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Elementary financial calculus

1.1 Motivating examples

Example 1.1.1 Suppose a pension fund collecting contributions from workers intends to
invest a certain fraction of the fund in a certain exchange-traded stock instead of buying
treasury bonds. Whereas a bond yields a fixed interest known in advance, the return of a stock
is volatile and uncertain. It may substantially exceed a bond’s interest, but the pension fund
is also exposed to the downside risk that the stock price goes down resulting in a loss. For
the pension fund it is important to know what return can be expected from the investment and
which risk is associated with the investment. It would also be useful to know the amount of
the invested money that is under risk. In practice, investors invest their money in a portfolio
of risky assets. Then the question arises: what can be said about the relationship? In modern
finance, returns are modeled by random variables that have a distribution. Thus, we have to
clarify how the return distribution and its mathematical properties are related to the economic
notions expected return, volatility, and how one can define appropriate risk measures. Further,
the question arises how one can estimate these quantities from historic time series.

Example 1.1.2 In order to limit the loss due to the risky stock investment, the pension fund
could ask a bank for a contract that pays the difference between a stop loss quote, L, and stock
price, if that difference is positive when exercising the contract. Such financial instruments
are called options. What is the fair price of such an option? And how can a bank initiate
trades, which compensate for the risk exposure when selling the option?

Example 1.1.3 Suppose a steel producer agrees with a car manufacturer to deliver steel for
the production of 10 000 cars in one year. The steel production starts in one year and requires
a large amount of oil. In order to calculate costs, the producer wants to fix the oil price at, say,
K dollars in advance. One approach is to enter a contract that pays the difference between
the oil price and K at the delivery date, if that difference is positive. Such contracts are named
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2 ELEMENTARY FINANCIAL CALCULUS

call options. Again, the question arises what is the fair price of such an agreement. Another
possibility is to agree on a future/forward contract.

Example 1.1.4 To be more specific and to simplify the exposition, let us assume that the
steel producer needs 1 barrel whose current price at time t = 0 is S0 = 100. To fix that price,
he buys a call option with delivery price K = 100. The fixed interest rate is 1%. Further,
suppose that the oil price, S1, in one year at time t = 1 is distributed according to a two-point
distribution,

P(S1 = 110) = 0.6, P(S1 = 90) = 0.4.

If S1 = 110 one exercises the option right and the deal yields a profit of G = 10. Otherwise,
the option has no value. Thus, the expected profit is given by

E(G) = 10 · 0.6 = 6.

Because for the buyer of the option the deal has a non-negative profit and yields a positive
profit with positive probability, he or she has to pay a premium to the bank selling the option.
Should the bank offer the option for the expected profit 6? Surprisingly, the answer is no.
Indeed, an oil dealer can offer the option for a lower price, namely x = 5.45 without making
a loss. The dealer buys half of the oil when entering the contract at t = 0 for the current price
of 50 and the rest when the contract is settled. His calculation is as follows. He finances the
deal by the premium x and a credit. At t = 0 his portfolio consists of a position in the money
market, x − 50, and 0.5 units of oil. Let us anticipate that x < 50. Then at t = 1 the dealer
has to pay back 1.01 · |x − 50| to the bank. We shall now consider separately the cases of an
increase or decreases of the oil price. If the oil price increases, the value of the oil increases
to 0.5 · 110 = 55 and he receives 100 from the steel producer. He has to fix the premium x

such that the net income equals the price he has to pay for the remaining oil. This means, he
solves the equation

100 + 1.01 · (x − 50) = 55

yielding x = 5.445545 ≈ 5.45. Now consider the case that the oil price decreases to 90. In
this case the steel producer does not exercise the option but buys the oil at the spot market.
The oil dealer has to pay back the credit, sells his oil at the lower price, which results in a
loss of 5. The premium x should ensure that his net balance is 0. This means, the equation

0.5 · 90 + 1.01(x − 50) = 0

should hold. Solving for x again yields x = 5.445545. Notice that both equations yield the
same solution x such that the premium is not random.

1.2 Cashflows, interest rates, prices and returns

Let us now introduce some basic notions and formulas. To any financial investment initiated at
t = t0 with time horizon T is attached a sequence of payments settled on a bank account that
describe the investment from a mathematical point of view. Our standard notation is as follows:
We denote the time points of the payments by 0 = t0 < t1 < · · · < tn = T and the associated
payments by X1, . . . , XT . Our sign convention will be as follows: Positive payments, Xi > 0,
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are deposits increasing the investor’s bank account, whereas negative payments, Xi < 0, are
charges.

From an economic point of view, there is a huge difference between a payment today or
in the future. Thus, to compare payments, they either have to refer to the same time point t∗
or one has to take into account the effects of interest. As a result, to compare investments one
has to cumulate the payments discounted or accumulated to a common time point t∗. If all
payments are discounted to t∗ = t0 and then cumulated, the resulting quantity is called the
present value. Alternatively, one can accumulate all payments to t∗ = T .

In practice, one has to specify how to determine times and how to measure the economic
distance between two time points t1 and t2. It is common practice to measure the time as
a multiple of a year. At this point, suppose that the dates are given using the day-month-
year convention, i.e. t = (d, m, y). In what follows, we denote the economic time distance
between two dates t1 and t2 by τ(t1, t2). Here are some market conventions for the calculation
of τ(t1, t2).

(i) Actual/365: Each year has 365 days and the actual number of days is used.

(ii) Actual/360: Each year has 360 days and the actual number of days is used.

(iii) 30/360: Each month has 30 days, a year 360 days.

In the following we assume that all times have been transformed using such a convention.
If the fixed interest rate is r per annum, interest is paid during the period without compound

interest, the accumulated value of payments X1, . . . , Xn at dates t1, . . . , tn is given by

VT =
n∑

i=0

Xi(1 + τ(ti, 1)r).

The present value at t = 0 is calculated using the formula

V0 =
n∑

i=0

XiD(0, ti), with D(0, ti) = 1 + τ(ti, T )r

1 + rT
.

Here D(0, ti) denotes the discount factor taking into account that the payment Xi takes place
at ti.

Often, interest is paid at certain equidistant time points, e.g. quarterly or monthly. When
decomposing the year into m periods and applying the interest rate r/m to each of them, an
investment of one unit of currency grows during k periods to

1 + r

m
k.

When compound interest is taken into account, the value is

(1 + r/m)k.

For k = m → ∞ that discrete interest converges to continuous compounding

lim
m→∞(1 + r/m)m = er.
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Thus, the accumulation factor for an investment lasting for t ∈ (0, ∞) years, i.e. corresponding
to tm periods, equals

lim
m→∞(1 + r/m)mt = ert .

Let us now assume that the interest rate r = r(t) is a function of t, such that for r(t) > 0,
t > 0, the bank account, S0(t), increases continuously. There are two approaches to relate
these quantities. Either start from a model or formula for S0(t) or start with r(t). Let us first
suppose that S0(t) is given. The annualized relative growth during the time interval [t, t + h]
is given by

1

h

S0(t + h) − S0(t)

S0(t)
.

Definition 1.2.1 Suppose that the bank account S0(t) is a differentiable function. Then the
quantity

r(t) = lim
h↓0

1

h

S0(t + h) − S0(t)

S0(t)
,

is well defined and is called instantaneous (spot) rate or simply short rate.

We have the relationship

r(t) = S′
0(t)

S0(t)
⇔ S′

0(t) = r(t)S0(t).

As a differential:

dB(t) = r(t)B(t)dt.

It is known that this ordinary differential equation has the general solution S0(t) =
C exp(

∫ t

0 r(s) ds), C ∈ R. For our example the special solution

S0(t) = exp

(∫ t

0
r(s) ds

)
(1.1)

with starting value S0(0) = 1 matters. In the special case r(t) = r for all t, we obtain S0(t) = ert

as above.
Often, one starts with a model for the short rate. Then we define the bank account via

Equation (1.1).

Definition 1.2.2 (Bank account)
A bank account with a unit deposit and continuous compounding according to the spot rate
r(t) is given by

S0(t) = exp

(∫ t

0
r(s) ds

)
, t ≥ 0.

When depositing x units of currency into the bank account, the time t value is xS0(t). Vice
versa, for an accumulated value of 1 unit of currency at time T , one has to deposit x = 1/S0(T )
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at time t = 0. The value of x = 1/S0(T ) at an arbitrary time point t ∈ [0, T ] is

xS0(t) = S0(t)

S0(T )
.

This means that the value at time t = 0 of a unit payment at the time horizon T is given by
S0(t)/S0(T ).

Definition 1.2.3 The discount factor between two time points t ≤ T is the amount at time
t that is equivalent to a unit payment at time T and can be invested riskless at the bank. It is
denoted by

D(t, T ) = S0(t)

S0(T )
= exp

(
−

∫ T

t

r(s) ds

)
.

1.2.1 Bonds and the term structure of interest rates

The basic insights of the above discussion can be directly used to price bonds and understand
the term structure of interest rates.

A zero coupon bond pays a fixed amount of money, the face value or principal X at a
fixed future time point called maturity. Such a bond is also referred to as a discount bond
or zero coupon bond. Here and in what follows, we assume that the bond is issued by a
government such that we can ignore default risk. Measuring time in years and assuming that
the interest rate r applies in each year, we have learned that the present value of the payment
X equals

Pn(X) = X

(1 + r)n
.

Notice that this simple formula determines a 1-to-1 correspondence between the bond price
and the interest rate. The interest rate r is the discount rate or spot interest rate for time to
maturity n; spot rate, since that rate applies to a contract agreed on today.

Let us now consider a coupon bearing bond that pays coupons C1, . . . , Ck at times
t1, . . . , tk and the face value X at the maturity date T . This series of payments is equivalent
to k + 1 zero coupon bonds with face values C1, . . . , Ck, X and maturity dates t1, . . . , tk, T .
Thus, its price is given by the bond price equation

P(t) =
k∑

i=1

CiP(t, ti) + XP(t, T ),

or equivalently

P(t) =
k∑

i=1

CiP(t, t + τi) + XP(t, T ),

if τj = tj − t denotes the time to maturity of the jth bond. It follows that the price of the
bond can be determined by the curve τ �→ P(t, t + τ) that assigns to each maturity τ the time
t price for a zero coupon bond with unit principal t. It is called the term structure of interest
rates.
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There is a second approach to describe the term structure of interest rates. Let P(t, t + m)
denote the price at time t of a zero coupon bond paying the principal X = 1 at the maturity
date t + m. Given the yearly spot rate r(t, t + m) applying to a payment in m years, its price
is given by

P(t, t + m) = 1

(1 + r(t, t + m))m
.

If the coupon corresponding to the interest rate r(t, t + m) is paid at n equidistant time points
with continuous compounding, the formula

P(t, t + m) = 1

(1 + r(t, t + m)/n)nm

applies, which converges to the formula for continuously compounding

P(t, t + m) = e−r(t,t+m)m ⇔ P(t, T ) = e−r(t,T )(T−t),

using the substitution T = t + m. The continuously compounded interest rate r(t, T ) is also
called yield and the function

t �→ r(t, T )

the yield curve.
Finally, one can also capture the term structure of interest rates by the instantaneous

forward rate at time t for the maturity date T defined by

f (t, T ) = − ∂
∂T

P(t, T )

P(t, T )
= − ∂

∂T
log P(t, T ).

Here it is assumed that the bond price P(t, T ) is differentiable with respect to maturity. It then
follows that

P(t, T ) = exp

(
−

∫ τ

0
f (t, t + s) ds

)
, r(t, t + τ) = −1

τ

∫ τ

0
f (t, t + s) ds.

1.2.2 Asset returns

For fixed-income investments such as treasury bonds the value of the investment can be
calculated in advance, since the interest rate is known. By contrast, for assets such as exchange-
traded stocks the interest rates, i.e. returns, are calculated from the quotes that reflect the market
prices.

Let St be the price of a stock at time t. Since such prices are quoted at certain (equidistant)
time points, it is common to agree that the time index attains values in the discrete set of
natural numbers, N. If an investor holds one share of the stock during the time interval from
time t − 1 to t, the asset price changes to

St = St−1(1 + Rt),

where

Rt = St − St−1

St−1
= St

St−1
− 1
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is called the simple net return and

1 + Rt = St

St−1

are the gross returns. How are asset returns aggregated over time? Suppose an investor holds
a share between s and t = s + k, i.e. over k periods, s, t, k ∈ N (or more generally s, t, k ∈
[0, ∞)). Define the k-period return

Rt(k) = St − Ss

Ss

= St

Ss

− 1.

One easily checks the following relationship between the simple returns Rs+1, . . . , Rt and
the k-period return:

1 + Rt(k) = St

Ss

=
t∏

i=s+1

Si

Si−1
=

t∏
i=s+1

(1 + Ri).

When an asset is held for k years, the annualized average return (effective return) is given by
the geometric mean

Rt,k =
[

k−1∏
i=0

(1 + Rt+i)

]1/k

− 1.

A fixed-income investment with a annualized interest rate of Rt,k yields the same accumulated
value. Note that

Rt,k = exp

[
1

k

k−1∑
i=0

log(1 + Rt+i)

]
− 1. (1.2)

The natural logarithm of the gross returns,

rt = log(1 + Rt) = log
St

St−1

is called log return. Using Equation (1.2) we see that the k-period log return for the period
from s to t = s + k can be calculated as

rt(k) = log(1 + Rt(k)) =
t∑

i=s+1

log(1 + Ri) =
t∑

i=s+1

ri.

Thus, in contrast to the returns Rt the log returns possess the pleasant property of additivity
w.r.t. time aggregation.

Using these definitions we obtain the following fundamental multiplicative decomposition
of an asset price:

St = S0

t∏
i=1

(1 + Ri) = S0

t∏
i=1

exp(ri).
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1.2.3 Some basic models for asset prices

When a security is listed on a stock exchange, there exists no quote before that time. Let
us denote the sequence of price quotes, often the daily closing prices, by S0, S1, . . . . Since
S0 > 0 denotes the first quote, it is often regarded as a constant. If one wants to avoid possible
effects of the initial price, one puts formally S0 = 0.

A first approach for a stochastic model is to assume that the price differences are given by

� + un, n = 1, 2, . . .

with a deterministic, i.e. nonrandom, constant � ∈ R and i.i.d. random variables un, n ∈ N,
with common distribution function F such that

E(un) = 0, Var (un) = σ2 ∈ (0, ∞), ∀n ∈ N.

In the present context, it is common to name the un innovations. When referring to the sequence
of innovations, we shall frequently write {un : n ∈ N0} or, for brevity of notation, {un} if the
index set is obvious. The above model for the differences implies that the price process is
given by

St = S0 +
t∑

i=1

(� + ui) = S0 + t� +
t∑

i=1

ui, t = 0, 1, . . .

where we put u0 = 0 and agree on the convention that
∑0

i=1 ai = 0 for any sequence {an}.
St is called (arithmetic) random walk and random walk with drift if � /= 0. Obviously

E(St) = S0 + � t

and

Var (St) = tσ2.

This particular model for an asset price dates back to the work of Bachelier (1900).
An alternative approach is based on the log returns. Let us denote

Ri := log(Si/Si−1), i ≥ 1.

Then

St = S0

t∏
i=1

Si/Si−1 = S0

t∏
i=1

exp(Ri).

The associated log price process is then given by

log St = log S0 +
t∑

i=1

Ri, t = 0, 1, . . . ,

which is again a random walk.
A classic distributional assumption for the log returns {Rn} is the normal one,

Ri
i.i.d.∼ N(μ, σ2)
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with μ ∈ R and σ2 > 0. As a consequence, the log prices are normally distributed as well,

log(St) = log(S0) +
t∑

i=1

Ri ∼ N(log(S0) + tμ, tσ2).

Thus, St follows a lognormal distribution. Let us summarize some basic facts about that
distribution:

A random variable X follows a lognormal distribution with parameters μ ∈ R (drift)
and σ > 0 (volatility) if Y = log(X) ∼ N(μ, σ2). X takes on values in the interval (0, ∞)
and

P(log X ≤ y) = 1√
2πσ

∫ y

−∞
e−(t−μ)2/2σ2

dt, y ∈ (0, ∞).

The change of variable u = et leads to

P(X ≤ ey) = P(log X ≤ y) =
∫ ey

−∞
1√

2πσu
e−(log u−μ)2/2σ2

du.

By evaluating the right-hand side at y = log x, we see that the density f (x) of X is given by

f (x) = 1√
2πxσ

e−(log x−μ)2/2σ2
1(x > 0), x ∈ R. (1.3)

Now it is easy to verify that mean and variance of X are given by

E(X) = eμ+σ2/2 and Var (X) = e2μ+σ2
(eσ2 − 1).

In order to model distributions that put more mass to extreme values than the standard
normal distribution, one often uses the t-distribution with n degrees of freedom defined via
the density function

f (x) = 1

nπ

�((n + 1)/2)

�(n/2)

(
1 + x2

n

)− n+1
2

, x ∈ R,

which is parametrized by n ∈ N. By symmetry, its expectation is zero and the variance turns
out to be n/(n − 2), if n > 2.

Several questions arise: Which of the above two models holds true or provides a better
approximation to reality? Are returns and log returns, respectively, normally distributed?
Are asset returns symmetrically distributed? How can we estimate important distributional
parameters such as μ, σ2 or the skewness? Does the assumption of independent returns apply
to real returns? Do price processes follow random walk models at all? What is the effect of
changes of economic conditions on the distribution of returns? Can we test or detect such
effects? How can we model the stochastic relationship between the return series of, say, m

securities?
There is some evidence that some financial variables have much heavier tails than a normal

distribution.
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A random variable X has a stable distribution or is stable, if X has a domain of
attraction. The latter means that there exist i.i.d. random variables {ξn} and sequences
{σn} ⊂ (0, ∞) and {μn} ⊂ R, such that

1

σn

n∑
i=1

ξi + μn
d→ X,

as n → ∞. The classic central limit theorem tells us that the X ∼ N(μ, σ2) is stable. By the
Lévy–Khintchine formula, the characteristic function

ϕ(θ) = E(eıθX), θ ∈ R,

where ı2 = −1, of a stable random variable X has the representation

ϕ(θ) =
{

exp
{

ıμθ − σα|θ|α (1 − ıβ(sgn(θ)) tan πα
2

)}
, α /= 1,

exp
{

ıμθ − σ|θ|
(

1 + ıβ 2
π

(sgn(θ)) log |θ|
)}

, α = 1,

where 0 < α ≤ 2 is the stability (characteristic) exponent, −1 < β < 1 the skewness pa-
rameter, σ > 0 the scale parameter and μ ∈ R the location parameter. For α = 2 one
obtains the normal distribution N(μ, σ2), since then ϕ(θ) = exp(ıμθ − σ2θ2). The tails of a
standard normal distribution decay exponentially fast,

P(|X| > x) ∼
√

2

π

e−x2/2

x
, x → ∞ (X ∼ N(0, 1)).

By contrast, the tails of a stable random variable X with characteristic exponent 0 < α < 2
decay as x−α, since

lim
x→∞ xαP(X > x) = Cα

1 + β

2
σα (1.4)

and

lim
x→∞ xαP(X < −x) = Cα

1 − β

2
σα, (1.5)

where Cα = (∫ ∞
0 x−α sin(x) dx

)−1
.

Stable distributions appear as a special case of infinitely divisible distributions. A random
variable (or random vector) X and its distribution are called infinitely divisible, if for every
n ∈ N there exist independent and identically distributed random variables Xn1, . . . , Xnn such
that

X
d= Xn1 + · · · + Xnn.

Those infinitely divisible distributions are exactly the distributions that can appear as limits
of the distributions of sums

∑n
k=1 Xnk of such arrays of row-wise i.i.d. random variables.

Let X be a d-dimensional random vector and again let ϕ(θ) = E(exp(ıθ′X)), θ ∈ Rd , be its
characteristic function. Then, the Lévy–Khintchine formula asserts that

ϕ(θ) = exp

{
ıθ′b − 1

2
θ′Cθ +

∫
Rd

(
eıθ′x − 1 − ıθ′h(x)

)
dν(x)

}
, (1.6)
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where

h(x) = x1(|x| ≤ 1), x ∈ Rd,

is a truncation function, b ∈ Rd and C a symmetric and non-negative definite (d × d)-matrix
and ν a Lévy measure, that is a positive measure on the Borel sets ofRd such that ν({0}) = 0
and ∫

Rd

(
|x|2 ∧ 1

)
dν(x) < ∞.

As a consequence, ϕ(θ) is characterized by the triplet (b, C, ν).
The characteristics of the normal distribution N(μ, σ2) are (b, C, ν) = (μ, σ2, 0), of

course. For a Poisson distribution with intensity λ, the characteristic function is

ϕ(θ) = exp(λ(eıθ − 1)),

which results, if we put b = λ, C = 0 and ν the one-point measure that assigns mass λ to the
single point 1.

1.3 Elementary statistical analysis of returns

We have seen that price processes can be build from returns Rt that are modeled as random
variables. For simplicity of our exposition, let us assume that R1, . . . , RT are independent
and identically distributed. To simplify notation, let R denote a generic return, i.e. R

d= R1
which means that for any event A we have P(R ∈ A) = P(R1 ∈ A).

But before focusing on returns, let us briefly review the most basic probabilistic quantities
to which we will refer frequently in the following for an arbitrary random variable X. In
general, the distribution of a random variable is uniquely determined by its distribution
function (d.f.)

FX(x) = P(X ≤ x), x ∈ R.

If f : R→ R is a density, i.e. non-negative function with
∫

f (x) dx = 1, then the d.f. F (x)
can be calculated by

F (x) =
∫ x

−∞
f (t) dt, x ∈ R.

A random variable X that attains a density function f is called a continuous random variable.
Usually, it is assumed that returns are continuous random variables in that sense.

The first moment is defined by μ = E(X) and can be calculated for a continuous random
variable via

μ = E(X) =
∫ ∞

−∞
xf (x) dx.

E(X) is also called the expectation or mean of X. If X is a discrete random variable, that
is X takes values in some discrete set {x1, x2, · · · } of possible values with corresponding
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probabilities p1, p2, . . . such that

P(X = xi) = pi, i = 1, 2, . . . ,

then

E(X) =
∞∑
i=1

xipi.

More generally, the kth moment of X is defined as E(Xk) and E|X|k is referred to as the kth
absolute moment. Assumptions on the existence of higher moments control the probability
of outliers, that is extreme values. Indeed, by virtue of Markov’s inequality, the probability
that X takes values larger than c > 0 in absolute value decays faster for increasing c, if higher
moments exist, since

P(|X| > c) ≤ E|X|k
ck

.

Compare this inequality with the formulas (1.4) and (1.5) for the special class of stable
distributions. As extreme values (outliers) of daily returns, usually negative ones, corre-
spond to unexpected high-impact news such as a crash, the behavior of the tail probabilities
P(X < −c) and P(X > c), c > 0, are of substantial interest, and moment assumptions auto-
matically constrain them.

Suppose we are given a random sample X1, . . . , XT of sample size T . The empirical
distribution function of the sample X1, . . . , XT is defined as

FT (x) = 1

T

T∑
t=1

1(Xt ≤ x), x ∈ R.

Notice that FT (x) is the fraction of observations that are less or equal than x.
For a distribution function F let

F−1(y) = inf{x : F (x) ≥ y}
denote the left-continuous inverse called quantile function. Applying that definition to the
empirical distribution function yields the sample quantile function

F−1
T (p) = inf{x : FT (x) ≥ p} = X(�np�), p ∈ (0, 1).

For a fixed p, F−1
T (p) is called the sample p-quantile or empirical p-quantile. Here X(1) ≤

· · · ≤ X(T ) denotes the order statistic and �x� is the smallest integer larger or equal to x.
Notice that X(�np�) = X(�np�+1) where �x� is the floor function, i.e. the largest integer that is
less than or equal to x. Quantiles play an important role in characterizing a distribution. The
sample 0.5-quantile is called the median and is also denoted by xmed. Together with the 0.25-
and 0.75-quantiles,

Q1 = F−1
T (0.25), Q3 = F−1

T (0.75),

called quartiles, we get a picture where the lower (upper) fourth and the central 50% of the data
are located. Augmenting these three statistics with the minimum and maximum defining the
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range of the data set, we obtain the so-called five-point summary xmin, Q1, xmed, Q3, xmax.
Those five numbers already provide an informative view on the distribution of the data.
The boxplot (box and whiskers plot) is a convenient graphical representation by a box
symbolizing the central half of the data between Q1 and Q3 and straight lines connecting
xmin and Q1 as well as Q3 and xmax. It is also common to replace (xmin, xmax) by the quantiles
(F−1

T (p), F−1
T (1 − p)). Typical values for p are p = 0.01, 0.05 and 0.1.

Sample quantiles are asymptotically normal under fairly general conditions. Let p ∈ (0, 1)
and denote by xp = F−1(p) the theoretical p-quantile. If F attains a density that is positive
in a neighborhood of xp, then

√
T (F−1

T (p) − xp)
d→ N(0, p(1 − p)/f (xp)2), (1.7)

as T → ∞. The problem arises that the asymptotic variance depends on the unknown density,
which has to be estimated by some appropriate estimator f̂ T . We shall discuss this issue in
Section 1.3.4 and anticipate that such an estimator can be defined having nice mathematical
properties under fairly weak regularity conditions that do not impose a constraint on the
shape of the density f , which is of particular importance when analyzing financial data such
as returns. Based on the large sample result (1.7), which still holds true when plugging in a
consistent estimator, it is straightforward to construct the confidence interval for xp,[

F−1
T (p) − z1−α/2

√
p(1 − p)

f̂ T (xp)
, F−1

T (p) + z1−α/2

√
p(1 − p)

f̂ T (xp)

]
,

which attains the coverage probability 1 − α, if T → ∞, where z1−α/2 denotes the (1 − α/2)-
quantile of the standard normal distribution. We discuss the derivation of such confidence
intervals in greater detail in the next section.

1.3.1 Measuring location

Measures of locations are usually defined in terms of moments or quantiles. The expectation
is the most commonly used measure of location of a random variable.

Returning to our problem to analyze financial returns, the problem arises that the distribu-
tion of the returns is unknown to us. But then the mean return μ = E(R) is unknown as well.
The best we can do is to use statistical estimators, i.e. functions of the data R1, . . . , RT , which
output a value that is regarded as a good estimate for μ. A standard approach to obtain such
estimators for quantities that are defined in terms of expectations is to replace the averaging
with respect to the distribution by averaging with respect to the so-called empirical proba-
bility measure that attaches equal mass 1/T to the values R1, . . . , RT . The expectation with
respect to that discrete distribution is simply the arithmetic mean

R = RT = 1

T

T∑
t=1

Rt.

It is easy to check that E(RT ) = E(R1) = μ, and this calculation holds true whatever the value
μ attains. In statistics, an estimator satisfying that property is called an unbiased estimator.
It tells us that, averaged over all possible scenarios ω corresponding to all possible values
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r = R(ω) for the return and weighted with the corresponding probabilities, the estimator
estimates the right value, namely μ.

Suppose we have observed T daily log returns R1, . . . , RT and aim at testing the hypothesis
that their common mean μ = E(R1) equals some specified value μ0. The corresponding two-
sided statistical testing problem is then given by

H0 : μ = μ0 versus H1 : μ /= μ0.

Assuming that the returns are i.i.d. and follow a normal law suggest using the t-test that is
based on the test statistic

Z =
√

T
RT − μ0

ST

(1.8)

with

ST =
√√√√ 1

T − 1

T∑
t=1

(Rt − RT )2;

the statistic ST will be discussed in greater detail in the next subsection. Under the null
hypothesis H0, the statistic Z follows a t-distribution with df = T − 1 degrees of freedom.
Consequently, we may reject H0 at a significance level of α ∈ (0, 1), if

|T | > t(df )1−α/2,

where t(df )1−α/2 denotes the (1 − α/2)−quantile of the t(df )-distribution.
If the log returns are non-normal, one can often rely on the central limit theorem which

asserts that the statistic Z is asymptotically normal. Hence, the null hypothesis is then rejected,
if |Z| > z1−α/2.

Example 1.3.1 For the FTSE log returns illustrated in Figure 1.1, one gets z = 2.340558,
which exceeds the critical value 1.959964 corresponding to the 5% significance level, indicat-
ing that the mean log return differs from zero and is actually positive. However, this assertion
is not valid on the 1% significance level.

Often, one is also interested to provide interval estimates for the mean. Again assuming
i.i.d. normal returns, a confidence interval for the mean with coverage probability 1 − α, is
an interval [L, U] where L = L(R1, . . . , RT ) and U = U(R1, . . . , RT ) are functions of the
sample such that

P(L ≤ μ ≤ U) = 1 − α

for any μ ∈ R. Such a confidence interval is given by

L = RT − t(df )1−α/2
ST√
T

, U = RT + t(df )1−α/2
ST√
T

,

where, as above, df = T − 1. This can be easily established by noting that the event L ≤
μ ≤ U is equivalent to

−t(df )1−α/2 ≤
√

T (RT − μ)/ST ≤ t(df )1−α/2.
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Figure 1.1 Kernel density estimate of the FTSE daily log returns with cross-validated band-
width choice.

But the latter event occurs with probability 1 − α, since
√

T (RT − μ)/ST ∼ t(df ).

However, usually daily returns are not normal but affected by stylized facts such as
asymmetry, peakedness (more mass around zero) and heavier tails than under a normal law.
This can be easily seen from Figure 1.1. The famous central limit theorem asserts that the
statistic Z defined in Equation (1.8) is asymptotically standard normal, as long as the returns
are i.i.d. with existing fourth moment.1 Consequently, a valid asymptotic test is given by the
decision rule

reject H0 if |Z| > z1−α/2,

where z1−α/2 = �−1(1 − α/2) denotes the (1 − α/2)-quantile of the N(0, 1)-distribution. In
the same vein, an asymptotic confidence interval for μ is obtained by replacing the quantiles
of the t(df )-distribution in the formulas for L and U by the respective quantiles of the standard
normal law.

Similarly, one may construct an asymptotic confidence interval for μ based on the central
limit theorem. In this case, the probability of the event

−z1−α/2 ≤
√

T (RT − μ)/ST ≤ z1−α/2,

1 This result even remains true under the substantially weaker assumption that the log returns are a stationary
martingale difference sequence.
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which is equivalent to the event

L′ = RT − z1−α/2
ST√
T

≤ μ ≤ RT + z1−α/2
ST√
T

= U ′,

converges to 1 − α, as T → ∞. Thus, a confidence interval with asymptotic coverage prob-
ability 1 − α is given by the random interval [L′, U ′].

Example 1.3.2 For the FTSE log returns one calculates the asymptotic 95% confidence
interval [l, u] = [0.0000702, 0.000793] for the mean log return.

It is a general insight, supported by many empirical studies, that the statistical analysis
of financial returns should not be based on procedures assuming the classic assumptions
of normality and independent observations, since those assumptions are usually violated.
Therefore, large sample theory forms the mathematical core for inferential procedures in
finance.

1.3.2 Measuring dispersion and risk

The mean μ = E(Rt) tells us where the distribution is located; it is a measure for the center
of the distribution. Then we can determine for each return Rt its distance |Rt − μ| from the
mean. The mean squared distance,

σ2 = Var (R) = E(R − μ)2 = E(R2) − μ2

is called the variance of R. Its square root,

σ = σR =
√

Var (R)

is called the standard deviation. Variance and standard deviation can be defined for any
random variable X with existing second moment. If X and Y are independent random variables
with EX2 < ∞ and EY2 < ∞, then

Var (X + Y ) = Var (X) + Var (Y )

yielding σX+Y = √
Var (X + Y ) =

√
σ2

X + σ2
Y , whereas in the general case

Var (X + Y ) = Var (X) + Var (Y ) + 2 Cov(X, Y ).

Here

Cov(X, Y ) = E(X − EX)(Y − EY )

is called the covariance of X and Y .
When considering daily (log) returns, σ is also frequently called (actual) volatility. When

volatility of returns is addressed, it is important to be aware of the corresponding unit of time,
e.g. yearly, monthly or daily. The annualized volatility σan is the standard deviation of the
yearly return, whereas generalized volatility addresses the volatility corresponding to the
time horizon τ (in years) given by

σan
√

τ.
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Notice that the formula coincides with the standard deviation of the return R(τ) corresponding
to the time period τ, if τ is an integer and the yearly log returns are identically distributed and
uncorrelated, since then the additivity of log returns gives R(τ) = ∑τ

t=1 R′
t where R′

1, . . . , R
′
τ

denote the τ yearly log returns. But then

σR(τ) =
√√√√ τ∑

t=1

Var (R′
t) = √

τσ′,

where σ′ is the volatility of the yearly returns R′
t . However, usually the annualized volatility

is determined from the actual volatility of the daily log returns. Since there are 252 trading
days in a year, annualized volatility σan and actual volatility σ are related by

σan = σ
√

252.

The monthly volatility is then given by σm = σ
√

252/12.
Estimation of the variance and standard deviation is usually based on the plug-in princi-

ple already explained in the previous subsection. Given a sample R1, . . . , RT of returns, it
naturally leads to the the empirical variance or sample variance

V 2
T = 1

T

T∑
t=1

(Xt − RT )2.

A tedious calculation shows that E(V 2
T ) = T−1

T
σ2, i.e. V 2

T is not an unbiased estimator of the
variance. Thus, in practice the estimator

S2
T = 1

T − 1

T∑
t=1

(Rt − RT )2

is used. The corresponding estimator for the standard deviation is the square root, ST =
√

S2
T ,

of that expression. Estimates of the various volatilities discussed above can be obtained by
substituting σ by ST . For example, if the Rts are daily log returns, annualized volatility is
estimated by ST

√
252.

1.3.2.1 Value-at-risk

Another risk measure that has been become the de-facto standard in the financial industry
is value-at-risk. Recall that the profit or loss (P&L) of any investment during a time period
[0, h] is uncertain and therefore represents a risk exposure, namely to suffer a loss. Roughly
speaking, value-at-risk is a risk measure that represents the smallest loss we are exposed to
with probability α. Here the risk probability α is chosen by us; common values are 1% and
5%. Let Vt denote the marked-to-market value of a long position at time t, i.e. the value is
based on the current market value. Then the profit is �V = Vt+h − Vt , where negative values
are losses. Now let us consider the loss L = −�V and let v be the fixed value satisfying

P(L > v) = α.

This means, with a probability of α we suffer a loss exceeding v. That number v (a loss) is
called value-at-risk (VaR) at the probability level α and denoted by VaR or VaRα. Roughly
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speaking, it is the smallest loss among the largest losses occurring with probability α. By
definition,

VaRα = F−1
L (1 − α),

where F−1
L denotes the quantile function associated to the loss distribution. That means,

value-at-risk is the (1 − α)-quantile of the loss distribution. Notice that value-at-risk can be
also defined by the α-quantile of the P&L distribution,

VaRα = −F−1
�V (α).

Often, VaR is calculated on a daily basis. If the daily 1% value-at-risk of a position is 100 000,
the probability that the value of the position will fall below −100 000 is 1%; with probability
1% we suffer a loss being larger than 100 000.

Since VaR is defined as a quantile, we may estimate it by the corresponding sample
quantiles. If L1, . . . , LT are i.i.d. losses corresponding to the time horizon h,

V̂aRα = L�n(1−α)�.

Statistical tests and the calculation of confidence intervals can therefore be based on the large
sample theory of quantiles discussed above. In the same vein, the asymptotic confidence
intervals carry over to confidence intervals for value-at-risk.

1.3.2.2 Expected shortfall, lower partial moments and coherent risk measures

VaR gives the smallest loss among the largest losses occurring with probability α. It is natural
to average those losses, that is to consider the conditional expectation of the profit or loss L

over a given period of time

Sα(L) = E(L|L ≤ VaRα)

is called the expected shortfall or conditional value-at-risk. One can show that

Sα(X) = − 1

α

∫ α

0
F−1

�V (x) dx.

For this reason, Sα(X) is also called the average value-at-risk.
Clearly, we do not worry about realizations l of L with l > E(L), but are concerned

about the downside risk, that is losses below the expectation E(L) of the position. If L is
symmetrically distributed, then P(L < E(L)) = P(L > E(L)) and the variance or standard
deviation provide meaningful measures for the downside risk. But especially for asymmetric
distributions it makes sense to consider the semivariance defined as

E
(

min(0, L − EL)2).
Often there exists a benchmark profit b to which a portfolio is compared. If the portfolio

does not outperform the given benchmark b, that is if L ≤ b, then b − L is the loss we suffer
when we have a long position in the portfolio. The mth moment of the corresponding random
variable (b − L)1(L ≤ b),

LPm(L) = E
(
(b − L)m1(L ≤ b)

)
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is called the lower partial moment of the order m, provided it exists. Notice that

LP0(L) = P(L ≤ b)

is the probability that the portfolio does not outperform the benchmark, and LP1(L) is the
expected underperformance.

All the quantities discussed above assign a real number to a random variable interpreted as
the loss of a portfolio or position over some fixed period of time, and that number is interpreted
as a quantitative measure of the risk. The question arises which properties (axioms) such a
risk measure should satisfy. Generally, a risk measure or risk functional ρ is a function
defined on a sufficiently rich set A of random variables (random payment profiles) taking
values in the real numbers. Given such a risk measure ρ, we may distinguish risky payments
with non-negative risks and acceptable payments with negative risks.

A risk measure ρ : A → R is called coherent, if it satisfies the following four axioms:

(i) X ≤ Y implies that ρ(X) ≤ ρ(Y ) for all X, Y ∈ A (monotonicity).

(ii) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ A (subadditivity).

(iii) ρ(aX) = aρ(X) for a > 0 (positive homogeneity).

(iv) ρ(X + a) = ρ(X) − a for any X ∈ A and a ∈ R (translational invariance).

Sometimes, a further axiom is considered

(v) If X
d= X′, then ρ(X) = ρ(X′) (distributional invariance).

Axiom (i) requires that the risk of a position increases, if the random payment profile
increases for all states ω ∈ �. The second axiom addresses an important aspect of risk man-
agement: Risks associated to two positions may cancel when aggregating them. The standard
deviation σ(X) = √

Var (X) satisfies axiom (ii) and (iii). To see (ii), use the inequality

Cov(X, Y ) ≤ σ(X)σ(Y )

to obtain

σ(X + Y ) = 2

√
Var

(
X

2
+ Y

2

)

≤ 2

√(
1

2

)2

σ2
X +

(
1

2

)2

σ2
Y + σXσY

= 2

√(σX

2
+ σY

2

)2

= σX + σY

for any pair (X, Y ) of random variables with existing second moments and arbitrary correla-
tion. This also implies that in the Gaussian world value-at-risk also satisfied axiom (ii). This
can be seen as follows. Notice that value-at-risk for a random P&L X ∼ N(μ, σ2) is given by

VaRα(X) = μ + �−1(α)σ.
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Further, for a random vector (X, Y ) distributed according to a bivariate normal distribution
with marginals N(μX, σ2

X), N(μY, σ2
Y ) and covariance γ the sum X + Y is again Gaussian,

X + Y ∼ N(μX + μY, σ2
X+Y ), σ2

X+Y = σ2
X + σ2

Y + 2γ,

such that the α-quantile of X + Y is

VaRα(X + Y ) = μX + μY + �−1(α)σX+Y .

Hence, σX+Y ≤ σX + σY immediately implies

VaRα(X + Y ) ≤ VaRα(X) + VaRα(Y ).

However, for general distributions axiom (ii) can be violated, such that in general value-at-risk
is not a coherent risk measure, which is probably the main criticism against value-at-risk.

Axiom (iii) is a scaling property, which allows us to compare risks expressed in different
currencies, for example. Finally, the fourth axiom means that when adding a fixed payment
to the position, in order to compensate losses and reduce the risk in this way, the risk measure
is also reduced by exactly that amount, and, by contrast, withdrawing cash increases the
risk. Then ρ(X) can be interpreted as the amount of capital needed to eliminate the risk and
transform a position into a acceptable payment. Obviously, that axiom is not satisfied by the
standard deviation.

One can show that the expected shortfall satisfies all axioms and is therefore a coherent
risk measure. More generally, any risk measure allowing a representation

ρ(X) = sup
P∈P

EP (−X),

where P is a set of probability measures and EP indicates that the expectation is calculated
under P , can be shown to be a coherent risk measure. For Sα(X) the set P is given by all
densities that are bounded by 1/α.

1.3.3 Measuring skewness and kurtosis

The most common approach to measure skewness, i.e. departures from symmetry, is to con-
sider the third standardized moment,

μ∗
3 = E

(
R1 − μ

σ

)3

,

where μ = E(R1) and σ2 = Var (R1). Notice that μ∗
3 = 0, if R1 − μ

d= μ − R1.2

Given a sample R1, . . . , RT , one uses the estimator

μ̂∗
3 = 1

T

T∑
t=1

(
Rt − RT

ST

)3

.

2 If X
d= −X and f is a function with f (−x) = −f (x) and Ef (X) ∈ R, then Ef (X) = Ef (−X) = −Ef (X), which

implies Ef (X) = 0.
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The statistic μ̂∗
3 is very sensitive with respect to outliers. An alternative measure based on

quantiles is to compare the distance between the 0.75-quantile and the median and the distance
between the median and the 0.25-quantile, expressed as a fraction of the maximum value, i.e.

γ = [F−1(0.75) − F−1(0.5)] − [F−1(0.5) − F−1(0.25)]

F−1(0.75) − F−1(0.25)
.

The corresponding estimator based on R1, . . . RT is

γ̂T = [Q3 − xmed] − [xmed − Q1]

Q3 − Q1
.

Since sample quantiles, particularly Q1, Q3 and xmed are more robust than an arithmetic
mean, γ̂T provides a reliable measure of skewness even for data sets from distributions with
heavy tails.

A common approach to measure deviations from the shape of the Gaussian density is
based on the fourth standardized moment,

μ∗
4 = E

(
R1 − μ

σ

)4

,

also called kurtosis. Since for a normal distribution one obtains μ∗
4 = 3, it is common to

consider the excess kurtosis,

κ = μ∗
4 − 3.

Distributions such as the normal one with an excess kurtosis equal to 0 are called mesokurtic.
The standard interpretations when κ /= 0 are as follows. A distribution with κ > 0 is called
leptokurtic. It has a more pronounced peak compared to the normal law and lighter tails.
A distribution with κ < 0 is called platykurtic. Such distributions have a flatter peak and
heavier tails than the Gaussian density. Kurtosis and excess kurtosis are estimated by their
sample analogs

μ̂∗
4 = 1

T

T∑
t=1

(
Rt − RT

St

)4

and

κ̂T = μ̂∗
4 − 3,

respectively.

1.3.4 Estimation of the distribution

We have already discussed that financial returns for shorter time horizons tend to
violate properties of the normal distribution. Taking for granted that the return
distribution attains a density function3 f in the sense that the distribution function

3 For some financial instruments that assumption is violated, since there are trading periods where the price remains
constant such that the return is 0.
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F (x) = P(R1 ≤ x) can be represented as

F (x) =
∫ x

−∞
f (t) dt, x ∈ R,

the question arises how we can estimate the density f . Noticing that f (x) = F ′(x), we may
approximate f (x) by the difference ratio

f (x) ≈ F (x + h) − F (x − h)

2h
,

for small h > 0. A natural approach is to estimate the right-hand side by plugging in the em-
pirical distribution function FT (x) = T−1 ∑T

t=1 1(Rt ≤ x) of T historical returns R1, . . . , RT

and to regard the resulting expression as an estimate for f (x). Noting that

1(Rt ≤ x + h) − 1(Rt ≤ x − h) = 1(x − h < Rt ≤ x + h),

this idea leads to the estimator

x �→ 1

Th

T∑
t=1

1

2
1
(

−1 <
Rt − x

h
≤ 1

)
, x ∈ R.

Each of the T summands corresponds to the density K0(z) = 1
2 1(−1 < |z| ≤ 1), z ∈ R, of the

uniform distribution on (−1, 1] evaluated at the points (x − Rt)/h, t = 1, . . . , T . Obviously,
as a function of x the above density estimator is discontinuous, which results in many spurious
jumps. If we replace the discontinuous density K0 by other density functions, we arrive at the
Rosenblatt–Parzen kernel density estimator

f̂ Th(x) = 1

Th

T∑
t=1

K([Rt − x]/h), x ∈ R.

The parameter h is called the bandwidth. It has a strong influence on the resulting estimator. If
h is chosen too small, there will be many spurious artifacts such as local extrema in the graph,
whereas too large values for the bandwidth lead to oversmoothing. K, called the smoothing
kernel, is usually chosen as an arbitrary unimodal density function with finite second moment
that is symmetric around zero. Table 1.1 lists some smoothing kernels frequently used in
practice.

Table 1.1 Some commonly used smoothing kernels for
nonparametric density estimation.

Kernel Definition

Triangular (1 − |x|)1(|x| ≤ 1)
Cosine (π/4) cos(xπ/2)
Gaussian (2π)−1 exp(−x2/2)
Epanechnikov (3/4)(1 − x2)1(|x| ≤ 1)
Biweight (15/16)(1 − x2)21(|x| ≤ 1)
Silverman (1/2) exp(−|x|/√2) sin(|x|/√3 + π/4)
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Notice that the estimator f̂ Th(x) allows the following nice interpretation: If K is a density
that is symmetric around 0 with unit variance, then

x �→ 1

h
K

(
x − m

h

)
, x ∈ R,

is a density with mean m and standard deviation h for any fixed m ∈ R and h > 0. Conse-
quently, f̂ Th(x) averages those T densities x �→ h−1K([x − Rt]/h), t = 1, . . . , T , associated
to the observed values.

It is worth discussing some further basic properties of the kernel density estimator, in
order to understand why it estimates any underlying density under fairly general conditions.
Another issue we have to discuss is the question how to select the smoothing kernel and the
bandwidth. First, notice that it is easy to check that f̂ Th(x) indeed is a density function, if K

has that property. Further, f̂ Th inherits its smoothness properties from K. In particular, we
may estimate f ′(x) by f̂ ′

Th(x). Provided the returns R1, . . . , RT form an i.i.d. sample, we
obtain

E(f̂ Th(x)) =
∫

1

h
K

(
z − x

h

)
f (z) dz = (Kh � f )(x),

where Kh(z) = h−1K(z/h) is the rescaled kernel and � denotes the convolution operator. It
follows that the Parzen–Rosenblatt estimator is not an unbiased estimator for f ; its bias equals

bh(x) = E(f̂ Th(x)) − f (x) = (Kh � f )(x) − f (x).

However, Bochner’s lemma, cf. Lemma A.2.1, implies that the convolution (Kh � f )(x) con-
verges to f (x), as h → 0. Thus, the bandwidth should be chosen as a decreasing function of
the sample size T . Under the i.i.d. assumption, it is easy to verify that the variance equals

σ2
Th(x) = Var (f̂ Th(x)) = 1

Th

[
(K2

h � f )(x) − (Kh � f )2(x)
]
,

where K2
h(z) = h−1K2(z/h), z ∈ R. Again, Bochner’s lemma implies that the expression in

brackets converges to finite constant, such that the variance of f̂ Th is of the order 1/Th and
tends to 0, if Th → ∞. Let us consider the mean squared error (MSE),

MSE(f̂ Th(x); f (x)) = E(f̂ Th(x) − f (x))2,

which can be decomposed into its two additive components, the variance σ2
Th(x) and the

squared bias b2
h(x),

MSE(f̂ Th(x); f (x)) = σ2
Th(x) + b2

h(x).

We see that the MSE converges to zero for any bandwidth choice satisfying

h → 0 and Th → ∞.
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To get further insights, we need the following notion. A kernel K is called the kernel of the
order r, if

∫
zjK(z) dz =

⎧⎪⎨⎪⎩
1, j = 0,

0, j = 1, . . . , r − 1,

c /= 0, j = r.

For example, the kernel K(x) =
(

9
8 − 15

8 x2
)

1(|x| ≤ 1), x ∈ R, is a kernel of order 4. Let us

assume that the underlying density f is r times differentiable. Then one can easily establish
the expansions

E(f̂ Th(x)) = f (x) + hrf (r)(x)
(−1)r

r!

∫
urK(u) du + o(hr),

Var (f̂ Th(x)) = 1

Th
f (x)

∫
K2(z) dz + o(1/Th),

which yield the following expansion for the MSE

MSE(f̂ Th(x); f (x)) = f (x)R(K)

Th
+ h2r[f (r)(x)]2M2

r + o(h2r + 1/Th),

where

Mr = (−1)r

r!

∫
urK(u) du

and

R(g) =
∫

g2(x) dx

measures the roughness of a L2 function g. These expansion show that higher-order kernels
reduce the order of the bias, which is now O(h2r).

A bandwidth choice is called local asymptotically optimal bandwidth, if it minimizes
the dominating terms of the above expansion represented by the function

h �→ f (x)R(K)

Th
+ h2r[f (r)(x)]2M2

r , h > 0.

It is easy to see that the optimal bandwidth is given by

h∗(x) = h∗
T (x) =

(
f (x)R(K)

2rM2
r [f (r)(x)]2T

)1/(2r+1)

.

In particular, we see that for a second-order kernel the optimal bandwidth is of the order
O(T−1/5). Notice that this approach leads to a local bandwidth choice. In order to use that
approach in practice, one needs pilot estimators of the density f (x) and the derivative f (r)(x).

However, more common are global approaches based on the integrated mean squared
error (IMSE)

IMSE(f̂ Th; f ) =
∫

MSE(f̂ Th(x); f (x)) dx =
∫

E
(
f̂ Th(x) − f (x)

)2 dx.
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For r = 2 one obtains the expansion

IMSE(f̂ Th; f ) = R(K)

Th
+ 1

4
h4M2

2

∫
[f (2)(x)]2 dx + o(h4 + 1/Th).

Neglecting the remainder yields the asymptotic integrated mean squared error (AMISE),

AMISE(h) = R(K)

Th
+ 1

4
h4M2

2

∫
[f (2)(x)]2 dx,

which we now study as a function of the bandwidth h. The optimal bandwidth hopt that
minimizes the AMISE and is easily shown to be

hopt = C0T
−1/5,

where

C0 = M
−2/5
2 R(K)1/5

[∫
f (2)(x)]2 dx

]−1/5

.

Unfortunately, the constant C0 is unknown. The normal reference rule-of-thumb deter-
mines the constant for the standard normal distribution with mean zero and variance σ2 as
a reference model. When also using a normal kernel for smoothing, we obtain the optimal
bandwidth

h∗
opt = (4π)−1/10

[
(3/8)π−1/2

]−1/5
σ · T−1/5 ≈ 1.06σT−1/5.

This choice if often used in practice with σ estimated by the sample standard deviation of the
data.

Clearly, an undesirable feature of the above approach is that the method is tuned to a
fixed reference distribution, as it tries to estimate the asymptotically optimal bandwidth in
this case, although the kernel density aims at estimating an arbitrary (smooth) density. Thus,
fully automatic procedures that do not make such restrictions are usually applied. Widespread
approaches are unbiased and biased least-squares cross-validation, which we shall briefly
discuss here.

Least squares unbiased cross-validation minimizes a nonparametric estimator of the
integrated squared error and therefore provides an optimal bandwidth tailord to all x in the
support instead of fixing some x. Since∫ [

f̂ Th − f (x)
]2

dx =
∫

f̂ 2
Th(x) dx − 2

∫
f̂ Th(x)f (x) dx +

∫
f (x)2 dx,

minimizing the IMSE is equivalent to minimizing the first two terms on the right-hand side.
Observe that ∫

f̂ Th(x)f (x) dx = ER(f̂ Th(R)),
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if R ∼ f is independent from R1, . . . , RT and ER denotes the expectation with respect to R.
Thus, we may estimate ER(f̂ Th(R)) by

f̂ T,−i = 1

(T − 1)h

T∑
t=1,t /= i

K

(
Rt − Ri

h

)
.

That estimate is called the leave-one-out estimate of f (Xi). The first term is estimated by
plugging in the kernel density estimate,∫

f̂ 2
Th(x) dx = 1

T 2h2

T∑
t=1

T∑
s=1

∫
K

(
Rt − x

h

)
K

(
Rs − x

h

)
dx

= 1

T 2h

T∑
t=1

T∑
s=1

(K � K)

(
Rt − Rs

h

)
.

Least squares cross-validation uses these estimators and minimizes the objective function

UCV(h) = 1

T 2h

T∑
t=1

T∑
s=1

(K � K)

(
Rt − Rs

h

)
− 2

T (T − 1)h

T∑
s=1

T∑
t=1,t /= s

K

(
Rt − Rs

h

)
,

which has to be done numerically. Thus, the expectation of both terms yielding UCV(h)
match the first two terms of the IMSE. One can show that, asymptotically, minimizing CV(h)
is indeed equivalent to minimizing

B1h
4 + R(K)

Th
,

where

B1 = M2
2

4

{∫
[f (2)(x)]2 dx

}
.

From here it is easy to see that the minimizer of the last display coincides with the minimizer
of the IMSE. Moreover, one can even show that

hLCV − hopt

hopt
→ 0,

as T → ∞, in probability, a strong justification of the method.
Biased least-squares cross-validation minimizes another estimate of the asymptotic

mean squared error (AMISE). Recall that

AMISE(h) = R(K)

Th
+ 1

4
K2

2h
4R(f ′′).

The optimal bandwidth is given by

h0 =
(

R(K)

M2
2TR(f ′′)

)1/5

.
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A natural estimate for the only unknown quantity R(f ′′) is R(f̂ ′′
T ), where f̂ ′′

T is the second
derivative of the kernel estimator f̂ T , but it turns out that

E(R(f̂ ′′
T )) = R(f ′′) + R(K′′)

Th5 + O(h2).

One can do better by estimating the positive bias. This leads to the estimator R(f̂ ′′
T ) − R(K′′)

Th5 .
Noticing that

R(f̂ ′′
T ) = R(K′′)

Th5 + 2

T 2h5

∑
1≤s<t≤T

φ

(
Xt − Xs

h

)
,

where

φ(x) =
∫

K′′(u)K′′(u + x) du, x ∈ R,

This leads to the biased cross-validation function

BCV(h) = R(K)

Th
+ K2

2

2T 2h

∑
1≤s<t≤T

φ

(
Xt − Xs

h

)
,

which is then minimized.
Figure 1.1 illustrates the kernel density estimator for the daily log returns of the FTSE

from 1991 to 1998. The bandwidth is selected by the biased least-squares cross-validation
method.

1.3.5 Testing for normality

Asset returns are often non-normal, particularly returns corresponding to small time lags such
as daily or intraday returns. In order to check the hypothesis that the returns are normal, many
statistical tests have been proposed in the literature. At this point, we shall discuss those tests
that are most widely used in practice.

Let R1, . . . , RT be an i.i.d. sample of returns with common d.f. F . We aim at testing the
null hypothesis that F is a normal distribution,

H0 : F ∈ {�μ,σ2 : μ ∈ R, σ2 > 0}
against the alternative hypothesis

H1 : F /∈ {�(μ,σ2) : μ ∈ R, σ2 > 0}.
Notice that H1 means that for all μ ∈ R and σ2 > 0 there exists at least one x ∈ R such that
F (x) /= �(μ,σ2)(x).

The Jarque and Bera test is given by

JT = T

(
μ̂2

3

6
+ (μ̂4 − 3)2

24

)
,

where μ̂3 is the sample skewness and μ̂4 the sample kurtosis. Since JT is asymptotically
χ2(2)-distributed, as T → ∞, one rejects H0, if JT > χ2(2)1−α. However, the test should be
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used only for large data sets. Notice that the Jarque and Bera test measures the departure of
the sample skewness and kurtosis from their theoretical values under the null hypothesis.

Another class of tests is based on the following idea. If the null hypothesis is true, we
estimate the parameters μ and σ2 by their sample analogs μ̂T and S2

T . The corresponding
estimate of the distribution function is then �(μ̂T ,S2

T
)(x). If the alternative hypothesis is true,

we may rely on the empirical distribution function, i.e.

F̂T (x) = 1

T

T∑
t=1

1(Rt ≤ x), x ∈ R,

which provides a consistent estimator of F (x) without assuming any specific shape of the
distribution. Now we can compare those two estimates by calculating the maximum deviation.
This motivates the Lilliefors test statistic

L = sup
t∈R

|F̂T (t) − �(μ̂T ,S2
T

)(t)|.

The asymptotic distribution of L is none of the standard distributions that have appeared so
far. To conduct the test on the 5% significance level, one compares L with the critical value
0.805/

√
T . However, the test is implemented in standard statistical software.

Sometimes, one wants to test the simple null hypothesis H0 : F = �(μ0,σ
2
0 ) against the

alternative hypothesis H1 : F /= �(μ0,σ
2
0 ) for some known constants μ0 ∈ R and σ2

0 > 0. In

this case, one may calculate

KS = sup
t∈R

|F̂T (t) − �(μ0,σ
2
0 )(t)|.

That test is called the Kolmogorov–Smirnov test.

1.4 Financial instruments

Before proceeding, we shall introduce some financial slang and basic financial instruments.
From an economic point of view, a trade is an agreement between two parties, a buyer and a
seller, to buy or sell a certain amount of an asset at a certain date. The buyer attains a long
position in the asset and the seller a short position. Associated to each trade are payments.
For a given party we agree on the following sign convention: If the party receives a payment,
it gets a positive sign. If the party has to pay the amount, we assign a negative sign.

1.4.1 Contingent claims

The payments of many financial instruments depend on other instruments or variables, often
securities such as stocks, stock indices, oil, energy prices, or commodities, which are then
called the underlying of such an instrument. It is even possible to buy financial instruments
whose payment depends on quantities such as the weather.

Derivatives and futures are used for hedging risks associated with the production and
distribution of goods and services in the real economy and, indeed, they are needed for
those purposes. But they are also used a lot for pure speculation. To some extent specula-
tors are needed as counterparties for hedges, but some markets are dominated by excessive
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speculation leading to substantial bubbles. For example, the unethical speculation in agricul-
tural commodities since 2005, when volatility increased due to extreme weather incidents
and increasing demand, is regarded as a substantial factor for record highs of food prices in
developing countries leading to social instability and starvation.

A financial instrument whose payoff depends on another quantity is called a contingent
claim. We shall give a mathematical definition later. If the underlying is a security such as an
exchange-traded stock, it is called derivative asset. In what follows, we introduce the most
important derivatives and related instruments and contracts.

1.4.2 Spot contracts and forwards

Definition 1.4.1 A spot contract is an agreement to buy or sell an asset at the same day at
a certain price called spot price that we shall denote by St . In the following, we shall assume
that t = 0 stands for the time when a trade is initiated and T denotes the time horizon when
the trade is settled. By contrast, forward contracts are agreements to buy or sell an asset at a
future time at a price that is fixed when the parties agree on the contract, i.e. today. A forward
allows the holder of the long position to buy the asset at a future time point T , the delivery
date, at a fixed delivery price K, which coincides with the forward price F . The payoff of a
long forward contract is ST − K and K − ST for a short position.

The markets where spot contracts are traded are called spot markets. Forwards are traded
over-the-counter (OTC), usually between financial institutions such as banks and their clients,
e.g. an enterprise or private investor. There are no cash payments in t = 0. A forward is settled
at the delivery date T when the seller has to deliver the asset to the buyer. However, often
the parties agree on cash settlement. If the price at delivery, ST , is higher than the delivery
price K, the holder of a long position receives the payment ST − K and makes a profit. That
additional payment hast the effect that he buys the asset for the forward price F = K, since
−ST + (ST − K) = −K. But if the price is lower, he has to pay the difference to the seller.
Again due to this additional payment, the net price of buying the asset is the delivery price.

1.4.3 Futures contracts

Definition 1.4.2 Futures are standardized forward contracts usually traded on an exchange.

For instance, the NYMEX light sweet crude oil futures is a contract on the physical delivery
of 1000 barrel during a specified month. Standardization and handling by exchanges allows
market participants to actively trade the contracts. Thus, in contrast to forwards, which can be
highly specialized nontradeable agreements, futures can be very liquid financial instruments.
The exchange specifies in detail the asset, how many units will be delivered under one contract
(the contract size), the delivery date and how and where the asset will be delivered. For many
contracts physical delivery is not possible or inconvenient and cash settlement applies. Here
an equivalent cash payment between the parties is initiated. A futures contract can be bought
and sold at any time point until its delivery date. The corresponding price is the futures price.
At each trading day a settlement price is quoted, usually the closing price immediately before
the end of trading day. The settlement price is used to determine the margins that are required
from any investor. The investor has to deposit funds in a margin account. When entering a
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contract, the so-called initial margin has to be paid. At each trading day the account is marked
to market to adjust the possible losses and gains. When the futures price rises, the holder of
a long position makes a profit that is exactly the loss of the holder of the short position. The
broker of an investor who is short reduces the margin account by the loss and the exchange
transfers the money to the broker of the counter party where it increases the margin account.
This is called daily settlement. If the margin account falls below the maintenance margin, the
investor receives a margin call to deposit further funds. Otherwise the broker will close-out
the position, i.e. neutralizing the existing contract.

1.4.4 Options

Options are agreements that give the holder of a long position the right, but not the obligation,
to buy or sell the underlying at a fixed price in the future under certain conditions. There are a
vast number of options traded nowadays; the most basic options are described in the following
definition.

Definition 1.4.3 (European Call/Put Option, Basis Price, Expiration Date)
A European call option gives the holder the right to buy the underlying at a specified price,
the strike price or basis price K at a fixed time point T called maturity or expiration date.
The holder of a European put option has the right to sell the underlying for the strike price
at maturity. If St stands for spot price of the underlying at time t ∈ [0, T ], we will denote the
price (fair value) of a European call at time t by Ce(St, K, t, T ). Our notation for the price of
a put will be Pe(St, K, t, T ). T − t is called the time-to-maturity.

Often, cash settlement applies. This means, the buyer does not get the underlying but the
equivalent amount of money he would realize as a profit when buying the underlying for the
strike price and selling it on the market. Denote by C(St, K, t, T ) the price of such an option
at time t. At time T it coincides with the payoff given by

s �→ C(s, K, T, T ), s ∈ [0, ∞).

The holder of a European call exercises the option, if ST > K. The profit is ST − K. Thus,

Ce = Ce(ST , K, T, T ) =
{

ST − K, ST > K,

0, ST ≤ K,

which can be written in the form

Ce = max(0, ST − K) = (ST − K)+.

Similarly, for a European put option we have

Pe = Pe(ST , K, T, T ) = max(0, K − ST ) = (K − ST )+.

The internal value of an option is its positive cashflow when one would exercise it. For a
European call it is given by (St − K)1(St > K) and for a put equals (K − St)1(St < K). An
option is in the money, when its internal value is positive (St > K for a call, St < K for a
put), and it is called out of the money if the internal value is 0. (St < K for a call, St > K

for a put). The ratio K/S is called moneyness.
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Example 1.4.4 (Portfolio Insurance)
European put options can be used to solve the problem discussed in Exercise 1.1.1. Suppose
the pension funds intends to buy a portfolio of stocks, frequently called basket of stocks,
whose current price is St = 110. Further, assume that the pension fund can buy a European
put option on that basket. If the pension fund is willing to take a (downside) risk of at most
10 units of currency, a put with strike 100 has to be chosen.

The portfolio of the pension fund consists of the basket and one put option. Consider its
value at maturity T . If ST > 100, the put option is out of the money, i.e. its value is 0, such
that the porfolio’s value is ST . In the case ST ≤ 100, the payoff of the put option is 100 − ST

such that the porfolio’s value is VT = ST + (100 − ST ) = 100. It follows that the loss can
not exceed 10 units of currency.

1.4.5 Barrier options

The value of a barrier call option depends on whether the price of the underlying touches a
certain value called barrier. Knock-out options die if the barrier is reached, whereas knock-in
options are activated in this case.

Definition 1.4.5 A European barrier option with expiration date T , barrier B, B < S0 and
B < K, and strike price K gives the option holder the right to buy the underlying at time T , if

St > B for all 0 ≤ t ≤ T (down-and-out)

and

St < B for all 0 ≤ t ≤ T (up-and-out),

respectively. For a knock-in option the right is activated when

St ≤ B for some t ∈ [0, T ] (down-and-in)

or

St ≥ B for some t ∈ [0, T ] (up-and-in).

American-style options allow buying the underlying at an arbitrary time point provided they
are activated.

Barrier options are examples of path-dependent options whose payoff and value depends
on the price trajectory St, 0 ≤ t ≤ T , during the lifetime of the contract.

Definition 1.4.6 An American average price call options is given by the payoff profile

max(0, St − K), t = 1, . . . , T,

where K stand for the exercise price and

St = 1

t

t∑
i=1

Si, t = 1, . . . , T,
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denotes the average price. American strike call options have the payoff profile max(0, St −
St), t = 1, . . . , T . Their exercise price is determined when the option is exercised. The cor-
responding European-style options are given by the payoffs max(0, ST − K) and max(0, ST −
ST ) at maturity, respectively.

1.4.6 Financial engineering

By combining financial instruments, particularly derivatives, one can implement interesting
payoff profiles. For example, a long straddle consists of a long position in a European call
option and a long position in a European put with the same underlying and the same maturity,
both in the money. For large increases of the stock price, the long positions provides a profit,
whereas for large decreases of the stock price the put earns the money. In this way, one can
create a position that makes a profit if the stock price changes, independent of the direction.

Basically, we shall see that the fair price π of a derivative or a contingent claims can be
calculated by an expectation E∗(C∗) of the discounted payoff C∗ of the derivative under a
certain probability measure. This automatically also allows us to price portfolios of contingent
claims. Suppose such a portfolio consists of n positions given by the discounted payoffs
C∗

1, . . . , C∗
n of each claim and the numbers of contracts x1, . . . , xn we held. Since expectations

are linear, the fair price of the portfolio is

E∗
(

n∑
i=1

xiC
∗
i

)
=

n∑
i=1

xiπi,

where πi = E∗(C∗
i ) is the fair price of the ith claim.

In financial engineering, artificial portfolios of derivatives are often constructed in order
to generated certain payoff profiles, for example in order to simultaneously hedge risks and
generate opportunities for a profit, or as a complex financial product for customers. If a given
payoff profile, Z, can be constructed by a portfolio such that Z = ∑n

i=1 xiCi, then the above
formula allows us to determine the fair price of such a complex product. What makes such
products challenging and risky is the fact that the underlying instruments C1, . . . , Cn may
have quite different risk exposures to risk factors such as interest rates, price changes of the
underlying, volatility changes of the underlying or the risk that the issuer of the instrument
defaults. Furthermore, the underlying portfolio is often unknown to the customer, which hinder
his or her evaluation of the risk associated to such a product.

1.5 A primer on option pricing

This section is devoted to an introduction to some basic ideas and principles that lead to a
powerful and elegant theory of option pricing. It is a matter of fact that they can be explained
and understood in the simplest framework of a financial market with one asset and one
European call option. We will obtain first convincing answers to the question on how to
determine a fair price for a contingent claim, but simultaneously these answers give rise to
various questions on how to extend them to more general and realistic frameworks.

1.5.1 The no-arbitrage principle

The no-arbitrage principle says that on an idealized financial market the prices do not allow
for a riskless profit, i.e. there is no free lunch. Such arbitrage opportunities can arise if, for
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example, the prices in New York are higher than in London or the price of a bond is less than
the fair value of its future payments. For what follows, we use the following mathematical
definition.

Definition 1.5.1 An arbitrage opportunity is a transaction yielding a random payment X1
in t = 1 with initial value x0 in t = 0 such that

x0 ≤ 0 (no costs)

and

X1 ≥ 0 P − a.s., and P(X1 > 0) > 0.

Example 1.5.2 Let us apply the no-arbitrage principle to determine the fair value F0 of
a forward contract, i.e. the arbitrage-free price that applies at time t = 0. We claim that
there is a unique no-arbitrage forward price, namely F0 = S0erT , when assuming continuous
compounding. Assume F0 > S0erT . In this case, the seller can make a riskless profit by
borrowing S0 at time zero and buying the underlying. At maturity, he sells the underlying at
the delivery price K, pays back S0erT and earns F0 − S0erT > 0. If F0 < S0erT , the buyer
sells the underlying aud puts the money to the bank. At maturity he receives S0erT and pays
F0 for the underlying, leaving a profit S0erT − F0. It is interesting and important to note that
the forward price does not depend on the price of the underlying at maturity.

The no-arbitrage principle also immediately leads to a simple formula that relates the
price of an European call and European put. The idea is to set up a portfolio that leads to the
same payoff as an European call option with maturity T and strike price K. If we buy a stock
and sell a zero bond with nominal K, the value at time T is ST − K. If we add a put to the
portfolio, its value at maturity is zero, if ST > K, but K − ST , if ST ≤ K. It follows that the
value of the portfolio is 0, if ST ≤ K, but ST − K, if ST > K. Its value at time 0 is

π(Pe) − Ke−rT + S0

and must be equal to the fair price of the call, which establishes the put-call parity

π(Ce) = π(Pe) − Ke−rT + S0.

The existence of arbitrage opportunities, which is ruled out by the no-arbitrage princi-
ple, means that the current prices of financial instruments are not balanced with their future
payments. Many economists argue that on real financial markets arbitrage can at best exist
temporarily, since they are discovered by market participants that then enter trades that quickly
remove the arbitrage opportunity. If, for instance, the price of a financial instrument is too
low and provides a free lunch, speculators will enter long positions such that its price will rise
until the riskless profit disappears. We shall see that the no-arbitrage principle is a powerful
and simple approach to determine fair prices.

1.5.2 Risk-neutral evaluation

The evaluation of a random (future) payment X depends on the preferences that can be
expressed via a probability measure on the underlying measure space. The crucial question is
whether a fixed payment, i.e. the case X(ω) = x0, for all ω ∈ � and some fixed x0, is preferred
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to a risky payment that offers the chance that the event {X > x0} occurs, but usually at the
risk that the event {X < x0} may occur as well.

For simplicity of exposition, let us assume that the uncertainty about the future payment is
measured in terms of the volatility, i.e. the square root of the variance. Given two investment
opportunities with equal means, a risk-averse investor prefers the alternative with the smaller
variance. By contrast, if the investor is risk neutral, he has no preference at all, since he
ignores the variance.

In a risk-neutral world of risk-neutral investors everybody just looks at the mean. Let us
denote the probability measure corresponding to this risk-neural world by P∗. Under P∗ a
stock is preferred to a riskless investment, if and only if its expected return is higher than the
riskless return earned on a bank account. Denote the stock’s price at time t by St and denote
its random return by R. We assume that the price S0 at t = 0 is a constant S0 known to us.
Then the random price at t = 1 is given by

S1 = S0(1 + R).

In a risk-neutral world the value of that payment is given by

E∗(S1) = S0(1 + E∗(R)).

Here and throughout, the symbol E∗ means that the expectation is calculated under the prob-
ability measure P∗. If we deposit the initial capital S0 in a bank account, we obtain S0(1 + r).
The principle of no-arbitrage implies that E∗(S1) and S0(1 + r) must coincide, i.e.

E∗(S1) = S0(1 + r) ⇔ E∗
(

S1

1 + r

)
= S0.

As a consequence, under risk-neutral pricing the (fair) price of the stock can be calculated
as an expectation under the probability measure P∗. Can we calculate P∗ from the above
equation?

To get first insights, we shall study a very simple one-period model for a financial market
consisting of one stock and one European call option on that stock. To make the model as
simple as possible, let us assume a binomial model for the stock price where the price can
either go up or go down. In this case, we may choose the sample space � = {+, −} to represent
the possible future states of our financial market, equipped with the power set sigma field. The
real probability measure P is uniquely determined by P({+}) = p, p ∈ (0, 1). Notice that we
exclude the trivial cases p = 0 and p = 1. We model the stock price by

S1(ω) =
{

S0u, ω = +,

S0d, ω = −,

with constants u (up factor) and d (down factor) satisfying 0 < d < 1 + r < u. The European
call is given by its payoff

Ce =
{

S1 − K, S1 > K,

0, S1 ≤ K.

To avoid trivialities, we shall assume that the strike price K ensures that S0d < K < S1u.
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In the above simple model the risk-neutral probability measure P∗ is uniquely determined
by p∗ = P∗({+}). The risk-neutral pricing formula E∗(S1) = S0(1 + r) is now equivalent to
the equation

p∗S0u + (1 − p∗)S0d = S0(1 + r),

which has the unique solution

p∗ = 1 + r − d

u − d
.

This means, given the model parameters r, d and u we can determine P∗. Relying on the
principle of risk-neutral pricing, the fair value of any random payment X1 at time t = 1 can
be calculated by

π(X1) = E∗(X1/(1 + r)).

In particular, for a European call option on a stock we obtain

π(Ce) = p∗ S0u − K

1 + r
.

Example 1.5.3 Recall Example 1.1.3 and Example 1.1.4, where the oil price was assumed
to either go up by 10% or go down by 10%. This means that we have u = 1.1 and d = 0.9.
The riskless rate was r = 0.01. Hence, the risk-neutral probability measure P∗ is given by

p∗ = 1 + r − d

u − d
= 1.01 − 0.9

0.2
= 0.55,

yielding the risk-neutral option price

E∗(Ce/(1 + r)) = 10

1.01
0.55 = 5.445545.

This is exactly the lower price limit calculated by the oil trader.

Let us slightly generalize our model to allow for a trinomial model for the stock price. We
put � = {+, ◦, −} and assume that, given three factors d < m < u, the stock price at time
t = 1 satisfies

S1(ω) =

⎧⎪⎨⎪⎩
S0u, ω = +,

S0m, ω = ◦,

S0d, ω = −.

The risk-neutral probability measure P∗ is now determined by p∗
1, p

∗
2, p

∗
3 ∈ [0, 1] such that

p∗
1 + p∗

2 + p∗
3 = 1. In this model, the pricing formula E∗(S1) = S0(1 + r) leads to

p∗
1u + p∗

2m + (1 − p∗
1 − p∗

2)d = (1 + r) ⇔ p∗
1(u − d) + p∗

2(m − d) = (1 + r) − d.

This equation has infinite solutions. The special solution corresponding to p∗
2 = 0 is the

solution of the binomial model. In general, the solutions can be parameterized by p∗
2 yielding

p∗
1 = 1 + r − d + p∗

2(m − d)

u − d
, p∗

2 ∈ [0, 1], p∗
3 = 1 − p∗

1 − p∗
2.



36 ELEMENTARY FINANCIAL CALCULUS

It follows that pricing using the risk-neutral approach is not unique; there are infinitely many
prices.

Exercise 1.5.4 Determine all risk-neutral probability measures. Which conditions on d, m, u

and r are required?

1.5.3 Hedging and replication

Options are usually written by banks that are interested in hedging the risk of such a deal.
Again, we consider a European option Ce on a stock S1 that follows a binomial model. By
introducing the notations S1(−), S1(+) and Ce(−), Ce(+), we shall see that the formulas we
are going to derive hold for general options as well. The question arises whether it is possible
to set up a portfolio that neutralizes any risk from the option deal. If we had a portfolio that
exactly reproduces the option, we could buy that portfolio to neutralize the financial effect of
selling the option to a customer. So, let us assume the bank holds a portfolio (θ0, θ1), where
θ0 is the amount of cash deposited in the bank account and θ1 stands for the shares. Denote
the value of the portfolio at time t by Vt . The portfolio neutralizes the option if it has the same
value at t = 0 and t = 1. Obviously,

V0 = θ0 + θ1S0,

and

V1(ω) =
{

θ0(1 + r) + θ1S0u, ω = +,

θ0(1 + r) + θ1S0d, ω = −.

The value W0 of the option at time 0 is its price π(Ce), and at time 1

W1(ω) =
{

S0u − K, ω = +,

0, ω = −.

The portfolio replicates the option if Vt(ω) = Wt(ω) holds true for all ω ∈ � and all t ∈ {0, 1}.
This leads to the equations

V0 = π(Ce) (1.9)

and

θ0(1 + r) + θ1S0u = S0u − K (1.10)

θ0(1 + r) + θ1S0d = 0 (1.11)

Substitute θ0(1 + r) = −θ1S0d (Equation (1.11)) into Equation (1.10) to obtain

−θ1S0d + θ1S0u = S0u − K ⇔ θ1(S0u − S0d) = S0u − K (1.12)

⇔ θ1(S0u − S0d) = Ce(+) − Ce(−). (1.13)

Thus, noting that S0u − S0d = S1(+) − S1(−), we arrive at

θ1 = Ce(+) − Ce(−)

S1(+) − S1(−)
.
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This ratio, the number of shares needed to replicate (exactly!) the option, is called the hedge
ratio. In Example 1.1.4 the hedge ratio is θ1 = 10/20 = 1/2. Indeed, the oil trader bought
half of the oil at time t = 0, i.e. he constructed the hedge portfolio. For θ0 we obtain the
formula

θ0 = Ce(−) − Ce(+) − Ce(−)

u − d

d

1 + r
.

For our example, we obtain θ0 = 0 − 10
1.1−0.9 · 0.9

1.01 ≈ −44.55. This means, the oil trader
borrows the amount 44.554 from the bank. Since he receives the premium 5.45, he can
buy the oil to hedge the option. The initial costs for the hedge, the replication costs, are
V0 = θ0 + θ1S0. These replication costs should be equal to the fair price of the option.

Exercise 1.5.5 Show that V0 = E∗
(

Ce

1+r

)
, if P∗ is the probability measure given by p∗ =

1+r−d
u−d

.

1.5.4 Nonexistence of a risk-neutral measure

Consider a financial market with two stocks following a binomial model with up factors u1, u2
and down factors d1, d2. Risk-neutral evaluation now leads us to two equations, namely

p∗u1 + (1 − p∗)d1 = 1 + r,

p∗u2 + (1 − p∗)d2 = 1 + r,

for the free parameter p∗. Depending on the parameters r, d1, d2, u1, u2, there may be no
solution. Consequently, there may be no risk-neutral probability measure at all.

1.5.5 The Black–Scholes pricing formula

We shall now discuss the famous Black–Scholes option pricing formula, although we have to
anticipate some results derived later in this book.

Suppose we have a risk-neutral pricing measure P∗ at our disposal and consider a European
call option on a stock with price St and strike K. The payoff at maturity T is C = max(ST − K).
Suppose that a fixed interest is paid in each period and let us express the corresponding discount
factor in the form e−r for some r > 0. Then the discounted payoff is C∗ = e−rT max(ST −
K, 0). In a risk-neutral world, we must have E∗(C) = C0, where C0 denotes the fair price at
time t = 0 of the random payment C, or, equivalently,

C0 = E∗(C∗) = e−rT E∗(max(ST − K, 0)).

This means, we may calculate the fair price of the European call option by evaluating the
expression on the right-hand side, which requires determination of the distribution of ST

under P∗.
The famous Black–Scholes model assumes that under the real probability measure log

prices are normally distributed, say, with drift parameter μ ∈ R and volatility σ > 0. Then it
turns out that under P∗ the log price ST at maturity follows a lognormal distribution with

drift log S + (r − σ2/2)T and volatility σ
√

T .
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Here S = S0 denotes today’s stock price, which is the basis to determine the fair price of the
option.

We will apply the following result: Suppose that X follows a lognormal distribution with
parameters m ∈ R and s > 0. Then

E(X − K)+ = em+s2/2�

(
m − log K

s
+ s

)
− K�

(
m − log K

s

)
. (1.14)

We will give a sketch of the derivation and encourage the reader to work out the details.
To check that nice result, first notice that for x ≥ 0 we have (X − K)+ ≥ x ⇔ X − K ≥ x.
Hence, denoting the density of X by f (x),

E(X − K)+ =
∫ ∞

0
P(X ≥ K + x) dx

=
∫ ∞

0

∫ ∞

K+x

f (t) dt dx

=
∫ ∞

K

∫ ∞

x

f (t) dt dz,

where we made the change of variable z = x + K. If we plug in Equation (1.3), the formula
for the density of a lognormal distribution, we arrive at

E(X − K)+ =
∫ ∞

K

∫ ∞

x

1√
2πst

e−(log t−m)2/2s2
dt dx.

Substituting z = (log t − m)/s, such that dz = dt/st, leads to the integral∫ ∞

K

∫ ∞

(log x−m)/s
ϕ(z) dz dx,

where ϕ(x) = 1/
√

2πe−x2/2 denotes the density of the standard normal distribution. Apply the
integration by parts rule

∫
uv′ = uv| − ∫

u′v with u(x) = ∫ ∞
(log x−m)/s ϕ(z) dz and v′(x) = 1

to obtain that

E(X − K)+ =
∫ ∞

K

ϕ

(
log x − m

s

)
dx − K�

(
m − log K

s

)
,

where �(x) = ∫ x

−∞ ϕ(t) dt denotes the d.f. of the standard normal distribution. Finally, using
the substitution z = log x one easily verifies Equation (1.14).

Now let us apply formula (1.14) with m = log S0 + (r − σ2/2)T and s = σ
√

T :

E∗(ST − K)+ = elog S+rT �

(
log(S/K) + (r − σ2/2)T

σ
√

T
+ σ

√
T

)
− K�

(
log(S/K) + (r − σ2/2)T

σ
√

T

)
.

Therefore, the fair price of a European call option is given by

π(Ce) = E∗(C∗) = e−rT E∗(ST − K)+ = S0�(d1) − K�(d2)e−rT , (1.15)
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where

d1 = log(S/K) + (r + σ2/2)T

σ
√

T
,

d2 = log(S/K) + (r − σ2/2)T

σ
√

T
.

It turns out that, by virtue of the call-put parity the price of an European put option is then
given by

π(Cp) = π(Ce) + Ke−rT − S.

Further, in order to obtain the time t value of such options with time to maturity τ = T − t,
one only has to replace T by τ and let S denote the time t price of the underlying.

1.5.6 The Greeks

The Black–Scholes price formula explicitly shows on which quantities the fair arbitrage-free
price of a European call option depends: Besides the option parameters K, T and the initial
price S0, which are fixed in the contract, the formula depends on the risk-free interest rate,
r, and the volatility σ of the the log stock price. For risk management it is essential to know
how sensitive a position is with respect to those quantities. If, for example, the volatility of
the underlying increases, this will affect immediately the value of a position in a European
option.

1.5.6.1 First-order Greeks

We shall now introduce the first-order greeks by referring to a European call priced within
the Black–Scholes model. However, these definitions apply to any derivative.

In order to allow easy interpretation, we would like to define the sensitivity with respect
to the stock price as the rate of the option’s price V if the stock price changes by one unit
of currency, i.e. as the ratio �π(Ce)

�S
. Having an explicit formula for π(Ce), obviously a dif-

ferentiable function of S, T, σ and r, which are now regarded as variables, we can provide
a rigorous definition of the sensitivity with respect to the changes of the stock price, called
Delta, in terms of the partial derivative

� = ∂π(Ce)

∂S
.

In the same vein, we may introduce the sensitivity with respect to a change of the expiration
date T , which is called Theta,

� = ∂π(Ce)

∂T
.

The parameter Vega (or Kappa) measures the rate of the option’s price with respect to changes
of the volatility and is defined as the corresponding partial derivative

ν = ∂π(Ce)

∂σ
.
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Table 1.2 Greeks for European options

Greek Call Option Put Option

� = ∂π(Ce)
∂S

�(d1) �(d1) − 1

� = ∂π(Ce)
∂T

−Sϕ(d1)σ
2
√

T
− rKe−rT �(d2) −Sϕ(d1)σ

2
√

T
+ rKe−rT �(−d2)

ν = ∂π(Ce)
∂σ

Sϕ(d1)
√

T Sϕ(d1)
√

T

ρ = ∂π(Ce)
∂r

KT e−rT �(d2) −KT e−rT �(−d2)

� = ∂2π(Ce)
∂S2

ϕ(d1)
Sσ

√
T

ϕ(d1)
Sσ

√
T

Calculations assume the Black-Scholes model

Finally, Rho is the standard notation for the sensitivity with respect to changes of the interest
rate and formally given by

ρ = ∂π(Ce)

∂r
.

Table 1.2 lists the resulting formulas assuming the Black–Scholes model.
The first-order greeks allow us to approximate the option’s price by a linear function. For

example, if the price of the underlying changes from S to S̃, knowing � = ∂π(Ce)
∂S

provides
the approximation

π ≈ π(Ce) + ∂π(Ce)

∂S
(S̃ − S),

which is accurate if |S̃ − S| is small.
It is important to note that these partial derivatives are still functions of the remaining

variables. Hence, their values depend on the values of those variables, the model parameters.
If more than one parameter changes, it can not be seen from a single sensitivity measure how
the option price reacts.

Observing that, given the strike price K, the variables S, T, r, σ determine π(Ce), it is clear
that the above greeks form the gradient

∂π(Ce)

∂ϑ
=

(
∂π(Ce)

∂S
,
∂π(Ce)

∂T
,
∂π(Ce)

∂σ
,
∂π(Ce)

∂r

)′
= (�, �, ν, ρ)′ ,

where ϑ = (S, T, σ, r)′. The corresponding linear approximation following from Taylor’s the-
orem is then given by

π ≈ π(Ce) + ∂π(Ce)

∂ϑ
(ϑ̃ − ϑ) = π(Ce) + �(S̃ − S) + �(T̃ − T ) + ν(σ̃ − σ) + ρ(r̃, − r),

if the parameters change from ϑ to ϑ̃ = (S̃, T̃ , σ̃, r̃)′.
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1.5.6.2 Second-order Greeks

The first-order greeks correspond to first-order partial derivatives yielding linear approxima-
tions of the option’s price. The next step is to take into account second-order partial derivatives
as well, which lead to quadratic approximations.

Of particular concern is the dependence of the option price on the price of the underlying.
The second-order partial derivative

� = ∂2π(Ce)

∂S2

is called Gamma.

1.5.7 Calibration, implied volatility and the smile

In order to price options with the Black–Scholes pricing formula, one has to specify the interest
rate r. Usually, one takes the yield of a treasury bill with a short maturity. Further, one needs
to determine in some way the volatility σ, which is not directly observable. Basically, there
are two approaches. The statistical approach is to estimate σ from historical data as discussed
in Section 1.3.2. Another approach frequently applied in finance is calibration, which means
that an unknown parameter of a formula for some quantity is determined (calibrated) by
matching the formula with real market data for that quantity. This has the advantage that the
model reproduces current market data and is therefore often preferred by traders, analysts and
bankers, since they tend to mistrust models and methods that seem to contradict markets.

In the case of option pricing by the Black–Scholes formula one calibrates the model
by matching the prices predicted by the Black–Scholes formula with real market prices for
options by varying the free parameter σ. Notice that equating Equation (1.15) to a actual price
leads to a nonlinear equation for σ. The matching is done for a fixed strike price K and a
fixed time to maturity T − t. The volatility σ determined in this way is called the implied
volatility.

In theory, the volatility σ of the underlying asset is constant across strike prices and
maturities. However, when determining the implied volatility for different values of K and
T , one observes a dependence on those parameters. Sometimes the volatility is a decreasing
function of K, a phenomenon called volatility skew. In other cases, particularly for options
on foreign currencies, the volatility is lower for at-the-money options and gets larger as
the option moves into the money or out of the money. This effect is called volatility smile.
The dependence on K is usually parametrized by the moneyness or strike ratio, S/K. If one
calculates the implied volatility over a two-dimensional grid of values for the strike K (or
K/S) and the maturity T , one obtains a two-dimensional curve called the volatility surface.
Figure 1.2 shows a volatility surface for SIEMENS AG.

1.5.8 Option prices and the risk-neutral density

There is an interesting and important relationship between option prices and the probability
density of the risk-neutral probability measure used for pricing. The validity of this relationship
is not restricted to the Black–Scholes model, but is an intrinsic structural properties of a
financial market. It can be used to infer the risk-neutral probability from option prices.
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Figure 1.2 Volatility surface at November 4th of European call options on SIEMENS AG
for maturities ranging from November 2011 to December 2015. Time to maturity measured
in days, data taken from DATASTREAM.

Recall the starting point of our derivation of the Black–Scholes formula, namely the
equation

Ce(K) = e−rT E∗(ST − K)+, (1.16)

which we now study as a function of the strike price K. We also denote the risk-neutral price
by Ce(K) to indicate that we do not refer to the Black–Scholes formula. At this point, it is only
assumed that there exists a risk-neutral measure P∗ used to price random future payments.
Let us also assume that the terminal stock stock price ST attains a probability density under
the risk-neutral probability measure P∗, which we will denote by ϕ∗

T (x). This means,

P∗(ST ≤ x) =
∫ x

−∞
ϕ∗

T (u) du, x ∈ R.

Then we may rewrite Equation (1.16) as

Ce(K) = e−rT

∫ ∞

−∞
(x − K)+ϕ∗

T (x) dx = e−rT

∫ ∞

K

ϕ∗
T (x) dx.

Apply the formula

d

dt

∫ b(t)

a(t)
f (x, t) dx = f (b(t), t)b′(t) − f (a(t), t)a′(t) +

∫ b(t)

a(t)

∂f (x, t)

∂t
dx
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to obtain that the first derivative of the risk-neutral price of a European call satisfies

∂Ce(K)

∂K
= −

∫ ∞

K

ϕ∗
T (x) dx

and the second derivative

∂2Ce(K)

∂K2 = ϕ∗
T (K).

As a consequence, one may determine the risk-neutral probability measure by analyzing option
prices for different strike prices K. Since any probability density function is non-negative, we
also see that the option prices is a convex function of the strike price.

1.6 Notes and further reading

A popular text on options, futures and other derivatives avoiding mathematics is the compre-
hensive book of Hull (2009). It explains in great detail and accompanied by many examples
the economic reasoning behind such financial instruments and how the corresponding markets
operate, provides basic formulas for the valuation of such financial operations and sketches
at an elementary level the mathematical theory behind it. We also refer to the introductions to
mathematical finance of Baird (1992), Pliska (1997) and Buchanan (2006), which focus more
or less on the discrete-time setting and finite probability spaces, respectively. For the theory of
coherent risk measure we refer to the seminal work Artzner et al. (1999), the recent monograph
Pflug and Römisch (2007) and the discussion Embrechts et al. (2002) of dependence measures
and their properties. There are various text books on the general theory of statistics including
estimation, optimal hypothesis testing and confidence intervals, for example Lehmann and
Romano (2005) or Shao (2003). Financial statistics is discussed in Lai and Xing (2008). More
on kernel smoothing methods and their properties can be found in the monographs Silverman
(1986), Härdle (1990), Fan and Gijbels (1996) and Wand and Jones (1995). The problem how
to select the bandwidth one may additional consult Scott and Terrell (1987) and Savchuk et al.
(2010). For a recent approach using singular spectrum analyses, we refer to Golyandina et al.
(2011).
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