explain something that is often used as part of them and is generally very useful.

40 MEAN VALUE OF A PROBABILITY DISTRIBUTION (ALSO KNOWN AS THE EXPECTED VALUE)

Another function that takes a probability distribution as input and returns a number is the mean, otherwise known by the highly misleading name of expected value. This is the probability weighted average of all outcomes, and only works when the outcomes are represented as numbers.

For example, if we think of the probability mass function for a fair die rolled properly, then the outcomes and their probabilities are:

$$
\begin{aligned}
& P(1)=\frac{1}{6}, P(2)=\frac{1}{6}, P(3)=\frac{1}{6}, \\
& P(4)=\frac{1}{6}, P(5)=\frac{1}{6}, \text { and } P(6)=\frac{1}{6}
\end{aligned}
$$

The probability weighted average of these is:
$1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6}=3^{1 / 2}$
No, I haven't made a mistake; the expected value from rolling a die is $31 / 2$ - which is an impossible outcome. In this case the expected value is also an impossible value.

In ordinary language, if we 'expect' something that means we either think it jolly well ought to happen or that it is more likely than not. In mathematics, an expected value does not need to be more likely than not and might not even be possible.

41 AUDIT POINT: EXCESSIVE FOCUS ON EXPECTED VALUES

When expected values come into a conversation (e.g. about forecasts) other outcomes tend to be forgotten. An expected value supported by pages of spreadsheeting gets a credibility it rarely deserves.

Auditors should check for this in a variety of situations and recommend taking a broader view and considering more possible futures.

42 AUDIT POINT:
 MISUNDERSTANDING 'EXPECTED'

The word 'expected' has two ordinary meanings as well as its mathematical meaning and this can lead to confusion.

First, people might think that 'expected' means 'more likely than not', i.e. a fairly highly level of confidence in a prediction. If the business case for a project says its value is 'expected' to be $£ 2.5$ million then non-mathematical readers might think that means a very confident prediction of a value of exactly $£ 2.5$ million (give or take a few thousand perhaps). It could really mean that the project's proposers have almost no idea what the true value is but the probability weighted average of their wild guesses is $£ 2.5$ million.

If there is a risk of this misunderstanding taking place then the auditor should point it out. Since giving only expected values is poor practice, the obvious recommendation is to provide more information about other possible results.

Second, people might think that 'expected' means 'ought to happen'. Let's imagine the spreadsheet says the expected cost of a project is $£ 6.3$ million. That means the probability weighted average of the guesstimates is $£ 6.3$ million. It does not mean that the cost of the project oughtto be $£ 6.3$ million and therefore that's what the budget should be.

Turning expected values into budgets or other types of target is a mistake. It is much better to look at the whole probability distribution and take a view based on that fuller information.

43 AUDIT POINT: AVOIDING IMPOSSIBLE PROVISIONS

In putting together an initial budget for the 2012 Olympic Games the UK government faced a difficult choice. How much should it include for VAT?

This VAT payment would be a tax paid by the UK government to the UK government, but its inclusion in the budget was still important because funding was not just coming from the general public purse.

Either the games would be declared VAT exempt or they wouldn't. What would you have put in the budget? One perfectly sensible option would have been to budget for the expected value of the VAT, i.e. the total VAT bill multiplied by the probability of having to pay it at all. How good this is depends on how you value differences between budget and actual, but using the mathematician's favourite, the expected value of the budget errors squared, it turns out that the expected value for VAT is a great choice.

However, you can imagine that for many people this must have seemed a bizarre choice. It was a budget guaranteed to be wrong. In fact they decided to put nothing in the budget at all and were surprised to find, a year or so later, that VAT would be charged.

44 AUDIT POINT: PROBABILITY IMPACT MATRIX NUMBERS

Here's one that could embarrass a lot of people. Another potential problem with risk register impact and probability ratings comes from the way people sometimes combine them for ranking and selection.

Imagine that the method for combining probability and impact ratings into one rating is defined by the usual grid. Let's say it's a 5 by 5 grid for the sake of argument, looking like Figure 8:

Figure 8 Probability impact matrix with 25 cells

There are 5 levels of probability ranging from very low (VL) to very high (VH), and the same for impact. The levels have also been given index numbers from 1 to 5. The combined score is found by multiplying the two indices together and is shown in the cells of the matrix.

Oh dear. What people imagine they are doing is taking the expected value of the impact, or something like it, but the numbers being used are not probability and impact but the index numbers of the rows and columns.

When you look at the ranges of impact and probability that define each level they are usually of unequal sizes. For example, 'very low' impact might be '£1-1,000', 'low' impact might be ' $£ 1,001-10,000$ ', and so on. Typically the levels get much wider each time.

This means that, often, the index numbers are more like the logarithms of the impact and probability so multiplying them gives you something more like 'the logarithm of the impact raised to the power of the logarithm of the probability'! However you look at it, this is a mistake.

What it means is that 'risks' get ranked in the wrong order and if you have a habit of reporting on only 'risks' over a certain rating then the set of 'risks' selected for reporting will usually be the wrong set.

45 VARIANCE

This is a function whose result is often used as risk. It is the expected value of the square of differences between possible outcome values and the mean outcome. That means it gets bigger the more spread out the possible values are.

The way it is calculated depends on what sort of probability distribution is involved.

As with other risk numbers it is calculated from the probability distribution of a random variable. For example, if the random variable represents the result of rolling a 6 -sided die then the probability of each of its six discrete outcomes is $1 / 6$ and its mean is 3.5 as we have already seen. Its variance is:

$$
\begin{aligned}
& \frac{1}{6} \times(1-3.5)^{2}+\frac{1}{6} \times(2-3.5)^{2}+\ldots+\frac{1}{6} \times(6-3.5)^{2} \\
& =2 \frac{11}{12}
\end{aligned}
$$

Variance can also be calculated for actual data about past events, but this is not risk, though it is sometimes taken as an estimate of risk, and may be calculated with a slight adjustment in order to be a better estimate.

46 STANDARD DEVIATION

This is just the square root of the variance, i.e. multiply the standard deviation by itself and you get the variance.

As with the variance, it gets bigger with more dispersed outcomes.
Also like variance, standard deviation can be calculated for actual data about past events, but this too is not risk, though it is sometimes taken as an estimate of risk.

47 SEMI-VARIANCE

A problem with the variance and standard deviation is that they increase with the spread of the probability distribution. That means that the possibility of something extremely good happening makes the risk number larger. This does not agree with our intuitive idea that risk is a bad thing.

Alternative risk functions have been invented to try to focus more on the bad outcomes, such as lost money, and one of these is the semi-variance.

This is the expected value of the squared difference between outcomes below the mean and the mean itself. In other words, it is the variance but ignoring outcomes above the mean.

48 DOWNSIDE PROBABILITY

This is another risk number that focuses on possible disappointment. It is the probability of not getting an outcome better than some target outcome.

What is taken as the target is a free choice and needs to be defined, but could be a target rate of return for an investment, for example. Outcomes better than the target are ignored. The downside probability is a function of the target chosen, and will be higher for more ambitious targets.

49 LOWER PARTIAL MOMENT

This combines ideas from the semi-variance and the downside probability. It is the expected value of the squared difference between outcomes below some target or threshold and the target itself.

50 VALUE AT RISK (VAR)

Another risk function that focuses on the downside is value at risk, and it has become the most famous.

This is calculated as the loss such that the probability of things turning out worse is less than or equal to a given probability threshold. The probability threshold is something that has to be chosen and is usually small.

For example, a bank might model the value change over the next 24 hours of a collection of investments. The loss such that a loss at that level or worse is only 5% likely is their $5 \%, 1$ day VaR for that particular portfolio. Put another way, they are 95% confident they won't lose more than the VaR over the next 24 hours (see Figure 9).

Like some other risk functions, value at risk is sensitive to the extremes of a probability distribution, which are very difficult to know accurately, and it says nothing about the very extreme possibilities. For these and other reasons it has come in for some severe criticism and been cited as contributing to the credit crunch of 2007-2009.

Figure 9 Value at risk based on 5% confidence shown on a probability density function

The name itself is somewhat misleading. It sounds like it represents how much money we currently have invested. A bank might have billions invested but say its VaR is just millions. The rest is safe? Hardly.

Value at risk is a common risk measure for market risk, i.e. risk related to the value of a portfolio of assets traded on a market (usually a financial market).

VaR is usually calculated on the basis of the market value of the portfolio, not the returns from it (which also include payments such as dividends).

It is usual to assume that the composition of the portfolio is not changed during the period. In reality, trading may well happen during the period so the value of the portfolio will also change for that reason.

It is also common to assume that the expected value change of the portfolio during the period is zero. Consequently the only thing that needs to be understood is the variability of market values. VaR calculated on this basis is called absolute VaR. For periods of just one day this simplifying assumption is not unreasonable in most cases, but for
longer periods it may be better to calculate the relative $\mathbf{V a R}$, which involves calculating the expected market value as well.

Finally, there are alternative bases for calculating market values.
In the chapter on finance we'll look in more detail at how the probability distributions used to calculate $\mathbf{V a R}$ are derived.

51 AUDIT POINT: PROBABILITY TIMES IMPACT

Some years ago I asked a large audience of business continuity managers how they would define 'risk'. The most popular answer was to define it as 'probability times impact'. It is hard to think of a less appropriate definition.
'Probability times impact' is shorthand for the expected value of the probability distribution of impact. It is a good candidate for a best guess. It is the number most people would use as an estimate for the impact ifforced to give just one number. A risk is something unexpected, so 'probability times impact' is the opposite of risk!

More successful ways to define 'risk' in terms of probability and impact have held on to the whole distribution rather than reducing it to one number.

The practical problem that 'probability times impact' causes is that outcomes other than the expected value get forgotten and uncertainty about those outcomes is ignored, leading to a massive, systematic understatement of risk. Business continuity managers should be particularly upset by this because it means that the extreme outcomes they focus on drop out of sight!

Auditors should identify when 'probability times impact' is being used, highlight the problem, and recommend something better.

Table 1 Top ways to go wrong with a risk register

Isolation from the business model
Incoherent mix of mental models
Impossible impact estimates
Undefined situations or events
Focusing on the 'top 10 '
Taking risk as probability times impact
Index number multiplication
Confusing money with utility
Ignoring impact spread
Narrow perceptions due to poor calibration and lack of links
between events

