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Auditing simple risk 
assessments
This chapter introduces the most basic ideas of probability and risk and 
shows how they can help us audit simple risk assessments.

These are the sort of casual risk assessments that pop up in conversa-
tion and on risk registers. Even at this simple level you will find a lot of 
surprises and helpful insights.

To start with, in the world of business, ‘risk’ has a high profile and 
‘probability’ is a word a lot of people try to avoid. In the world of 
mathematics the situation is reversed, with ‘probability’ the undis-
puted king and ‘risk’ an afterthought, sneaking in from theories about 
investment portfolios.

As you read on, remember how this book is designed. It’s a series of 
concepts and terms, each of which will help you in your work. Tackle 
them in order, patiently and carefully. Your objective is to learn as 
much as you can, not to finish the book as quickly as possible.
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1	P robabilities
A lot of ideas about probabilities are controversial among theorists or 
take a while to understand, but what we know for certain is that prob-
abilities work. There are people who talk about and benefit from using 
probabilities and this has been true for hundreds of years.

One of the great pioneers of the mathematics of probability was 
Frenchman Pierre-Simon Laplace (1749–1827). In 
the introduction to his book, Théorie Analytique des 
Probabilités, he wrote that ‘que la théorie des proba-
bilités n’est, au fond, que le bon sens réduit au calcul,’ 
which means ‘the theory of probability is just common 
sense reduced to calculation.’

Probabilities are stated about things that might 
happen or, more broadly, about things that might be 
true. For example, consider the statement ‘the prob-
ability that Happy Boy wins the 3.15 p.m. race at 
Kempton Park is 0.12.’ The thing that might happen 
is Happy Boy winning. The statement that might be 
true is that ‘Happy Boy will win’.

It is also generally agreed that probabilities are 
numbers between 0 and 1 inclusive and that a prob-
ability of 0 means something is considered certainly 
not true or not going to happen, while a probability of 

1 means it certainly is true or certainly will happen.
Sometimes probabilities are expressed as percentages between 0 

and 100%. Sometimes they are given as odds, as in ‘3:1 against’, which 
translates to a probability of 0.25, or 25% if you prefer. Sometimes 
they are given as proportions as in ‘one in four’, which is also a prob-
ability of 0.25.

Take care when translating between different styles. In the song 
‘Five to One’ by the Doors, Jim Morrison equates ‘five to one’ with 
‘one in five’, but of course that should be one in six.

what we know 
for certain is that 

probabilities 
work
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2	P robabilistic forecaster
It is also clear that probabilities come from many sources, which I’ll 
call probabilistic forecasters. Mostly they come from people (e.g. 
weather forecasters, tipsters, research companies, managers in compa-
nies), from mathematical formulae, and from computer systems. Some 
of these probabilistic forecasters restrict themselves to a very narrow 
topic, while others are prepared to give probabilities for a wider range 
of propositions or outcomes.

One question of great interest to auditors and many others is how 
good the probabilities from a particular probabilistic forecaster are.

3	Ca libration (also known as 
reliability)

How can you assess the probabilities provided by a probabilistic 
forecaster? There are two ways:

1	 Look at how the probabilities are worked out (which includes 
looking at any data used).

2	 Compare the probabilities to reality and see how well they match 
up.

The second method is the easiest to understand and is easy to do if 
you have enough data. You can’t make any assessment from just one 
example unless the probabilistic forecaster says something is certain 
and turns out to be wrong.

However, if you have lots of probabilities from the same source and 
you know what actually happened or what the truth was then you can 
calculate various scores that show how good the source is.
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There are two main qualities that good probabilities must possess, 
and one of them is calibration.

If a probabilistic forecaster of some kind is well calibrated then, 
over time, the frequencies of actual results will agree with the prob-
abilities given. For example, suppose for a year a forecaster gives a 
probability of rain tomorrow and we record whether or not there was 
rain. The forecaster is perfectly calibrated if it rained on 10% of the 
days when the forecaster gave a probability of 0.1 of rain, rained on 
20% of the days when the forecaster said the probability of rain was 
0.2, and so on. The extent to which the proportions of days with rain 
agree with the probabilities given for those days is calibration.

There are a number of formulae for calculating overall calibration 
across a range of forecasts, but it is a good idea to look at calibration at 
each level of probability. A good average calibration score may hide 
problems, most likely with poor calibration for extreme events.

4	R esolution
Furthermore, calibration is not a complete measure of good prob-
abilities.

Imagine that, over a typical year, it rains on half the days over a 
particular town. Every day the forecaster says the probability of rain 
is 0.5, regardless of the season or recent weather, thus demonstrating 
high calibration. We expect more don’t we?

The extra thing we expect is that the forecast is responsive to condi-
tions and when the opportunity arises to give probabilities for rain 
that are higher or lower than average the forecaster does so, and in the 
right direction. These more informative probabilities are said to have 
higher resolution. Again, there are alternative formulae for calculating 
resolution.

Higher resolution is usually achieved by taking more circumstances 
into consideration. The weather forecaster could consider not only the 
identity of the town, but also the season and recent weather. If the 
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forecaster is clever enough to reach the limit of what can be predicted 
from these circumstances it might be time to gather additional data, 
perhaps from rainfall radar, weather stations out to sea, 
and from satellites.

However, there is a limit to how far this can be taken. 
The more circumstances the forecaster chooses to use, 
the harder it is to adjust for them all accurately because 
there are fewer directly comparable past experiences to 
use as a guide.

A key point to understand is that there is no such 
thing as the probability of something happening or 
being true. We must always think about the probabil-
ity given what knowledge of circumstances we choose 
to take into consideration, and there are always op-
tions to choose from.

The perfect probabilistic forecaster would give 
probabilities of rain of 1 or 0, and would always be 
right. These probabilities would have maximum pos-
sible resolution and calibration.

Incidentally, published examples illustrating cali-
bration and resolution are nearly always in terms of 
weather forecasting because that is the field of study where these ideas 
have been developed, but they apply to any probabilities.

5	P roper score function
If you want to motivate a forecaster to give you well calibrated, high 
resolution probabilities and want to give some kind of bonus as en-
couragement then you need to use a proper score function.

This is a formula that calculates an overall measure of forecasting 
skill that gives the forecaster no incentive to lie and every incentive to 
give the best probabilities possible. The Brier Score and the Ignorance 
function (a logarithmic score) are both proper score functions.

there is no 
such thing as 

the probability 
of something 
happening or 

being true
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Ignorance is a function based in information theory and shows 
the amount of information, in bits, that learning the outcome pro-
vides. For example, if you are certain that an outcome will happen 
and it does then you receive no information, i.e. you learn nothing 

you don’t already know. However, if your probabil-
ity for that outcome is less than 1 then you will learn 
something from seeing it happen. If you are convinced 
that something is impossible and yet it happens then 
your Ignorance is infinite, an interesting comment on 
closed mindedness.

Ignorance can also be interpreted as the time to 
double your money by betting on outcomes where all 
outcomes carry equal payouts. Even more interesting 
is that if you are betting against someone else then your 
Ignorance needs to be lower than theirs to expect to 
gain money! Clearly, the quality of probabilities has 
practical importance.

As I mentioned, any approach to assessing prob-
abilities needs lots of examples of probabilities to 
work with. Even an idiot can guess right occasionally, 
so probabilistic forecasters need to be judged over a 
longer term. I often think that probabilities are more 
helpful as a guide to what we should expect over a long 

series of outcomes, so they are particularly good for thinking about 
what policies we should adopt.

Probability assessments also need to be made across a defined set 
of forecasting tasks. For example, it would be grossly unfair to assess a 
weather forecaster’s calibration using probability judgements for the 
outcomes of financial investments.

probabilities are 
… particularly 
good for think-
ing about what 

policies we 
should adopt
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6	 Audit point: Judging 
probabilities

When people get to practice giving probabilities and receive feedback they usually 
get better at it.

The ideas of calibration and resolution show that we can judge a person’s ability 
to provide probabilities, even if they are just based on gut feelings.

However, to do this we need a reasonable amount of data about probabilities they 
have given and what actually happened. It is also inappropriate for forecasts about things 
that people will try to change in response to the forecasts.

Some organizations would find that they do have these data and could work out cali-
bration and resolution numbers, as well as plot graphs showing how probabilities 
given compared to reality.

If that’s possible and it hasn’t been done, shouldn’t it be considered? Probabilities 
might turn out to be surprisingly well calibrated, perhaps even to the extent that people 
feel they can be used in cost-justifying investments in controls. Alternatively, it may be that 
feedback would be useful for improving the quality of probabilities people work with.

7	P robability 
interpretations

Not everyone who uses probabilities interprets them 
in the same way and misunderstandings can occur 
with practical and painful consequences.

The explanations below focus on what most people 
actually think and do today, rather than going through 
all the many proposals made by philosophers, scien-
tists, lawyers, and others down the centuries.

Unless you’ve studied the meaning of probabilities 
in great depth do not assume you know this already!

misunderstand-
ings can occur 
with practical 
and painful 

consequences
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8	D egree of belief
In everyday conversations we often say ‘probably’. For example, 
last weekend I was introduced to a man at a party whose name was 
‘Charles’, though I’m not entirely sure now, it was probably ‘Charles’.

This is probability interpreted as a degree of belief. Specifically, it is 
a measure of how much I believe a statement to be true. In my example, 
the statement was ‘The name of the guy was Charles.’

If I think this statement is certainly true then my probability of it 
being true is 1. If I think this is certainly not true then my probability 
of it being true is 0. If I’m not sure either way then my probability will 
be somewhere between these extremes.

This interpretation of probability makes it something personal. To 
Charles (or whoever it was) the name is quite certain. Indeed I was 
quite a bit more confident when we were first introduced. Probability 
interpreted this way depends on information (and memory!).

However, that doesn’t mean it is purely subjective, because these 
probability numbers can still be tested and different people with the 
same information and instructions should come up with similar num-
bers.

Interpreting probabilities as degrees of belief is much more com-
mon, more important, and more scientifically respectable than many 
people think.

In 1946, physicist, mathematician, and electric eel expert Richard 
Threlkeld Cox (1898–1991) showed how some very simple, common-
sense requirements for logical reasoning about uncertain statements led 
to the laws of mathematical probability. He improved on his thinking 
in 1961 and others have also refined it, notably Edwin Thompson 
Jaynes (1922–1998), another physicist, writing shortly before his 
death.

When stating probabilities it is good practice to make clear what in-
formation about the circumstances of your prediction you are using. As 
mentioned earlier, different choices will give different probabilities.
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For example, if you are referring to your degree of belief that it will 
rain on your garden tomorrow you might decide to take into account 
nothing about the seasons or the weather, or you could say ‘given that 
it is a day in August’, or ‘given that the weather forecast on TV said it 
would rain all day’, and so on.

You can’t say ‘given all the facts’ because tomorrow’s weather would 
be one of them, and saying ‘given all the facts I know now’ is likely to 
lead to confusion as your knowledge continues to increase over time. 
Ideally you should make a clear, sensible choice, and communicate it.

9	S ituation (also known as an 
experiment)

Other common interpretations of probability focus on the narrower 
topic of outcomes. This is the explanation most likely to be shown in 
a textbook on probability.

The outcomes in question are those of a situation, or experiment 
(e.g. tossing a coin, drawing a card from a shuffled deck, driving a car 
for a year and recording the cost of damage to it, paying the total claims 
on an insurance policy).

The word experiment is rather misleading because it doesn’t have 
to be an experiment in the usual sense. It is really just any situation 
where the outcome has yet to be discovered by the person who is do-
ing the thinking. This includes things that have yet to happen and also 
things that have happened but whose outcome is not yet known to 
the thinker.

In this book I’ve used the word situation instead of experiment to 
help you keep an open mind.

Situations are things we have to define, and to some extent they are 
an arbitrary choice. They define a collection of, perhaps many, episodes 
in real life that have happened and/or may happen in the future. Each 
of these episodes will be unique in some way, but if they meet our 



A Pocket Guide to Risk Mathematics20

definition of the situation then they are examples of 
it. For example, ‘drawing a card from a shuffled deck’ 
could be our choice of situation, but it might have 
been ‘drawing a card from a shuffled deck of Happy 
Families cards’ or ‘drawing the top card from a deck 
of ordinary playing cards shuffled by a professional 
conjuror.’

In effect our choice of situation is the same as our 
choice of which circumstances to take into considera-
tion.

Our choice of situation makes a difference, and 
clear definition is important.

10	L ong run relative frequency
Another common interpretation of probabilities focuses on the out-
comes from situations we see as inherently difficult or even impossible 
to predict.

Suppose I vigorously flip a fair coin in the traditional way. What is 
the probability of getting heads? Most people will answer confidently 
that it is 50% or ½ or 0.5, or perhaps 50:50, or evens, depending on 
their preferred language. This is a probability we feel we know.

An idea that captures a lot of our intuitions about probability is that 
it has something to do with what would happen if we could study the 
outcomes of many examples of a situation.

If we could toss that fair coin billions of times and record the propor-
tion of heads we would expect it to be very close to 50% (see Figure 
1). So, when we say the probability of heads next time is 0.5 that is 
consistent with the idea that if we did the same thing lots of times then 
half the time the outcome would be heads.

In this interpretation, probability is a property of the real world 
independent of our knowledge of it.

clear definition 
is important
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For this book I’ve called this the long run relative frequency 
(LRRF).

As ever, our choice of which situation we imagine repeating is cru-
cial and any given occasion could be an example of many different 
situations.

Probability numbers, as always, must lie between zero and one. Zero 
means that heads never turns up, while one means it always does.

11	D egree of belief about long 
run relative frequency

Unfortunately, probability based purely on long run relative fre-
quency doesn’t always score well on Ignorance and other forecasting 
skill scores. The problem is that it ignores an additional source of un-
certainty that is often present.

Imagine I vigorously flip a coin that is clearly bent. What would you 
say is the probability of getting heads this time?
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Figure 1  Gradually converging on the long run relative frequency of heads from flipping a fair coin
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It feels different doesn’t it? Our basic schooling on probability 
tends to focus on situations like card games, dice rolling, and coin 
tossing where we usually assume we know what the long run relative 
frequencies should be because we assume that all outcomes are equally 
likely. Problems set in school textbooks usually say that the coin is 
‘fair’, meaning that you can assume the usual probabilities.

In real life things are rarely so convenient. Individual outcomes 
aren’t always equally likely. We don’t know exactly what the long run 
relative frequencies would be. We’re uncertain about them. Coins 

look a bit bent and are tossed by conjurors we don’t 
trust. We can’t repeat things billions of times. We have 
to make estimates.

So, here’s another interpretation. Probability can 
also mean our degree of belief about long run relative 
frequencies.

In this interpretation probability depends on our 
knowledge. The real world has a long run relative 
frequency and statements about that are what the de-
grees of belief apply to.

Mathematicians sometimes use probability to mean 
just long run relative frequency. On other occasions 
they use probability to mean their degree of belief 
about long run relative frequency. They may even 
use both ideas in the same problem, calling them both 
probability. Using the same name both times is con-
fusing so separating the two ideas can be very helpful.

12	D egree of belief about an 
outcome

Mathematicians sometimes use probability to mean degree of be-
lief about an outcome. For example, the statement ‘heads next time’ 

We can’t repeat 
things billions 
of times. We 
have to make 

estimates
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could be true or false. This interpretation of probability applies the 
degree of belief idea to a statement like that.

The degree of belief about an outcome can be calculated from the 
long run relative frequency and the degree of belief about long run 
relative frequency. Alternatively, you can just jump to a degree of 
belief about an outcome by some other means, such as intuition.

I know the different probability interpretations take a while to 
sink in but stick at it because this is where some huge practical mistakes 
have been made. Here’s an example that might just do it for you.

Picture that bent coin I flipped a page ago and imagine you had the 
opportunity to flip it and learn more about its tendency to come up 
heads. From a handful of flips you couldn’t know the true long run 
relative frequency of that coin. That means you don’t know the prob-
ability of heads in the long run relative frequency sense.

However, you could start to form a view about what are more likely 
values for the probability (LRRF interpretation) and you could ex-
press this in terms of probabilities (degree of belief about LRRF 
interpretation) that each LRRF is the true one.

So what is the probability of getting heads next time that you would 
use for gambling purposes? (This is the one that represents your degree 
of belief that the outcome will be ‘heads’ and is your probability in the 
degree of belief about an outcome interpretation.)

That probability you could get by intuition (the traditional way) or 
by combining the probability (LRRF interpretation) with the other 
probabilities (degree of belief about LRRF interpretation) in a par-
ticular way to get to a probability (degree of belief about an outcome 
interpretation).

The theory of probability works fine whichever interpretation you 
use, but the problems come when different interpretations get con-
fused or inappropriately left out.
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13	 Audit point: Mismatched 
interpretations of 
probability

Obviously things can go wrong if one person means probability in one sense and 
another thinks they mean something else. We can even confuse ourselves.

Ask someone for the probability of heads from tossing an unfamiliar bent coin and 
many will answer ‘I don’t know’, revealing that they are thinking in long run relative 
frequency terms. They are seeing probabilities as characteristics of the real world, 
independent of their knowledge of them.

Take that same person to their favourite sporting event and ask them what they think 
of the odds on a famous competitor and they will happily take a view. This is true even 
though they still don’t know what the long run relative frequency of that competitor 
winning that event is, and could never know it. In this context they activate the degree 
of belief about an outcome interpretation, without realizing they have done so.

The most dangerous version of this confusion is where one person is thinking in terms 
of long run relative frequencies and offers probability information to someone else 
who thinks they are getting degree of belief about an outcome information.

The speaker is giving what could be wild guesses about the real world, without men-
tioning that they are guesses. The listener does not realize this crucial information is 
being left out. In this simple misunderstanding uncertainty is ignored and the listener 
comes away thinking things are much better understood than they really are. This hap-
pens so often that I will be returning to it repeatedly in this book.
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14	 Audit point: Ignoring 
uncertainty about 
probabilities

Focusing on long run relative frequencies and forgetting that we aren’t certain of 
them is a mistake. It may happen due to mismatched interpretations of probability, or 
it may be that the uncertainty is ignored for some other reason, such as convenience or 
a desire to seem authoritative.

Whatever the reason, the consequence is that risks are generally underestimated and 
too little is done to use available data to help get a better view.

15	 Audit point: Not using data 
to illuminate probabilities

People often fail to use available data to firm up probabilities. This may be because 
they think of probabilities as nothing more than subjective guesses about outcomes.

More often it is because they focus on the long run relative frequency idea and 
think any data used must be from past occurrences of the identical circumstances to those 
now expected. Unable to find data that are from identical circumstances in the past, they 
give up on data altogether.

Identical circumstances never happen; that would require repeating the history of the 
universe. What does happen is recurrence of circumstances that match the definition of 
one or more situations that we have chosen. It is also possible to generate quite good 
probabilities by taking into account the degree of similarity between situations.

The trick is to think of definitions for situations that include the occasion for which 
we want a probability, seem to capture a lot of what is important, and for which we 
have data.
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In doing so we must accept that the more narrowly we define the situation, the more 
relevant past data will be, but the fewer data we will have to work with. Put another way, 
narrow situation definitions give us high uncertainty about highly informative long run 
relative frequencies.

For example, a construction company that builds houses, flats, and some large build-
ings like schools might have years of data on estimated and actual costs and times to 
complete its projects. It would be a mistake to think that, because every project is unique 
in some way, past experience is no guide to future cost estimates. It might be that using 
data from its house construction in the last two years gives a helpful distribution of 
estimates that, at the very least, enables baseless optimism to be challenged.

The key points are that we don’t need to repeat identical circumstances and may have 
more relevant data than we realize.

16	O utcome space (also known 
as sample space, or possibility 
space)

Having covered the main interpretations of probability it’s time to 
go back to the idea of a situation and explain some more of the think-
ing and terminology behind the most common textbook version of 
probability theory.

In this approach, the next thing to define for a situation is its out-
come space, otherwise known as its sample space or possibility space. 
This is the set of all possible elementary outcomes from the situation. 
We also need a way to name or otherwise refer to the outcomes.

For example, tossing a coin once is usually said to have the outcome 
space {heads, tails} but if you let it drop onto a muddy sports field it 
might be more accurate to say {heads, tails, edge}. If you prefer shorter 
names then that could instead be {h, t, e}. It’s another option.
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What is an elementary outcome? That’s something else to be decided 
and written down. There are options and to some extent the decision is 
an arbitrary one. However, some choices are easier to work with than 
others. For example, if you can define your outcomes in such a way that 
they are equally likely, then that makes life a lot easier.

Sometimes the outcomes are more like combinations of outcomes. 
For example, the outcomes from tossing two coins one after the other 
could be defined as {(H,H), (H,T), (T,H), (T,T)} with the first letter 
representing one coin and the second representing the other. Another 
example would be measurements of newborn babies, where each out-
come could be represented by a bundle of facts such as its weight, 
length, sex, and skin colour.

In real life situations we usually have a number of different ways to 
characterize what could happen. For example, we might be interested 
in health and safety, or money, or time. Each possibility, if chosen, will 
give us a different outcome space.

The phrase sample space is what the mathematicians most often 
use, for historical reasons, but it is misleading (again) because sampling 
in the usual sense isn’t normally involved. In this book I’ve used the less 
common term outcome space so you don’t have to keep reminding 
yourself to forget about sampling.

17	 Audit point: Unspecified 
situations

Many so-called ‘risks’ for which people are asked to give a ‘probability’ do not describe 
adequately the situation they apply to. For example, there may be a ‘risk of theft’ but 
over what time period, involving which assets, and measured in what way? Unless this 
vagueness is cleared up it’s hard to say anything meaningful about how big the ‘risk’ is, 
even broadly and without numbers.
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Consider reviewing a sample of risk descriptions and recommending some kind of 
quality improvement work.

Different styles of risk analysis require clarity on different points, so you are looking for 
any statement that seems vague and should also consider whether important qualifica-
tions have been left out altogether. It is very common to forget to state the time period 
for a ‘risk’. For example, ‘Risk of theft in the next year’ is much less likely than ‘Risk of 
theft at any time in the future.’

18	O utcomes represented 
without numbers

The outcomes in an outcome space can be represented in a variety of 
ways. One way is without numbers. For example, if beads of different 

colours are put into a bag and shaken, and then one 
is drawn out, the outcomes might be represented by 
colours, e.g. {Red, Blue, Green }.

This is important because some concepts in risk 
mathematics do not apply if the outcomes are not rep-
resented by numbers.

A lot of the things we call risks and put on risk reg-
isters are worded so that there are just two outcomes 
and they’re not represented by numbers. Those two 
outcomes are {‘The risk happens’, ‘The risk does not 
happen’}.

This is simple, but usually much too simple and tends 
to mean we cannot think about important nuances. 
For example, if the risk is ‘Loss of market share’ then 
surely it matters how much market share is lost. The 
problem is not lack of numbers but failure to capture 
the richness of potential outcomes. Most mathemati-
cal risk analysis is much more informative.

if the risk is ‘Loss 
of market share’ 

then surely it 
matters how 
much market 
share is lost
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19	O utcomes represented with 
numbers

In other outcome spaces the outcomes are represented by numbers.

20	Ra ndom variable
Often what people are interested in is not the outcome but, instead, 
a number that depends on the outcome. For example, if you roll two 
dice when playing Monopoly it is the total of the dice you care about.

And when people enter a lottery they are interested in how many of 
the balls selected at random in the draw match the balls they bet on. 
They are not really interested in exactly which balls are drawn. A lot of 
risk management in businesses focuses on money.

A random variable is, strictly speaking, neither random nor a vari-
able, but is a rule that links each outcome to a unique number. Given 
an outcome it returns the appropriate number. People often talk about 
random variables as if they represent the actual outcome (which is not 
yet known). In other words, they treat them as if they are the numbers 
returned rather than the rule, but this usually doesn’t lead to mistakes.

Random variables, by convention, always return what mathemati-
cians call ‘real’ numbers, which for our purposes just means they don’t 
have to be whole numbers, but can be anywhere on the continuous 
number line.

Sometimes the way outcomes are linked to numbers can seem a bit 
arbitrary. For example, when the outcome space is {success, failure} 
these outcomes are often mapped to one and zero respectively.

Traditionally, random variables are usually given names that are 
capital letters from the English alphabet and the runaway favourite 
choices are X and Y.

In practice the definition of a random variable is a matter of choice 
and needs to be clear.
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21	E vent
An event, in mathematics, means a subset of the outcome space. For 
example, if you’ve chosen the situation of tossing a coin and letting it 
fall on a muddy sports field and the outcome space {heads, tails, edge} 
then you could define a number of possible events having one or more 
outcomes in them, such as an event you could call ‘valid outcome’ 
defined as the set {heads, tails}.

What events are defined is yet another free choice. The event ‘valid 
outcome’ is likely to be useful when talking about coin tossing on a 
muddy field, but of course you could look at it in other ways.

Events involving discrete outcomes can be defined by listing all the 
outcomes included or by stating some rule for membership.

Events involving outcomes that could be anywhere on a continuum 
of numbers are often defined by giving the top and bottom of the range 
of numbers to be included in the event. Another common technique is 
to give one number, defining the event as all outcomes with numbers 
less than or equal to that number.

Random variables can be used to succinctly define events. For ex-
ample, if the name X is given to a random variable returning the total 
of two fair dice thrown together then:

1	 {X = 4} is the event that contains all the outcomes that add up to 4, 
i.e. {(1,3), (2,2), (3,1)}; and

2	 {X < 3} is the event that contains all the outcomes that add up to less 
than 3, i.e. {(1,1)}.

This is the traditional notation and I hope it is clear what is intended. 
If not then it may be that you’ve noticed the mistake, which is to write 
as if X is the value returned by the random variable, not the random 
variable itself. Perhaps a clearer notation would be something like 



A Pocket Guide to Risk Mathematics 31

{X(w) = 4} where w represents the outcome from the 
situation, and X(w) is the usual way to show the value 
returned when a function (e.g. X) is applied to an input 
value (e.g. w).

An event is not necessarily something sudden, dra-
matic, or memorable. This idea is very different to 
our ordinary idea of an ‘event’ and this causes some 
confusion. Procedures for risk management tend to 
be written as if ‘events’ are dramatic things with all 
or nothing results, like explosions. But in reality most 
situations where ‘risk’ needs to be managed are not like 
this. There are a few explosions but far more slightly 
surprising outcomes of undramatic situations. It is 
better to use the mathematical idea of an event and 
this is more consistent with the vast majority of ‘risks’ 
that people think of.

22	 Audit point: Events with 
unspecified boundaries

Many ‘risks’ on risk registers have a form like ‘inadequate human resources’. We imagine 
a scale of human resources and a zone towards the bottom that is ‘inadequate’. Unfor-
tunately, the level below which human resources are inadequate is unspecified (and 
probably unknown) making the ‘risk’ unspecified too.

An event is not 
necessarily 

something sud-
den, dramatic, or 

memorable
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23	 Audit point: Missing ranges
Another problem with ‘risks’ like ‘inadequate human resources’ is that the choice of the 
word ‘inadequate’ is rarely the result of careful thought. It could have been replaced by 
‘less than expected’ or ‘zero’ with little comment by most people. Choosing ‘inadequate’ 
as the definition for the event removes from consideration other ranges that might be 
surprising and require planning for. I call these missing ranges. They are very easy to 
check for and point out.

24	 Audit point: Top 10 risk 
reporting

Many people in senior positions have been encouraged to believe that they need to focus 
on the ‘top 10 risks’. I wonder how they would feel if they understood that events are 
defined by people and can be redefined to suit their purposes.

Imagine you are a manager in a risk workshop and somebody has just suggested a 
risk for inclusion in a risk register that (1) you would obviously be responsible for, (2) 
will probably be in the top 10, and (3) you can’t do much about. You don’t want the risk 
to be in the top 10 and to get beaten up by the Board every quarter so you say, ‘That’s 
a really interesting risk, but I think to understand it fully we need to analyse it into its 
key elements.’

You then start to hack the big ‘risk’ into smaller ‘risks’, keeping on until every com-
ponent is small enough to stay out of the top 10.

The point is that the size of a ‘risk’ is heavily influenced by how widely it is defined. 
Most of the time the level of aggregation of risks is something we set without much 
thought, so whether something gets into the top 10 or not is partly luck.

Auditors should highlight this issue when found and suggest either the level of ag-
gregation of ‘risks’ be controlled in some way or top 10 reporting be abandoned and 
replaced by a better way of focusing attention.
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25	P robability of an outcome
In researching for this book I consulted several different sources and 
got several different explanations of probability theory, with slightly 
different terminology and slightly different notation.

The reason for this is historical and understanding it may help to 
make sense of it all.

In the beginning, probability theory was focused on winning in 
games of chance. It concentrated on situations where there was just 
a finite number of outcomes, such as the roll of a die, or a hand in a 
card game.

It made perfect sense to talk about the probability of an outcome 
and to calculate the probability of an event by adding up the prob-
abilities of the outcomes they included. (Remember that an event is a 
subset of the outcome space, so it’s a set of outcomes.)

The sum of the probabilities of all the outcomes from a situation 
is one, because it is certain that one of those outcomes will result, by 
definition.

Later, people moved on to think about situations where the out-
comes could be any point on a continuum, such as the life of an electric 
light bulb. In this example the life could be, theoretically, any amount 
of time. Even between a lifetime of 10 minutes and a lifetime of 11 
minutes there is an infinite number of possible lifetimes. (In practice 
we can’t measure accurately enough to recognize that many but in 
principle it is true.)

This revealed an awkward problem. The probability of the out-
come being exactly equal to any particular point on the continuum 
seemed to drop to zero, and yet the outcome had to be somewhere on 
the continuum. How can adding up lots of zeroes give the result one?

To get around this problem, probability was defined in a different 
way specifically for these continuum situations, but still starting with 
outcomes and building up from there.
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26	P robability of an event
Then in 1933 the Russian mathematician Andrey Nikolaevich Kol-
mogorov (1903–1987) did some very fancy maths and showed how 
both problems (with and without outcomes on a continuum) could be 
dealt with using one approach.

Although Kolmogorov’s approach has been accepted for decades it 
still hasn’t reached every textbook and website.

Kolmogorov’s thinking is a mass of mind-boggling terminology and 
notation (which I’m not going to go into) and was mostly concerned 
with applying the fashionable ideas of measure theory to probability. 
Yet one of the key ideas behind it is simple: since starting with prob-
abilities for outcomes hasn’t worked neatly for us, let’s start with 
probabilities for events instead.

27	P robability measure (also 
known as probability 
distribution, probability 
function, or even probability 
distribution function)

The result of Kolmogorov’s hard work was the notion of a magical 
thing called a probability measure that tells you what probability 
number is associated with each event. (The word ‘measure’ here indi-
cates Kolmogorov was using measure theory, but you don’t have to in 
order to associate probability numbers with events.)

The alternative name probability function (which lacks the link 
to measure theory) is a good one because, in mathematics, a function 
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is simply a rule, table, or formula that takes one or more inputs and 
consistently replies with a particular output. For example, a function 
called something like ‘square’ might return the square of each number 
given to it. (A random variable is also a function.)

In the case of probability, you tell the probability function which 
event you are interested in and it returns the probability that goes 
with it.

The alternative names are used in different ways by different authors, 
which can be confusing, particularly when probability distribution is 
used to refer to something that does not give probabilities.

The way the probability measure is designed depends on what type 
of outcome is involved and what is a convenient way to identify the 
event.

For example, if the outcome space for coloured balls pulled out 
of a bag is {Red, Blue, White, Black} then a probability function 
called Pr (one of the common name choices) might be used, as in these 
examples:

1	 Pr({White}) = 0.3 means that the probability of pulling out a white 
ball is 0.3.

2	 Pr({Black}) = 0.2, means that the probability of pulling out a black 
ball is 0.2.

3	 Pr(Monochrome) = 0.5, where Monochrome = {White, Black}, 
means that the probability of pulling out a black or white ball is 
0.5.

In writing these examples for you I’ve been quite strict and made sure 
that the thing inside the ( ) parentheses is a set of outcomes. However, 
the notation used is not always so careful.

Remember that events can also be specified using random vari-
ables.

The impact of Kolmogorov’s work may have been huge for the 
theoretical foundations of probability, but it has made little impact 
otherwise so most of us don’t need to know any more about it.
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28	C onditional probabilities
Mathematicians have a habit of leaving out information to keep their 
formulae looking simple, expecting readers to guess the rest from the 
context.

Formulae about probabilities give countless examples of this. The 
usual way to write ‘the probability of event A occurring’ is:

P(A)

But what situation are we talking about? What is the 
outcome space? Or, put it another way, what parts of 
our knowledge about the circumstances surrounding 
the event of interest are we choosing to use for the 
purposes of this probability number? For example, if 
we are interested in the outcome of tossing a coin, do 
we say this is an example of coin tossing, of tossing this 
particular coin, or of coin tossing on a muddy field? If 
the coin is to be flipped by a conjuror do we take into 
account the fact that he has just bet us £100 it will be 
heads?

Usually, little or even none of this is stated in the for-
mula, with the obvious risk of confusion or mistakes. 
For good reason, people sometimes point out that all 
probabilities are conditional probabilities.

However, there is a standard notation for showing 
information that defines the situation or otherwise 
shows what parts of our knowledge of circumstances 

are being used. This is the notation for conditional probabilities. For 
example, a way to write ‘the probability of event A occurring given 
this is an instance of a situation with outcome space S’ is this:

P(A | S)

Mathematicians 
have a habit 

of leaving out 
information 
to keep their 

formulae looking 
simple
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You say this to yourself as ‘the probability of A given S.’
When new information arrives we are not obliged to use it in every 

probability we state. However, for probabilities where we do use the 
new information this effectively redefines the situation.

For example, suppose our initial situation was ‘drawing a playing 
card from a shuffled deck’ but later we learn that the deck has been 
shuffled and the card drawn by a conjuror. This new information rede-
fines the situation quite dramatically.

In symbols, if we want to show ‘the probability of event A occurring 
given this is an instance of a situation with outcome space S, and given 
the outcome is already known to be within event B’, we write:

P(A | S, B)

In this particular example this makes the new outcome space, in effect, 
B, because B is entirely within S.

For some, perhaps all, occasions where we want to use probabilities 
the addition of more and more information might eventually allow us 
to predict the outcome with complete certainty, in theory.

29	D iscrete random variables
At this point probability theory starts to focus on events defined using 
random variables.

Random variables are functions that give ‘real’ values, i.e. numbers 
that could, in principle, lie anywhere on a continuous number line 
from zero all the way up to infinity (∞), and indeed from zero all the 
way down through minus numbers to minus infinity (–∞). In symbols, 
they are in the range (–∞,∞).

However, when a random variable is defined for the outcome 
space of a situation, it may well be limited to returning just certain 
values within that huge range. For example, if the random variable 
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represents the total of two dice then it can only take the specific values 
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, even though it is a real number.

Random variables are classified into three types according to the 
values they can return once hooked up to an outcome space. The 
simplest type is the discrete random variable.

Discrete random variables can return only a finite number of val-
ues, or an infinite but countable number of values.

To illustrate the meaning of ‘countable’, the set of numbers {1, 
2, 3 … and so on forever} has infinitely many elements but they are 
countable, whereas the number of numbers on the real number line 
between 0 and 1 is infinite and not countable. Countable infinity is 
much smaller!

30	C ontinuous random 
variables

The other type of random variable that gets a lot of attention is the 
continuous random variable. This type (1) can return an uncount-
ably infinite number of values but (2) the probability of returning any 
particular value is always zero.

That usually means that the value is somewhere on a continuum of 
numbers and no particular value is special.

If your brain is still functioning at this point you may be wondering 
how the probability can always be zero. Surely an outcome of some 
kind is inevitable, by definition, so the sum of the probabilities for all 
the individual outcomes must be one. How can the sum of lots of zeros 
be anything other than zero?

Good question, and perhaps it makes more sense to think of those 
zeroes actually being infinitesimally small ‘nearly zeroes’ so that what 
is really happening is that infinitely many infinitesimally small things 
are being added together. Only by cunning mathematical reasoning 
can the value of such a sum be worked out.
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A huge proportion of the applied risk analysis done 
by mathematicians in business and elsewhere involves 
continuous random variables (though it is not neces-
sary to go through the reasoning about infinity each 
time).

Incidentally, the Ignorance function mentioned in 
connection with proper scoring rules can only be ap-
plied to discrete random variables, but applying it to 
continuous random variables simply involves slicing 
the continuous case into lots of little pieces. This is 
just a reminder that in most cases where we model 
the world with continuous variables the reality is that 
we cannot and do not measure to infinite accuracy. 
Money, for example, is usually tracked to two decimal 
places, not to infinite precision, which would involve 
quoting some numbers to infinitely many decimal 
places!

31	M ixed random variables  
(also known as mixed 
discrete-continuous random 
variables)

Discrete and continuous random variables get so much attention it 
is easy to get the impression that they are the only types that exist. Not 
so, and in fact random variables of the third type are applicable to 
most of the ‘risks’ people put on risk registers.

These forgotten random variables are so unloved that it took me a 
while to find their proper name: mixed random variables.

the reality is that 
we cannot and 
do not measure 

to infinite 
accuracy
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Like the continuous random variables they can take an uncount-
ably infinite number of values, but these hybrids can give special values 
whose probability of occurrence is more than zero.

For example, suppose that the random variable is for the useful life 
of a light bulb. Some light bulbs don’t work at all, while others go on 
for a period we don’t know in advance.

This means that the probability of lasting exactly zero seconds is 
more than zero, but the probability of any particular lifespan beyond 
this is zero.

32	 Audit point: Ignoring mixed 
random variables

Perhaps because they don’t get much attention mixed random variables tend to get 
left out.

People don’t think of using them in their risk analysis and instead behave as if 
everything is either discrete or continuous.

This is important because such a high proportion of ‘risks’ on risk registers are best 
described by a mixed random variable.

It is true that there are very few well known distribution types that are mixed and 
software does not support them directly, in most cases. However, a mixed type can easily 
be built from a combination of discrete and continuous random variables.

For example, to express the lifespan of a light bulb you can use a discrete random 
variable to say if it fails immediately or not, and then a continuous random variable 
to show the probability distribution of its lifespan assuming it at least gets started.

Be alert for this mistake when reviewing risk management procedures, templates, 
and models.
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33	C umulative probability 
distribution function

There is one type of probability distribution function that can cap-
ture, and graph, the nuances of random variables of any type.

This kind of function is called a cumulative probability distribu-
tion function. It gives the probability that the value returned by a 
random variable will be less than or equal to any particular value.

The graph of a cumulative probability distribution function al-
ways rises from left to right, as in Figure 2.

Take a moment to think this through a few times because we are not 
used to seeing this kind of graph.

Cumulative probability distribution functions are extremely 
useful in risk analysis because they can be used in many different situa-
tions, even when other types of function are too fussy to be applied.
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For example, suppose a ‘risk’ has been written that says ‘The cost of 
fire damage to our warehouses during this year.’ Imagine that there’s a 
good chance that this will be zero, because fires are rare. However, if a 
fire starts then the cost could be anywhere from tiny (a slight scorch-
ing) to catastrophic, with a large building burned to the ground.

A cumulative probability distribution function can capture all 
this. For cost values less than zero (we gain money) the cumulative 
probability is zero. That’s not going to happen. At a cost of exactly 
zero the probability will be the chance of no fire damage during the 
year. For higher and higher values of cost the cumulative probability 
will gradually increase, ultimately getting closer and closer to one (see 
Figure 3).
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Figure 3  Cumulative probability distribution function for cost of fire damage, x
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34	 Audit point: Ignoring 
impact spread

The usual treatment of items on a risk register is to ask people for the probability of ‘it’ 
happening and the impact if ‘it’ does.

But what if the impact could be anything over a wide range? For example, how do you 
estimate a single impact level for a risk item like ‘Loss of market share’? Surely it depends 
on how much market share is lost, among other things. I call this ‘impact spread’ and my 
study of published risk registers shows that virtually all risk register items have impact 
spread for at least one reason and often for several.

The question on the risk register requires an answer that is a single number or cat-
egory, and there are several ways people could choose one. They could pick the first 
level of impact within the range that comes to mind. They could pick the level that 
seems most representative, or most likely, or is the probability weighted average of 
the whole range, or a halfway point, take something at random, or pick something that 
combines with the probability number to give the priority rating they think the ‘risk’ 
should have.

If we want the impact ratings to mean something then we need to define how people 
should reduce the range to a single point, or change our technique.

The two recommendations auditors should consider first are these:

•	 Define the required impact rating as the probability weighted average impact 
over the whole range of possibilities. This means that when it is combined with the 
probability it gives something meaningful.

•	 Change the rating system so that it asks for a probability of at least some impact, 
and then the probability of impact greater than one or more other thresholds. This 
technique elicits a simplified variant of the cumulative probability distribu-
tion function and is easier to explain.
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35	 Audit point: Confusing 
money and utility

When we talk about ‘impact’ another possible confusion is between a measure such as 
money and how much we value the money. The word ‘utility’ is often used to mean the 
real value we perceive in something.

For example, a financial loss like losing £1 million is surely more important if this 
amount would destroy your company.

When we talk casually about ‘impact’ there is always the danger of overlooking this 
point and flipping from thinking in money terms to acting as if it is really utility we are 
talking about.

The two ways of thinking give different answers. Suppose we have two ‘risks’, one of 
which can lead to losses in a narrow range, with the average being £100,000. The other 
also has an average of £100,000 but the range of possibilities is much larger with a 
possibility of losses that ruin the company.

Is it fair to treat these two losses as having the same impact? In financial terms their 
average is the same but if we translate to utility and then take the average the second 
risk is considerably worse.

Some organizations try to express a ‘risk appetite’, which is supposed to help em-
ployees respond consistently and appropriately to risks, especially the bigger ones. If 
averages (or other midpoints) from money impact distributions are being used then the 
risk appetite initiative is seriously undermined.

36	P robability mass function
A fussier probability distribution is the probability mass function, 
which only applies to discrete random variables (see Figure 4).

A probability mass function gives the probability that the ran-
dom variable will return any particular value.

The importance of probability mass functions perhaps goes back to 
the early focus on the probabilities of outcomes as opposed to events. 
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Also, if you have the probability mass function then you can calculate 
the probability of any event.

37	P robability density function
Obviously a probability mass function won’t work with a continu-
ous random variable because the probability of any particular value 
being returned is always zero, and that’s a problem with the mixed 
type too.

For continuous random variables only it is possible to create a 
function called a probability density function that returns not prob-
ability, but something called probability density.

Graphs like the one in Figure 5 have probability density on the 
vertical axis, not probability, so in that sense they are not probability 
distributions at all.

The area under one of these probability density function graphs is 
what represents the probability. If you want to know the probability 
that the random variable will return a value somewhere between two 
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numbers then you need the area under the probability density func-
tion curve that lies between those two values. The total area under the 
curve is always one (see Figure 6).
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Figure 6  The area, A, under the curve is the probability of x being between –5000 and 0
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Again, the importance of probability density functions perhaps 
goes back to the days when probability theory was focused on out-
comes. They are an attempt to give a number for each possible outcome, 
which is sort of like probability even though it isn’t probability. If 
you have the probability density function then you can calculate the 
probability of any event.

38	S harpness
One quality of probabilities that tends to contribute to high resolu-
tion is sharpness. Sharpness is simply use of probabilities that are 
near to zero or one, and it does not imply that those probabilities are 
also well calibrated.

The choice of the word sharpness is now easy to understand in terms 
of probability density functions.

Imagine Figures 7(a) and 7(b) represent forecasts for the change 
in value of a portfolio of investments over two periods of 24 hours. 
In Figure 7(a), which is for the first period of 24 hours, one forecast-
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Figure 7  (a) Forecasts for the first day with a wide distribution and a much sharper distribution, equally well cali-
brated
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ing approach gives a well calibrated but widely spread 
probability distribution while the other, equally well 
calibrated, distribution is much sharper. Figure 7(b) 
shows the forecasts for the second period of 24 hours 
and the widely spread distribution is unchanged while 
the sharp forecast has taken more circumstances into 
account and is different from the previous day.

The more we try to take into consideration, the 
less directly relevant past experience we can draw on. 
We have the chance to achieve high resolution, but 
without much history as a guide we risk poor calibra-
tion. It’s a balancing act and understanding it is a hot 
research topic.
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Figure 7  (b) Forecasts for the second day with the wide distribution unchanged but the sharp distribution more responsive 
to circumstances
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39	R isk
Finally, we have arrived at risk. The reason for your long wait is that 
mathematicians don’t really have much use for the word in either of 
its main senses.

In everyday conversations we often talk about ‘risks’, meaning nasty 
possibilities that can be listed and counted. Mathematicians have 
events and random variables instead, and they are 
much better defined ideas, free from the associations 
with danger and losses that tend to make ‘risk’ an en-
tirely negative idea.

In everyday conversations we also talk about how 
much ‘risk’ we face, meaning a quantity of some nasty 
possibility. The concept of probability was invented 
centuries ago and when combined with values of out-
comes it does everything that ‘risk’ does and so much 
more.

However, there is a mathematically oriented concept 
of risk. Its development may owe something to influ-
ential work on portfolio theory by American economist 
Harry Markowitz (1927–), in which he used a number 
to represent the spread of possible returns from invest-
ments and called it ‘risk’. This was done to make some 
of his mathematics more convenient and is justified 
only by some rather specific assumptions about how 
investors value investment returns and about how those returns are dis-
tributed. However, these finer points have long been ignored and the 
idea of applying a formula to a probability distribution to produce a 
number that represents some notion of ‘risk’ has caught on.

In this approach, risk is a number calculated using a function that 
takes as its input the probability distribution of a random variable.

the idea of … 
a number that 

represents some 
notion of ‘risk’ 
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There is no agreed function for calculating risk. There are already 
several to choose from and more will probably be invented in future. 
Under close scrutiny all of these have shortcomings.

Before I explain some of these alternative risk functions it will be 
helpful to explain something that is often used as part of them and is 
generally very useful.

40	M ean value of a probability 
distribution (also known as 
the expected value)

Another function that takes a probability distribution as input and 
returns a number is the mean, otherwise known by the highly mislead-
ing name of expected value. This is the probability weighted average 
of all outcomes, and only works when the outcomes are represented 
as numbers.

For example, if we think of the probability mass function for a fair 
die rolled properly, then the outcomes and their probabilities are:

P(1) = 
1
6

, P(2) = 
1
6

, P(3) = 
1
6

,

P(4) = 
1
6

, P(5) = 
1
6

, and P(6) = 
1
6

The probability weighted average of these is:

1
1
6

2
1
6

3
1
6

4
1
6

5
1
6

6
1
6

× + × + × + × + × + × = 3½

No, I haven’t made a mistake; the expected value from rolling a die is 
3½ – which is an impossible outcome. In this case the expected value 
is also an impossible value.
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In ordinary language, if we ‘expect’ something that means we either 
think it jolly well ought to happen or that it is more likely than not. In 
mathematics, an expected value does not need to be more likely than 
not and might not even be possible.

41	 Audit point: Excessive focus 
on expected values

When expected values come into a conversation (e.g. about forecasts) other outcomes 
tend to be forgotten. An expected value supported by pages of spreadsheeting gets a 
credibility it rarely deserves.

Auditors should check for this in a variety of situations and recommend taking a 
broader view and considering more possible futures.

42	 Audit point: 
Misunderstanding 
‘expected’

The word ‘expected’ has two ordinary meanings as well as its mathematical meaning 
and this can lead to confusion.

First, people might think that ‘expected’ means ‘more likely than not’, i.e. a fairly 
highly level of confidence in a prediction. If the business case for a project says its 
value is ‘expected’ to be £2.5 million then non-mathematical readers might think that 
means a very confident prediction of a value of exactly £2.5 million (give or take a few 
thousand perhaps). It could really mean that the project’s proposers have almost no 
idea what the true value is but the probability weighted average of their wild guesses 
is £2.5 million.
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If there is a risk of this misunderstanding taking place then the auditor should point 
it out. Since giving only expected values is poor practice, the obvious recommendation 
is to provide more information about other possible results.

Second, people might think that ‘expected’ means ‘ought to happen’. Let’s imagine 
the spreadsheet says the expected cost of a project is £6.3 million. That means the 
probability weighted average of the guesstimates is £6.3 million. It does not mean 
that the cost of the project ought to be £6.3 million and therefore that’s what the budget 
should be.

Turning expected values into budgets or other types of target is a mistake. It is 
much better to look at the whole probability distribution and take a view based on 
that fuller information.

43	 Audit point: Avoiding 
impossible provisions

In putting together an initial budget for the 2012 Olympic Games the UK government 
faced a difficult choice. How much should it include for VAT?

This VAT payment would be a tax paid by the UK government to the UK government, 
but its inclusion in the budget was still important because funding was not just coming 
from the general public purse.

Either the games would be declared VAT exempt or they wouldn’t. What would you 
have put in the budget? One perfectly sensible option would have been to budget for 
the expected value of the VAT, i.e. the total VAT bill multiplied by the probability of 
having to pay it at all. How good this is depends on how you value differences between 
budget and actual, but using the mathematician’s favourite, the expected value of the 
budget errors squared, it turns out that the expected value for VAT is a great choice.

However, you can imagine that for many people this must have seemed a bizarre 
choice. It was a budget guaranteed to be wrong. In fact they decided to put nothing in the 
budget at all and were surprised to find, a year or so later, that VAT would be charged.
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44	 Audit point: Probability 
impact matrix numbers

Here’s one that could embarrass a lot of people. Another potential problem with risk 
register impact and probability ratings comes from the way people sometimes combine 
them for ranking and selection.

Imagine that the method for combining probability and impact ratings into one rating 
is defined by the usual grid. Let’s say it’s a 5 by 5 grid for the sake of argument, looking 
like Figure 8:
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Figure 8  Probability impact matrix with 25 cells

There are 5 levels of probability ranging from very low (VL) to very high (VH), and 
the same for impact. The levels have also been given index numbers from 1 to 5. The 
combined score is found by multiplying the two indices together and is shown in the 
cells of the matrix.

Oh dear. What people imagine they are doing is taking the expected value of the 
impact, or something like it, but the numbers being used are not probability and impact 
but the index numbers of the rows and columns.
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When you look at the ranges of impact and probability that define each level they 
are usually of unequal sizes. For example, ‘very low’ impact might be ‘£1–1,000’, ‘low’ 
impact might be ‘£1,001–10,000’, and so on. Typically the levels get much wider 
each time.

This means that, often, the index numbers are more like the logarithms of the impact 
and probability so multiplying them gives you something more like ‘the logarithm of the 
impact raised to the power of the logarithm of the probability’! However you look at it, 
this is a mistake.

What it means is that ‘risks’ get ranked in the wrong order and if you have a habit of 
reporting on only ‘risks’ over a certain rating then the set of ‘risks’ selected for reporting 
will usually be the wrong set.

45	Va riance
This is a function whose result is often used as risk. It is the expected 
value of the square of differences between possible outcome values and 
the mean outcome. That means it gets bigger the more spread out the 
possible values are.

The way it is calculated depends on what sort of probability distri-
bution is involved.

As with other risk numbers it is calculated from the probability 
distribution of a random variable. For example, if the random vari-
able represents the result of rolling a 6-sided die then the probability 
of each of its six discrete outcomes is 1/6 and its mean is 3.5 as we have 
already seen. Its variance is:
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Variance can also be calculated for actual data about past events, but this 
is not risk, though it is sometimes taken as an estimate of risk, and may 
be calculated with a slight adjustment in order to be a better estimate.
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46	S tandard deviation
This is just the square root of the variance, i.e. multiply the standard 
deviation by itself and you get the variance.

As with the variance, it gets bigger with more dispersed outcomes.
Also like variance, standard deviation can be calculated for actual 

data about past events, but this too is not risk, though it is sometimes 
taken as an estimate of risk.

47	S emi-variance
A problem with the variance and standard deviation 
is that they increase with the spread of the probabil-
ity distribution. That means that the possibility of 
something extremely good happening makes the risk 
number larger. This does not agree with our intuitive 
idea that risk is a bad thing.

Alternative risk functions have been invented to 
try to focus more on the bad outcomes, such as lost 
money, and one of these is the semi-variance.

This is the expected value of the squared difference 
between outcomes below the mean and the mean it-
self. In other words, it is the variance but ignoring 
outcomes above the mean.

48	D ownside probability
This is another risk number that focuses on possible disappointment. 
It is the probability of not getting an outcome better than some target 
outcome.

the possibil-
ity of something 
extremely good 

happening 
makes the risk 
number larger
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What is taken as the target is a free choice and needs to be defined, 
but could be a target rate of return for an investment, for example. 
Outcomes better than the target are ignored. The downside prob-
ability is a function of the target chosen, and will be higher for more 
ambitious targets.

49	L ower partial moment
This combines ideas from the semi-variance and the downside prob-
ability. It is the expected value of the squared difference between 
outcomes below some target or threshold and the target itself.

50	Va lue at risk (VaR)
Another risk function that focuses on the downside is value at risk, 
and it has become the most famous.

This is calculated as the loss such that the probability of things turn-
ing out worse is less than or equal to a given probability threshold. 
The probability threshold is something that has to be chosen and is 
usually small.

For example, a bank might model the value change over the next 24 
hours of a collection of investments. The loss such that a loss at that 
level or worse is only 5% likely is their 5%, 1 day VaR for that particu-
lar portfolio. Put another way, they are 95% confident they won’t lose 
more than the VaR over the next 24 hours (see Figure 9).

Like some other risk functions, value at risk is sensitive to the ex-
tremes of a probability distribution, which are very difficult to know 
accurately, and it says nothing about the very extreme possibilities. For 
these and other reasons it has come in for some severe criticism and 
been cited as contributing to the credit crunch of 2007–2009.
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The name itself is somewhat misleading. It sounds like it represents 
how much money we currently have invested. A bank might have bil-
lions invested but say its VaR is just millions. The rest is safe? Hardly.

Value at risk is a common risk measure for market risk, i.e. risk 
related to the value of a portfolio of assets traded on a market (usually 
a financial market).

VaR is usually calculated on the basis of the market value of the 
portfolio, not the returns from it (which also include payments such 
as dividends).

It is usual to assume that the composition of the portfolio is not 
changed during the period. In reality, trading may well happen dur-
ing the period so the value of the portfolio will also change for that 
reason.

It is also common to assume that the expected value change of the 
portfolio during the period is zero. Consequently the only thing that 
needs to be understood is the variability of market values. VaR calcu-
lated on this basis is called absolute VaR. For periods of just one day 
this simplifying assumption is not unreasonable in most cases, but for 
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Figure 9  Value at risk based on 5% confidence shown on a probability density function
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longer periods it may be better to calculate the relative VaR, which 
involves calculating the expected market value as well.

Finally, there are alternative bases for calculating market values.
In the chapter on finance we’ll look in more detail at how the prob-

ability distributions used to calculate VaR are derived.

51	 Audit point: Probability 
times impact

Some years ago I asked a large audience of business continuity managers how they 
would define ‘risk’. The most popular answer was to define it as ‘probability times im-
pact’. It is hard to think of a less appropriate definition.

‘Probability times impact’ is shorthand for the expected value of the probability 
distribution of impact. It is a good candidate for a best guess. It is the number most 
people would use as an estimate for the impact if forced to give just one number. A risk is 
something unexpected, so ‘probability times impact’ is the opposite of risk!

More successful ways to define ‘risk’ in terms of probability and impact have held 
on to the whole distribution rather than reducing it to one number.

The practical problem that ‘probability times impact’ causes is that outcomes other 
than the expected value get forgotten and uncertainty about those outcomes is 
ignored, leading to a massive, systematic understatement of risk. Business continu-
ity managers should be particularly upset by this because it means that the extreme 
outcomes they focus on drop out of sight!

Auditors should identify when ‘probability times impact’ is being used, highlight the 
problem, and recommend something better.
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Table 1  Top ways to go wrong with a risk register

Isolation from the business model
Incoherent mix of mental models
Impossible impact estimates
Undefined situations or events
Focusing on the ‘top 10’
Taking risk as probability times impact
Index number multiplication
Confusing money with utility
Ignoring impact spread
Narrow perceptions due to poor calibration and lack of links 
between events




