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Introduction

1.1 Why Energy Conversion Electronics Circuits?

With the progress in using electrical energy in industrial, transportation, commercial and residential applica-

tions, there came the need to convert it to an appropriate electrical form; for example, from an AC form to a

DC one, or from a high voltage to a low voltage, and so on. Electromagnetic-based transformers were soon

developed. They present significant energy losses and require large space and maintenance costs. In addition,

the use of transformers could not satisfy all the practical needs. What if the primary electrical energy source

was a battery, whose voltage was decreasing in time, while the consumer needed a constant voltage? Or,

what if the effective voltage of the supply generator was variable, but the DC needed by the consumer had to

be constant? Thus, conversion of electrical energy had to be associated with a control mechanism.

The first solution was allowed by the invention of the mercury-arc rectifier at the beginning of the

twentieth century. Solid-state switching mode devices of the gas tube type were developed in the period

between the two world wars. Their use in the controlled conversion of the energy signified the start of

power electronics. Saturable reactor magnetic amplifiers then followed, but the real breakthrough was

the invention of the thyristor at Bell Laboratories in 1950s and its development in 1956 by General

Electric. The modern use of power electronics came with the advent of new power solid-state switching

elements like the high-frequency metal oxide semiconductor field-effect transistor (MOSFET), insulated

gate bipolar transistor (IGBT), and later silicon carbide (SiC) devices. Almost no industrial electrical

application or electronic consumer device can be envisioned today without a power electronics circuit.

Power electronics circuits made their way from mW to GW applications; their use is still expanding into

industry, utility and consumer electronics.

The term of “power electronics” in the twenty-first century has a much broader meaning that it did in the

years 1970–1990. The power electronics circuit has become an intrinsic part of a system, be it an uninter-

ruptible power supply, or a microprocessor server, or a consumer product. Apart from converting electrical

energy and being a good citizen in the overall system, by not perturbing it, the power electronics circuit
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needs to add more value to the system. For example in a conversion from an AC voltage to a DC voltage, the

converter should also provide good power quality, such as high input power factor and electromagnetic

compatibility. More and more in the twenty-first century, underlining the more complex role the power

electronics circuit has to play as well the more stringent requirements it has to meet, the term “power elec-

tronics” is replaced by that of “energy conversion electronic system.”

Let us take a short look at different classical and modern applications. We will see that power electronics is

widely used in our daily life. Going back to our childhood and bringing to memory the radio-controlled toy

car, we will find the first power electronics circuit that we ever used. It had a remote controller that was

guiding the speed of the car. In the car there was a power electronics circuit which was changing the car

speed, depending on the received command. Let us look around now and see where we use power electronics.

1.1.1 Applications in the information and telecommunication industry

A typical server power supply is shown in Figure 1.1. The universal 90–264VAC line is converted into a

380V/400V DC, which then is converted to the voltage necessary for supplying the consumer – here micro-

processors. The backup time provided by uninterruptible power supplies (UPS) is far less than that a highly

reliable server requires.

A consumer like a microprocessor cannot remain without a supply. To provide a longer reverse time, a

�48V power plant used by the telecommunications industry serves to supply the energy to the microproc-

essors when needed. As seen in Figure 1.1, this application requires a number of power electronics modules,

each one having to answer other requirements: one module has to convert AC to DC by keeping a good

input power factor; the second module has to increase the 48V of the battery to the DC voltage bus of

380V, raising many difficult design questions of how to realize such a large DC voltage ratio, without

compromising the efficiency, the reliability, the cost, or the space; the third converter has to transform the

DC bus of 380V into the voltage required by servers. An important concern in such an application is elec-

tromagnetic interference (EMI), which has to be avoided or at least minimized.

Today, at the heart of communication systems and desktop PCs are advanced microprocessors and

high-speed communication ASICs designed in deep submicron, low-voltage CMOS logic technologies. They

operate at GHz clock frequencies and require large currents, at a sub �2V DC supply voltage. A multiple

tight regulation is also required, imposing difficult challenges on the DC/DC conversion circuit. Modern

desktop PCs use a hybrid centralized–distributed power system. Their architecture is formed by a centralized

multi-output AC/DC conversion circuit (called a silver box), and a distributed 12V (or 48V) intermediate

bus which supplies the converter located near the microprocessor. As the converter has to supply a very tight

regulated low voltage at a high current, it is known under the term of VRM (voltage regulation module).

Figure 1.1 Block diagram of a server power supply.
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In the first decades after their invention, the microprocessors required power of under 10W; with the

introduction of the Pentium model processor, power demand began to climb generation by generation,

one chip at the beginning of the 2000s consuming 60–100W. Following Moore’s law, the power density

of these chips will reach values that would attract unacceptable temperatures. Higher clock frequencies

and more functions on a single chip will imply more load current. To reduce the power dissipation, and

consequently the temperature of a chip, the solution is to reduce the supply voltage. According to Intel’s

roadmap, the supply voltage for microprocessors (Figure 1.2) will reach less than 0.65V by 2014. To

envisage a VRM able to supply a load of 200 A at 0.5–0.6V, with a tight regulation of 5–10mV slewing

at 100 A/ms, means new challenges for the design of power electronics – and new efforts that future

scientists in energy conversion will have to make to come up with inventive solutions. To decrease the

size of the VRM, the switching frequency has to be increased beyond the present several hundred kilo-

hertz well in the MHz range. To do so, new structures with lower switching losses will have to be devel-

oped. One solution is the use of multiple converters for load sharing. A digital signal processor (DSP)

may be used in the control system. The control approach has been changed from using classical control

design in frequency domain to intra-switching cycle control in the time domain. At the same time, the

solid-state switching elements industry will be required to produce MOSFETs with still less parasitic

capacitances, with improved gate driver efficiency, and even devices of zero reverse recovery time. Even

the packaging will have to be re-thought in order to decrease the parasitic inductances between the

MOSFET and its driver. The forecast for the power density and cost performance of converters are

400W/in3 and $0.058/W, respectively, by 2013. A low-power (18W) resonant boost converter operating

at 110MHz has already been demonstrated. The research for pushing the switching frequency toward

300MHz is under way.

As we can see, the first half of the twenty-first century will require much research and innovative design

in the energy conversion area to answer the ceaselessly more stringent requirements imposed by the infor-

mation and telecommunication industry.

Figure 1.2 Operating voltage roadmap for Intel’s microprocessors. (Data taken, with permission, from

A. Lidow and G. Sheridan, “Defining the future for microprocessor power delivery,” in Proc. Applied Power

Electronics Conf. (APEC), 2003, Miami Beach, FL, vol. 1, pp. 3–9 and from Ed Stanford, Intel Corporation

“Power technology roadmap for microprocessor voltage regulators,” presentation at Applied Power Electronics

Conf. (APEC), 2004.)
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1.1.2 Applications in renewable energy conversion

For centuries, the world economy has been running on fossil fuels. Aside from the scarcity of such tradi-

tional sources of energy, and all the geo-politic attached problems, their negative effects on the environment

became visible in the last decades. Nowadays, in order to diversify the energy sources, people look to

“harvest” energy from the surrounding environment (solar or wind energy, temperature gradients, vibra-

tions, ocean tidal energy, bio-mass, etc.). Renewable energy sources not only help in reducing the green-

house effects but also feature much flexibility and portability: they are easily installed, are modular, and

can be situated close to the user, thus saving in the energy transmission cost. The environmentally clean

renewable sources are heavily dependent on power electronics.

One of most available sources of energy in nature is solar energy. A photovoltaic system converts sunlight

into electricity. Photovoltaic cells can be grouped to form panels and arrays. Panels are composed of cells in

series for obtaining larger output voltages. By increasing the surface area or by connecting cells in parallel, a

larger output current can be achieved. Series and/or parallel connection of the panels form an array. A photo-

voltaic cell is essentially a semiconductor diode whose p-n junction is exposed to light. The incidence of the

light on a cell generates charge carriers that give an electric current if the cell is short-circuited; that is,

the absorption of solar radiation leads to generation of carriers which are collected at the cell’s terminals.

The rate of generation of electric carriers depends on the flux of incident light. As, during the daytime, the

flux of light varies, the generated energy has variable parameters. Partial shading also changes the cell output.

Consequently, the output power varies from day to day depending on the weather. A large number of photo-

voltaic arrays can be connected to the grid of power utilities. Each photovoltaic farm forms a microgrid.

Power output variations of individual arrays would cause problems in the electrical power system, such as

serious voltage or frequency deviations from the nominal values. In order to smooth the power variation and

achieve the maximum possible power in any insolation condition, so-called maximum power point tracking

power electronics circuits are used. These circuits have to extract the maximum power from the photo-

voltaic cell. They operate in the following way. At any level of solar radiation and temperature, there is an

operating point on the array’s power-voltage curve (called maximum power point MPP) where the power

generation is maximum. To extract maximum power from a solar cell, the input resistance of the power

electronics converter has to be equal to the solar cell output resistance at the MPP. A special control tech-

nique has to be developed for the converter to satisfy such a condition. Advanced control methods like fuzzy

controllers are implemented nowadays for tackling the frequency deviations due to variance in insolation

(“insolation” refers to solar radiation energy). DC energy conversion electronic circuits are used in the

power conditioning system, whose grid is based on the connection of individual photovoltaic arrays, to

increase the overall efficiency. Power electronics circuits are also needed to store the excess energy from

solar power to a temporary storage, such as a battery bank. Power electronics circuits also serve to convert

the DC power into AC power back to the grid, with high power quality. Some processing techniques, like

islanding, have to be integrated: if there is a breakout or outage of the main grid, the microgrid of

the alternative energy sources should continue to supply power with regulated voltage to consumers. These

applications require purposely-designed power electronics circuits.

Integrating the power electronics circuit with the photovoltaic cell brings advantages in cost and effi-

ciency. However, for this to be realized is not simple. Practical problems arise: the high temperature and

high ambient humidity in which the converter has to operate, as well as the relative inaccessibility in case

repair is needed. The integrated converter-photovoltaic cell has to be designed for high reliability (by using

very reliable components) and long life, while also permanently bearing in mind the modern $/watt men-

tality, which requires a low cost.

The alternative environmentally friendly sources of energy supply low voltages and currents. Even for

very low power consumers, like smart sensors or smart security cards, the power provided in such a way is
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insufficient. For example, consider a thermopile (which is an electronic device that converts thermal energy

into electrical energy). It is composed of thermocouples, usually connected in series. The thermopile gener-

ates an output voltage proportional to a local temperature difference. When exposed to low temperature

gradients, it can deliver energy, but at a too low voltage to be useful as such (200mV in a thermopile formed

by 127 miniaturized Peltier cells under a temperature gradient of 5 8C). To become useful for a range of

practical applications, from supplying the voltage to small consumers to serving as a front-end for a power

utility grid, the variable low voltage produced by the alternative energy cells has to be stabilized and

increased several times. Purposely-oriented power electronics have to be developed and designed for

achieving such a goal. To convert a 200mV input voltage to a practical output such as 1.2 V needs a special

architecture of the converter. It is especially challenging to realize such a power electronics circuit in a

small size by using integrated technology, as is required for portable electronic devices. For example, low

threshold voltage NMOS transistors have to be used, by compromising between constraints like low para-

sitics, low threshold voltage and low channel resistivity. Or the capacitors have to be chosen based on a

trade-off between the area consumption and maximum voltage step-up increment.

A great potential of renewable energy exists in ocean waves. However, to make this cost effective, the

maximum possible power has to be absorbed. An electronic converter, with its control function, can realize

“a maximum power point tracking” operation. Such a function is also necessary when solar energy is

absorbed by the solar cells. However, in the case of ocean waves, the power is delivered in time-varying

sinusoids of long duration steady-state cycles. For maximizing the power extraction, the system has to be

tuned for the slowly changing sea state.

The world has enormous resources of wind energy. It is estimated that if we are able to tape only 10% of

it, this would supply all the electricity needs of the world. It is expected that the wind energy share in the

USA will increase from the current 1% of the total consumed energy to about 20% by 2030. But the intro-

duction of large wind turbines (more than 5MW) requires new power converters based on modular technol-

ogy. This imposes the study of new techniques in power electronics, like the interleaved and multilevel

ones. For large offshore wind parks, a system for DC transmission of the energy to mainland consumers can

be beneficial. With state-of-the art DC transmission lines, the skin effects losses of AC energy cables are

eliminated. For the same level of energy to be transported, the physical space taken by the DC system is

smaller than that needed by an AC transmission system. The power carrying capability is increased, without

affecting the stability. The new power electronics based DC transmission systems offer full control of

reactive power on both the producer and consumer sides and minimization of the included filters. The maxi-

mum wind energy is transferred if the turbine is run at variable speed. A special converter is used for this

purpose. The nature of wind adds more variability to the system: “grid-friendly” wind plants are needed.

Ideally, the wind and solar energy-derived electricity has to be complementary: use of solar energy during

the day and wind energy during the night, when the winds are usually stronger.

With the exception of those alternative energy sources that supply local, isolated consumers, most of the

renewable energy sources must be connected to the available national electric grids. New ideas are currently

proposed to create “smart” grids; for example, to create energy hubs to manage multiple energy carriers

(electricity, gas, etc.). In each hub, energy converters will transform part of the energy flow from one form

of energy to another form. The management of the energy flow will include energy control and information

flow, enabling a flexible interconnection between the producers (traditional or renewable sources of energy),

energy storage elements and loads. All parties will have responsibilities in the security of the grid. Different

operational modes will be possible, from the stand-alone case, when the energy producer is disconnected

from the grid and supplies a single load, to the “microgrid” scenario, involving a few players, and finishing

with the “cluster” model. In the last one, distributed producers form a virtual high cumulative power pro-

ducer, directed by supervisory signals from the utility operator. Integrating the new sources of energy in this

grid, as well as the operation of the smart grid, requires specific power electronics systems.
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1.1.3 Future energy conversion – fuel cells

Maybe the most widespread sources of alternative energy are now fuel cells. A fuel cell is based on an

electrochemical process: hydrogen and oxygen react, generating electrical energy. This process has zero

pollution emission, as the only byproduct is water vapor, which can be used for heating. The power density

of fuel cells is higher than that of other alternative energy cells. The fuel cells are used as the front end in a

power supply grid, or in vehicles, or in portable applications. In 2008, Boeing flew for 20minutes a small

manned airplane powered by hydrogen fuel cells, opening the way for hydrogen or solid oxide fuel cells to

become the power supply for small manned or unmanned air vehicles.

As the output voltage of fuel cells is very low and load variable (it can range between 0.4Vat full load to

0.8Vat no load), many cells have to be stacked in series to realize a useful power supply. For example, 250

cells have to be connected in series to realize 100V at full load. The voltage produced by each cell is

affected by the membrane humidity, by the pressure of the basic elements or of the air, and by the state of

the catalyst. The membrane humidity may vary from cell to cell depending on the heat distribution within

the cell. Cells with a more moisturized membrane will produce a larger voltage. This results in an uneven

voltage distribution among the cells in a stack and a variable voltage will occur. Therefore, a fuel cell stack

provides a variable low output voltage; in addition, its current ripple should be small to ensure an optimal

operation. This is why a power electronics circuit able to step-up and stabilize the DC cell voltage must

follow a fuel cell stack. The difficulty in conceiving such a power electronics DC-DC converter is aggra-

vated by the need to feature a low-input current ripple. An additional LC filter for eliminating the current

ripple is unconceivable, as it would reduce the energy conversion efficiency. A special structure for this type

of converter, purposely for use in conjunction with fuel cells, must be researched. The usual structure of a

fuel cell stack followed by an electronic converter is shown in Figure 1.3a. In such an implementation,

which is equivalent to a connection of voltage sources in series, a malfunctioning cell can take out the whole

system of service. A modular stack (Figure 1.3b) which electrically divides the fuel cells stack into several

sections has the property of fault tolerance: if a section is faulty, it can be disabled, while the rest of the

system can continue to operate by supplying a lower power. If the end application is in the automotive

industry, in the case of a fault the driver would be able to steer the vehicle at reduced power until the garage.

However, such a solution imposes a new challenge for the designer of the power electronics circuit: the need

of a modular DC-DC converter able to enhance the system reliability.

Fuel cells cannot respond to quick load fluctuations. A series converter between the fuel cell and the

load is not sufficient, because a fluctuation in the load current becomes immediately a fluctuation in the

current of the cell, decreasing its lifetime. One possible solution is to use two converters between the fuel

cell and the load: a converter connected in series and a converter connected in parallel to the cell. When

the load is constant, to realize the regulation of the output voltage only the series converter operates,

assuring a high energy efficiency, as the output power is directly provided by the fuel cell. When the

output power changes, the parallel converter with a battery will compensate for the quick variation in

the load current.

1.1.4 Electric vehicles

Hybrid electric vehicles have gained much popularity as they use less fuel and pollute the environmental

with less carbon dioxide emission than classic gas (petrol) driven vehicles. They necessitate batteries or

ultracapacitors that provide energy to the electrical drive system of a car or train during acceleration. Nickel

metal hydride or lithium ion batteries are mostly used, with the later showing higher power, higher energy

density, and lower self-discharge rate. A battery can be formed by many cells. The rated voltage of the

commercially available batteries at the end of the first decade of the twenty-first century is in the range of
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250V; however, their operating voltage is in the range 150–270V, depending on the state of the charge. Large

battery installations require sophisticated battery charging systems to obtain the best possible performance

from the batteries, to lengthen the life expectancy of the batteries, to provide consumers with efficient charg-

ing, and to protect large financial investments. Such battery charging systems are power electronics circuits

that can adaptively adjust the charging current and cell equalization throughout the charging process.

For train drives of up to 100 kW power, the nominal DC-link voltage is 400V. Therefore, during accelera-

tion periods, the DC voltage of the battery has to be stepped up to the inverter DC-link bus. In addition, the
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Figure 1.3 Fuel cell stack followed by a power electronics converter. (a) Compact implementation. (b) Modular

implementation. (Reproduced with permission from L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-

DC converter concept for high performance and enhanced reliability,” IEEE Trans. Power Electronics, June 2009.)
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conversion electronic circuit has to assure a constant DC-link voltage at the consumer side despite varia-

tions in the output voltage of the battery. As the load also has a variable characteristic (depending, for

example, on the ground slope), even the DC-link voltage becomes variable without a control circuit. Thus,

the conversion circuit has to assure regulation for both changes in the battery voltage and load.

A hybrid electric vehicle has an additional advantage: regenerative braking. When braking or descending

a slope, the energy from the wheels is not lost but is conveyed back to the battery. This demands that the

conversion electronic circuit between the battery and the DC-link acts in this phase as a voltage step-down

circuit. A new type of constraint is thus imposed on the power electronics circuit: it has to allow a

bidirectional power flow, with time intervals when it steps-up and time intervals when it steps-down the

input voltage. In addition, for use in automotive applications, the power electronics circuit needs to meet

more features: low cost, minimization of the component size and count to get a low weight, good conversion

efficiency over a wide load power range, a compact design, and low electromagnetic interference (EMI)

emission. Reliability and safety are first to be ensured. The battery must be maintained within the range of

allowed voltage and current limits for preventing explosions or fire in the vehicle. If a high voltage for

driving the motor is needed, a series-connected battery string is used. To avoid charge imbalance among the

cells during their repetitive charging and discharging operation, which would affect both the whole capacity

and lifetime of the battery, a charge-type cell equalization converter is used. Therefore, to conceive a con-

verter for an automotive purpose means a new research and design challenge in power electronics: create

bidirectional and bipolar circuits that can give a smooth acceleration and deceleration of the entire vehicle.

1.1.5 Applications in electronic display devices

Electronic display devices with a large size, high resolution and high information capacity are in increasing

demand in the information and multimedia industry. The conventional inefficient cathode ray tube has been

replaced with various flat panel displays using electroluminescence, gas discharge or a liquid crystal tech-

nology. Plasma display panels (PDPs), which uses a gas discharge, and liquid crystal displays (LCDs) are

sharing the flat panel display market for the high-definition television at the end of the first decade of the

twenty-first century. (LCDs are optoelectronic devices. Electrical current passed through specific portions of

the liquid crystal solution causes the crystals to align, blocking the passage of light.)

The PDPs have a large screen size, wide view angle, high-contrast ratio, thinness and lightness, and long

lifetime. However, they are still expensive. A PDP contains three types of electrodes: the sustaining electro-

des X and the scanning electrodes Y on the front glass substrate, and the addressing electrodes A on the rear

glass substrate. The space between the opposing substrates is filled with a gas under pressure. An alternative

current high-voltage pulse applied between the electrodes X and Y will ionize the gas and create plasma. A

sustaining power electronics circuit is needed to invert a DC voltage to the required AC high voltage, high

frequency square waveform. The power electronics design for this specific application has to meet other

challenges, too: as the electrodes are covered by dielectric and magnesium oxide (MgO) layers, a parasitic

capacitance appears between the X and Y electrodes. In each switching cycle, an energy loss proportional to

this capacitance and the square of the amplitude of the pulses will appear, this energy being dissipated in the

inherent parasitic resistances of the switches. A special energy recovery circuit has to be added to avoid

such an energy loss. Such circuits contain additional switches, diodes and inductors. It is a challenging

problem for researchers in power electronics to find the best structure for the recovery circuit to concomi-

tantly accomplish a low cost, a reduced number of additional elements (to reduce the size), zero switching

losses in the switching devices, and a reduction in the gas discharge current flowing through the inverter

switches (to reduce the conduction losses and thus improving the luminous efficiency of the panel). As the

voltage pulses create excessive surge charging and discharging currents, EMI noises and heating will

become annoying. The design of the power electronics inverter with the energy recovery circuit will have to
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tackle this problem too. Simple ideas like that of using a current source built-in inductor in the power circuit

can increase the brightness of the display by reducing the transition time of the panel polarity. Approxi-

mately half of the cost of a PDP goes into the driving circuit. New solutions to reduce the cost and size of

the driver, and reduce the power consumption, have to be looked after by power electronics scientists.

Many of the information displays today are based on liquid crystal technology. Since LCD devices are

non-emissive, a backlighting source to give brightness is necessary. Cold cathode fluorescent lamps and

mercury-free flat fluorescent lamps are widely used for this purpose. To drive the lamps, a purposely

designed power electronics inverter for generating high-voltage pulses is used. The lamp uses a mixed gas

to generate a dielectric barrier discharge between a pair of electrodes. The inverter has not only to generate

the pulses which maintain the glow discharge but must also offer an energy recovery function. Since the

lamp requires narrow voltage pulses, additional coupled-inductor elements have to be used, giving the spec-

ificity of the power electronics circuit for this application.

However, both the cold cathode fluorescent lamps and mercury-free flat fluorescent lamps have their

problems. A new trend that began in the last years of the first decade of the twenty-first century was

the use of light-emitting diodes (LEDs) to give the necessary backlighting to the LCD panel. The new

solution offers some advantages: it is energy efficient, has a longer lifetime, is mercury free, and con-

sumes less power. Television sets containing this technology are known as LED televisions. A little

later (Section 1.1.9), some more details about LED technology and its requirements on the power elec-

tronics are given.

The beginning of the second decade of our century saw the development of OLED (Organic Light

Emmiting Diode) displays for TVs : Thin films of organic (carbon based) materials are placed between two

conductors. When electrical current is applied, a bright light is emitted. The OLED materials emit light and

do not require a backlight. OLED televisions are thinner, brighter, draw less power, offer better contrast than

previous displays.

1.1.6 Audio amplifiers

Conventional digital audio playback systems involve two main processes: the conversion of digital audio

data to low level analog audio signal using a high-precision digital-to-analog converter, and the amplifica-

tion of the analog signal using an analog power amplifier. Starting from the early 1980s, much research has

been devoted to developing different types of digital amplifiers that perform power amplification directly

from the digital audio data. This kind of amplifier is called a digital power amplifier and it has two main

features: elimination of the digital to low level analog signal conversion and improvement of the amplifica-

tion efficiency using a special type of power electronics circuit.

1.1.7 Applications in portable electronic devices

Portable electronic devices, such as digital cameras, cellular phones, smart cards, PDAs (personal digital

assistants), MP3s, i-phones, hand-held communication instruments, and so on, today represent a consumer

electronics industry in full flourish. Every day new devices are invented for a larger mass of customers.

The energy source is often a battery. The operation depends on a power supply circuit aimed at regulating

the supply voltage. For example, a 2.9–5.5V lithium battery can be used, the power electronics converter

having to provide a constant 5V voltage at a 48mA load current to a LED module in the portable device.

The main concerns in manufacturing these devices are miniaturization and low fabrication cost. The power

converter can be manufactured as a single chip or integrated into a system-on-chip (SoC). The reduction of

the area on silicon and printed circuit boards means a tinier size. A CMOS implementation of the electronic

circuit is favored. The size and height of the external components, like capacitors and inductors, will limit

the layout on the printed circuit board (PCB), and thus will affect the size covered by the electronic
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converter. Most of the power electronics circuits use inductors and transformers. However, the size of an

inductor is large and it is difficult to shrink its height. As, for portable devices, a DC isolation is not

required, transformers can be avoided. And, for eliminating inductors, a special type of power electronics

can be used: switched-capacitor (SC) converters.

Essentially, an SC power supply contains in its power stage only switches and capacitors. The lack of

inductors assures that the SC converter has a small size, low weight and high power density. The SC con-

verter is, consequently, the ideal power supply for mobile electronic devices. The theory of regulating the

converted energy by means of an SC circuit represents a special chapter in power electronics, which was

developed in the 1990s. Difficult questions, like the need for a non-pulsating input current and soft changes

in the capacitor charging current, for avoiding EMI noise, or finding structures and designs able to provide

an acceptable efficiency had to be answered. Regulating the output voltage for a broad range of variation of

the input voltage and/or load was a challenging task.

A recent application of the SC converter was in a nanosatellite (a satellite whose weight is under 10 kg),

where it was used to boost the energy provided by a photovoltaic solar array. Miniaturization of the electro-

mechanical systems on board, new MEMS propulsion systems, and small sensors made the realization of

such low weight space craft possible. They are highly cost effective in both terms of launch and building

costs. Little ground support is required for their operation. The photovoltaic array is the only source of

energy. The panel temperature varies between �80 �C in the lack of insolation to þ70 �C in sunlit condition.

During sunlight, the array has to provide the necessary energy on board and charges a battery that will be

used at eclipse. Several solar cells have to be connected in series to provide the required voltage at board,

thus increasing the weight of the energy system. By using a voltage step-up SC circuit, the number of solar

cells necessary can be significantly reduced. In the quoted application for an 8 kg remote sensing nanosatel-

lite, the power system had an overall weight of 750 g, with the solar cells array weighing 300 g, the battery

100 g, and the SC converter 350 g.

Switched-capacitor converters have also been proposed for use as the maximum power point tracker of

photovoltaic sources for portable electronic equipment. For example, in order to extend the battery backup

time of a personal computer, a photovoltaic array of 75 g with a 1mm thick Mylar sheet for protection of

70 g and 10 g of adhesives can be configured on the cover of the laptop. A high-power density SC MPP

tracker, weighting less than 50 g, may be housed in the laptop. Such an array can generate about 20W in

direct sunlight and about 4W in the shade.

1.1.8 Applications in high voltage physics experiments and atomic accelerators

The SC converters are based on previous charge pump circuits. J.D. Cockcroft and E.T.S. Walton (based on

an older idea of H. Greinacher from 1919) built the first SC charge pump circuit in 1932 and used it to get a

200 kV voltage needed in the first particle accelerator. From here, the first artificial nuclear disintegration in

history was performed. (Infamously, the Cockcroft–Walton voltage multiplier, built in 1937 at Philips, Eind-

hoven, in The Netherlands was part of one of the early particle accelerators used in the later development of

the atomic bomb.) Essentially, the first voltage multipliers were realized as a ladder network of capacitors

and diodes, stepping low voltages to high voltages. Unlike in transformers, the need for a heavy core or bulk

of insulation was eliminated in SC charge pumps, resulting in cheap and lighter circuits. However, they

suffered from many problems, including the lack of regulation for changes in the input voltage and large

voltage ripple in the output voltage, which restricted their use to light load applications only. Except for

high energy physics experiments, where voltages of millions of volts have been obtained in such a way, the

voltage multipliers have been used in lightning safety testing, X-ray systems, ion pumps, laser systems,

copying machines, oscilloscopes, and so on. However, to reach the modern SC converters of our times,

much research was needed, to solve the drawbacks of the SC charge pump circuits.
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Power electronics circuits used in particle accelerators operate in a highly hostile environment: high radi-

ation fluxes and stationary magnetic fields. For example, at CERN (The European Organization for Nuclear

Research, Geneva, Switzerland), where the world’s largest particle physics laboratory is situated, the con-

verters, placed at the very heart of the set-up in order to reduce power consumption, face a very high back-

ground magnetic field that can reach 4 Tesla. This excludes the use of magnetic materials in the inductor

cores. Only inductor-less or high frequency (MHz) converters employing an air core can be considered.

1.1.9 Lighting technology

Lighting consumes around 16–20% of the total energy a commercial building uses. To align the lighting

levels with human needs, and thus save energy, a dimming technology is used. For a linear fluorescent lamp,

the cathode voltage must be maintained while the lamp arc current is reduced. A dimmable ballast consists

essentially of a cascade of power electronics circuits: an EMI filter, an AC–DC conversion circuit (called

rectifier) that should also assure a high power factor, and an inverter which supplies the lamp. It will generate

a high voltage to ignite the lamp and then stabilize the current flowing through the lamp. To maintain a

sufficiently high filament temperature (>850 �C) over the dimming range, the ballast has to maintain the

filament voltage. To increase the efficacy, that is the luminance with respect to the input power, the ballast,

and thus the lamp, has to be operated at a frequency higher than 20 kHz. Moreover, the energy efficiency of

electronic ballasts has to be high, as they generate heat that is a burden on the air-conditioning system.

The recent advancement of light-emitting diodes (LEDs) opens a new era of lighting. The LED is an

electronic light source. Even if it was invented in the 1920s in Russia, it became a practical electronic com-

ponent only in 1960s. LEDs are used today in a large variety of applications, from street displays, traffic

lights, and lighting to remote controls, optoisolators, sensors, scanners, and so on. The LED is based on the

semiconductor diode: when the diode is forward-biased, electrons are able to recombine with holes, emit-

ting energy in the form of light. The effect is called electroluminescence. The color of the light is deter-

mined by the energy gap of the semiconductor. The first devices emitted only low-intensity red light but

nowadays a wide spectrum of colors is available, from green and blue to ultraviolet and infrared. Compared

with traditional light sources, LEDs have longer lifetime, lower power consumption, faster switching,

improved robustness, smaller size, are more resistant to external shocks, can focus their light, and produce

more light per watt, that is, are more efficient. It is estimated that the new LED lamps consume 50% less

energy than compact fluorescent lamps and have five times longer life. However, they require a more pre-

cise and a better heat management, as high ambient temperature can lead to overheating and failure. (Some

LEDs have also some disadvantages, such as the emission of more blue light, which is a hazard for eye

safety.) Similar to other diodes, the LED current is dependent exponentially on the voltage, implying that a

small change in voltage would give a large change in current. So, even if the voltage increases only slightly

over its nominal value, the current could increase seriously, thus deteriorating the device. Consequently, a

constant current electronic power supply has to be used. Since the power system of a building or a battery

cannot provide a constant current, any LED has to be accompanied by a power electronics converter, which,

for this application, has to withstand a high operating temperature.

1.1.10 Aerospace applications

In aircraft, the variable frequency (360–800Hz) energy supplied from the engine alternator has to be con-

verted to a fixed 400Hz power supply in a variable-speed constant frequency system. In hot-strip-mill drives

rated at more than 5MW, frequencies of around 40Hz are needed. Power electronics circuits, called cyclo-

converters, have to convert the input (line) frequency AC waveform of 50/60Hz supplied by the utility grid

to the higher/lower requested frequency.
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1.1.11 Power system conditioning

Active power filters based on solid-state switching elements are used for power conditioning: harmonics

filtering and VAr compensation in utilities lines. For example, high-speed trains, with powers in the 12MW

range, draw unbalanced varying active and reactive powers from the transformer, whose primary is con-

nected to the 154 kV utility grid. This causes imbalance at the terminals of the high-voltage utility system,

and serious deterioration in the power quality offered to other consumers connected to the same grid. Active

filters consisting of inverters using GTO (gate-turn-off) thyristors of a total ranking in the range of 48MVA

compensate for the voltage impact drop and sustain the power quality of the grid.

Power electronics technology has lots of applications in power systems. A unified power flow controller

is a device for controlling the active and reactive power flow on high-voltage transmission networks, so that

the system security, stability, voltage and frequency can be maintained.

Voltage sags are unavoidable brief reductions in the voltage due to momentary disturbances, such as

lightning strikes or rambunctious animals, on the power system. Nowadays, they are the major cause of

disruption in power supply systems and can lead to severe production process disruption and substantial

economic losses. Utility customers generally experience about five to ten voltage sag events a year. The

average magnitude of the sags is 70% of the nominal voltage. This is why cost-effective solutions like

power electronics-based dynamic voltage restorers that can help voltage-sensitive loads ride through

momentary disturbances have attracted much attention.

1.1.12 Energy recycling in manufacturing industry

Climate change is prompting a worldwide economic and industrial restructuring to confront global warm-

ing. Eco-friendly electronic products can help the environment and save consumers money by using less

electricity. The importance of energy efficiency in the whole chain of energy-related activities and energy

consumption in production cannot be disregarded. When a product is initially manufactured, it has to go

through a “burn-in” process to weed out components or systems with early failures, before customer deliv-

ery. In this process, the new product is operated at a full load for a few hours. This is an effective and

important procedure to improve the product reliability. However, traditional burn-in processes could con-

sume huge amounts of energy, particularly in energy-intensive manufacturing industries. A typical example

is in the power supply industry: manufacturers will burn-in every new power supply for four to twenty-four

hours before shipment. The conventional burn-in method was to connect resistors at the output of the power

supply to simulate the load condition, thus converting, and therefore wasting, all the electrical energy into

heat. The concept of using an energy recycling technique in conducting the burn-in process has become

increasingly popular in the power supply industry nowadays. The idea is to use an energy recycling device

(ERD) to recycle the output energy of the tested power supply by means of a grid-interactive inverter tech-

nology: instead of using resistors as a load, an ERD is connected to the output of the power supply under

test, and the output of the ERD is connected to the grid. Commercially available ERDs can recycle up to

87% of the electricity provided by the power supply. This can effectively reduce the electricity consumption

in the burn-in process, and thus indirectly reduce carbon dioxide emission. The ERD is implemented by a

power electronics inverter, which has to satisfy challenging requirements: its output waveform has to

include a very low content of harmonics so as not to disturb the main grid to which the energy is recycled.

1.1.13 Applications in space exploration

The conquest of the universe puts its tough and very diverse demands on research in power electronics

circuits: long life, high reliability, low mass/volume, high energy density, radiation tolerance, and wide

temperature operation. Future NASA objectives will include missions to Venus, Titan and Lunar quest. An
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electronic converter in a battery system in a Titan mission will have to be capable of operating at tempera-

ture extremes from �100 to 400 8C, in a Venus mission up to 500 8C, the span for a Lunar quest being from

�230 to 120 8C. Rechargeable electrochemical battery systems will have to offer more than 50 000

charge/discharge cycles (equivalent to 10 years operating life) for low-earth-orbiting spacecraft and up to

20 years operating life for geosynchronous spacecraft. Advanced electronic packaging for thermal control

and electromagnetic shielding will be necessary for the power electronics devices to enable and enhance the

capabilities of future space missions. The current state of the art cannot answer all these requirements, mak-

ing the field of power electronics specifically designed for space missions a hot research field.

The mobile Mars Science Laboratory rover launched in 2009 contains radiation-hardened power elec-

tronics to withstand exposure to radiation as strong as 100 kilorads for a long-endurance mission (the “rad”

is the unit of absorbed radiation, equal to 10 milligrays – the new SI unit for radiation): one Mars year,

which is equivalent to two Earth years, after landing.

To create the test backgrounds for simulating flight conditions from Mach 4.7 to 8 (a Mach unit is the

speed of the spacecraft divided by the speed of the sound), a NASA Scramjet test facility requires a 20MW

DC power supply able to power a plasma arc to heat the incoming air.

The power system of the International Space Station (ISS) contains much power electronics circuitry. The

energy supply is assured by photovoltaic arrays and batteries. The batteries store energy during “insolation”

periods and supply it to loads during orbital eclipses. The voltage output of the photovoltaic array is regu-

lated by a special unit. The 120VAmerican and 28V Russian networks exchange bidirectional power flow

via converter units. Converters step-down the 160V power to the secondary distribution system of 120V;

remote power controller modules distribute power to the load converters. A similar power distribution struc-

ture is used for satellites: the primary side of the system is formed by the photovoltaic arrays, battery and

power control unit; the secondary side is formed by the battery charge and discharge converters, and a low

voltage converter module of redundant DC-DC converters which feed the spacecraft loads as part of the

power distribution unit. The modularity makes it possible to vary the battery voltage and output power

levels, by adding or subtracting converter modules. Redundancy allows for re-configuration for different

missions. The need for bidirectional converters for battery charge/discharge functions and the requirement

of multiple loads asks for the development of bidirectional converters with multi-output voltage levels.

Power electronics are constituent parts of the power processing unit of spacecraft electric propulsion.

This unit provides power for the spacecraft “thruster” (which is a small propulsive device used in spacecraft

or watercraft for (a) station keeping, that is, for keeping a spacecraft in the assigned orbit, (b) attitude con-

trol, that is, for manipulating the orientation of a spacecraft with respect to a defined frame of reference, and

(c) long duration low “ thrust” acceleration. Thrust is a reaction force described quantitatively by Newton’s

second and third laws. When a system expels or accelerates mass in one direction, the accelerated mass will

cause a proportional but opposite force on that system). The power electronics converters used in this unit

have to meet tough requirements; in particular they have to rapidly supply a constant current to offset

thruster voltage variations, typical of a start-up period. These units have to generate a high voltage start

pulse to ignite up to four arc-jet thrusters for “north-south station” keeping orbit maneuvers, thus reducing

the propulsion system mass and reducing launch vehicle requirements (The “north-south station” is used to

correct the inclination of a satellite to keep it in a “geosynchronous orbit” – the meaning for an observer at a

fixed location on Earth is that a satellite in a geosynchronous orbit returns to exactly the same place in the

sky at exactly the same time each day).

Power electronics circuits at the board of a space/aircraft are also used to solve the incompatibility

between variable-frequency drives and the fixed 400Hz craft equipment, like the motors of the fuel or

hydraulic pumps. Variable frequency drives are superior to constant frequency drives, because they can

reduce the transient inrush current at motor start, or, in the case of fuel pumps, the variable-frequency drive

can assure that only the required amount of fuel is provided.
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1.1.14 Defense applications

The use of power electronics in the defense industry is becoming more and more extensive. Hybrid electric

combat vehicles are the army preferred vehicles for the twenty-first century. The converters at the board of

such a vehicle must have minimum volume, versatility, and high power quality. Substantial space can be

saved if the filter section commonly found in standard converters is eliminated. A new type of converter

(the “matrix converter”) was developed to satisfy this demand. These converters, which utilize the same

components as other power electronics circuits but with a different control sequence, can perform different

functions, thus reducing the logistic burden at the board of the vehicle. As the military vehicles face a harsh

environment, with a broader range of ambient temperature, thermal management of the electronic convert-

ers becomes more stringent.

Other harsh environmental conditions, particularly in defense applications, include moisture, dust, and

vibration. The resistivity of the materials involved in the devices of a power electronic system depends on

variable environmental conditions. High humidity may lead to corrosion. The behavior of the power elec-

tronics converter is dependent on its board layout. In highly sensitive systems, special design alternatives

are considered for diminishing the effect of unavoidable harsh conditions: the placement of the elements on

the printed circuit board may be changed, or the routing of exposed conductive layers may be modified.

In hazardous environment we shall never use non-isolated converters: metal contacts between the con-

verter and the voltage supply can create dangerous electrical arcs. Contact-less converters containing trans-

formers with a large air gap will be the preferred solution.

One of the critical problems facing soldiers on the battlefields of the twenty-first century will be the

availability of electric power. They will need voice, data and image transmissions over extended distances

and for long periods when detached from any supporting base. Multiperforming power electronics will have

to accompany the dismounted soldier. The USA Land Warrior Program considers two time frames – up to

2015 (“Force XXI”) and 2015–2025 (“The Army After Next”) – for equipping the necessary advanced low-

power circuitry. It is envisaged that the use of fuel cells instead of primary batteries for missions requiring

energy greater than 1 kWh could reduce the total mass of the energy sources by an order of magnitude. Of

course, the fuel cells have to be accompanied by suitable electronic converters to render them useful, as we

have seen previously. If the soldier uses a portable solar tent, containing photovoltaic panels, he has to carry

it to remote locations to run electronic devices. Often, these tents are placed near trees or fences and, as a

result, the solar cell becomes illuminated non-uniformly. The shading can cause performance loss that has

to be dealt with by the power electronics circuitry.

All-electric defense aircraft carriers are envisaged, with electric power used for everything, from propel-

lers, to aircraft launching catapults, to deck guns. Two types of power electronics will be required for two

specific applications: variable-speed motors in fuel pumps and vehicle drives, and precision-control

“actuators” for gun turrets and flight control (an actuator is a mechanical device that takes electrical energy

for moving or controlling a device). Both low power loads and high-power devices like radars, traveling

wave tubes, or electronic countermeasures will have to be supplied by the power distribution system.

The US Navy has its special requests. For example, for detecting sea turtle activities near naval bases,

such that the turtles would not be endangered by ships, the navy uses “hydrophones.” These are electronic

devices anchored to the bottom of the sea. Originally they were powered by batteries, which had to be

replaced frequently by divers, a costly and dangerous process. A new way for powering the hydrophones is

to use microbial fuel cells, which can “harvest” energy in the water by using the largely abundant bacteria

there, with certain electrochemical reactions generating electricity. These bacteria-based cells remain in

activity as long as there are living bacteria, with little maintenance. However, these alternative sources of

energy produce a very low power: the voltage output is less than 700mV, the current output is just less than

2mA. The supply voltage requested by a hydrophone is 3.3 V, at a load of at least 5mA. In open sea, it is not
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possible to stack several microbial cells in series, like batteries. Neither is possible to increase the current

capacity of the cell by increasing the surface areas of the anode and cathode of the cell, as this would result

in a hard-to-deploy cell. The solution belongs to power electronics: a circuit able to boost the cell’s voltage

to the load’s voltage level and accumulate energy from the cell to burst power to the load. Available power

electronics circuits draw high current at low voltage; such a current would exceed that supplied by a cell.

Therefore, at the low voltage supplied by the cell, the power converter could not even start up. A new type

of converter had to be developed for this application, one that can draw very low current from its input

source and use the energy received from the cell to charge a “supercapacitor.” Then, the supercapacitor

voltage is stepped up and stabilized by another DC-DC converter.

The specific demands and standards of the defense industry lead to the need for designing customized

power electronics.

1.1.15 Drives and high-power industrial applications

In the quest for modern applications of power electronics, particularly in consumer electronics, automotive

industry or spacecraft, do not forget that, initially, power electronics technologies were used in drives of DC

and AC motors in industry and traction. The role of the power electronics circuit was not only that of a

power supply. It was also used in controlling the induction motors speed. The high-power inverters used for

this purpose could assure a broad range of speed control, with excellent speed-control accuracy, and a con-

stant torque operation over a very large speed range. Many old industrial applications of power electronics

include heating, melting, and heat treatment of metals based on an induction heating method which requires

the use of inverters, electrochemical processes such as metal refining, electroplating, production of chemical

gases, or electronic welding. Medium power range driving applications include machine tools, paper mills,

textile mills, and pumps. In the high end of the power range, that of multimegawatts, applications like gas

line compressors, feed pumps, ship propulsion, or cement mills can be found. For example, adjustable-

speed pumped-storage systems in the range of 400MW have been used in hydroelectric power plants; the

motor is supplied by three-phase low-frequency AC currents produced by a cycloconverter connected to a

500 kV, 50/60Hz utility grid through a step-up transformer. Or, the use of power electronics-based variable

frequency drive in diesel–electric ship propulsion can save a considerable amount of fuel. It is estimated

that around 60–65% of the grid-generated energy in the USA is spent by electrical machine drives, around

75% of them being fan, pump and compressor type drives. Running the induction motors coupled to pumps

or fans at constant speed in traditional control of fluid speed, causes a lot of energy wastage, because it

creates fluid vortex. Replacing the system with a variable-frequency motor speed control can save much

energy. Variable-speed air conditioning can reduce the consumption of electricity. Specific power elec-

tronics are used to get load-proportional speed control of the air-conditioner pump. The glamorous applica-

tions discussed at the beginning of this chapter do not mean that the old uses of power electronics are less

important today than they were in the past.

The different applications discussed above are visualized in Figure 1.4.

1.1.16 Classification of power electronic circuits

As we can see, basically the energy conversion electronic circuits can be classified in four groups according

to the type of the input and output (load) power: DC-DC converters, where the controlled conversion is

from DC input to DC output, serving, in most of the cases, as switching mode DC power supplies; AC-DC

rectifiers, where the AC (single- or three-phase) input energy is converted to a DC waveform (in most of the

cases, besides the regulation function, a power factor correction function has also to be fulfilled); DC-AC

inverters, for the controlled conversion of DC electric power to single- or three-phase AC output of a certain
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frequency; and cycloconverters, where an AC electric power of a given frequency (most often, the line

frequency of 50/60Hz) is converted to an AC electric power of another frequency (or variable frequency, in

the case that the cycloconverter is used to control the speed of AC motors). Recently, with the advent of the

switching and modular techniques, the classical cycloconverters have lost ground to efficient AC-DC-AC

converters. Converters with more outputs are also available; for example, DC power supplies with different

load voltages.

A modern system contains a large number of power electronics circuits. For example, Figure 1.5 shows

the electrical network on a train of the Hong Kong railway. The electric power is transmitted to the trains

through the 1500V DC overhead lines, and is inverted into a three-phase 440V, 60Hz AC voltage, to supply

the AC loads. For supplying the DC loads, the 440VAC voltage is further transformed down and is rectified

into a DC voltage of 110V. This voltage is used for charging up the backup batteries and powering various

Figure 1.4 A tree of power electronics applications.

Figure 1.5 The architecture of the electrical system on trains in the Hong Kong MTR (mass transit railway).
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control units. However, it is energy inefficient to go through so many conversion steps in order to step-down

the 1500V DC to 110V DC. Present research looks for a way of realizing this conversion in a single stage.

The 110V DC is further converted to 24V DC and 12V DC for stand-alone applications (like information

boards in carriages). Again, a direct conversion from 1500V to 12V/24V is a serious challenge for power

electronics researchers.

From the applications described in this section, it can be seen that power electronics circuits penetrate all

the aspects of our life. These applications span from under 1W power hand-held gadgets to hundreds of

megawatt industrial processes, from under 1V voltage for supplying IC electronic circuits to hundreds of

kilovolt utilizations in experimental physics. In addition, it was also seen that each type of application

imposes certain specific requirements on the features of the power electronic circuit.

A modern design concept looks not only to the best circuit topology but also to the spatial design: compo-

nents that fit together as closely as possible, minimum empty space within the converter structure, and liquid

cooled thermal management based on short heat paths in the case of high-power applications. For example,

a bidirectional DC-DC converter used on a train can reach a power density of 40 kW/l at a power of 60 kW.

This is why an extremely large variety of energy conversion electronic circuits have been developed. In the

quest for better circuits – first of all with a better efficiency in processing the electrical energy in the energy-

saving conscious world of today and also pushed by new, more demanding applications – more challenges

are facing the people working in the power electronics industry, from researchers, designers, and manufactur-

ers, to those making use of these circuits. New and better power electronics systems are to be expected.

1.2 Basic Principles of Operation of a Power Electronics Circuit

When discussing different applications, it was noted that the purpose of a power electronics circuit is to

ensure a controllable output characteristic; for example, a constant output voltage which is supplied to a

variable DC load, or a controlled AC voltage for managing the speed of an AC motor. Therefore, regardless

of the type of application, the power electronics circuit is placed between the non-regulated input (whose

parameters, a DC or an effective AC voltage for example, can arbitrarily vary) and the load. This means that

all the energy is channeled through the circuit, that is, a power electronics circuit can be viewed as a power

processing system (unlike electronic circuits, used for example in communications, that serve for signal

processing). As the power electronics circuit is just an intermediate stage before the load, it is

unconceivable to lose much electrical energy in the processing stage, that is, even before the energy in the

desired form was supplied to the load. This is why the first requirement from this circuit is to process the

energy efficiently. It firstly means that dissipative resistors will never be used in its structure; this is easily

said but more difficult to be implemented: even if resistors are not inserted, all the other elements feature a

parasitic resistance. Taking into account that the current can reach a few thousand amperes in some power

applications, it means that even a small resistance will lead to a non-negligible loss of energy. For example,

a current sensor of 1mV resistance would dissipate 10W power in measuring a 100A current. Apart from

the efficiency problem, as the energy dissipated in the resistors is in the form of heat, complex thermal

management is required, resulting in higher production cost and larger physical size. Sometimes, resistors

are unavoidable, such as in current sensors for control purposes (today, new solutions of current sensing,

which do not make use of resistors, are being implemented more and more), or in some auxiliary circuits,

called snubbers, used for dissipating parasitic energy, which would otherwise destroy the switching devices

(today, non-resistive snubbers are being implemented more and more). All the power losses are converted in

the end into heat. This causes the devices within the converter to operate at high temperature, reducing their

lifetime and reliability. For converters of higher power, a rather large cooling system is necessary, any

increase in the efficiency having beneficial effects.
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To illustrate the principle of operation of a power electronics circuit, DC-DC converters will be consid-

ered. The input of these converters is often a battery or a rectified AC line voltage. They have to process a

variable DC (line/supply) voltage, Vin, in order to provide a constant output (load) voltage, Vout, despite

variations in the load value, R. How can such a goal be achieved? We know from basic electronics that, by

using a transistor operating in its linear region, we can regulate the output. However, in such a case, the

transistor is equivalent to a resistor (operating as a potentiometer). In power electronics such a technique

would lead to a loss of energy. In addition, it does not allow a step up of the line voltage, as is needed in

many applications. This is why we had to find another regulation approach in power electronics.

The solution we came up with is based on a switching operation. The simplest DC-DC converter’s struc-

ture contains one inductor, L, one capacitor, C, and a single pole, double throw switch (which is a simple

changeover switch having two positions) (Figure 1.6a). When the switch is in position (1), the energy is

transferred from the line to inductor L, by charging it (Stage 1; Figure 1.6b). The energy is stored in its

magnetic field. When the switch is moved to position (2), the inductor energy is transferred to the load

(Stage 2; Figure 1.6c), that is, the inductor is discharged. The switch position is varied periodically, all the

time, in a cyclical operation. The two topologies the circuit goes through cyclically are called switching

stages. We can notice immediately the role of the capacitor: it has to maintain the output voltage during

the first stage. As we want a constant Vout, it means that C must have a large value (output capacitors of

hundreds of mF are usual in power electronics), and the duration of the stage has to be very small in order to

prevent C discharging significantly. This implies that the switch operates with a high frequency. We shall see

that even the most classical converters were operating with frequencies up in tens of kHz. In the second stage,

the inductor energy also recharges C. As a basic law in Circuit Theory says that at the transition moment the

inductor current (iL) cannot change direction, it means that iL charges C at a voltage polarity opposite to that

of Vin. Thus, the polarity of Vout will also be opposite to that of Vin in the converter shown in Figure 1.6.

How can we assure a constant Vout if Vin has variations? Consider that for a certain (nominal) value of the

input voltage and for a certain (nominal) duration of the inductor’s charging stage, we get the desired output

voltage. Let us say that then Vin has a drop from the previous value. If we increase the duration of Stage 1,

the value of the transferred energy to L would be the same as in the previous case; therefore, in Stage 2, Vout

will remain the same. Similarly, if there is an increase in Vin, the duration of Stage 1 can be reduced, so as to

give less time to charging L (from a larger Vin now), the effect being again that the energy accumulated in

the magnetic field of L (and therefore Vout) is the same, regardless of the value of Vin. A similar operation

occurs if there is a change in the load value: by controlling the duration of the charging time of the inductor,

more or less energy is transferred to L (in order to cope with a variable load and thus assure a constant Vout).

Therefore, the switching action is essential, because by controlling the duration of the stages, the supply of

a constant voltage can be assured, despite variations in the line and/or load. These converters are also known

under the name of switching mode power supplies. The role of the inductor becomes clear: to assure a

controllable transfer of the energy from line to load. When Vin and R have nominal values, we say that the

converter operates in steady state.

To electronically implement the switch, we can use an externally controlled element, that is, a transistor,

T, and a diode D (Figure 1.6d). The driving signal of the transistor is denoted as d(t) (or vGS in case of

transistors of the MOSFET type). When the driving signal (Figure 1.6e) has the logical value (1), the tran-

sistor is on, the inductor is being charged, and the diode will be blocked by an inverse polarity. When the

driving signal has the logical value (0), the transistor is off, the inductor current needs to find a path for

continuing to flow, thus turning on the diode. Therefore, the diode acts as an automatically synchronous

switch with the transistor (Later we will see that in some modern applications with a low load voltage and

high output current, it is preferable to use transistor-based self-driven synchronous rectifiers instead of

diodes, as they have less voltage drop when conducting). The converter obtained in Figure 1.6d is called

buck-boost.
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The driving signal repeats itself with the periodicity Ts. Ts is called the switching period and its inverse, fs
(fs¼ 1/Ts), is called the switching frequency. The fraction of Ts for which the transistor is on is called the

duty ratio (or duty cycle), D:

D ¼ Ton=Ts

implying:

Ton ¼ D Ts; Tof f ¼ Ts � D Ts ¼ ð1� DÞTs

Ton and Toff are the respective durations of the switching stages 1 and 2 that form the switching cycle, Ts.

Clearly, D is a number that takes values between 0 and 1:

0 < D < 1

Therefore, for keeping Vout constant despite variations in line and load, we can vary the duty ratio, by keep-

ing constant Ts. Obviously, when Vin and R are at nominal values, D is also at its nominal value. This type of

control, with constant switching frequency, is called duty-cycle-control. We will see that there is also

another possibility for control, by varying the switching frequency.

Other two types of basic DC-DC structures are given in Figures 1.7 and 1.8. The converter in Figure 1.7 is

called boost. The operating principle is, of course, the same as for the buck-boost converter: when the

switch is in position (1) (Figure 1.7a), that is, when the transistor in Figure 1.7d is turned on, compelling

the diode to be turned off, the inductor is charged by the line voltage, Vin. This is the first switching stage

(Figure 1.7b). When the switch is in position (2), that is, the transistor is turned off, the inductor current

must continue to flow in the same direction, turning on the diode. This is the second switching topology

(Figure 1.7c), in which the energy from the line, together with the energy provided by the inductor in a

discharging operation, is transferred to the load. It is natural to expect that Vout would be larger than Vin.

In Figure 1.8, a buck converter is shown. With the switch in position (1), that is, when the transistor is

turned on, the diode is reversed biased, and the input energy is transferred concomitantly to the inductor, by

charging it, and to the load. It is natural to expect in this case that Vout is lower than Vin. In the second

switching topology, when the switch moves to position (2), that is, the transistor is turned off, the inductor

current continues to flow, turning on the diode. From this description of the switching operation, we can

notice that for buck and boost converters also it is possible to keep the output voltage constant under

variations of the line and load by playing with the duration of charging the inductor, that is, by adjusting the

duty ratio.

The three structures considered above are the basic DC-DC converters. The inductor in the boost con-

verter is connected to the line in both switching stages; this prevents large variations in the input current

during a switching cycle, as the input current is identical with the inductor current. In a first-order approxi-

mation, the input voltage source with the series inductor can be seen as a current source, giving a so-called

“current-driven” characteristic of the boost converter. (The approximation is more accurate at high frequen-

cies. For an ideal current source, one should be able to control its terminal voltage to an arbitrary value. By

imposing a voltage v different from Vin at the terminals of the cell formed by the line and L, a voltage

difference would be applied across the inductor, resulting in an increasing or decreasing inductor current).

As the capacitor serves to maintain the output voltage during a cycle, the parallel combination of capacitor

and load R can be seen, in a first-order approximation, as a voltage sink (Figure 1.9). On the other hand, the

output current of the boost converter would be given by the current through the diode in the absence of

capacitor C. Only an AC current flows through the output capacitor C. The output current of a boost con-

verter has a highly pulsating character during a switching cycle. In the case of the buck converter, the input
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Figure 1.7 Boost converter: (a) basic structure; (b) switching stage 1; (c) switching stage 2; (d) electronic

implementation.
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Figure 1.8 Buck converter: (a) basic structure; (b) switching stage 1; (c) switching stage 2; (d) electronic

implementation.
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current drawn from the line is given by the current through the transistor, therefore it has a very pulsating

character during a switching cycle (it is zero when the transistor is off). However, the output current, in a

first-order approximation, is given by the inductor current, as L, C, and R can be seen as a current sink

(Figure 1.10). The buck converter has a “voltage-driven” character. It is wrong to see the buck-boost con-

verter as a combination of a buck and a boost converter. In the case of a buck-boost converter, the inductor

switches from a connection to the line to a connection to the load in each switching cycle, giving a very

pulsating character to both the input and output currents. In addition, the output voltages of the buck and

boost converters have the same polarity as Vin, but Vout of the buck-boost has an opposite polarity to Vin,

giving the specificity of this converter.

Let us try to get, in a very approximate way, the relation between the output and input voltages of the

buck converter. Despite all the assumptions we make, later, when finding the exact equation, we will

be amazed how close to the correct result we arrive at in this section. Assuming 100% efficiency, we can

write that the output energy (or power) is equal to the input energy (or power), that is:

Vout Iout ¼ Vin Iin

As we have seen, in the first switching topology of a buck converter, of duration DTs, Iout� Iin, and, in the

second stage, Iin¼ 0, but Iout continues to flow, that is, Iin flows only for a DTs time duration and Iout flows

during all the cycle Ts. Therefore, we can say that approximately Iin is only the “D” part of Iout: Iin¼D Iout,

which substituted in the previous equation gives:

Vout Iout ¼ Vin D Iout

Figure 1.10 First-order approximation equivalent switching scheme of a buck converter (voltage-driven

converter).

Figure 1.9 First-order approximation equivalent switching scheme of a boost converter (current-driven

converter).
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implying:

Vout ¼ D Vin

For a better understanding of the process taking place in a converter, take as an example the buck con-

verter (Figure 1.11). Use an oscilloscope to visualize the voltage in a few parts of the converter. The voltage

waveform between nodes 1 and 2 is, of course, the input voltage, Vin. Between nodes 3 and 4, we see a

square pulse waveform with a height of Vin, and a width of each pulse of D Ts (because, when the transistor

is on and diode off, v34¼Vin, and, when the transistor is off and diode on, v34¼ 0, this repeating itself in

each switching cycle), that is, the DC waveform was transformed into a periodical one. At the load, we see

the voltage v56¼D Vin, according with the previous equation, that is, the periodical waveform was rectified

back to a DC one (this is why the output diode is also called rectifier diode). We can note that if Vin changes,

by changing the width of the pulse, that is, of D, we can assure the desired constant, Vout. Due to the approx-

imations considered here, we cannot yet see how Vout is kept constant for load changes; this will become

clear only when deriving the exact formula in the next chapter. From Figure 1.11, we see that the input

waveform of the block LC is a square pulse wave and the output is a constant voltage (as the converter

performs the role of a DC power supply, its output has to be a “clean” DC wave). We know that if we

perform a Fourier analysis of the square wave, we will find that it contains a DC component of value DVin,

a harmonic of the fundamental frequency, fs, and odd high-frequency harmonics. As, at the output, we must

get only the DC component, it means that the inductor and capacitor have to also fulfill the role of a low-

pass filter. In order to eliminate all the harmonics, including the fundamental frequency one, the corner

frequency of this filter has to meet the condition:

f c ¼
1

2p
ffiffiffiffiffiffi
LC

p � f s

If we imagine the Bode plot of the low-pass LC filter (Figure 1.12), the above condition would ensure

that the magnitude reaches minus many tens of db at the frequency fs, that is, even the fundamental

frequency harmonic is almost completely rejected from the output waveform (and so the higher frequen-

cies harmonics for which the magnitude is even more negative). The output results in an almost clean

DC, as required from a DC power supply.

However, the above formula, as simple as it is, creates the most difficult challenges in power electronics:

to meet it one has either (a) to design an inductor and a capacitor of large values, implying an undesirable

large size for the electronic supply and energy loss in the larger parasitic resistances of these reactive ele-

ments, or (b) to operate the converter at a very high switching frequency, implying a high frequency of turn-

ing the switches on and off, each operation taking place with loss of energy, as will be explained in the

following section. How to fulfill the above formula was a permanent objective in the development of power

electronics in the last decades; in the following chapters we shall see the appropriate solutions that have

been found.

A general structure for a switched-mode power converter is shown in Figure 1.13. It consists of four main

parts: an input filter, a power processing circuit, an output filter and a controller. Let us see their roles.

A switching operation always creates harmonics that could pollute the supply system. For example, since

the input current of a buck converter is highly pulsating, its frequency spectrum is widely spread. As a

result, the converter would generate electromagnetic interference (EMI). In Figure 1.14 we can see the

conducted EMI (this is the EMI reaching the supply source through the connecting wires, with the fre-

quency range from 9 kHz to 30MHz) of a 50W buck converter switching at 115 kHz. For the same con-

verter, Figure 1.15 shows the radiated EMI (this is the EMI radiated from the converter to the surrounding

air, with the frequency range 30–300MHz).
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Figure 1.12 Bode magnitude characteristic of a LC low-pass filter.

Figure 1.13 General structure of a switched-mode power converter.
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Figure 1.14 Experimental spectrum of the conducted EMI from a 50W buck converter switching at 115 kHz.

(y-axis: 10 dB/ div). (Reproduced, with permission, from: H. Chung, S.Y.R. Hui, and K.K. Tse, “Reduction of

Power Converter EMI Emission Using Soft-Switching Technique,” IEEE Transactions on Electromagnetic

Compatibility, August 1998.)

Figure 1.15 Experimental spectrum of the radiated EMI from a 50W buck converter switching at 115 kHz

(y-axis: 10 dB/ div) (Reproduced, with permission, from: H. Chung, S.Y.R. Hui, and K.K. Tse, “Reduction of

Power Converter EMI Emission Using Soft-Switching Technique,” IEEE Transactions on Electromagnetic

Compatibility, August 1998.)
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The statutory standards impose tough limits on the harmonic interference created by electrical equipment

into the power system. In order to prevent the switching harmonics from interfering with the supply source,

an input filter is used.

The switching circuit is the power processing stage, which consists of power semiconductor switches and

passive reactive elements, such as capacitors and inductors. For the buck-boost converter shown in

Figure 1.6d, the switching circuit consists of the switch, T, inductor, L, and diode, D.

The output filter is used to smooth out any switching harmonics at the output to get the desired output

waveform. As mentioned previously, in the buck converter the section LC plays the role of an output filter.

In other converters, sometimes we need to add one or more cascaded filter sections to enhance the quality of

the output waveform.

As discussed, it is not desirable to use resistors in the power processing stage. However, there are

practical applications that require using small resistors in the input and output filters to attenuate the natural

oscillations of the filters. For example, a small resistor would be connected in series with the capacitor of

the L-C-L output filter used in a grid-connected inverter.

Finally, the controller is used to generate gate signals to all active switching devices in the switching

circuit. In the past, all controllers were implemented with analog circuits. Nowadays, following advances in

microelectronics, hybrid controllers containing both analog and digital circuitry are becoming popular.

The analog part is characterized by fast response. This is why it is used for functions like short-circuit

protection, or in the ultra-fast transient control loop. The digital part is comparatively slower but it can be

programmed flexibly for different functions like housekeeping (start-up sequence, alarms) and control of

slow feedback loops.

1.3 Basic Components of the Power Circuit: Power Semiconductor Switches and Passive
Reactive Elements

As seen in the preceding section, any power processing stage contains switches. As, in power electronic

circuits, some critical features of the switches play a particular role, they are discussed in this section. We

can classify power semiconductor switches into three main categories. The first type is the uncontrollable

switch. Such a switch conducts automatically when it is forward-biased. The biasing condition is deter-

mined by the circuit comprising the switch. A typical example is the diode. It will automatically be in the

on-state when it is forward-biased. The second group is represented by semicontrollable switches. Such a

switch conducts when it is triggered by an external gate signal. It will automatically block when the current

flowing through the switch is zero. An example is the thyristor. The third group is formed by controllable

switches. The switch is turned on and off by an external gate signal. Examples include bipolar transistor,

metal oxide semiconductor field-effect transistor (MOSFET), insulated gate bipolar transistor (IGBT). New

field-effect transistors are fabricated by using semiconductors such as gallium arsenide (GaAs), gallium

nitride (GaN) or silicon carbide (SiC).

1.3.1 Uncontrollable switches – power diodes

A diode is a two-terminal device allowing unidirectional current flow. There are two main kinds of semi-

conductor diodes. These are the p-n junction diode and Schottky barrier diode.

The p-n junction diode is formed by joining two different types of semiconductor materials, one of

p-type and one of n-type (Figure 1.16a). The majority of carriers in p-type material are holes, while the

majority of carriers in the n-type material are electrons. The holes and electrons, in movement, combine

near the junction of the two materials, resulting in a depletion layer at the junction (i.e., a region in which
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all the mobile charge carriers have been removed, leaving none for carrying a current). A small barrier

potential across the diode is created. If a forward bias potential is applied to the diode, as in Figure 1.16b,

the depletion region will become narrow, reducing the resistance to the current flow. There is a voltage drop

across a conducting, forward-biased diode, which is called forward voltage. Typically, for silicon p-n

diodes used in electronic circuits of small current, this forward voltage is 0.7V. However, for power diodes,

the forward voltage can reach 1.4V. A reverse bias potential (Figure 1.16c) causes the depletion layer to

widen, increasing the resistance to the current flow. Actually, a very small amount of current can go through

a reverse-biased diode. It is called the (reverse) leakage current.
The Schottky barrier diode uses a metal–semiconductor junction, resulting in a low forward voltage drop

and high switching speed. Its forward voltage drop is around 0.15–0.45V. However, the Schottky diodes

feature a relatively high reverse leakage current, which increases with temperature. A new type of Schottky

diode is the silicon carbide (SiC) Schottky barrier diode, which uses a wide band gap semiconductor mate-

rial, SiC, instead of a silicon semiconductor. It has a lower reverse leakage current and a very fast operating

speed (the rate of change of the diode current for SiC diodes can be up to 1000A/ms, that is, five to ten times

faster than that for p-n junction diodes or silicon-based Schottky diodes). However, the leakage current of

SiC Schottky diodes is still larger than that of p-n silicon diodes. The electrical characteristics of SiC are

less sensitive to temperature variation.

The state of a diode is determined by the voltages and currents of the circuit in which the diode is con-

nected. When the diode is on, a current flows from anode to cathode through the p-n junction. When it is off,

its anode–cathode voltage is negative. The actual voltage on a diode in the off-state depends on the circuit to

which the diode belongs (e.g., in a buck converter operating in the first switching stage, the voltage across

the diode in off-state is equal to the input voltage of the circuit). When the diode is in conduction, the

average conduction power loss equals the product of the forward voltage and average anode current.

In high-power applications, when choosing a suitable diode, apart from considering the voltage and

current ratings, it is crucial to consider the turn-off characteristics. These characteristics are significantly

different for a p-n junction diode and a Schottky diode. The transition of a diode from a conduction state

(on-state) to a blocking one (off-state) is not instantaneous; rather, it comprises a complicated process.

During the forward conduction, there is an excess of minority carriers in each diode region (i.e., holes in

the n-region and electrons in the p-region). These carriers must be removed at turn-off. And the depletion

layer must be re-established for a diode to regain the blocking state. In power electronics, we need diodes

with a high switching speed. If the switching characteristics of the diodes are far away from an ideal on/off

operation, they may create energy losses and heat in other circuit components. This is why, in power elec-

tronics, the transition from the “on” to the “off” state of a diode, known as reverse recovery, has to be

studied in detail and measures taken to avoid negative effects either on the diode itself or on other elements

of the converter. In an ideal situation, at the on–off transition the current through the diode, ID, will decrease

Figure 1.16 Symbol and biasing conditions of a p-n junction diode: (a) symbol; (b) forward-biased; (c) reverse-

biased; (d) equivalent circuit in reverse-biased condition.
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linearly to zero and the diode will reach the blocking state. However, the current does not stop when reach-

ing zero but continues flowing in a reverse direction due to the minority carriers discussed above

(Figure 1.17). After a time, tr1, the reverse diode current will reach its peak, IDr(pk). During the period tr1,

the diode does not behave as being in the blocking state, that is, no high blocking voltage appears across it.

This causes other elements in the converter to have to support an additional voltage, leading to energy losses

and thus heat in other parts of the power circuit. Particularly if ID presents a large di/dt during this time, the

other elements have to absorb a larger switching energy, which hinders the power electronics converter from

being operated at very high switching frequencies. The duration tr1 depends on the time needed for the

minority carriers to be removed (swept out). It is, therefore, dictated by the design of the semiconductor

diode. When the depletion layer is re-established, the diode begins supporting the reverse blocking voltage.

Immediately after tr1, the reverse voltage reaches its overshoot peak (Vr(pk)). During the period tr2, the

reverse current drops to near zero, that is, reaches its value characteristic for the blocking state, and

the reverse voltage reaches its blocking value. The overshoot peak and the duration tr2 depend on both the

design of the semiconductor junction and the interaction with the inductance in the circuit to which

the diode belongs. As, during tr2, the diode is supporting the reverse voltage, Vr, and the current ID is only

slowly decreasing to its reverse value, IDr, their product produces a significant switching loss, which is

dissipated by the diode in the form of heat. Sometimes, an auxiliary circuit (snubber) may be needed to

dissipate this energy. At high switching frequencies, the heating process taking place in the rectifier diodes

has to be taken into account. The total recovery time, trr, is given by tr1þ tr2. Diodes presenting a reverse

recovery time of less than 500 ns are considered to be “fast” and those with trr of less than 100 ns as

“ultrafast.” Ultrafast diodes are available for voltages in the range 100–1500 volt. The recovery charge, Qrr,

may be approximated by considering the area covered by the negative diode current as a triangle:

Qrr ¼
IDrðpkÞ
2

trr

It also gives an indication regarding the energy spent in the reverse recovery of the diode.

Figure 1.17 Reverse recovery process of a diode.
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Schottky diodes can cease conduction faster than the p-n junction diodes, because there is nothing

for them to recover from (In Schottky diodes there are no minority carriers and no slow recombination of

p- and n-type carriers. There are only majority carriers in the semiconductor region that are quickly injected

into the conduction band of the metal contact in the recovery process.) The switching time for power

Schottky diodes is up to tens of nanoseconds.

For SiC Schottky diodes, the reverse recovery charge is zero, so the problem associated with the reverse

recovery characteristic does not exist. However, the cost of SiC Schottky diodes is a few times higher than

that of p-n silicon diodes.

During the reverse recovery process, the depletion layer is established. It is equivalent to a capacitance

that is charged by the reverse recovery current. This is why the equivalent circuit of a diode during

the reverse recovery time and blocking state contains a capacitance in parallel with an ideal diode

(Figure 1.16d). The value of the capacitance is a nonlinear function of the voltage across the diode. This

capacitance creates many practical problems in power electronics. When the diode turns off, due to the

reverse recovery current, this capacitance will resonate with the parasitic inductances in the circuit, creating

oscillations (called ringing). As a result, voltage stress on the diode appears.

When a power electronics circuit is designed, for choosing a diode we shall follow the procedure:

a. Calculate the required blocking voltage (i.e., the voltage at which the diode is submitted in the off-state,

as determined by the circuit in which the diode is embedded; for example, the input voltage for a buck

converter) and maximum current flowing through the diode.

b. Choose a suitable type for the diode (e.g., SiC Schottky diodes for high voltage applications where the

switching loss can be reduced significantly).

c. Choose a diode of voltage and current ratings that can sustain at least twice the required values as

calculated at point (a). Of course, the breakdown voltage of the chosen diode is higher than its voltage

rating.

For example, an often used diode is the ultrafast power diode having the part number MUR460. It has the

following characteristics: current rating of 4A, voltage rating of 600V, reverse current (IDr) of 250mA at

the junction temperature of 150 �C, forward voltage of 1.05Vat the anode current of 3A, and reverse recov-

ery time (trr) of 75 ns.

An example of SiC Schottky diode is CSD10060. It has the current rating of 10A, voltage rating of 600V,

reverse current (IDr) of 1000mA (maximum) at the junction temperature of 150 �C, forward voltage of 2.4V
(maximum) at the junction temperature of 175 �C and anode current of 10A. The distinct feature of this

diode is its zero reverse recovery charge.

A string of diodes is commonly used in high-voltage applications. As practically the diodes are never

completely identical, the steady-state voltage distribution along the string will be uneven. To balance the

voltages across each diode, we can connect a very large resistor in parallel to each diode. For ensuring

equal transient voltage distribution among diodes, we can connect a resistor–capacitor network in paral-

lel to each diode.

A normal diode permits a current flow only in one (forward) direction. If the breakdown voltage is

exceeded, the diode will fail and pass a large current in the reverse direction. The diode will be permanently

damaged. (The breakdown voltage is the maximum potential that can be applied across a semiconductor

before it collapses and starts conducting. The breakdown voltage of a diode is the minimum reverse voltage

that makes the diode conduct in reverse.)

A particular type of diode is the Zener diode. Its symbol is given in Figure 1.18. In a normal operation,

this diode permits current flow not only in the forward direction like a normal diode but also in the reverse

direction if the voltage is larger than the breakdown voltage. A Zener diode contains a heavily doped p-n
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junction. It is specially designed so as to have a greatly reduced breakdown voltage, the so-called Zener

voltage. If, in the reverse-biased region, a voltage larger than the breakdown value is applied, the Zener

diode will not break down like a normal p-n diode but will allow a current in the reverse direction. No

matter how high the reverse bias voltage is above the Zener voltage, the voltage drop across a Zener diode

conducting a reverse current is always equal to the Zener voltage value. This is why, Zener diodes are used

to regulate the voltage in electronic circuits.

In power electronics, the Zener diode is used either to generate a reference for the output voltage in the

control circuit of converters, or as a part in a protection circuit for shielding the gate of the switch or the

switch by itself from overvoltage, or as a voltage clamping device in a snubber for reducing the voltage

stress on the switching device. Except for the above applications, the Zener diode is seldom used in power

electronics, due to the considerable power dissipation when it conducts. The large conduction losses make

the use of the Zener diodes impractical as a voltage regulator in the power flow. Practical Zener diodes have

different breakdown voltages; for example, part 1N746A has a Zener voltage of 3.3V and its maximum

power dissipation is 0.5W. In the switch gate’s protection, we often use part 1N4744Awith a Zener voltage

of 15V and maximum power dissipation of 1W. In the overvoltage protection circuit for switches, part

1N5278 is used; it has a Zener voltage of 170Vand power rating of 0.5W.

1.3.2 Semicontrollable switches (thyristors)

Thyristor is a family name for bipolar devices which comprise four semiconductor layers. The most used

devices belonging to this category are the silicon-controlled rectifier (SCR), the triode for alternating cur-

rent (TRIAC), which is a bidirectional thyristor with five layers that can be also seen as a combination of

two thyristor structures, the reverse-conducting thyristor (RCT) and the gate-turn-off (GTO) thyristor. The

SCR is turned on by applying a gate signal to it. Except for the GTO, any other thyristor cannot be turned

off from the gate terminal. They can be turned off only by making the anode current zero.

A typical structure and symbol of an SCR are shown in Figure 1.19. The SCR was proposed in 1950 and

first manufactured in 1956.

When the anode voltage, VAK, is positive, the junctions J1 and J3 are forward-biased, but junction J2 is

reverse-biased, and a leakage current flows from A to K. The SCR is then said to be in a forward blocking

or off-state condition, and the leakage current is known as the off-state current, ID. If VAK is increased to a

sufficiently large value – larger than VFB (forward breakdown voltage) – an avalanche breakdown occurs in

the reverse-biased junction, J2. Since the other junctions J1 and J3 are already forward-biased, there will be

a free movement of carriers across all three junctions, resulting in a large forward anode current. The device

will then be in a conducting state (on-state). The on-state voltage drop across the four layers is equivalent to

that of two diodes connected in series. In the absence of a gate current, the SCR is turned on only by

increasing the anode voltage VAK over VFB. By applying a positive gate current, IG, the value of the mini-

mum anode voltage for turning on the SCR can be reduced (Figure 1.20). With the anode voltage already

positive, to turn on any thyristor we have to apply a gate current, IG, by using either gate triggering, or

irradiation in a light-activated SCR.

In the on-state, IA is dependent on the external circuit, such as the external impedance. However, to

maintain the required amount of carrier flow across the junction, the anode current IA must be larger than

Figure 1.18 Symbol of Zener diode.
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a value known as “latching current” (IL), otherwise the device will revert to the blocking condition if VAK

is reduced. This means that once the device is switched on, it remains latched in the on-state providing

that IA exceeds IL. Once a SCR is conducting, it behaves like a conducting diode and there is no control

over the device. The device will continue to conduct because there is no depletion layer at the junction J2
due to a free movement of carriers. With a gate current IG> 0, as long as the anode remains positively

biased the device cannot be switched off if IA exceeds the holding current value, IH. Only if the forward

anode current is reduced below the level known as the “holding current” (IH), would a depletion region

develop around junction J2 due to the reduced number of carriers, and the SCR would move to the block-

ing state. The turn-on characteristic of the SCR is given in Figure 1.20. After the SCR is turned on,

SCR
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Cathode (K)

Gate (G)
IG

IA

IK

Anode (A)

Cathode (K)

Gate (G)
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P2
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Figure 1.19 Silicon-controlled rectifier (SCR) and its symbol.

Figure 1.20 Turn-on characteristics of a SCR.
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depending on the circuit, the anode current varies between the values IH and IT, and the forward voltage

takes values between VH and VT.

Applying a negative (reverse) voltage on the SCR larger than VRB (the reverse breakdown voltage) can

cause the SCR to fail by punch-through of the reverse-biased junction J1. In a high-voltage SCR, such a

failure is prevented by using a thick N2 layer.

As discussed, reducing the anode current below the holding current (IH) is the way to turn off a thyristor.

There are two basic methods of achieving it, both making use of an auxiliary switch. The first one is to

connect an impedance in series with the thyristor, such that the current will drop to zero. The second one

consists of superimposing a negative current on the thyristor current, bringing it to zero; this can be realized

either by applying a reverse voltage across the switch or by creating a resonant path through the switch.

After a thyristor has been switched off by force commutation, a certain time must elapse before the anode

can be again positively biased. During this time, the remaining carriers recombine, re-establishing

the depletion layer. Such a long transition time makes the thyristor suitable only for applications with low

frequencies (50 or 60Hz). For higher frequency applications, fast thyristors are necessary. They are

obtained by diffusing into the silicon heavy metals ions which act as charge combination centers, or by

neutron irradiation of the silicon semiconductor.

At turn-on, the charge carriers start to spread across the junction. If there is a very steep rise in the current

(large di/dt) before enough horizontal migration of the carriers has been produced, the large current will

pass through a small area in the junction, raising the temperature very quickly and destroying the device.

To limit di/dt, we have to connect an inductor in series with the switch. In high-power applications, we

need a very large gate signal for triggering the switch. To create it, we use an auxiliary low-power thyristor,

which is driven by a small gate signal.

When the thyristor is off, it is not allowed to have a fast changing voltage waveform across it; otherwise,

if an even small amplitude voltage with large dv/dt is applied, it will result in a gate-cathode current (C
dv

dt
effect), triggering the switch involuntarily. To avoid such an action, either we insert an auxiliary circuit

between the gate and cathode to suppress the undesired gate signal, or we insert in parallel with the switch

(between anode and cathode) a capacitor or a resistor–capacitor circuit which will reduce dv/dt.

The main disadvantage of thyristors is their low-frequency operation (less than 1 kHz). This led to their

replacement by controllable switches in the range of powers and frequencies in which controllable

switches are available on the market. Today, thyristors are seldom used in low-power applications, where

they have been replaced by transistors. They are still used in protection circuits. For example, if an over-

current or an overvoltage appears in the converter, a thyristor in an auxiliary protection circuit will be

triggered, to lock up (latch up) the converter. The thyristor will remain in the conduction state until the

system is re-set. Thyristors are also used in low-cost low-power applications, such as AC-DC controlled

rectifiers in battery chargers for golf carts, or low-cost solar-powered inverters for lighting. The

area where thyristors are heavily used is the megawatt scale AC-DC rectification in high-voltage-DC

transmission (HVDC).

Recently, SiC thyristors have been developed. They have applications in high temperature environments,

being capable of operating at temperatures up to 350 �C. Inverters based on SiC thyristors have been pro-

posed; they could reduce the conversion losses by more than 50% compared to silicon-based inverters. Such

inverters can be used in heat pumps or in systems transferring power from windmills or solar sources to the

utility grid. There are available GTO thyristors made with SiC, that can offer 20–50 times lower switching

losses compared to silicon-based thyristors and lower on-state voltage drops for voltage ratings of more than

6 kV. They have found use in pulse power systems or in utilities. The SiC features a higher breakdown

electrical field, allowing for the fabrication of thyristors suitable for higher voltage applications than those

allowed by silicon-based thyristors.
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1.3.3 Controllable switches

There are three popular types of controllable switch for power electronics systems. These are the bipolar

junction transistor (BJT), the metal oxide semiconductor field-effect transistor (MOSFET), and insulated

gate bipolar transistor (IGBT).

1.3.3.1 Bipolar Junction Transistor (BJT)

A bipolar junction transistor (BJT) is a three-terminal current-operated device constructed of doped semi-

conductor materials. The three terminals are called base, collector and emitter (Figure 1.21). There are

two types of BJT: NPN and PNP transistors. Both of them have three layers. For the NPN transistors, as

shown in Figure 1.21, the three layers are arranged in the order: n-type, p-type and n-type semiconduc-

tors. For the PNP transistors, the order of the three layers is: p-type, n-type and p-type semiconductors

(Figure 1.22). The difference between them is in the way of biasing/turning on the transistor. In the case

of the NPN transistor, it is necessary to provide a positive current injected into the base. To turn on the

switch, a positive voltage has to be applied across the base–emitter junction. Conversely, for the PNP

transistors, it is necessary to draw a current out of the base. To turn on the switch, a negative voltage

has to be applied across the base–emitter junction. Similar to a diode having a depletion layer at the

junction between the p-type and n-type layers, the transistor has depletion layers at the two junctions n-p

and p-n, or p-n and n-p. Thus, similar to Figure 1.16d, there are capacitances formed across the junc-

tions, Cbe and Cbc.

The BJT has three operating regions: cutoff, linear (or active), and saturation. The operating region is

determined by the magnitude of the base current. If the base current, IB, is zero, the collector current, IC,

is zero. Thus, the transistor is in the off-state. If the base current is increased and the collector current is

proportional to the base current, the transistor is operating in the linear region:

IC ¼ b IB

where b is the DC current gain. There is a considerable power loss in the transistor when it conducts in

the linear region. (The base–emitter junction is forward-biased, but the collector–base junction is still

Figure 1.21 The NPN bipolar junction transistor (BJT): (a) structure; (b) symbol; (c) associated junction

capacitances.
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reverse-biased. So the collector–emitter voltage is not small, it is determined by the value of the collec-

tor current and the external circuit.) If the base current is increased to a value at which the linear

relationship between the base and collector currents does not hold any more, the transistor is said to be

in the saturation region. Then, the collector current is determined by the circuit and the base current has

to be maintained higher than IC/b. (In practice, we will maintain the base current at around 1.5–2.0

times the minimum required value, but not too high. Otherwise, there will be too much stored charge

in the base and this will lengthen the turn-off time, because at turn-off the charge has to be extracted

completely from the base.) Since the collector–emitter voltage is low as both semiconductor junctions

are forward-biased, the power loss in the transistor operating in the saturation region is small. This is

why, in power electronics circuits, a transistor is usually operated in either the cutoff or saturation

regions.

BJTs are current-driven devices. The gate drive circuit has to deliver sufficient base current to

maintain the on-state of the transistor. Nowadays, voltage-driven switches, like the MOSFETs dis-

cussed in the next section, have replaced BJTs in most cases because they do not require a continuous

current drive. However, in some applications, like the electronic ballast circuit using a self-oscillating

gate drive circuit, a BJT is preferable because the resonant inductor in the circuit can provide a cur-

rent driving signal.

The collector current is determined by the load current, which is considerably large in power elec-

tronics. The base current is proportional to the collector current in the linear region, implying that power

bipolar transistors consume considerable gate power. An intermediate low-power driving transistor must

be used to boost the base current of the power transistor. In high current applications, the following

Darlington structures are used for driving the main NPN power switch T (Figure 1.23). Depending on the

type of the driving transistor, Td, the equivalent structure of the complementary connection of transistors

T and Td can be of NPN type (Figure 1.23a) or PNP type (Figure 1.23b). The antiparallel diode shown in

Figure 1.23 is used for providing a path for the load current when the transistor is off. It is named the

feedback diode or protection diode. The resistors in the structures shown in Figure 1.23 have two func-

tions. One is to stabilize the collector current when the temperature of the switch increases, by diverting a

part of the base current. Otherwise, the base and collector currents will continue increasing, causing a

further rise in the temperature, which would attract a further rise in the current. In the end, the transistor

Figure 1.22 The PNP bipolar junction transistor (BJT): (a) structure; (b) symbol; (c) associated junction

capacitances.
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Figure 1.23 Darlington structures for driving power bipolar junction transistors: (a) NPN equivalent; (b) PNP

equivalent.
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will be broken down. This phenomenon is called “thermal runaway” (“secondary breakdown”). The sec-

ond function is to provide a discharging path for the B–E junction when the switch is turned off, thus

accelerating the turn-off speed.

When the base current is applied to turn on the switch, the B–E junction capacitance is charged firstly.

During this time, called the delay time, the collector current is still zero. After the voltage between base and

emitter has reached its threshold value (typically 0.7 V), the collector current starts increasing until it

reaches the load current, while the voltage between collector and emitter starts decreasing towards its satu-

ration value. This time interval is called the rise time, during which the transistor operates in the active

region. The turn-on time, given by the delay and rise times, can be significantly reduced by increasing the

rate and magnitude of the base current. After the turn-on process has been finished, the transistor operates in

the saturation region.

The turn-off process of a transistor consists of a storage time and a fall time. The storage time is the

time required to remove the charges from the base before entering the active region. During the storage

time, the collector current keeps its value. Then, in the active region operation, the collector current

starts decreasing towards zero, while the collector–emitter voltage starts increasing until reaching the

cutoff value. This time is called the fall time. For example, for the bipolar transistor BUL381D, for a

resistive load of 2 A and off-state collector–emitter voltage of 250V, the storage time is 2.5ms and the

fall time is 0.8ms. Such a very long transient turn-off time makes the BJT suitable only for low-

frequency applications.

1.3.3.2 Power Metal Oxide Semiconductor Field-Effect Transistor (MOSFET)

A MOSFET is a three-terminal voltage-operated device. The three terminals are called the gate, drain

and source. A MOSFET performs the same function as a BJT, with the basic difference being that the

MOSFET is a voltage-controlled device. The structure of a power MOSFET is different from that of

the one used in low-power electronics circuits. The former has a vertical structure, while the latter has

a planar structure. By using a vertical structure, it is possible for the transistor to sustain both a high

blocking voltage and high current. As shown in Figure 1.24, a MOSFET is formed by several layers,

nþ, p, n� and nþ. The low-resistance heavily doped nþ layer is connected to the drain terminal

through a metal connection. A lightly doped n� layer is placed on the nþ layer. Then, a p layer is

placed on the n� layer. Finally, another heavily doped nþ layer is placed on the p layer. The source

terminal is electrically connected to the top nþ layer through a metal connection. The superscript “þ”
signifies the fact that the regions are “heavily” doped. An insulator layer made of silicon oxide is

placed on the substrate on the top of the entire structure, its other side forming the gate terminal

through a metal connection.

If a positive voltage is applied between the gate and source, the gate will attract the n-type carriers into

the p-type layer. The n-type carriers will accumulate at the surface beneath the silicon oxide layer.

Thus, through the p layer, an n-channel between the drain and source is formed. The higher the gate voltage,

the wider the channel will be. The mechanism is similar to the function of the valve in the water pipe. The

valve is used to control the water flow, which is similar to the current flow. Moving the valve is similar to

changing the gate voltage. For the MOSFET to start conducting, the channel has to reach a certain width.

The value, VGS, for which this width is reached is called “threshold voltage,” VT. The current rating of the

power MOSFET is a function of the area of the horizontal cross-section, giving a full utilization of

the silicon layers, unlike in the planar structure where the current rating is dependent only on the width of

the channel. Similarly, the voltage rating and breakdown voltage of the power MOSFETs are functions

of the doping and thickness of all silicon layers, unlike in the planar structure where the voltage rating is
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dependent only on the width and length of the channel. This is why the vertical-type MOSFET is used in

power applications.

Similar to the enhancement-type low-power MOSFET, the state of the power MOSFET is normally off.

When there is a gate voltage applied to the MOSFET, its state will change into the on-state.

The MOSFET has three operating regions: cutoff mode, active (saturation) mode and ohmic (triode or

linear) mode. The resistance of the MOSFET operating in the cutoff region is very large, that is, the switch

is off. In the saturation region, the drain current is given by:

ID ¼ KðvGS � VTÞ2

where K is a factor depending on the physical parameters of the MOSFET and drain-source voltage, and VT

is the threshold voltage. In the ohmic mode, the drain-source resistance is given by:

rDSðonÞ ¼ 1

G ðvGS � VTÞ � vDS

2

h i

where G is a factor depending on the physical parameters of the MOSFET and vDS is the drain-source

voltage.

The value of rDSðonÞ of a p-type MOSFET is three times higher than that of an n-type MOSFET with the

same dimensions, due to the low mobility of the p-type carriers.

In power electronics, MOSFETs are operated in either the cutoff mode or ohmic mode, equivalent to a

switch operated in an off-state and on-state, respectively.

Figure 1.24 Power MOSFET structure: (a) vertical cross-section of an n-channel MOSFET; (b) symbol of

n-channel MOSFET.

Introduction 39



Due to the presence of the oxide layer, there is a capacitance between the gate and source, Cgs, and

a capacitance between the gate and drain, Cgd (also called the “Miller capacitance”) (Figure 1.25).

The nþ–p–n�–nþ arrangement between the drain and source forms a diode structure. This diode is

called the “body diode” and Cds is the capacitance of the junction. This diode allows a current flow-

ing in the opposite direction to the drain current. This is why it is also called antiparallel diode.

The switching speed of this body diode is typically very slow. In many applications, a path is needed

for a negative current (i.e., a current flowing in opposite direction to the drain current). How can we

prevent such a current from flowing through the slow body diode? We can insert a series diode with

the MOSFET that will stop any negative current and a fast diode in parallel with the MOSFET to

create the new path. So, to circumvent the body diode, we use the circuit shown in Figure 1.26: con-

nect a Schottky diode in series with the MOSFET and a fast recovery diode across the switch.

The Schottky diode has a low forward voltage drop, thus it will give low power dissipation when the

MOSFET drain current flows through it. A negative current will go through the fast recovery diode,

which has good turn-off characteristics.

Instead of switching between the cutoff mode and ohmic mode instantaneously, a MOSFET will go

through the saturation mode. The duration of the transition is dependent on the junction capacitances

associated with the MOSFET (Figure 1.25). To explain the turn-on and turn-off processes of a MOSFET,

consider, as an example, that the transistor is the main switch in a buck converter. In Figure 1.10, we saw

that the current flowing through the switch in the on-state is a constant, Iout, due to the presence of the

output inductor. Figure 1.27a describes graphically the turn-on process. When the switch is off, the

capacitances Cgd and Cds are charged, the voltage across them being the off-state voltage, VDS (which is

the input voltage for a buck converter or the output voltage for a boost converter), and Cgs is discharged.

When the switch is turned on, by applying the gate-source voltage, Cgs starts being charged and Cgd dis-

charged by the gate current. The drain current remains zero until VGS reaches the threshold voltage, VT.

The duration of this interval is given by the delay time, tr1. With a further increase in VGS, the MOSFET

starts conducting. The drain current starts increasing. The transistor is in the saturation mode. During this

interval of duration tr2, the drain-source voltage remains unchanged at its off-state value, Voff-state, due to

Figure 1.25 Parasitic capacitances and body diode in a power MOSFET.
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the presence of the conducting freewheeling diode in the buck converter which still carries a part of the

load current (Iout� ID). The process of charging Cgs and discharging Cgd continues. The duration tr2
depends on the values of Cgs, Cgd, and gate current. When the drain current reaches the on-state current

(which is the output current in the case of a buck converter or the input current for a boost converter),

VDS starts decreasing until reaching the on-state voltage. During the interval of duration tr3, VGS is kept

constant at its “plateau” voltage. Cds is discharged and Cgd starts being charged in a polarity opposite to

that in the off-state. The duration of tr3 depends on the value of the drain current. At the end of tr3, the

MOSFET is in the on-state (linear mode) and is equivalent to a resistance rDS(on) determined by the

physical parameters of the MOSFET, VDS, and VGS. The nominal value of this resistance is nonlinearly

dependent on the voltage rating VBV (the maximum voltage the MOSFET can withstand in the off- state).

It is given by:

rDSðon nominalÞ ¼ kV2:5�2:7
BV

where k is a constant depending on the switch geometry.

After tr3, the freewheeling diode starts the turn-off process, entering firstly into the reverse recovery

process. It will introduce a large oscillatory drain current. The magnitude of such an additional current

(current stress) depends on the converter structure (buck structure or boost structure, etc.), parasitic (stray)

inductances and capacitances of the converter, and the reverse recovery characteristics of the freewheeling

diode. This oscillation will settle into the final on-state current. In a buck converter supplied from a low

input voltage, the reverse recovery current of the freewheeling diode is relatively small. In boost converters

providing a high voltage, as in AC-DC rectifiers, such a reverse recovery current can take a very large value

because the freewheeling diode is submitted to the output voltage. With the recent advancement in SiC

diode technology, for which we saw that the reverse-recovery charge is close to zero, this problem becomes

less important. What still hinders today the wide usage of SiC diodes in industrial power electronics is their

high cost.

When the switch is on, Cgs and Cgd are charged at VGS, and the charge stored in Cds is very small. When

the switch is turned off, by bringing the gate-source voltage to zero, Cgs and Cgd start being discharged. For

turning off the transistor in converters with a single switch (like buck, boost, buck-boost converters), we

Figure 1.26 Circuit for circumventing the body diode of MOSFETs.
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Figure 1.27 Switching processes of a MOSFET in converters with inductors: (a) turn-on; (b) turn-off.
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Figure 1.27 (Continued )
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apply a negative gate drive voltage to increase the gate discharging current, and thus accelerate the decrease

of the gate-source voltage to zero. In the first time interval of the turn-off process (Figure 1.27b), VDS is

constant. VGS is decreasing until reaching the value:

VGS sat ¼ VT þ
ffiffiffiffiffi
ID

K

r

from where the drain current fulfills the equation characterizing the saturation mode. The duration of the

first interval is given by the delay time tf1. The delay time depends on the values of the gate current, Cgs and

Cgd. After tf1, the MOSFET is operating in the saturation mode, where the voltage on Cgs, that is, VGS_sat,

remains unchanged, Cgd is discharged and then charged in the reverse polarity, causing VDS to increase.

During this interval, the drain current remains unchanged. The interval of duration tf2 ends when VDS

reaches the off-state voltage. The duration of tf2 depends on the gate current and Cgd. At this moment, VGS

starts decreasing and the drain current follows it until VGS is equal to VT, when the drain current reaches

zero, meaning the end of saturation mode. The duration of this period is tf3 and depends on the values of the

gate current, Cgs and Cgd. Then, VGS is further reduced to zero and the switch is operated in the cutoff mode.

To control the speed of the turn-on and turn-off processes, that is, the duration of these processes, two sets

of gate resistors are usually used (Figure 1.28). When the switch is turned on, the gate current will flow

through Rg1. When the switch is turned off, the gate current will flow through Rg2.

MOSFETs have a positive temperature-resistance coefficient (the channel resistance will increase with

temperature). At a higher temperature, the drain current will reduce. This is why MOSFETs do not suffer

from secondary breakdown, as BJTs do.

To enhance the switching speed, the MOSFET has to be driven by a current source followed by a voltage

source. As shown in Figure 1.29, the totem pair formed by two bipolar transistors, T1 and T2, is used to

deliver the gate current to the MOSFET. When a gate signal is applied to the totem pair, T1 is turned on, T2
is turned off, and the gate voltage, Vg, is effectively connected to the gate. Since Cgs is uncharged (as the

MOSFETwas in the off-state), Vg will generate a large current through T1 and Rg1. When Cgs is charged up

(i.e., the MOSFET is in the on-state), the gate current is zero and the gate drive will maintain a constant

gate-source voltage. When the gate signal is brought to a negative value in order to switch off the MOSFET,

T1 is turned off and T2 is turned on. A negative voltage (�Vg) will be connected to the output of the drive.

Cgs will be discharged through T2 and Rg2 until it is fully discharged.

To protect the gate from damaging overvoltage, a Zener diode protection is necessary. The Zener diode is

chosen such that its breakdown voltage is equal to a voltage level which starts to be dangerous for the

Figure 1.28 Gate drive circuit for controlling the turn-on/ off speed.
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MOSFET’s gate. When the voltage VGS reaches a value larger than the breakdown voltage of the Zener

diode, the Zener diode in Figure 1.29 starts conducting, keeping (“clamping”) VGS at the Zener voltage.

As said before, we have to apply a voltage between the gate and source larger than the plateau voltage to

maintain the switch in the on-state. If the gate is referenced to the source and the source voltage is not fixed

(i.e., is “floating”), then the gate voltage, vG, has to be at least the source voltage plus the plateau voltage.

This cannot be accomplished if the source voltage reaches a high value. In such a case, a solution called

bootstrap circuit is used.

Figure 1.30 shows a circuit that produces a switching output voltage waveform. It contains two MOS-

FETs. As we can see immediately, we can turn on the low-side switch, S2, with no problem but we need an

additional circuit to turn on the high-side switch, S1. The power circuit is supplied by a DC source, Vdc, with

respect to the reference GND. The output voltage, Vout, is controlled by two MOSFETs, S1 and S2, which

are operated complementarily. When S1 is on and S2 is off, Vout is equal to Vdc. When S1 is off and S2 is on,

Vout is equal to zero. The gate drive circuit generates the gate signals Ho and Lo for S1 and S2, respectively.

The gate drive circuit is supplied by the source Vcc with respect to the reference Vss. The reference Vss is

connected to the source of the low-side MOSFET S2. However, the source of the high-side MOSFET S1 is

connected to Vout. The node Vout is floating because its voltage level is varying. Consequently, S2 will be

turned on if Lo is Vcc, and will be turned off if Lo is zero. It is easy to maintain S2 in the on-state, as its source

is connected to the ground, so its VGS becomes equal to Vcc. To turn off S1, it is also easy: the lower

MOSFET SB in the gate driver is turned on and the upper MOSFET SA is turned off. Thus, the gate-source

voltage of S1 is zero. More difficult is to turn-on and maintain so is the upper MOSFET S1. If S1 is on, the

voltage level of Vout is Vdc. In order to maintain the on-state of S1, the gate-source voltage has to be higher

than its plateau voltage. Then, how can the gate drive circuit maintain such a gate-source voltage? If Ho is

Figure 1.29 Gate drive circuit of a MOSFET using a totem-pair.
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Vcc, with respect to the reference GND (as it was the case of Lo when turning on S2), it is not enough to turn

on S1, as Vcc would have to be larger than the plateau voltage plus the potential Vdc with reference to GND

of the source of S1. An additional circuit is needed to create the desired voltage. A bootstrap circuit com-

posed of a diode, Db, and a capacitor, Cb, can achieve such a function. One plate of the capacitor is con-

nected to the source of S1.When S2 is on, through the path of diode Db, Cb and S2, the boostrap capacitor

is charged to Vcc with the polarity illustrated in the figure. To command S1 to turn on, SA in the gate drive is

turned on by Vg, and SB is turned off. Through SA, Cb appears in parallel with the gate-source of S1 in series

with the gate resistance. As Cb has been fully charged, a sufficient voltage will be applied between the gate

and source of S1. Thus, the on-state of S1 can be maintained. Consequently, no matter the value of Vout,

the gate driver can supply the necessary gate-source voltage to the high-side MOSFET with the bootstrap

circuit. Therefore, without the bootstrap circuit, Vcc (Ho) was being applied between the gate of S1 and

GND, which was requiring a high Vcc. With the bootstrap circuit, Vcc (the voltage on Cb now) is applied

directly across the gate-source of S1 in series with the gate resistance, which necessitates a lower Vcc.

The gate drivers are available in the form of integrated circuits. For example, for driving the switch in a

buck, boost or buck-boost converter, we can choose the driver MC34152, which has a maximum driving

current of 1.5A. If we need a bootstrap driver, we can use the chip IR2110.

A particular application of a MOSFET is as a Synchronous Rectifier (Diode). All the diodes in conduc-

tion, including Schottky diodes, have a relatively large voltage drop. In low-output voltage applications,

such a forward voltage drop would be significant, causing a large power loss relative to the output power,

being thus an important factor in the worsening of the efficiency. In such a case, it is preferable to replace

the diode by a MOSFET (which features a low rDS(on)) operated like a diode (Figure 1.31). Unlike the usual

way of operating a MOSFET, here the synchronous rectifier driver continuously senses the drain-source

voltage VDS. If VDS is positive, the body diode is reverse-biased, the driver will not generate any gate signal,

meaning that the MOSFET is in the off-state. When VDS becomes negative, the body diode is forward-

biased and the drain current starts flowing through it. If VDS is more negative than the “knee voltage” (which

is the forward voltage of the body diode, for example, �1V), the driver is designed to generate a turn-on

gate signal, and a channel inside the MOSFET will be created. Therefore, the driver is operated in a

Figure 1.30 Circuit for producing a switching waveform which uses a bootstrap circuit for driving the high-side

MOSFET.
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synchronized way with the body diode. Since rDS(on) is smaller than the forward equivalent resistance of the

body diode, the drain current will flow through the channel of the MOSFET. Thus, the power loss of a

synchronous rectifier is much lower than that of ordinary diodes. A typical application is the switching

mode power supply for the microprocessors in computers (the so-called voltage regulator module (VRM)

which is discussed in a later chapter).

Vertical MOSFETs suffer from high gate charge and gate capacitance due to the vertical trench gate

structure. When operated at very high switching frequencies, the gate drive loss becomes overwhelming,

mitigating the low conduction loss in the on-state resistance. MOSFETs serving as synchronous rectifiers in

applications like power supplies for microprocessors operate at switching frequencies well above 1MHz, at

voltages under 10V. In such cases, flip-chip lateral MOSFETs present superior performances. As the lateral

transistor has a small overlap area between its polysilicon gate electrode and nþ drain, its Miller capaci-

tance is smaller than in a vertical transistor. However, traditional lateral MOSFETs suffer from a relatively

high on-resistance due to a worse silicon utilization (the current flows horizontally along the silicon sur-

face). And this parasitic resistance increases with the device die size due to the resistance of the metal

interconnects. In 2006, the company Great Wall Semiconductor, USA, modified the metal interconnect

structure of the lateral transistor for attenuating the above deficiency. Its n-channel power MOSFET, type

GWS24N07CS, rated at 7 and 24A, presents a total parasitic on-resistance of 1.25mV and a total gate

capacitance of 22nC at a gate voltage of 4.5V. Its breakdown voltage is 11.5V. It can be used in converters

operated at switching frequencies of several MHz.

1.3.3.3 Insulated Gate Bipolar Transistor (IGBT)

The structure of an IGBT is quite similar to that of a vertical MOSFET. The difference is in that that the

lowest layer (connected to the drain terminal) in a MOSFET is a heavily doped nþ type region, but

the lowest layer (connected to the collector terminal) in an IGBT is a pþ type region. The function of the pþ

layer is to inject minority charges into the n layer while the IGBT operates in the on-state. This reduces the

on-resistance of the n layer, thus improving the conductivity. Consequently, high-voltage IGBTs with low

forward voltage drop can be constructed. The price paid for this advantage is the increased switching times

compared to those of a MOSFET, especially the turn-off time when the stored minority charges have to be

removed. As there is no way to actively remove them, they are slowly removed via recombination. So, the

Figure 1.31 MOSFET as a synchronous rectifier.
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current at turn-off decays slower than is the case in a MOSFET. As a result, the switching frequencies of

the converters using IGBTs are much lower than if MOSFETs were used. The turn-off current tail can

be reduced by adding a nþ buffer layer between the pþ substrate and the n� region (obtaining the so-called

PT-IGBT), improving the rate of recombination.

An insulated gate bipolar transistor can be seen as the equivalent of a bipolar transistor driven by a

MOSFET. The base of the equivalent BJT is actually the n layer of the IGBT. The IGBT combines the

characteristics of the BJT and MOSFET. As with BJTs, its voltage and current ratings are higher than

those of the MOSFETs. Instead of being a current-driven gate circuit like a BJT, the IGBT is a voltage-

controlled device, similar to a MOSFET. For large currents, the power dissipation of an IGBT in the on-

state is lower than that of a MOSFET. On the other hand, the turn-on and turn-off transients of the IGBT,

like those of a BJT, are slower than those of a MOSFET. Another disadvantage of the IGBT (a tail current

at turn-off) is discussed below.

Figure 1.32 shows the symbol and circuit model of the IGBT, in which the IGBT is modeled as a PNP

transistor driven by a MOSFET. In this model, the base of the BJT is connected to the drain of the MOSFET.

These two layers (base of equivalent BJT and drain of equivalent MOSFET) have different doping levels.

This is why there appears an equivalent resistance between them. The IGBT terminals are denoted as Gate,

Collector and Emitter.

As when we explained the switching processes for the MOSFET, let us also consider the case of a buck

converter (shown in Figure 1.10) for studying the turn-on and turn-off of an IGBT.

The turn-on characteristic of IGBTs shown in Figure 1.33a is a combination of the turn-on characteristics

of the equivalent driving MOSFET and BJT. When the switch is turned on by applying the gate-emitter

voltage, VGE, Cgs and Cgd of the driving MOSFET start being charged, respectively discharged by the gate

current. The drain current of the MOSFET remains zero until VGE reaches the threshold voltage, VT. So, the

collector current of the IGBT also remains zero. The duration of this interval is given by the delay time tr1.

With further increase in VGE, the MOSFETand BJT start conducting. The collector current starts increasing.

During this interval, of duration tr2, the collector–emitter voltage of the IGBT remains unchanged at its off-

state value, Voff-state. The process of charging Cgs and discharging Cgd continues. The duration tr2 depends

Figure 1.32 IGBT: (a) symbol; (b) equivalent circuit model.
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Figure 1.33 Switching processes of an IGBT: (a) turn-on; (b) turn-off.
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Figure 1.33 (Continued)
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on the values of Cgs, Cgd, and gate current. When the collector current of the IGBT reaches the on-state

current, Iout, VCE starts decreasing. During the duration tr3, Cds is discharged and Cgd starts being charged

in the polarity opposite to that in the off-state. The duration of tr3 depends on the value of the drain current

of the MOSFET. At the end of tr3, the MOSFET is in the on-state (linear mode), its drain-source voltage

having reached the on-state value, but the BJT is still in the active region because of its slow switching

speed. The rate of reduction of the collector–emitter voltage of the IGBT, VCE, is reduced. It takes a further

duration tr4 to fully turn on the BJT, and thus the entire IGBT. At the end of tr4, the collector–emitter volt-

age of the IGBT reaches Von�state.

To turn off the switch, the gate-source voltage is brought to zero. Cgs and Cgd of the driving MOSFET

start being discharged. In the first time interval of this process, VCE of the IGBT is constant. VGE is

decreased until the value at which the MOSFET enters the saturation mode. The duration of the first interval

is given by the delay time tf1. The delay time depends on the values of the gate current, and of Cgs and Cgd of

the MOSFET. After tf1, the MOSFET is operating in the saturation mode when the voltage on Cgs, that is,

VGE_sat, remains unchanged, Cgd is discharged and then charged in the reverse polarity, causing VDS of the

driving MOSFET to increase, and so VCE of the IGBT. During this interval, the collector current remains

unchanged. This interval, of duration tf2, ends when VCE of the IGBT reaches the off-state value. The dura-

tion tf2 depends on the gate current and Cgd. The voltage across the freewheeling diode of the buck converter

(Figure 1.10) is given by Vin�VCE, that is, up to now, this diode was reversed-biased. At the end of the tf2
interval, this diode becomes forward-biased, starting to take a part of the load current (Iout� IC). The collec-

tor current and the drain current of the MOSFET start decreasing, and the voltage VGE follows it until VGE is

equal to VT, when the drain current of the MOSFET reaches zero, meaning the end of the saturation mode.

The duration of this period is tf3 and depends on the values of the gate current, and of Cgs and Cgd. However,

the collector current, IC, of the IGBT has not yet reached zero, because there is still some charge in the base

of the BJT. Then, VGE is further reduced to zero and the MOSFET is operated in the cutoff mode. Since the

equivalent MOSFET has completely turned off, the charge stored in the base of the BJT cannot be com-

pletely removed. Thus, there appears a “tailing” of the collector current after tf3. The tailing period, tf4, lasts

until all charges at the base of the equivalent BJT are completely recombined in the base layer (the actual n

layer of the IGBT).

1.3.4 Gallium nitride (GaN) switch technology

As already seen, the transistor is the main switch in power electronics. In its evolution during the second

half of the twentieth century, the fabrication technology has continuously been improved, moving from

using silicon to gallium arsenide (GaAs) semiconductors. The silicon power transistor has approached

maturity, where small improvements involve large manufacturing costs. The first decade of the twenty-first

century saw the appearance in the semiconductor-based switching devices world of a new material, gallium

nitride (GaN). Gallium nitride is able to be operated at high frequency and high power. It has a wide band

gap of 3.4 electron volts (eV), compared to that of 1.11 for silicon and 1.43 for GaAs. (The band gap repre-

sents the amount of energy required to free an electron from an outer orbit around a nucleus to become a

mobile charge carrier. The eV is a unit of energy, 1 eV¼ 1.6� 10�19 J). A large band gap means that it is

not easy to release free electrons, even at a higher temperature. In consequence, the performance of a GaN

transistor is maintained up to a higher temperature than that of a silicon transistor (the band gap reduces

with the temperature, so a large band gap provides more stability margin). Therefore, GaN transistors can

operate at higher temperatures and higher voltages compared to silicon transistors. High conduction elec-

tron density, high electron mobility and wide band gap make GaN transistors exhibit a very low on-state

resistance for a given reverse voltage capability. Gallium nitride-based power devices are starting a new era

of high density, high efficient and cost effective power conversion circuits. They can operate in hot, harsh,
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radiation field, and high-power environments, extending the use of the switching devices to areas previously

prohibited by the limitations imposed by less tolerant silicon transistors.

A metal oxide field-effect transistor based on a single crystal GaN was fabricated in 1993. The GaN

layer was deposited over a sapphire substrate. Its gate (channel) length was 4mm. One of the problems of

GaN technology is the self-heating effect due to the extremely high power density involved and a large

thermal resistance of the device structure. Self-heating can result in abrupt increase of the local tempera-

ture leading to a thermal breakdown at lower bias voltages. Another technological problem was the inter-

face between the insulating layer (oxide) and the substrate body. In 2008, a new GaN MOSFET prototype

was fabricated with a good interface. In 2009, a high-electron-mobility-transistor (HEMT) using a three-

layer structure – n-GaN, AIN (aluminum nitride), n-GaN – was developed. It allowed the switch to be

completely off when a voltage of less than 2V was applied to the gate. These GaN HEMT were claimed

to have less than one-fifth of the conduction losses in the on-state of those of the silicon transistors, as

well as excellent high-speed characteristics, implying switching losses of 1% of those of silicon transis-

tors (Figure 1.34a). Also in 2009, a gallium nitride-on-silicon 30V rated power MOSFET (GaNpowIR)

with a very low on-resistance for a given reverse voltage capability was introduced. It is claimed that it

allows the switching frequency of converters to be raised to 5MHz while holding efficiency constant. A

roadmap for a 200V GaN-on-Si based HEMT forecasts a rDS(on) of 5mV. A comparison of the rDS(on) of

silicon-, SiC- and GaN-based transistors is given in Figure 1.34b. Gallium nitride-based diodes feature

the same low reverse recovery charge as SiC diodes, due to the absence of minority carriers. Gallium

nitride technology is envisaged to be used in making hybrid ICs out of both silicon and gallium nitride

for distributing power on chips.

We can expect that the second decade of the twenty-first century will see more advances in GaN technol-

ogy. As we can see in Figure 1.34b, GaN-based transistors have the potential of much higher breakdown

voltages, making them useful in very high-voltage applications where the use of SiC-based transistors is

penalized by their large on-state resistances. It seems that the actual implementations of GaN transistors in

the first decade of the twenty-first century are a long way away from the limits of this technology.

1.3.5 Energy losses associated with power switches

An ideal switch has zero resistance in the on-state and zero leakage current in the off- state. Its turn-on and

turn-off times are zero. Thus, it has zero power loss. However, in practice, the non-ideal characteristics of

the switch cause power loss. The power losses can be classified into four types.

1.3.5.1 Switching Losses

We saw in Section 1.3.3.2 that when a switch is changed from the off-state to on-state (Figure 1.27a), or

from the on-state to off-state (Figure 1.27b), there is a transition time until it is fully turned on or off,

respectively. During the transition periods of duration tr2þ tr3 and tf2þ tf3, respectively, both the switch

voltage and current are non-zero. For converters with inductors, as considered in Section 1.3.3.2, assuming

that the trajectories of the switch voltage and current are straight lines and neglecting the reverse recovery

current of the freewheeling diode, the turn-on switching power loss, Psw(ON), and turn-off switching loss,

Psw(OFF), can be calculated as:

PswðONÞ ¼ Vof f state Ion state

2
ðtr2 þ tr3Þf S

PswðOFFÞ ¼ Vof f state Ion state

2
ðtf2 þ tf3Þf S
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Figure 1.34 (a) HEM-MOSFET with three-layer structure. (b) Comparison of rDS(on) for silicon-, SiC-, and

GaN-based transistors. (Reproduced with permission from N. Ikeda et al., “High power AlGaN/ GaN HFET

with a high breakdown voltage of over 1.8 kV on 4 inch Si substrates and the suppression of current

collapse,” Proc. of the 20th Int. Symp. on Power Semiconductor Devices & ICs, 2008 Orlando, FL,

pp. 287–290.)
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We shall see later in this chapter that there are converters without inductors. In such a converter, each switch

is connected only between two capacitors, or a voltage source and a capacitor. The equivalent circuit

is shown in Figure 1.35. The transient process is a little different from that explained in Figure 1.27 for

converters with inductors. In the turn-on process, at the end of the delay interval, tr1, when VGS reaches VT,

the drain current starts increasing. However, now there is no freewheeling diode in conduction to keep VDS

constant. As we can see in Figure 1.35, when ID starts increasing, VDS, which is given by Vin� rCID�VC

starts decreasing. The operation in this region finishes when VDS drops to Von_state, which marks the end of

the turn-on process (Figure 1.36).

In the turn-off process, at the end of the delay interval, tf1, when VGS reaches VGS_sat, unlike converters

with an inductor where the switch current is maintained by the inductor connected to it, now the drain

current starts decreasing. VDS starts increasing as VDS equals Vin� rCID�VC. The turn-on power loss,

PswðONÞ, and turn-off power loss, PswðOFFÞ, are:

PswðONÞ ¼ Vof f state Ion state1

6
tr2 f S

PswðOFFÞ ¼ Vof f state Ion state2

6
tf2 f S

where Vof f state is the off-state voltage, Ion_state1 is the switch current when the switch becomes fully turned

on, and Ion_state2 is the switch current prior to the turn-off of the switch. (We leave the reader to prove the

above formulas.)

The switching power loss will be dissipated as heat in the switch. It is very important to reduce it.

1.3.5.2 Off-State Leakage Power Loss

When a switch is off, its equivalent resistance is large but not infinite. There is a small leakage current

flowing through the switch that is generally neglected. However, there are a few cases when we have to take

Figure 1.35 Equivalent scheme of a switching circuit without inductors.
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Figure 1.36 Transient processes of a MOSFET in a converter without inductors.
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it into account; for example, in Schottky diodes, or in converters operating at a very high switching fre-

quency. At high frequencies, the effect of the junction capacitance of the switch becomes dominant, causing

resonance with the stray inductances in the circuit and, thus, high-frequency oscillations (leading to ringing

or spikes). For example, the junction capacitance of the main switch in a converter with transformer (of the

types we will see in the next chapter) will resonate with the self-inductance of the primary side of the trans-

former. Therefore, in such a situation the leakage current through the junction capacitance causes leakage

power losses.

1.3.5.3 Conduction Power Loss

When a switch is in the on-state, there is a finite voltage drop across it, causing energy loss as heat. The

power loss, PON , is:

PON ¼ 1

TS

Z Tsw

0

isw onðtÞvsw onðtÞdt

where Tsw is the time when the switch is in conduction (this time is called duty time), isw_on is the current

through the switch, and vsw_on is the voltage across the switch in conduction.

The manufacturers of switching devices have continued to reduce the on-state resistance of

MOSFETs and on-state voltage drop of IGBTs, in order to reduce the conduction loss. For example, for a

30V rated MOSFET, the value of rDS(on) for the 7th generation in the year 2000 was 5mV, dropping to

3mV for the 9th generation in 2005, and 1.7mV for the 11th generation in 2010.

1.3.5.4 Gate Drive Power Loss

It requires power to drive semicontrollable and controllable switches. For example, when driving a

MOSFET, we charge Cgs at the gate voltage, VGS, when turning it on, and then dissipate this energy

(Cgs V
2
GS=2) as heat when turning it off. To reuse this energy, we have started to introduce advanced

gate driving technologies. We shall discuss them in Volume III in the chapter about resonant

converters.

1.3.5.5 Heat Sinks

To dissipate the heat produced by the energy losses in the switches, devices called “heat sinks” are

included in converters. By calculating the total dissipated power, and taking into account some thermal

coefficients given in the datasheet of the switch (called thermal resistances, specified in �C/W) and the

temperature of the ambient space, we can calculate the necessary heat sink. By using heat sinks, we have

to make sure that the surface temperature of the device is maintained within the manufacturer’s specified

range, for example less than 120 �C, to ensure the reliability and life expectancy of the power switches.

After the prototype is realized, the temperature of each switch is measured by using thermocouples or a

thermal camera. If the temperature range is surpassed, the heat sink has to be re-designed. The actual

mounting of the heat sink (e.g., a large one for all switches, or individual ones for each device, etc.)

depends also on the switches’ location. Both the effectiveness of the heat dissipation and the size of the

converter depend on how well the thermal design is realized. In high power applications, a cooling fan can

be used to realize an effective transfer of heat to the ambient space. In Volume V, a special section is

dedicated to packaging and thermal design.
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1.3.5.6 Outline for Choosing a Transistor

When a power electronics circuit is designed, for choosing a transistor, the following procedure will be

followed:

a. Calculate the required blocking voltage (the maximum designed value of Voff_state plus a 20% margin)

and maximum current (the maximum designed value of the switch current plus a 20% margin).

b. Choose a switch (MOSFET or IGBT) of voltage and current ratings 1.5–2 times the required values as

calculated. MOSFETs are used in high-frequency and low-voltage applications, while IGBTs are used

in low-frequency and high-voltage applications (as can be seen in Tables 1.1 and 1.2).

c. Based on the available options from item (b), choose the one with the lowest on-state resistance

rDS(on) (for a MOSFET) or the lowest on-state voltage drop Von_state across the switch (for an IGBT).

d. Check the turn-on and turn-off times of the chosen switch to make sure that the total switching time is

much shorter than the switching period, Ts.

In applications where the switch current is high, we prefer to use several MOSFETs connected in parallel

to reduce the total equivalent on-state resistance. Of course, this is at the expense of needing more drivers

and, consequently, a higher current driving capability. Each MOSFET is chosen to carry only one part of the

switch current calculated at stage (b). An application known by all of us is the radio-controlled toy car

where the speed controller makes use of up to eight, or even more, MOSFETs in its converter.

We can conclude the discussion about the switching elements with a figure showing the power and

switching frequency range of availability of different types of switches: thyristors, GTOs, IGBTs,

MOSFETs, when different technologies are used (Figure 1.37). The SiC-based switches have still further

potential for improvement.

Figure 1.37 Present power and switching frequency range of available switches.
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1.3.6 Passive reactive elements

1.3.6.1 Capacitors

A capacitor is formed by two conductive plates with a dielectric between them. The dielectric is an insula-

tor. The capacitor is a circuit element that stores energy in its electrical field. Its capacitance, C, depends on

the permittivity of the dielectric, e (permittivity is a property associated with how much electrical charge a

material can store in a given volume), cross-sectional area of the plates, A, and distance between the two

plates, d:

C ¼ eA
d

Each practical capacitor presents a loss. One of the models of a practical capacitor is an ideal capacitor in

series with a resistor, rC, called equivalent series resistance (ESR), shown in Figure 1.38a.

The quality factor, Q, of a capacitor is a dimensionless number defined as the ratio between the capaci-

tance reactance and its ESR:

Q ¼ 1

vC rC

Usually, we use an alternative term: loss angle, loss tangent, or dissipation factor, to render evident the ESR

of a capacitor (the loss tangent is defined as ESR over reactance, that is, is 1/Q).

In power electronics circuits we use several types of capacitors. They differ in the dielectric medium

and physical form. When we chose a capacitor in the design of a converter, we had to take into account

the voltage rating of the capacitor, its calculated capacitance value, the operating frequency, physical

dimensions, and life expectancy. It is important to make sure that the root-mean-square value of the cur-

rent ripple flowing through the capacitor is within the specifications, to avoid overheating of the device

due to the dielectric and equivalent series resistance losses. Related to capacitors, we shall use the follow-

ing terms:

� “Dielectric strength” is the maximum electric field strength that the capacitor can withstand without

breaking down (i.e., without experiencing failure of its dielectric properties).
� “Leakage current” refers to a gradual loss of energy from a charged capacitor. Due to the imperfection of

the dielectric materials, which are not perfect insulators but have some non-zero conductivity, the

dielectric allows a small amount of current to flow, slowly discharging the capacitor. However, the leak-

age current is very small, so in most applications in power electronics it can be neglected.
� “Temperature coefficient” is the change of the capacitance with temperature.
� “Equivalent series inductance (ESL)” is mainly caused by the leads used to connect the plates to the

outside circuit and the interconnects used to join the plates together. Any capacitor operating at a very

high frequency ceases to behave like a pure capacitance. Its equivalent model is shown in Figure 1.38b.

For example, for a 220mF aluminum electrolytic capacitor, the measured ESR and ESL are 0.185V and

15 nH, respectively. The impedance characteristics of this capacitor are given in Figure 1.38c. We can

see that the capacitor behaves like a resonant circuit, and starting from the frequency of 98 kHz (called

the resonant frequency) the ESL can no longer be neglected. For modern converters operating at a high

switching frequency, the parasitic effects of the capacitors (ESR and ESL) can slow down the transient

response. Recently, a method of canceling the ESR and ESL effects has been proposed. The method is

based on connecting an AC voltage source in series with the capacitor to counteract the total voltage

drop across the ESR and ESL.

Introduction 65



� “Ripple current rating.” Capacitors have a rating for maximum ripple current. A larger ripple current can

cause damaging heat to be generated within the capacitor due to the current flow through its ESR. The

ripple current rating depends on the thermal limitation of a certain capacitor: it is given by the allowed

power dissipation

Ir ¼
ffiffiffiffiffiffi
Pd

rC

r

 (b)  

 (c)  

 (a)  
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Figure 1.38 (a) Capacitor model. (b) High-frequency model of a capacitor. (c) Impedance characteristics of a

220mF electrolytic capacitor.
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where Pd is the maximum power dissipation. The ripple current rating is given by the manufacturer in

the datasheet of the product.

A few capacitors used very often in power electronics are described in the following sections.

Electrolytic capacitors An electrolytic capacitor is a type of capacitor in which one of the plates is an

electrolyte. Electrolytic capacitors offer very high capacitance for high-voltage, high-current and low-

frequency applications. Among different types of capacitors, the electrolytic capacitors have the largest

capacitance per unit volume. Thus, they have high energy density. The major drawbacks of the electrolytic

capacitors are their large equivalent series inductance and equivalent series resistance, and short lifetime.

The electrolytic capacitors are mostly used in the output filter of the converters, or as an intermediate capac-

itor in the AC-DC rectifier. Usually, the electrolytic capacitors used in power converters have an ESR of

around 0.1–0.3V for an operating frequency of tens to hundreds of kilohertz.

Low impedance aluminum electrolytic capacitors are cheap and have large capacitance values, but also

their ESR is high. Organic semiconductor electrolytic capacitors (containing, for example, a conductive

polymer) offer high capacitances with a much lower ESR, so they can be used as output capacitor in the

structure of converters.

Tantalum capacitors Tantalum capacitors are electrolytic capacitors in which the dielectric is a tantalum-

based material. They are compact in size, offer high capacitance values, and are suitable for low-voltage,

high-frequency and miniature applications. They feature a low ESR and high ripple current capability. Com-

pared with electrolytic capacitors, tantalum capacitors have a stable capacitance for large variation in temper-

ature and a low leakage current. They are used in applications with lower voltages (up to a few tens of volts)

compared with the electrolytic capacitors, which are used in applications with voltages of hundreds of volts.

Film capacitors Film capacitors are usually used in applications requiring large currents but relatively

low capacitance, such as in resonant tanks and snubbers. They generally have a high voltage rating and a

high ripple current rating. The film capacitors have a lower ESR than that of the electrolytic capacitors and

also a lower capacitance density, that is, they are more voluminous for the same capacitance value. And, the

film capacitors are rather more expensive. Film capacitors are also available at high voltage ratings where

no electrolytic capacitors exist. The two plates of film capacitors are separated by a thin insulating film.

The material of the film can be polyester, polypropylene, polycarbonate, polystyrene, or other dielectric

material. The film capacitors contain no acid inside and pose no storage problems. Polyester film capacitors

provide a high dielectric constant and high dielectric strength in terms of their physical volume. Metalized

polyester films can withstand high-pulsed voltages without breaking the dielectric. Polypropylene film

capacitors provide high dielectric strength and very low losses. They also offer a very low leakage current

and negative temperature coefficient (the capacitance decreases with temperature). Thus, they are most

commonly used in power electronics circuits. Polycarbonate film capacitors offer very low temperature

dependency, wide operating temperature range, good long-term stability, and low losses. They are the sec-

ond choice for power electronics circuits. Polystyrene film capacitors provide extremely low losses, low

dielectric absorption, good long-term stability, low leakage current, and a small negative temperature

coefficient. For example, the AVX polypropylene film capacitor, series 160–390mF, has an ESR of 3.5–

6.1mV, and an ESL of 60–85 nH. A few examples of applications of medium power film capacitors are: in

filtering the high frequency ripple coming from the converter in a speed power converter of a mass-transit

system; as the intermediate capacitor between the battery and converter in an electrical vehicle; in a cardiac

defibrillator for storing the energy necessary to generate electrical pulses; or as a DC link filter in a motor

drive system.
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Ceramic capacitors A ceramic capacitor is a capacitor constructed with one layer of ceramic dielectric. A

multilayer ceramic capacitor contains alternating layers of metal and ceramic, with the ceramic material

acting as the dielectric. As a result, higher capacitance values can be obtained. Recent advancements in the

dielectric materials allowed the production of multilayer ceramic capacitors of higher voltage ratings. For

the same physical size, the capacitance values of the multilayer ceramic capacitors lie between the values of

film capacitors and those of electrolytic capacitors. Their ESR is comparable with that of film capacitors.

Mica capacitors (silver mica capacitors) The silver mica capacitors use silver electrodes, which are

plated directly onto the mica dielectric.

The silver mica capacitors have a very low DC resistance and a very high accuracy, offer a very high

quality factor, Q, and their value is almost independent of the frequency. They are suitable in resonant

applications, but their cost is very high and their size is large.

Tables 1.3 and 1.4 show a few types of capacitors and their characteristics.

Table 1.3 Datasheet for electrolytic, ceramic and tantalum capacitors.*

Electrolytic capacitors

Manufacturer Voltage (V) Capacitor (mF) ESR (ohm) Maximum

temperature

(�C)

Frequency

range (Hz)

Ripple current

(Arms)

@120Hz @20 kHz @120Hz

PANASONIC

200 270–2200 0.553–0.068 0.249–0.033 105 0–120 1.42–4.12

250 220–1500 0.678–0.099 0.305–0.05 105 0–120 1.28–3.56

400 82–560 1.617–2.35 0.728–0.107 105 0–120 0.8–2.35

420 68–470 1.95–0.282 0.878–0.127 105 0–120 1.08–3.18

450 56–470 2.368–0.282 1.066–0.127 105 0–120 0.67–2.47

TDK- EPC/EPCOS

200 220–2200 0.58–0.065 0.7–0.08 105 0–200 1.7–9.1

250 220–1800 0.58–0.08 0.7–0.1 105 0–200 1.8–8.4

400 47–680 1.86–0.13 2.31–0.16 105 0–200 0.79–5.16

420 82–560 1.65–0.24 1.95–0.29 105 0–200 1.12–4.52

450 68–470 1.99–0.29 2.35–0.34 105 0–200 1.01–4.24

Ceramic capacitors

Manufacturer Voltage (VDC/VAC) Capacitor (pF) Temperature range (�C)

AVX

100 390–4700 �30–125

500 390–4700 �30–125

1000 100–3900 �30–125

2000 100–3900 �30–125

3000 330–15 000 �30–125

PANASONIC

4000 100–2200 �25–85

6000 100–2200 �25–85

8000 100–1500 �25–85

10000 100–1000 �25–85

15000 100–1000 �25–85

Tantalum capacitors

Manufacturer Voltage (VDC/VAC) Capacitor (mF) Temperature range (�C)

NICHICON

6.3 2.2–100 �55–125

16 1.0–47 �55–125

20 0.68–22 �55–125

25 0.47–15 �55–125

35 0.33–10 �55–125

Kemet

6 2.2–470 �55–125

16 1.0–150 �55–125

20 0.68–100 �55–125

25 0.33–47 �55–125

50 0.1–68 �55–125

*With thanks for the help and permission for compiling the data from their catalogue to the companies: Nichikon, Cornell Dubilier, TDK-
EPC/EPCOS, AVX Corporation, Murata Manufacturing Co. Ltd. The table contains data available at the time of writing. These tables have an
informative character. No accuracy is guaranteed. For use in practical applications, it is suggested that readers check for accurate, updated data
in the companies’ catalogues.
Reproduced from Panasonic, Kemet, Nippon Chemi-Con and Ashcroft Capacitor Ltd.
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Table 1.4 Datasheet for multilayer ceramic, silver mica, and film capacitors.*

Multilayer ceramic capacitors

Manufacturer Voltage (VDC/VAC) Capacitor (nF) Temperature range (�C)

AVX

50 0.68–1 �55–125

250 0.0001–0.1 �55–125

500 0.0001–0.1 �55–125

1500 0.1–1 �55–125

2000 0.027–1 �55–125

TDK-EPC/EPCOS

16 22–47 �55–125

50 0.22–56 �55–125

100 0.1–2.2 �55–125

50 68–470 �55–125

100 22–150 �55–125

NIPPON CHEMI-CON 25–250 0.033–470 �55–125

Series Rated

voltage

(V)

Capacitance (mF) Dimensions

(L�W�H) (mm)

ESR (V)

Capacitance 100 kHz 1MHz 2MHz

NTS

(Chip type)

25 1–33 (1.0, 1.5, 2.2, 3.3, 4.7,

6.8, 10, 15, 22, 33)

From 3.2� 1.6�1.8 (1mF)

to 5.7�5.0� 3.0 (33mF)

@ 33mF 0.0035 0.005 0.012

50 0.33–15 (0.33, 0.47,

0.68 1.0, 1.5, 2.2,

3.3 4.7, 6.8, 10, 15)

From 3.2� 1.6�1.8

(0.33mF) to

5.7� 5.0� 2.8 (15mF)

@ 15mF 0.0045 0.005 0.012

100 0.1–6.8 (0.1, 0.15, 0.22,

0.33, 0.47, 0.68, 1.0, 1.5,

2.2, 1.5, 2.2, 3.3, 4.7,

6.8)

From 3.2� 1.6�1.8

(0.1mF) to 5.7� 5.0� 2.8

(6.8mF)

@ 6.8mF 0.012 0.012 0.035

250 0.033–1.5 (0.033, 0.047,

0.068, 0.1, 0.15, 0.22,

0.33, 0.47, 0.68, 1.0, 1.5)

From 3.2� 1.6�1.8

(0.033mF) to

5.7� 5.0� 2.8 (1.5mF)

@ 1.0mF 0.035 0.02 0.03

THC

(Chip type)

25 0.33–47 (0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7,

6.8, 10, 15, 22, 33, 47)

From 2.0� 1.25� 1.25

(0.33mF) to

7.5� 6.3� 3.0 (47mF)

@ 10mF 0.002 0.02 0.03

50 0.1–22 (0.1, 0.15, 0.22,

0.33, 0.47, 0.68, 1.0, 1.5,

2.2, 3.3, 4.7, 6.8, 10, 15,

22)

From 2.0� 1.25� 1.25

(0.1mF) to 7.5� 6.3� 2.5

(22mF)

@ 10mF 0.011 0.01 0.025

100 0.047–6.8 (0.047, 0.068,

0.1, 0.15, 0.22, 0.33,

0.47, 0.68, 1.0, 1.5, 2.2,

3.3, 4.7, 6.8)

From 2.0� 1.25� 1.25

(0.047mF) to

7.5� 6.3� 3.0 (6.8mF)

@ 2.2mF 0.03 0.02 0.03

200 0.047–2.2 (0.047, 0.068,

0.1, 0.15, 0.22, 0.33,

0.47, 0.68, 1.0, 1.5, 2.2)

From 3.2� 1.6�1.6

(0.047mF) to

7.5� 6.3� 3.0 (2.2mF)

@ 1.5mF 0.035 0.02 0.03

Series Rated voltage (V) Capacitance (mF) Dimensions (L�W�H) (mm)

NTJ (Metal cap type) 25 33, 47 6.0� 5.3� 5.5

50 15, 22 6.0� 5.3� 5.5

100 6.8, 10 6.0� 5.3� 5.5

250 1.5, 2.2 6.0� 5.3� 5.5

NTD (Dipped

radial lead type)

25 3.3–33 (3.3, 4.7, 6.8, 10, 15, 22, 33) From 5.0� 6.0� 3.5 (3.3mF) to

7.5� 9.0� 4.5 (33mF)

50 1.0–15 (1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10,

15)

From 5.0� 6.0� 3.5 (1mF) to

7.5� 9.0� 4.5 (15mF)

100 0.33–6.8 (0.33,0.47, 0.68, 1.0,1.5, 2.2,

3.3, 4.7, 6.8)

From 5.0� 6.0� 3.5 (0.33mF) to

7.5� 9.0� 4.5 (6.8mF)

250 0.1–1.5 (0.1,0.15, 0.22, 0.33, 0.47,

0.68, 1.0, 1.5)

From 5.0� 6.0� 3.5 (0.1mF) to

7.5� 9.0� 4.5 (1.5mF)

(continued )
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THP (Metal

cap type)

25 15–100 (15, 20, 33, 47, 68, 100) From 4.8�3.5�5.5 (15mF) to 7.8�6.6�6.5 (100mF)

50 4.5–47 (4.5, 6.8, 10, 15, 22, 33, 47) From 4.8�3.5�5.5 (4.5mF) to 7.8�6.6� 6.5 (47mF)

100 1.5–15 (1.5, 2.0, 3.0, 4.7, 6.8, 10, 15) From 4.8�3.5�5.5 (1.5mF) to 7.8�6.6� 6.5 (15mF)

200 0.45–4.7 (0.45, 0.68, 1.0, 1.5, 2.2, 3.3, 4.7) From 4.8�3.5�5.5 (0.45mF) to 7.8�6.6� 6.5 (4.7mF)

THD (Dipped radial

lead type)

25 3.3–470 (3.3, 4.7, 6.8, 10, 15, 22, 33, 47,

68, 100, 150, 220, 330, 470)

From 5.0�6.5�3.0 (3.3mF) to 28.5�20.0� 7.5 (470mF)

50 1.0–220 (1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10, 15,

22, 33, 47, 68, 100, 150, 220)

From 5.0�6.5�3.0 (1mF) to 28.5�20.0�7.5 (220mF)

100 0.33–100 (0.33, 0.47, 0.68, 1.0,1.5, 2.2,

3.3, 4.7, 6.8, 10, 15, 22, 33, 47, 68, 100)

From 5.0�6.5�3.0 (0.33mF) to 28.5�20.0� 7.5 (100mF)

250 0.1–15 (0.1,0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10, 15)

From 6.5�7.0�3.5 (0.1mF) to 28.5�20.0� 7.5 (15mF)

Silver mica capacitors

Manufacturer Voltage (V) Capacitor (pF) Temperature range (�C)

Cornell-Dubilier

100 330–91 000 �55–125

500 1–51 000 �55–125

1000 5–13 000 �55–125

2000 24–4300 �55–125

2500 24–3000 �55–125

Ashcroft Capacitor Ltd (A.C.L.)

100 1–100 000 �40–85

500 1–220 000 �40–85

1000 5–130 000 �40–85

1500 5–62 000 �40–85

2000 5–22 000 �40–85

Film capacitors

Manufacturer Voltage (VDC/VAC) Capacitor (mF) Temperature range (�C)

TDK-EPC/EPCOS

63/40 0.22–1.0 �55–125

250/160 0.022–0.15 �55–125

4000/450 0.001–0.01 �40–85

8000/450 0.001–0.01 �40–85

12 500/450 0.00068–0.0025 �40–85

Nichicon

100 0.001–0.47 �40–85

250/125 0.047–3.3 �40–105

400/160 0.022–1.5 �40–105

630/200 0.01–0.68 �40–105

800/250 0.01–0.47 �40–105

Series Rated

voltage

(VDC)

Capacitance (mF) Dimensions

(H� L�W) (mm)

ESR (mV) Temperature

range (�C)

AVX (FILFIM,

dielectric:

polypropylene)

6500 188–612 (188, 275, 362, 450,

537, 612)

From 315� 350� 185 (188mF) to

770� 350� 185 (770mF)

3.4, 3.3, 3.2,

3.2, 3.1, 3.1

�55–85

14 500 37.5–121 (37.5, 55, 72, 89 106,

121)

From 315� 350� 185 (37.5mF) to

770� 350� 185 (121mF)

5.6, 4.9, 4.6,

4.4, 4.3, 4.2

�55–85

28 000 5.8–21.5 (5.8, 9, 12, 15.5, 18.3,

21.5)

From 315� 350� 185 (5.8mF) to

770� 350� 185 (21.5mF)

6.8, 5.9, 5.5,

5.2, 5.1, 5.1

�55–85

56 000 2.6–10.3 (2.6, 4.2, 5.7, 7.3, 8.8,

10.3)

From 315� 695� 185 (2.6mF) to

770� 695� 185 (10.3mF)

11.6, 9.2, 8.3,

7.8, 7.5, 7.4

�55–85

AVX (FFVS,

dielectric:

polypropylene)

600 22–195 (22, 90, 140, 195) From 34� 101� 71.7 (22mF) to

64� 101� 71.7 (195mF)

0.74, 0.60, 0.83,

1.04

�40–105

800 58–128 (58, 92, 128) From 40� 101� 71.7 (58mF) to

60� 101� 71.7 (128mF)

0.72, 0.99, 1.25 �40–105

1000 53–135 (53, 95, 135) From 40� 101� 71.7 (53mF) to

64� 101� 71.7 (135mF)

1.56, 1.98, 2.42) �40–105

1900 14–32 (14, 22, 32) From 40� 101� 71.7 (14mF) to

64� 101� 71.7 (32mF)

(1.05, 1.26, 1.58 �40–105

Table 1.4 (Continued)
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Series Rated voltage

(VDC/VAC)

Capacitance (mF) Dimensions

(D� L) (mm)

Temperature

range (�C)

EPCOS (MKT-S,

dielectric: polyester)

50/20 0.47–10 (0.47, 0.68, 1.0, 1.5, 2.2, 3.3, 4.7,

6.8, 10)

From 7.4�18.5 (0.47mF) to

12.7�21.0 (10mF)

�55–125

100/35 0.10–100 (0.10, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10, 22, 47, 100)

From 7.4 �18.5 (0.1mF) to

29.7�34.0 (100mF)

�55–125

160/60 0.10–10 (0.10, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10)

From 7.4 �18.5 (0.10mF) to

15.7�34.0 (10mF)

�55–125

250/90 0.10–10 (0.10, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10)

From 7.4 �18.5 (0.10mF) to

20.7�34.0 (10mF)

�55–125

Series Rated

voltage (V)

Capacitance (mF) Dimensions

(H� L�W) (mm)

Temperature

range (�C)

Nichicon

(EC, dielectric:

polypropylene)

200V (AC) 2.0–50 (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0,

7.0, 8.0, 10.0, 12.0, 14.0, 15.0, 16.0,

18.0, 20.0, 22.0, 25.0, 30.0, 40.0, 50.0)

From 25.0� 37.0� 11.5 (2.0mF)

to 49.0�58.0� 34.0 (50mF)

�25–85

250V (AC) 2.0–50 (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0,

7.0, 8.0, 10.0, 12.0, 14.0, 15.0, 16.0,

18.0, 20.0, 22.0, 25.0, 30.0, 40.0, 50.0)

From 25.0� 37.0� 11.5 (2.0mF)

to 49.0�58.0� 34.0 (50mF)

�25–85

400V (AC) 1.0–20 (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,

5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 14.0, 15.0,

16.0, 18.0, 20.0)

From 25.0� 37.0� 11.5 (1.0mF)

to 49.0�58.0� 34.0(20mF)

�25–85

Series Rated

voltage (V)

Capacitance (nF) Dimensions

(H� L�W) (mm)

Temperature

range (�C)

Kemet

(PFR,

dielectric:

polypropylene)

63V (DC)/

40V (AC)

0.1–22 (0.1, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10, 15, 20, 22)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (22 nF)

�55–100

100V (DC)/

63V (AC)

0.1–10 (0.1, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8, 10)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (10 nF)

�55–100

250V (DC)/

160V (AC)

0.1–6.8 (0.1, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (6.8 nF)

�55–100

400V (DC)/

220V (AC)

0.1–6.8 (0.1, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7, 6.8)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (6.8 nF)

�55–100

630V (DC)/

250V (AC)

0.1–4.7 (0.1, 0.15, 0.22, 0.33, 0.47, 0.68,

1.0, 1.5, 2.2, 3.3, 4.7)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (4.7 nF)

�55–100

1000V (DC)/

250V (AC)

0.1–1.0 (0.1, 0.15, 0.22, 0.33, 0.47,

0.68, 1.0)

From 6.0� 7.2� 4.5 (0.1 nF)

to 8.0�7.2� 6.5 (1.0 nF)

�55–100

Series Rated

voltage (V)

Capacitance (mF) Dimensions

(H� L�W) (mm)

Temperature

range (�C)

Panasonic

(ECWF(L),

dielectric:

polypropylene)

400V (DC) 0.022–2.4 (0.022, 0.024, 0.027, 0.030,

0.033, 0.036, 0.039, 0.043, 0.047, 0.051,

0.056, 0.062, 0.068, 0.075, 0.082, 0.091,

0.10, 0.11, 0.12, 0.13, 0.15, 0.16, 0.18,

0.20, 0.22, 0.24, 0.27, 0.30, 0.33, 0.36,

0.39, 0.43, 0.47, 0.51, 0.56, 0.62, 0.68,

0.75, 0.82, 0.91, 1.0, 1.1, 1.2, 1.3, 1.5,

1.6, 1.8, 2.0, 2.2, 2.4)

From 8.6� 12.5�5.7 (0.022mF) to

24.8� 28.0� 17.5 (2.4mF)

�40–105

450V (DC) 0.022–2.4 (0.022, 0.024, 0.027, 0.030,

0.033, 0.036, 0.039, 0.043, 0.047, 0.051,

0.056, 0.062, 0.068, 0.075, 0.082, 0.091,

0.10, 0.11, 0.12, 0.13, 0.15, 0.16, 0.18,

0.20, 0.22, 0.24, 0.27, 0.30, 0.33, 0.36,

0.39, 0.43, 0.47, 0.51, 0.56, 0.62, 0.68,

0.75, 0.82, 0.91, 1.0, 1.1, 1.2, 1.3, 1.5,

1.6, 1.8, 2.0, 2.2, 2.4)

From 8.6� 12.5�5.7 (0.022mF) to

24.8� 28.0� 17.5 (2.4mF)

�40–105

Table 1.4 (Continued)
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Figure 1.39a shows a comparison of the properties of three types of capacitor – electrolytic, polyester

film, and ceramic – with regard to their lifetime versus the ambient temperature. Figure 1.39b gives a few

examples of general use of different capacitors.

Among the three types of capacitors, the electrolytic capacitors provide the highest capacitance value

available in a single package. Thus, they are widely used as energy reservoirs in power electronics systems.

However, the advantage is offset by their short lifetime and fast lifetime decay against the operating temper-

ature. The expected operating lifetime, Lop, of electrolytic capacitors is:

Lop ¼ Lb Mv 2
Tm�Ta

10

where Lb is the expected operating life in hours at the rated voltage and temperature, Mv is the voltage

multiplier for voltage de-rating (de-rating is the operation of the capacitor at less than its rated maximum

voltage; usually, we choose Mv as 0.8 and, thus, we assure a safety margin), Tm is the maximum permitted

internal operating temperature in �C given in the datasheet, and Ta is the actual capacitor internal operating

temperature in �C. The value of Lb is provided by the manufacturer for the chosen capacitor.

The lifetime of electrolytic capacitors will be shortened by half if the operating temperature is increased

by 10 �C. Thus, for applications operating at a high ambient temperature, such as LED drivers, the lifetime

of the electrolytic capacitor becomes the critical factor that determines the lifetime of the entire application.

In terms of lifetime expectancy, a polyester film capacitor is the best choice, although its maximum avail-

able capacitance value is not as high as that of electrolytic capacitors. The popular polyester capacitors are

metalized polyester film capacitors. They are particularly suited for AC applications, as they have a low

dissipation factor, allow high AC currents and are available in a moderate range of values.

1.3.6.2 Inductors, Transformers, Coupled Inductors

An inductor is a passive electrical component that can store energy in a magnetic field created by the elec-

tric current passing through it. Typically an inductor is a conducting wire shaped as a coil around a core, the

loops helping to create a strong magnetic field inside the coil. The core is either air or is made from ferro-

magnetic or ferrimagnetic materials. Different magnetic materials have different frequency responses.

Knowing the switching frequency of the converter, we shall choose that material that has the best perform-

ance at the designed frequency. Best performance means the highest value of the product of the frequency

and the maximum of the magnetic flux density, Bm. A magnetic core can generally increase the inductance

due its high magnetic permeability but it will cause a nonlinear characteristic of the inductor (permeability

Table 1.4 (Continued )

Series Rated

voltage (V)

Capacitance (mF) Dimensions

(H� L�W) (mm)

Temperature

range (�C)
630V (DC) 0.010–1.3 (0.010, 0.011, 0.012, 0.013,

0.015, 0.016, 0.018, 0.020, 0.022, 0.024,

0.027, 0.030, 0.033, 0.036, 0.039, 0.043,

0.047, 0.051, 0.056, 0.062, 0.068, 0.075,

0.082, 0.091, 0.10, 0.11, 0.12, 0.13,

0.15, 0.16, 0.18, 0.20, 0.22, 0.24, 0.27,

0.30, 0.33, 0.36, 0.39, 0.43, 0.47,0.51,

0.56, 0.62, 0.68, 0.75, 0.82, 0.91, 1.0,

1.1, 1.2, 1.3)

From 8.0�12.5�5.2 (0.010mF) to

24.4�28.0�17.6 (1.3mF)

�40–105

*With thanks for the help and permission for compiling the data from their catalogue to the companies: Nichikon, Cornell Dubilier, TDK-
EPC/EPCOS, AVX Corporation, Murata Manufacturing Co. Ltd. The table contains data available at the time of writing. These tables have an
informative character. No accuracy is guaranteed. For use in practical applications, it is suggested that readers check for accurate, updated data
in the companies’ catalogues.
Reproduced from Panasonic, Kemet, Nippon Chemi-Con and Ashcroft Capacitor Ltd.
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is the degree of magnetization of a material in response to an applied magnetic field). Moreover, due to the

hysteresis characteristic, a time-varying current passing through an inductor with magnetic core can cause

energy loss in the core’s material.

An ideal inductor has zero power loss. However, the presence of the winding resistance causes heat dissi-

pation. The quality factor, Q, is used to measure the efficiency of the inductor. It is defined as:

Q ¼ v L

rL

Input Stage

DC-link 
input filter

snubbers
DC-blocking

Switching Stage Output Stage

ripple filtering 
decoupling

Control Stage

Load
Rectified 

AC

aluminum electrolytic, 
tantalum, ceramic, film

mica,
metallized film 

aluminum electrolytic, 
tantalum, film

ceramic, film
(b)

Figure 1.39 (a) Comparison among several types of capacitors with regard to their expected lifetime versus

ambient temperature (b) Examples of applications of different types of capacitors in different sections of a power

electronics circuit. (Reproduced, with permission from Y.X. Qin, H. Chung, D.Y. Lin, and S.Y.R. Hui, “Current

source ballast for high power lighting emitting diodes without electrolytic capacitor,” in Proc. 34th IEEE Annual

Conf. Industrial Electronics, November 2008, pp. 1968–1973.)
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where rL is the winding resistance. The higher the value of Q, the better the quality of the inductor is. The

model of a practical inductor is usually an ideal inductor in series with rL. At very high frequencies, we have

to take into account the inner winding capacitance (Figure 1.40). For example, the series resistance, rL, of

the inductor in EPCOS SMT-Power-Inductor Series 100mH is 0.28V measured at 20 �C.
A new solution today for building inductors is a three-dimensional design. Each inductor is built on a

separate chip, which is bonded to the converter main chip. By using three-dimensional inductors on chip,

the total size of a converter is reduced. The price we pay for this is the need to use this additional chip for

implementing the inductor.

In the last few years, new monolithic (chip) inductors have been produced. They have a low DC

resistance and a high Q-factor at high frequencies. For example, the power inductors produced by

MURATA are of either the magnetically shielded multilayer type or the wire-wound type, their thickness

being between 0.5 and 1.85mm, with the tendency to decrease it to 0.4mm. In the first group, there are

elements with part numbers like LQM21P, with a value range of 0.47–2.2mH, for a rated current of

600–1300mA, dimensions 2� 1.25 (or 1.5) mm, and DC resistance of 0.12–0.34V; LQM2MP: with

values in the range 0.47–4.7mH, rated current 1100–1600mA, dimensions 2� 1.6mm, and DC resist-

ance of 0.06–0.14V; LQM2HP_J0: 1–3.3mH, 1100–1500mA, 2.5� 2mm, 0.09–0.12V; LQM2HP_G0:

0.47–4.7mH, 1100–1800mA, 2.5� 2mm, 0.04 �0.11V; LQM2HP_E0: 0.56mH, 1500mA, 2.5� 2

mm,0.06V, LQM31P_00: 0.47–4.7mH, 700–1400mA, 3.2� 1.6 mm, 0.07–0.3V; and LQM31P_C0:

0.47–2.2mH, 900–1300mA, 3.2� 1.6mm, 0.085–0.25V. All of these have a magnetic shield of ferrite.

In the above given range of values, usual inductors are found for the values 0.47, 1, 1.5, 2.2, 3.3, 4.7mH.
They are used in DC-DC converters for mobile equipment. In the wire-wound group, without a magnetic

shield, there are inductors with part numbers: LQH2MC-02, with a range of 1–82mH, at a rated current

of 90–485mA, of dimensions 2� 1.6mm, and DC resistance in the range 0.3–7.5V, their discrete values

being 1, 1.5, 2.2, 3.3, 4.7, 5.6, 6.8, 8.2, 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82mH, the DC

resistance increasing, of course, with the inductance value, and the allowable DC current (rated current)

decreasing with the inductance value; and LQH2MC_52, 1–22mH, 130–595 A, 2� 1.6mm, 0.25–5.5V.

In the same group, but with a magnetic shield of magnetic powder of resin, are: LQH3NP_M0,

1–100mH, 200–1400mA, 3� 3mm, 0.044–3.5V; LQH3NP_J0, 1–47mH, 200–1620mA, 3� 3mm,

0.04–1.3V; LQH3NP_G0, 1–250mH, 80–1525mA rated current, 3� 3mm, 0.08–15V, the largest

inductances being 150, 200, and 250mH; LQH32P, 0.47–22mH, 450–2550mA, 3.2� 2.5mm,

0.03–0.081V; LQH44P_P0, 1–22mH, 790–2450mA, 4� 4mm, 0.03–0.37V; LQH44P_J0, 1– 47mH,
300–1530mA, 4� 4mm, 0.048–1.014V; LQH55P, 1.2–22mH, 670–2600mA, 5.8� 5.2mm,

0.021–0.26V; LQH6PP, 1–100mH, 800–4300mA, 6� 6mm, 0.009–0.436V; and LQH88P, 1–100mH,
1000–8000mA, 8� 8mm, 0006–0.265V.

TDK’s inductors for DC-DC converters come in two types: the multilayer and wire-wound types.

Ferrite material technology and formulation including reduced grain size (smaller diameter raw ferrite

powder provides a tighter ferrite structure after firing) combined with low loss conductor materials

Figure 1.40 High-frequency model of an inductor.
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facilitate favorable performance at MHz switching frequencies. A wire-wound type provides low DC

resistance and a high-efficiency closed magnetic circuit design, using high m ferrite particle resin mate-

rial outside the winding wire, achieving low power consumption. (Magnetic shielding adhesive applied

over the winding wire contains actual ferrite powder material. Since this mixture is applied directly to

the winding wire, no gap is present between the shielding material and the core on which the wire is

wound. The benefit is that the magnetic flux energy remains within the component.) Wire-wound types

generally provide higher rated currents due to the increased core volume of ferrite material. This

improved current performance characteristic, however, most often results in a larger overall physical

package size of the inductor.

Examples of smaller sized multilayer and wire-wound power inductor types (TDK-EPC) are shown in

Table 1.5.

An older series of surface-mounted device wire-wound power inductors from TDK is the VLF series,

which includes larger inductance values, for example: VLF5014A comprised inductances from 1.5 to

100mH, at a rated current of 260–1700mA, and dimensions of 4.7� 4.5� 1.4mm, with DC resistance of

0.059–2.7V; or VLF12060, for inductors of 1.8–330mH, with a rated current of 1000–12 000mA, dimen-

sions of 12� 11.7� 6mm, and 4.4–464mV DC resistance (the 464mV is for the 330mH inductance).

The VLC series contains inductors in the range 0.47–150mH; the series VLCF comprises the range

1.2–470mH, for example VLCF5028-2 is for inductances in the range 1.3–470mH, at a rated current

140–2560mA, with dimensions of 5.0� 5.3� 2.8mm, and 0.022–3.12V being the respective DC resist-

ances. The series SLF, CLF, VLP, RLF, SPM, VLM, and VLB are particularly suited for very high rated

currents. For example, RLF12560 contains inductors in the range 1.0–10mH, for a rated current of

7.5–14.4 A, their dimensions being 12.5� 12.8� 6.0 mm, and DC resistances being in the range

2.8–12.4mV. The VLB series contains only low value inductances (up to a few hundred nH). Depending

on the series, we can usually find inductors of the values 0.47, 1.0, 1.3, 1.5, 1.8, 2.2, 2.7, 3.3, 4.7, 6.8, 10,

15, 22, 33, 47, 56, 68, 100, 220, and 470nH. The DC resistance increases with the inductance, and the

rated current decreases with the value of the inductance.

For power supply line applications, larger values of inductances can also be found in the radial lead

through hole series SL or TSL. For example, SL1923 offers inductors in the range 470–15 000mH, for a
rated current in the range 260–1500mA, or TSL 1112 offers a range of 1.0–15 000mH, for a rated

Table 1.5 Examples of smaller sized multilayer and wire-wound power inductor types (TDK-EPC)

Construction

type

Series Inductance

range (mH)

Rated

current (mA)

Mechanical dimensions

(L�W� T range)

[T¼ thickness (height)] (mm)

Weight (mg) DC resistance (V)

Multilayer MLP2012 0.47–4.7 700–1200 2.0� 1.25� (0.5–0.85) 7–10 0.12–0.34

MLP2520 1.0–4.7 700–1500 2.0� 2.5� (1.0–1.2) 15–25 0.085–0.18

Wire-wound VLS2010E 0.56–22 330–2000 2.0� 2.0�1.0 16 (typ.) 0.06–2.04

VLS2012E 0.47–22 330–2050 2.0� 20� 1.2 17 (typ.) 0.059–1.764

VLS201610E 0.47–10 400–1850 2.0� 1.6�0.95 12 (typ.) 0.065–1.38

VLS201612E 0.47–10 470–1900 2.0� 1.6�1.2 14 (typ.) 0.063–1.026

VLS252010E 0.47–10 560–2500 2.5� 2.0�1.0 17 (typ.) 0.046–0.854

VLS252012E 0.47–10 730–2750 2.5� 2.0�1.2 24 (typ.) 0.056–0.756

VLS252015E 1.0–10 720–1950 2.5� 2.0�1.5 28 (typ.) 0.082–0.588

VLS3010E 1.0–22 350–1600 3.0� 30� 1.0 36 (typ.) 0.072–0.9

VLS3012E 1.0–47 310–1900 3.0� 30� 1.2 40(typ.) 0.068–1.5

VLS3015E 1.0–47 320–2000 3.0� 3.0�1.5 52 (typ.) 0.058–1.5

VLS4012E 1.0–47 410–2500 4.0� 4.0�1.2 67 (typ.) 0.06–1.02
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current of 120–7700mA. Of course, for such values, the inductors are physically very large, 11.2mm

diameter� 12.2mm height, weight 3.3 g, and their DC resistance is considerable: the 15mH inductor,

suitable for a rated current of 0.13A, has a maximum DC resistance of 24V.1

In DC-DC converters, we can utilize TDK inductors, which are either magnetically-shielded or non-

shielded, and within construction technology types including multilayer; wire-wound; smd; or through hole

construction. The target switching frequencies for the lower inductance values and small case-sized power

inductors are in the MHz range.

In power electronics, the inductors are used in input and output filters or as energy storage elements.

Some small inductors, like the ferrite bead, are used to attenuate high-frequency currents, such as the

reverse recovery current of diodes.

By winding two or more inductors on the same core, energy can be transferred from one inductor to the

other(s) through the core, creating a transformer or a coupled inductor. There are some differences between

a transformer and a coupled inductor. Firstly, the coupled inductor has an air gap in the core while the trans-

former does not. This causes differences in the flux levels in the two devices. Secondly, the primary function

of a transformer is power transfer. An ideal transformer does not store energy. However, due to the presence of

the leakage inductance of each winding of the transformer, this device stores energy. Ideally, at any point in

time, the power entering the transformer is equal to the power exiting the transformer. The primary function

of a coupled inductor is to store energy during some intervals and release it during other intervals. Thus, at a

given time, the power entering the coupled inductor does not equal the power exiting it. Thirdly, transformers

are used to obtain different input-to-output voltage and current ratios, for DC isolation, and to realize convert-

ers with multiple outputs. Coupled inductors are used in more complex DC-DC converters (Chapter 3).

For an ideal transformer, the core permeability is considered to be infinite. The equivalent circuit of an

ideal transformer is given in Figure 1.41, where n is the turns ratio, implying that, for the voltage and current

references as shown in the figure:

v1 ¼ n v2

i2 ¼ n i1

The dot notation shown in Figure 1.41 is used to show the polarity between the primary and secondary

windings. In the figures, i2 indicates the direction of the actual current in the secondary winding.

The equivalent circuit of a transformer with two windings consists of a mutual inductance, L12, and two

leakage inductances, Ll1 and Ll2 (Figure 1.42). The flux created by the current in each winding divides itself

into two parts. One part goes into the core and cuts the other winding, giving the mutual inductance, L12, of

the two windings. The mutual inductance is

L12 ¼ Lm

n
:

The value of the magnetizing inductance, Lm, depends on the permeability and physical dimensions of the

core. If the permeability of the core is infinite, Lm is infinite, meaning that there is no magnetizing current,

im (ideal core). (An ideal core is different from an ideal transformer. An ideal core has zero reluctance but

the transformer still has leakage inductance. An ideal transformer has, in addition, zero leakage inductance.)

The other part of the flux goes into the air surrounding the winding, giving the leakage inductance of that

winding. Ll1 denotes the leakage inductance of the primary winding and Ll2 denotes the leakage inductance

1
With thanks for the help and permission for compiling the data from their catalogue to the companies: Murata Manufacturing Co Ltd.

(not for military applications) and TDK Corporation of America. The above data (including Table 1.5) were available at the time of

writing. They have an informative character. No accuracy is guaranteed. For use in practical applications, it is suggested that readers

check for update, accurate data in the companies’ catalogues.
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of the secondary winding. rL1 and rL2 represent the winding resistances of the primary and secondary wind-

ings, respectively. To show the proportion of the leakage flux with respect to the total flux, the coupling

coefficient, k, can be defined in the form:

k ¼
1

n
Lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLm þ Ll1Þ 1

n2
Lm þ Ll2

� �s

If all the flux created in one winding cuts the other winding, that is, if the leakage inductance is zero, the

coupling coefficient takes its maximum value, 1.

Figure 1.42 Equivalent circuit of a transformer.

Figure 1.41 Models of an ideal transformer.
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If the reflected-to-primary secondary winding leakage inductance is equal to the primary winding leakage

inductance, that is, n2Ll2 ¼ Ll1 ¼ Ll , k equals:

k ¼ Lm

Lm þ Ll

The model of a coupled inductor has some differences. Firstly, due to the presence of the air gap, which has

finite permeability, the mutual inductance can never be neglected. Its value is primarily determined by the

air permeability and the physical dimensions of the gap. The air gap increases the magnetic reluctance,2

thus the coupled inductor can store more magnetic energy before the core reaches saturation. In some con-

verters that are discussed in the next chapters (like the so-called flyback converter), we shall use this prop-

erty. Secondly, in the case of a transformer, an input current, i1, causes an output current, i2, in the direction

shown in Figure 1.41. However, in the case of a coupled inductor, when i1 flows in the primary winding,

there is no current in the secondary winding. And when there is no current flowing in the primary winding,

i2 flows in an opposite direction to that shown in Figure 1.41.

In practice, in order to reduce the voltage drop in a transformer, we prefer that the leakage inductance is

small. Moreover, in a switching power converter, the transformer is sometimes connected to a semi-

conductor switch. If a current was flowing through the transformer before turning off the switch, at the

instant the switch commutates a very high voltage spike will appear across the leakage inductance, Ll
di

dt
,

resulting in a high voltage stress on the switch. Thus, a small leakage inductance is beneficial. One of the

methods for reducing the leakage inductance is to use a bifilar winding (such a winding consists of two

insulated wires, side by side, with currents flowing through them in opposite directions). However, if there

is a large difference between the primary and secondary voltages, other methods are more effective, as we

will see in Chapter 3 when speaking about converters with transformers or coupled inductors.

The power losses in transformers or coupled inductors are determined by the conduction losses in the

winding resistances and the core loss. The core loss is due to the hysteresis characteristics of the core mate-

rial. The hysteresis loss Pm is expressed as:

Pm ¼ kf as ðBmÞd

where k, a, and d are constants depending on the core material, fs is the switching frequency, and Bm is the

maximum flux density in the core. In usual calculations, Bm is given in kGauss, fs in kHz, and the power

loss, Pm, is obtained in mW. To model the hysteresis loss, a resistor, rcore, is included into the transformer

equivalent circuit (Figure 1.42).

The hysteresis (core) loss can be calculated by using the datasheet of the manufacturer. In Table 1.6a, we

can see a typical datasheet for a core of certain dimensions (a 34.3mm outer diameter is taken here as an

example). If we choose from this datasheet, for example, the MPP core with part number 55585, its perme-

ability, m, is 125. Say, again for exemplification, that the switching frequency is 100 kHz and the AC mag-

netic flux is 0.4 kGauss. The manufacturer gave the values of the constants for the considered example of

core: k¼ 1.199, a¼ 1.40, d¼ 2.31 (Table 1.6b). With these values, the power loss per unit of volume (cm3)

can be calculated:

Pcore=vol mW=cm3
� � ¼ 1:199� 0:42:31 � 1001:4 ¼ 91:1 mW=cm3

2
Magnetic reluctance (or magnetic resistance) is a concept used in magnetic circuits. It is analogue to a resistance in the electrical field:

an electrical field causes a current to follow the path of least resistance. A magnetic field causes magnetic flux to follow the path of least

magnetic reluctance. The inverse of magnetic reluctance is called permeance. The reluctance is inversely proportional to permeability.
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We could arrive at the same result by using the manufacturer graphics from Table 1.6b: we see that for a

flux density of 0.4 kGauss and a frequency of 100KHz, the core loss per unit of volume is, approximately,

90mW/cm3.

According to the physical characteristics given in Table 1.6a, the volume of this core is 4060mm3, so the

total core loss will be:

Pcore ¼ 90� 4060

1000
¼ 365:4 mW

(or 370mW by following the exact calculation of the core loss: 91.1mW/cm3).

Recently, nanocrystalline magnetic materials such as FT-3M have been used for transformers in high-

power applications, where large, bulky cores are commonly required, as well as in transformers to be

imbedded in printed circuit boards. Thanks to the high saturation level, high operating temperature and

Table 1.6a Core data of toroid with 34.3mm outer diameter
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high thermal conductivity of these materials, the transformer power density and power processing capacity

can be increased. In these transformers, if a large leakage inductance is required, in some applications, the

leakage energy can be increased in an efficient way by shaping a large winding area out of the core.

1.3.7 Ultracapacitors

An ultracapacitor, also known as a double-layer capacitor, is an electrochemical device, which, like a bat-

tery, is capable of energy storage. The difference between the two devices is that batteries store charges

chemically, whereas ultracapacitors store them electrostatically by polarizing an electrolytic solution. The

charge separation takes place at the electrode–electrolyte interface. An ultracapacitor can be charged and

discharged hundreds of thousands, or even millions, of times and can release energy much faster than a

battery because no slow chemical reactions are involved. The amount of energy stored by an ultracapacitor

is considerably much larger than that stored by a regular capacitor because its porous carbon electrodes

have a very large surface area and the charge separation created by a thin dielectric separator is very small

(currently, around 10 angstroms). An ultracapacitor can be seen as a high-energy version of a standard

capacitor.

By 2010, ultracapacitors of 5000 Farads had already been manufactured. Energy densities of 30Wh/Kg

were reached in the same year. However, most of the ultracapacitors are available in the range 3–5Wh/Kg,

compared with a range of 30–40Wh/Kg for a lead acid battery; per energy unit, ultracapacitors are still

more expensive than batteries. For example, the Maxwell Technology MC ultracapacitors present a voltage

of 2.7V and one million cycles over 10-year lifetime. LS Ultracapacitors produces devices for 2.8 V (series

LSUC 2.8V) with capacitances in the range of 100 F (with an ESR of 11mV) to 3000 F (with an ESR of

0.36mV), or for 2.5 V (series LSHC 2.5V) with a range of capacitances between 220 F (with an ESR of

18mV) and 5400 F (with an ESR of 0.5mV).

Ultracapacitors have many advantages compared to batteries. They have long life with little degradation

over the time. They use no corrosive electrolytes or toxic materials, giving better safety. These

Table 1.6b Graphic for calculating the power loss of the core (part number MPP55585)
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characteristics make them environmentally friendly. Ultracapacitors can be charged quickly, and present a

very low ESR, thus diminishing charging and discharging energy loss, and they have a high specific power

(power per weight unit). They work well at temperature extremes where the performance of batteries is

hampered. However, being capacitor-type devices, the voltage of ultracapacitors varies with the energy

stored, requiring electronic switching devices for charging and discharging. Their self-discharge rate is

quite high. This is why the circuit model of an ultracapacitor includes, in addition to a capacitance, an

inductance and a series resistance, as well as a parallel resistance for expressing the self-discharging energy

loss. A single ultracapacitor cell has a low voltage, so, for practical applications, series of devices are neces-

sary, which require voltage balancing mechanisms.

Due to their ecological advantages, ultracapacitors are today being used more and more. As they provide

fast bursts of energy, ultracapacitors can be used in applications requiring short power pulses. They are

much used in modern hybrid or fuel cell battery-based vehicles: they provide acceleration and energy in hill

climbing, and serve as storage when recovering braking energy. When used in conjunction with a battery in

a car, the ultracapacitor provides peak power, extends the life of the battery, allows for downsizing of the

battery, diminishes the replacement and maintenance costs, and improves the fuel efficiency, particularly in

urban driving conditions, by recuperating the breaking energy. Even if DC-DC converters are necessary in a

system using both a battery and ultracapacitors, the increase in price is offset by these advantages in the

modern world’s quest for alternative sources of energy. Ultracapacitors are also used in home solar cell

energy systems due to their fast charging capability. The use of ultracapacitors in power grids for providing

energy during power outages is foreseen.

1.4 Basic Steady-State Analysis of Duty Cycle Controlled Converters with Constant
Switching Frequency

1.4.1 Input-to-output voltage ratio for basic DC-DC converters

We saw in Section 1.2 that, to keep the output voltage of the converters constant despite variations in the

input voltage and/or load, we had to adjust the relative ratio between the durations of the two switching

stages: that in which the energy was transferred from the input to inductor, and that when the transfer was

from the inductor to load. For the converters considered in Section 1.2, this was accomplished by changing

the duty cycle value and operating with a constant switching frequency, as, let us remember, the durations

of the two topologies are Ton ¼ DTs and Tof f ¼ ð1� DÞTs.

Consider now that Vin and R are constant. Of course, in such a case, D is also kept constant, it is calcu-

lated to realize a certain required Vout for a given Vin (we remember that in the case of a buck converter,

Vout ¼ DVin). Let us analyze the operation process of a converter in such a case when Vin, R, and, conse-

quently, D meet their “nominal” values. The start-up process is assumed here to be finished, that is, the

converter operates in a “regular” switching cycle. For convenience only, we denote the starting time of

the considered cycle as zero.

For exemplification, we return to the buck-boost converter (Figure 1.43a) and, as we are still in the intro-

ductory chapter, we shall neglect the parasitic resistance of the elements. When the transistor is in the

“on-state” (Figure 1.43b):

vL ¼ Vin

i.e.

L
diL

dt
¼ Vin;
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Figure 1.43 Steady-state analysis of a buck-boost converter: (a) general structure; (b) Ton-stage; (c) Toff -stage;

(d) switching diagram.

82 Power Electronics and Energy Conversion Systems



giving:3

iLðtÞ ¼ IL min þ Vin

L
t

where ILmin denotes the value of the inductor current at the beginning of this topological stage in the consid-

ered cycle.

The energy transfer to the inductor’s magnetic field ends at t ¼ DTs, when the inductor is maximally

charged, that is, the inductor current reaches its maximal value, ILmax.

Obviously, in this stage, vDS of the transistor is ideally zero and the voltage across the diode, in absolute

value, is VinþVout.

When the transistor is in the “off-state” (Figure 1.43c):

vL þ Vout ¼ 0; i:e: vL ¼ L
diL

dt
¼ �Vout;

giving:

iLðtÞ ¼ IL max � Vout

L
ðt� DTsÞ

that is, the inductor discharges, transferring its field energy to the load, and iL decreases. As there is no

change in the operating parameters (Vin, R, D), it is normal that the inductor current in the following cycle

will start at the same value, ILmin, as in the present cycle, that is, iL decreases until reaching ILmin at the end

of the stage:

IL min ¼ iLðTsÞ ¼ IL max � Vout

L
ðTs � DTsÞ ¼ IL max � Vout

L
ð1� DÞTs

From Figure 1.43c, one can find that, in this topology, vDS of the transistor is vDS ¼ Vin þ Vout.

The main waveforms of the converter vGS, vDS, vL, and iL for the analyzed cycle are given in Figure 1.43d.

This diagram is called a switching diagram.

When the converter parameters (Vin, R, D) are at their nominal values, the main waveforms repeat

themselves identically in every switching cycle. We call such a cycle as “steady-state cycle.” Such a

3
The following references will be used throughout the book:

Once the orientation of a current through an inductor, iL, has been chosen, we shall define the voltage across it, vL, with the þ �
polarity in the same direction with the arrow denoting the current’s orientation. For this reference, vL ¼ L

diL

dt
. If the inductor current is

increasing, meaning that the inductor is in a charging process,
diL

dt
> 0 and vL will have a positive value. If the inductor current is

decreasing, meaning that the inductor is discharging,
diL

dt
< 0 and vL will be negative (i.e., its actual polarity is opposed to that we

considered). When writing KVL in a loop containing the inductor, we shall use the defined polarity of the inductor voltage, without

asking the question if the inductor is in a charging or discharging phase.

Once the polarity of the voltage across a capacitor, vC, has been chosen, we shall define the direction of the current, iC, from the plus

terminal to the minus terminal. For this reference, iC ¼ C
dvC

dt
. If the capacitor is in a charging process,

dvC

dt
> 0 and iC will have a

positive value. If the capacitor is in a discharging phase,
dvC

dt
< 0 and iC will have a negative value, i.e., it actually flows from the

negative to positive terminal. When writing KCL in a node at which a capacitor is incident, we shall always use the defined orientation

of the capacitor current, without minding if the capacitor is charging or discharging.

As known from circuit theory, the inductor current and capacitor voltage do not change orientation at a switching instant.
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definition can be misleading, because we know from circuit theory that, for DC circuits in a steady state, an

inductor is a short-circuit and a capacitor is an open-circuit. However, in power electronics, the definition

has another meaning: it refers to the similarity of the converter waveforms in “steady-state” cycles, when no

disturbances appear. Looking to the inductor current waveform, we see that in a steady-state cycle the

inductor goes through a charging and discharging process, its current returning to the initial value at the end

of the switching cycle. The steady-state inductor current has a periodicity of Ts. (We shall see in Chapter 4

an exception where the periodicity of the steady-state inductor current is larger than the switching period.)

So, we see that within a so-called “steady-state cycle,” we have “transient” phenomena. However, from now

on in the book, when speaking about transient cycles we shall refer to the operation of the converter when

changes in input and/or load appear, leading to changes in the duty cycle, and making the switching dia-

grams for two transient cycles look different one from the other. We shall use capital D when referring to a

steady-state cycle and d for a transient cycle. However, as iL, vL, iC, and vC are variable, even in a steady-

state cycle, we shall use lower case characters for them.

According to the above equations:

ZTs

0

vLðtÞdt ¼
ZTs

0

L
diL

dt
dt ¼

ZiLðTsÞ

iLð0Þ

LdiL ¼ L iLðTsÞ � iLð0Þ½ 	 ¼ 0

that is, the integral of the inductor voltage over a steady-state cycle is zero, showing that, by neglecting the

losses on the parasitic resistances, all the energy accumulated in the magnetic field of the inductor was

transferred to the load (a similar conclusion can be reached for the capacitor current).

This is a general result, applicable to any converter, as the energy transfer principle is the same. Based on

it, if we develop the integral of vL over each topological stage, we obtain:

ZTs

0

vLðtÞdt ¼
ZDTs

0

vLðtÞdtþ
ZTs

DTs

vLðtÞdt ¼ VinDTs þ ð�VoutÞðTs � DTsÞ ¼ 0

The equation:

VinDTs þ ð�VoutÞð1� DÞTs ¼ 0

represents a volt-second balance for the inductor. It could be written directly according to the switching

diagram of vL(t) based on the “area” interpretation of an integral (the two areas VinDTs and Vout(Ts�DTs)

have to be equal in order to have a zero value for the integral of vL over this cycle).

From this equation, for the buck-boost converter:

Vout ¼ D

1� D
Vin

By defining with M ¼ Vout

Vin

the DC input-to-output voltage gain (also called the DC voltage conversion

ratio or DC voltage gain), and writing for the buck and boost converters similar volt-second balances on

their inductors (this is left as an exercise for the readers), Table 1.7 is obtained.

Note that the minus for the DC gain of the buck-boost converter in Table 1.7 is not a mistake compared

with the previous result. We noted from the beginning that the output voltage had an opposite polarity

to that of Vin (due to the fact that the inductor current could not change direction at the switching
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moment DTs), and we wrote the equations accordingly. In Table 1.7 we considered that Vin and Vout had the

same polarity for all the converters. The buck and boost converters do not change the polarity of the output

voltage compared with the input voltage, but the buck-boost converter does. The minus in the formula of the

DC gain for the buck-boost converter shows this change in the polarity of Vout.

From Table 1.7, as 0<D< 1, we see that, as expected, the buck converter can only step-down the input

voltage, the boost converter can only step it up, and the buck-boost converter will step-down Vin if D< 0.5

and step-up Vin if D> 0.5.

Therefore, the DC conversion ratio of converters can be obtained by using the method called volt-second

balance on inductor(s). By duality, one can also use an equivalent method based on the property of the

capacitor current to have a zero integral over a steady-state switching cycle.

1.4.2 Continuous and discontinuous conduction operation modes

In the previous switching diagram (Figure 1.43d) notice that iL(t) never falls to zero during a switching

cycle. We call such an operation continuous conduction mode (CCM).

However, it is possible that the inductor releases all its energy to the load before the end of the Toff stage.

This can happen if L has a small value, or if the stage is long (i.e., Ts is large, which means a small switching

frequency, fs), or if R is large (i.e., a low load current). In such a case, iL(t) drops to zero at some time during

the second topological stage (Figure 1.44a). We can see this also graphically, if, for example, we decrease L

in the diagram of iL(t) in Figure 1.43d, by increasing the slope of iL. As, in a steady-state cycle, the initial and

final values of the inductor current are the same, it implies that iL(t) starts from a zero value. From a topologi-

cal point of view, it means that the converter goes cyclically through three switching stages in each cycle: in

the first one, similar to a CCM operation, the transistor is on and diode off; in the second stage, the transistor

is off and diode on; and, in the additional third stage, saying that iL¼ 0 means that the diode is off (as well as

the transistor) (Figure 1.44b–d). Of course, such an operation leads to a different DC voltage conversion ratio.

We shall see in the next chapter that the dynamic behavior of a converter is also changed in this type of

operation. The operation described in Figure 1.44 is called discontinuous conduction mode (DCM). As

DCM can be reached by lowering the load current, it is also called “light operation mode;” the CCM is then

called “heavy operation mode.” It is clear that DCM can appear in a similar way in buck or boost converters.

By designing a corresponding value for L, we can decide if the converter operates in either CCM or DCM.

We shall see that each type of operation has its usefulness and, of course, also its own disadvantages.

1.4.3 Design of the elements of the basic converters

The design of the power stage of a basic converter is simple. The transistor and the diode are chosen accord-

ing with their voltage and current ratings.

The capacitor is designed to limit the output voltage ripple. If we look, for example, to the first topologi-

cal stage of a buck-boost converter (Figure 1.43b), in which the capacitor has to “keep a constant” output

voltage, we can write:

vC þ RC
dvC

dt
¼ 0

Table 1.7 DC conversion ratio of basic converters

Converter Buck Boost Buck-boost

M D
1

1�D
� D

1�D
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Figure 1.44 (a) Inductor current waveform for a discontinuous conduction mode (DCM) operation; (b)–(d)

equivalent switching stages of a buck-boost converter operating in DCM.
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implying:

vCðtÞ ¼ VC maxe
�t
RC

VCmax is the value at the beginning of a new steady-state cycle, as C was charged by the inductor current

during the off-stage and reached its maximum value VCmax at the end of the previous steady-state cycle.

During the on-stage, C is discharged on the load (asC has not an infinite value, we can expect that the output

voltage cannot be kept 100% constant, as ideally we would like, but that some changes, called ripple, will

appear in it), reaching its minimum value, VCmin, at DTs:

VC min ¼ VC maxe
� DTs

RC

The change in vC (and therefore in the load voltage) will be:

DVC ¼ VC max � VC min ¼ VC max 1� e
�DTs

RC

� �

Practically, as required by industry, this ripple has to be less than 1% of the load voltage to consider the

output voltage as being “constant” over a cycle:

DVC

VC max

¼ 1� e
�DTs

RC < 0:01

This inequality allows the value of C to be chosen for a certain nominal load R, and a converter designed to

operate with a certain fs at the required D (D was designed from the customer requirements of nominal Vin

and desired Vout, according to Table 1.7).

Practically, an approximate but easier-to-use formula is preferred. From the same figure as above,

C
dvout

dt
¼ �Vout

R
(taking into account that Vout¼ vC if we neglect the series resistance of the capacitor) and

introducing the first-order approximation
dvout

dt
¼ DVout

Dt
, with Dt being the duration of the interval in which

the drop of the capacitor voltage took place, that is, the duration of the on-stage, (0�DTs)¼�DTs (as the

maximum value was reached at the instant 0, and the minimum value at the instant DTs):

C
DVout

DTS

¼ Vout

R

With the standard requirement that
DVout

Vout

< 0:01, we get:

C >
100DTs

R

which is equivalent to the exact design formula in which the exponential is replaced by the first two linear

terms of its series expansion.

The constraints for designing the inductor value are less rigid. Generally, we used to design L such that

the ripple in the inductor current is around 10–15% of the average value of this current. As such a require-

ment is more important for a boost converter, where the inductor current is identical to the input current
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drawn by the converter from the supply, let us exemplify the design for this type of DC-DC converter; it will

be left to readers to design L for buck and buck-boost converters.

According to Figure 1.7b, in the on-stage of the boost converter of duration DTs, the inductor is charged,

the current increasing from ILmin to ILmax:

DIL ¼ IL max � IL min ¼ VinDTs

L

Neglecting the losses, that is, assuming 100% efficiency, we can write:

VinIin ¼ VoutIout

where, for a boost converter, Vout ¼ Vin

1� D
, giving the average value of the input current as:

IL;av ¼ Iin ¼ Iout

1� D
¼ Vout

Rð1� DÞ ¼
Vin

Rð1� DÞ2

From the condition DIL ¼ ð10� 15Þ%IL;av, we get that the value of L has to be:

L ¼ VinDTs

ð10� 15Þ%IL;av
¼ D½ð1� DÞ2	RTs

0:1� 0:15

1.4.4 Controller for duty cycle control (PWM)

Up to now, we have spoken only about the power stage of the converter, that is, the part through which the

flux of energy is circulating from source to load. We said that by varying the duty cycle we can control the

output voltage. Let us now focus attention on the control circuit.

Firstly, let us see how the nominal value of the duty cycle (D) is determined by the control circuit. Given

in principle only in Figure 1.45 is the main block of the control circuit (later in the book we shall see its

actual electronic implementation). This block is an electronic comparator. It has two inputs. At one of the

inputs, a sawtooth signal of maximum value VM and switching period Ts is applied. The operating switching

frequency of the converter is dictated by an electronic clock (oscillator), which gives the frequency fs of the

sawtooth signal. Consider for a moment that, at the other input, a DC signal of value Vctr is applied.

The block operates as a comparator: when the sawtooth signal is lower than the DC signal, the output is a

signal of high value. When the DC signal is lower than the sawtooth signal, the output is a signal of low

value, say zero. Therefore, the output of this block, denoted as d(t), is a pulse waveform of frequency fs.

But this is exactly the type of a signal to be applied to drive a transistor (i.e., vGS for MOSFETs, or the signal

to be applied to the gate of an IGBT). Therefore, the duration for which the signal d(t) is high represents

DTs. From the similarity of triangles, we have:

DTS

TS

¼ Vctr

VM

that is:

D ¼ Vctr

VM
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Figure 1.45 The principle of operation of the main block of the control circuit.
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Thus, the circuit designer will choose his value for Vctr and use VM given by the manufacturer such that the

nominal duty cycle calculated according to Table 1.7 is provided.

In reality, at the second input of the electronic comparator, there is applied a signal vctr, which is the

output of a controller with the transfer function A(s). The closed-loop control is given in Figure 1.46a,

still only in principle. It is the same for any basic converter, a buck converter was shown in the figure

only for exemplification. The actual load voltage, Vout, is measured and compared with the reference

voltage, Eref. When a disturbance appears, an error e ¼ Eref � Vout is generated. This signal is passed

through a controller with the transfer function A(s). Usually, the controller is of either a PI (lead) or

PID (lead-lag) type, as we shall see much later. In the case of a PI controller, the error, e, is amplified

and integrated (we know from control theory that a controller of the P type generates a steady-state

error, this is why we always have to add an integration function. If we want to improve the dynamic

response, that is, to have a shorter transient period, we add a derivative function. However, this one can

create noise that has to be tackled by an appropriate design of the controller parameters. People in

industry used to call the PI controller a “type II controller” and the PID controller a “type III

controller”).

In steady state, the output voltage has the required value, Eref. Then, the error, e, is zero and the

value of vctr is a DC signal, Vctr, as in the case discussed previously. If the error is negative, vctr is a

DC value, Vctr_new, lower than the previous value, Vctr (Figure 1.46b). And if the error is positive, the

new value, Vctr_new0, will be higher. For exemplification, consider that the disturbance is an increase in

the input voltage, Vin. As a result, in the first moment, Vout has the tendency to increase. If, for nominal

Vin and R (steady-state conditions), the error was zero and vctr¼Vctr, when the actual Vout increases

over the required value, Eref, the error becomes negative. The electronic comparator continues to work

as always, giving a high output signal when the sawtooth waveform is lower than the new DC signal,

Vctr_new, and a low output signal (zero) when the new DC signal is under the sawtooth waveform. As a

result, the width of the resulting pulse was changed from DTs to dTs. The new d(t), with the same

frequency, fs, as previously but with the new width of the pulse, dTs, is driving the transistor. As in our

example dTs<DTs, the duration of the on-topological stage is shortened, the inductor, L, has less time

to be charged, that is, less energy is transferred to it, and Vout starts decreasing. The process repeats

itself for a few switching cycles until the actual value of Vout comes back to the required load voltage

and vctr again becomes equal to the nominal value Vctr, the converter returning to its steady-state opera-

tion. Obviously, if the disturbance was due to a decrease of the input voltage, the DC signal in the

electronic comparator would have been raised, giving wider pulses, that is, increasing the duration of

the on-switching stage. For changes in the load the result is similar (if the load current decreases, the

control mechanism is similar to the case when the input voltage increases). The electronic comparator

is called a PWM (pulse-width modulator) due to its role of adjusting the pulse width. It is implemented

by a simple integrated circuit (IC) chip.

In many converters, to improve the transient response, an additional inner current feedback loop is added

to the outer voltage feedback loop presented in Figure 1.46a. The inner loop is a fast one and the outer loop

is a slow one. In Chapter 2, when modeling a DC-DC converter, we will have to find, in addition to the

input-voltage-to-load-voltage and duty-cycle-to-load-voltage transfer functions, the input-voltage- and

duty-cycle-to-inductor-current transfer functions to be able to design the controllers of the outer and inner

feedback loops.

There are different ICs for implementing a PWM controller, each one serving a different purpose.

For example, if we want only a voltage-mode control (based on a voltage feedback loop), we can

choose the popular IC TL494, which also has overcurrent protection. If we want current-mode control

(based on an inner current feedback loop in addition to the output voltage feedback loop), we can

choose the chip UC3842.
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Figure 1.46 (a) Closed-loop duty-cycle-controlled DC-DC basic converter; (b) principle of PWM.
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1.4.5 Conversion efficiency, hard-switching and soft-switching

In Section 1.3, the losses in switches, capacitors, inductors and transformers were discussed. We saw that

the conduction losses are due to the energy loss in the on-state resistances of the switching devices of the

MOSFET type, or in the parasitic resistances of the passive elements and wires. For switching devices like

diodes and IGBT, the conduction losses are due to the forward voltage drop. To reduce these losses, the

solid-state devices industry is permanently striving to produce better elements. A good converter layout would

reduce the wire length and parasitic resistances of the connections. We saw in the preceding section that the

nominal value of the parasitic resistance of a switch, rDSon, is proportional to more than the square of the

voltage rating of the switch. By using new techniques, such as a three-level topology, it is possible to halve

the required voltage rating, implying a reduction in the on-state resistance by more than four times. However,

this advantage is partially mitigated either by an increase in the complexity due to the need to use more devices

or an increase in the current flowing through the switch. Three-level topology is discussed in Volume III.

The switching losses are due to the non-ideal characteristics of any switch. As we saw in the preceding

section, the commutation from on-state to off-state, as well as from off-state to on-state, takes a finite, even

very small time. During this commutation time, neither the voltage across the switch nor the current through

it are zero. A switch, particularly of the MOSFET type, has a parallel output capacitance. If this is charged

before the switch is turned on, at turn-on the energy accumulated in the capacitance is dissipated in the

parasitic resistance, being an undesired loss. A minor carrier-based switch, like an IGBT, presents a tail

current, which becomes upsetting when the switch is turned off.

In Figure 1.47a we consider a switch, S, in three consecutive states: on – off – on. Of course, when

the switch is turned on, its voltage is ideally zero, and when the switch is off, is submitted to the voltage

Voff_state. In a general way, let us denote the voltage across a switch by VS and the current flowing through it

by IS. We saw (Figures 1.27 and 1.36) that when the switch commutes from the on-state to the off-state, the

current does not drop instantaneously to zero and the voltage does not reach instantaneously its off-state

value. In reality, this commutation process takes a finite time, tf. Similarly, when the switch is turned on,

during the commutation time, tr, the current increases to the on-state value and the voltage decreases from

the off-state to the on-state value. Therefore, for a very short period, either tf or tr, there is a loss of power as

calculated in Section 1.3.5.1. It is obvious that if the converter operates at high switching frequencies, these

repetitive small losses would bring down the efficiency. This process, accompanied by a switching loss, is

called hard-switching. The current and voltage waveforms of the device, as can be seen in Figure 1.47a, are

square waves: the commutation time, tf or tr, is hundreds or even thousands of time smaller than the dura-

tions Ton, Toff. This is why the duty cycle controlled hard-switching converters are also called square-wave

converters (for simplicity, Figure 1.47a was drawn for the case of a MOSFET in a converter without induc-

tor, but the concept remains the same for any other switch, see Figure 1.27 or Figure 1.33). The study of

hard-switching converters will constitute the subject of Chapter 3. These converters, with duty cycle con-

trol, were largely used till the 1990s. They are still used in many applications, despite their lower efficiency

due to the switching losses, which are however diminished in modern devices. We shall assign one chapter

to their study for an additional reason: they constitute the theoretical basis for explaining and developing the

modern converters.

What can we do in order to eliminate the switching losses? We saw that the switching losses were

due to the fact that neither the current through nor the voltage across the switching device were zero

during the commutation time. If we were able to make at least one of them zero during the commuta-

tion of the switch, obviously the energy loss would be zero. What if, for example, at some time before

turning off the switch, we change the trajectory of IS to a sinusoidal waveform? A sinusoid decays to

zero naturally. How can we create such a sinusoid in our converter? Suppose that the switch is in the

on-state and, at a very short time before the instant when we drive it off, we insert a resonant block,
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Figure 1.47 (a) Hard-switching; (b) soft-switching: zero-current-switching (ZCS); (c) soft-switching: zero-

voltage-switching (ZVS).
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Lr�Cr, in series with the switch. As we know, such a circuit would be described by a second-order

differential equation, its solution being a sinusoidal current. Therefore, if the resonant period, Tr, of the

resonant circuit is very small, i.e.,

f r ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffi
Lr Cr

p 
 f s

the linear characteristic of IS is transformed into a sinusoidal profile for the last moments of the on-topol-

ogy (Figure 1.47b). Then, by driving the switching device off when this current reaches the value zero, the

voltage on the switch will increase during the commutation process but, as the current was already brought

to zero, the power loss will be zero. Similarly, when turning on the switch again, it is sufficient to have an

inductor in series with it; as the inductor current cannot jump at the transition instant, it means that IS,

which is now equal with an inductor current, will remain zero during most of the commutation time, giving

again an almost zero power loss. Such an operation, in which the current through the switch is zero during

the commutation time, is called zero-current-switching (ZCS).

Similarly, if we place a capacitor in parallel with the switch, as the capacitor voltage cannot jump at a

transient instant, when turning off the switch the voltage across it, equal now with a capacitor voltage,

would remain zero during most of the commutation time (Figure 1.47c). Even if the current drops only

gradually to zero, during the commutation time the power loss would be almost zero (towards the end of

the commutation time, when the voltage rises, the current is already small). If we place the resonant block

Lr�Cr with Cr in parallel with the switch at a certain time during the interval Toff, the linear DC voltage VS

would be transformed into a sinusoid. If we drive on the switch when the sinusoidal voltage across it drops

naturally to zero, the power loss becomes zero. Such an operation, in which the voltage across the switch is

zero during the commutation time, is called zero-voltage-switching (ZVS).

This technique of realizing ZCS and ZVS by inserting a resonant circuit was introduced in 1984 in quasi-

resonant converters (QRCs). As the resonant elements Lr and Cr have very small values (to assure a small

Tr, as seen previously), the additional conduction losses in their parasitic resistances were completely offset

by the reduction in the switching losses. As the turn-off and turn-on processes had to be done at specific

instants when either the current or the voltage across the switch was reaching zero, these converters could

not be controlled by varying the duty cycle (in duty cycle controlled converters the switch is turned off at an

instant dictated by the PWM, with no relation to the value of the current at that moment). We shall see in

Volume III that the control of QRCs is based on varying the switching frequency.

However, ZCS and ZVS were already present in the natural operation of the so-called resonant convert-

ers, a class of converter available before 1984, which were used concomitantly with the hard-switching

PWM converters. A later section of this chapter and a good part of Volume III is dedicated to the presenta-

tion of these switching frequency-controlled converters. Their use was largely spread in the decades before

the end of 1980s, the interest in them is renewed nowadays due to their intrinsic operation with zero switch-

ing loss.

To realize ZCS and/or ZVS in duty cycle controlled converters, research in the 1990s came up with

new solutions, creating the modern soft-switching converters. By using, in addition to the basic resonant

block Lr�Cr, another switch (in a structure called an active snubber) or more passive elements and

diodes (in a structure called a passive snubber), ZCS and/or ZVS can be created in PWM-

controlled converters. It is important to note that, at turn-on, ZVS is preferable to ZCS, particularly for

switches like MOSFETs, which present an output parallel capacitance. By bringing the voltage across the

switch to zero before driving on the switch, the accumulated energy in the parasitic capacitance field

would be ideally zero at the turn-on instant, such that no energy waste would appear. ZCS at turn-on is

simpler to be realized: for example, a buck-boost converter operating in DCM would present a natural
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ZCS turn-on, due to the series connection of the inductor and transistor in the on-stage. As the current

through the inductor was zero in the last switching stage of the previous cycle, it will increase slowly

from zero at the beginning of a new cycle, with a slope limited by the inductor value. ZCS is preferable

at turn-off, particularly for minority-carrier transistors like IGBTs, because ZCS would cancel their tail

current, as the current was already brought to zero before the turn-off instant. The diode of a buck-boost

converter operating in DCM would naturally turn off with ZCS, as it is connected in series with the

inductor in the second switching stage. When the inductor current drops to zero, the diode will turn off

naturally. ZVS is easier to be realized at turn-off; for example, as any MOSFET has a parallel capaci-

tance, ZVS turn-off is produced naturally for them. Therefore, if we use MOSFETs, we prefer to have

ZVS to eliminate capacitive turn-on losses, and if we use IGBTs we prefer to have ZCS to eliminate the

effects of the turn-off tail current. Soft-switching converters feature a very high efficiency and a simple

control. As the switching trajectories in soft-switching converters are modified into sinusoidal current or

voltage waveforms, there are no large di/dt and dv/dt, implying a reduction of the electromagnetic inter-

ference (EMI), as compared with the EMI generated by hard-switching square-wave converters. The

research on soft-switching converters has reached maturity in the first decade of the twenty-first century.

We shall study them in detail in Volume III.

In terms of the component count, the passive snubber is the simplest one, as it does not necessitate

an extra switch with its associated gate drive circuit. A typical structure of a passive snubber is shown in

Figure 1.48. The role of the inductor Ls in series with the switch is to assure ZCS at turn-on. In the turn-on

process, Ls absorbs energy and Cs is discharged by an Energy reset circuit (the purpose of a reset circuit is

to bring the energy stored in a reactive element to zero.) The role of the capacitor Cs in parallel with the

switch is to assure ZVS at turn-off. In the turn-off process, the energy stored in Ls is transferred to Cs. In the

past, the energy reset circuit consisted of resistors only. Such a snubber was the simplest one but it

Figure 1.48 Typical structure of a passive snubber.
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introduces an energy loss. Today, dissipative snubbers are still used in low-cost applications, where the loss

of efficiency is mitigated by the saving in the component count. Modern loss-less energy reset circuits are

formed by reactive components that constitute an energy tank for re-circulating the energy in the resetting

process to other parts of the converter. Figure 1.49 is the photo of a 1 kW boost converter which uses a

passive loss-less snubber.

The study of the passive loss-less snubbers and more effective and efficient active snubbers will consti-

tute the subject of a major part of Volume III.

1.5 Introduction to Switched-Capacitor (SC) Converters

Emphasized in Section 1.2 was the essential role that inductors play in power electronics circuits: transfer of

energy from line to load in a controlled manner. However, the magnetic elements (inductors or transform-

ers) have a large size. Even if operated at a high frequency, the inductor remains a bulky element. Those

inductors amenable for an IC implementation have a value too small to be considered in power electronics.

Even with the advent of newer, thin, monolithic (chip) inductors that are no longer bulky, in a more useful

range of values, there are many applications where magnetic elements are undesirable; for example, the

power supply of a pacemaker. And, as inductors in a practical range of values cannot be realized in inte-

grated circuit technology, they prevent a converter from being realized in a single integrated chip. The qual-

ity factor, Q, of inductors decreases with the reduction in their size. Due to these features of inductors, we

would prefer to have converters without magnetic devices. In applications where we need a DC-DC isola-

tion between supply and load, we have to use transformers. But in many cases such isolation is not required,

so it is possible to ask the question whether we can replace the inductors by capacitors for controllably

transferring the energy. The first answer seems to be negative: the energy accumulated in the magnetic field

of an inductor in a charging mode increases slowly, due to the slow, controllable increase in the current

(diL/dt); therefore, by changing the duty cycle, we can easily control this process. On the other hand, the

capacitors charge quickly, reaching saturation, rendering it difficult to control their charging process.

Figure 1.49 A boost converter with snubber.
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The process is slower only if the capacitor is charged by a current source but other shortcomings limit the

use of this method, as we will see in Volume II. And, it is known from circuit theory that 50% of the energy

will be lost when the energy is transferred from a capacitor charged at voltage V to an uncharged capacitor;4

therefore, such an energy transfer is highly ineffective.

Despite the above seemingly insurmountable difficulties, the idea of having a power supply with capaci-

tors and switches only was too appealing to researchers not to strive for it. A switched-capacitor (SC)

power supply would have a small size, low weight, high power density, as the printed circuit board (PCB),

component height and cost of capacitors are much smaller than those of inductors and transformers. A

switched-capacitor circuit would be the ideal power supply for portable electronic equipment where no

DC-DC isolation is required. Without magnetic elements, the electromagnetic interference due to the mag-

netic field can be avoided. A SC power supply operating at such a high switching frequency that the capac-

itors could be built in IC technology, allowing for a chip realization of the entire electronic regulator, can

even be imagined.

Let us try to imagine a step-down DC-DC converter formed by only switches and capacitors.

Consider (Figure 1.50a) that we connect n capacitors of equal value, C1¼C2¼ . . . ¼Cn¼C, in series

and that we charge them from a source of value V. After a very short time, depending on the value of the

parasitic resistances in the charging circuit, each capacitor will be charged at almost the voltage V/n. Now

move the capacitors to a parallel connection with a resistor, R (Figure 1.50b): if the discharging time is very

small, by assuming zero losses it results that the voltage on the load is almost the same as that of the capaci-

tors, that is, approximately we can say that the load voltage is V/n. Of course, such an electronic circuit is

still far away from a power converter, first of all for the simple reason that, when charging the capacitors,

the load remains at zero voltage (we remember that we must keep a constant output voltage).

To remedy this inconvenient, we can use two groups of capacitors, of equal value C: C1, C2, . . . , Cn,

and C0
1, C

0
2, . . . , C0

n (Figure 1.51). For half of a cycle, Ts / 2, the first group of capacitors, C1, C2, . . . , Cn,

is in the charging process from the source V, while the second group of capacitors, C0
1, C

0
2, . . . , C0

n

(charged in the previous half cycle), is in the discharging phase on the load R (Figure 1.51a and b). Their

role is exchanged in the second half of the cycle (Figure 1.51c and d). In such a way, the load is all the time

supplied at a voltage a little lower than V/n. However, we do not yet have a power supply: if V increases or

decreases, the load voltage, V/n, will follow it.

How can we assure that the load voltage remains constant, even if V or R change? In other words, how

can we introduce an element of control in this charging–discharging process? Up to now, we charged the

capacitors for a “sufficient” time for them to reach V/n, that is, we charged them at saturation (theoreti-

cally, this value is reached only after an infinite time but, practically, the almost saturation voltage value

is obtained in a short time, as the equivalent resistance in the charging circuit is formed by small value

parasitic resistances in series). But what if we decide to control this process, such as to charge the capac-

itors only up to a fraction of V/n, say to a value Vx decided by us (Figure 1.52), that is, we charge them

for the time tch, obviously less than Ts/2. The capacitor voltage charging characteristic in a typical resis-

tor–capacitor circuit is given in the figure by the solid line. Now consider that a change, for example a

drop, in the supply voltage occurs: V dropped to Vnew. The charging characteristic will move to the

dotted line. If we want to keep Vx constant, we can simply do it by increasing the charging time to

tch_new. Obviously, if V increases we have to decrease the charging time. If we want to have enough

4
Consider a capacitor C1 charged at the voltage V, and another capacitor C2, which is uncharged (C1¼C2¼C). Their total energy will

be C1V
2/2þ 0¼C V2/2 and their total charge, q, will be C1Vþ 0¼CV. After connecting them in parallel through a switch, as the total

charge has to remain constant (according to the law of conservation of charge), it means that each capacitor will have the charge q1¼
q2¼CV/2, implying that each capacitor will be charged at V/2. Therefore, the total energy accumulated in the electric field of the two

capacitors will be: C1 (V/2)
2/2þC2 (V/2)

2/2¼CV2/4, meaning that half of the energy was dissipated in the switching process.
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regulation of the output voltage for large changes in the supply voltage, it is better to choose the

designed point (tch, Vx) as much as possible in the middle of the linear part of the capacitor charging

characteristic: for changes of V, we will have thus enough room for moving tch to the right or left,

without entering the saturation region and without reaching Ts/2. Similarly, tch is controlled to obtain a

constant load voltage if the load current increases or decreases (in such a case, Vx is increased or

decreased for facing the changing load). In other words, we created a duty cycle given by the ratio tch/Ts.

For nominal (steady-state) values of V and R, this will be the nominal duty ratio D. The operation of the

circuit is shown in Figure 1.53. In the first half-cycle, capacitors C1, C2, . . . , Cn are charged for the

time tch up to Vx, and then disconnected from the supply until the end of the half-cycle. During this

time, C0
1, C

0
2, . . . , C0

n, charged in the previous cycle to Vx, are discharged to the load, giving the output

voltage V 0
x (V 0

x < Vx). In the second half-cycle, the role of the two groups of capacitors is interchanged.

The charging time is controlled for getting a constant V 0
x despite variations in V or R.

To exemplify the operation of the proposed step-down converter, consider the circuit in Figure 1.54a that

is designed for stepping down a supply voltage of 12V to a load voltage of 5V. The circuit goes through

four topological stages within a switching cycle (Figure 1.54b–e). The switching diagram of the switching

waveforms of the converter in a steady-state cycle (driving signals dS1-dS4 of the four transistors S1–S4,

voltages VC1–VC4 across the four capacitors, and the load voltage VR) is shown in Figure 1.54f. The power

stage is formed by two groups of capacitors C1, C2, and C3, C4 of equal value C, rC1� rC4 being their DC

resistances, four transistors, S1–S4, rS1� rS4 being their on-resistances, and six diodes D1–D6. In the first

topological stage, of duration tch, S1 and S4 are turned on, S2 and S3 are turned off (Figure 1.54b, in which

the on-resistances of the switches in conduction and the DC resistances of the capacitors are specified; in SC

converters, these resistances cannot be neglected, otherwise the charging process of the capacitors would

seem instantaneous, representing an inadmissible approximation). Consequently, C1 and C2 are charged in

series from the line voltage, with a very small time constant, as rch¼ rS1þ rC1þ rC2, D2 is turned on by the

charging current, D3 and D1 are reverse-biased by VC1 and VC2, respectively. The voltages on C1 and C2

increase from a minimal value, VCmin (which is different from zero as we are in a steady-state cycle and not

in the first transient cycle of the start-up process), reaching the maximum value, VCmax, at the end of this

topological stage. During this time, D5 is reverse-biased by VC3, VC4, and C3 and C4 (charged at VCmax,

C1

C2

Cn

V C1 C2 Cn R

n
V

n
V

n
V

n
V

n
V

n
V

n
V

nC...CC === 21

                  (a)                                                   (b) 

Figure 1.50 (a) Series charging and (b) parallel discharging of n equal capacitors.
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which was their voltage at the end of the previous cycle) discharge in parallel to the load, with a relatively

large time constant, as the load R is present in the discharging circuit (normally R
 rC, rS).

The operation in the first stage is interrupted by the control circuit (of PWM type): according to the value

of the duty cycle, S1 is turned off (Figure 1.54c). In the second topological stage, the charging of C1 and C2

is interrupted. They remain charged at the maximum voltage, VCmax. C3 and C4 continue their discharging

Figure 1.51 (a) Series charging of the first group of capacitors in the first half-cycle; (b) parallel discharging

on the load of the second group of capacitors in the first half-cycle; (c) series charging of the second group of

capacitors in the second half-cycle; (d) parallel discharging of the first group of capacitors on the load in the

second half-cycle.
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on the load, their voltage reaching the minimum value, VCmin, at the end of this stage (Ts/2). During the first

half-cycle, the load voltage, VR, is dictated by that of the discharging capacitors in parallel, C3 and C4, being

a little lower than VC3 (VC4) due to the conduction losses in the discharging circuit. In the third switching

topology, S3 and S2 are turned on, S1 and S4 are turned off (Figure 1.54d). Consequently, C3 and C4 are

charged in series from the supply up to VCmax, and C1 and C2, which were charged at their maximum volt-

age in the previous half-cycle, are now discharged in parallel to the load. According to the PWM, S3 is

turned off after time tch (Figure 1.54e), C3 and C4 remain charged at their maximum voltage, ready to sup-

ply the load in the next cycle, and C1, C2 continue their discharging in parallel to the load. They will reach

the minimum voltage, VCmin, at the end of the cycle, Ts. During the second half-cycle, the load voltage is

determined by the voltages VC1, VC2, being a little lower than them due to the conduction losses in the

discharging circuit. From Figure 1.54f, we can notice that the load voltage suffers from jumps at each half-

cycle, as the supply of the load is changed from capacitors that finished their discharging stage to capacitors

that just start their discharging phase. Such ripples in the output voltage can be kept under the desired limit

by a corresponding design of C and Ts, and can be further reduced by adding a parallel capacitor to the load.

However, some ripple in the load voltage is needed, as, without it, the capacitors will no longer be cyclically

charged and discharged, that is, no energy will be transferred, which is equivalent to an infinite load value.

It is left to the reader to conceive a similar step-up DC-DC converter.

The study of SC power electronics raises many questions about the DC voltage gain, efficiency, voltage

ripple, regulation, and an optimal design. As the capacitor charging current has a large di/dt that can create

EMI, means for diminishing EMI have to be found. A question like what would be the best structure for the

SC circuit, which can use the minimum number of switches and capacitors to realize a certain DC gain,

results in many possible circuits. What will be the best method of control of these circuits? How can the

line and load regulation range be enlarged? Is it possible to have soft-switching (or something similar) in

these circuits? And, can soft-switching help the efficiency of the SC converters? Which factors affect the

efficiency of charging and discharging of the capacitors in SC converters? How can the efficiency of the

energy conversion through a switched-capacitor converter be improved? Is it possible to realize DC-AC or

Figure 1.52 Charging capacitor voltage characteristic in a typical capacitor–resistor circuit.
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AC-DC switched-capacitor converters? For which power level are the SC converters suitable? To all this

long series of questions, we shall look for answers in Volume II.

1.6 Frequency-Controlled Converters

1.6.1 Resonant converters

We saw that in duty cycle controlled hard-switching converters, the DC supply voltage was transformed into

a square waveform during the switching operation and then rectified back to a DC voltage. In resonant

converters, the DC supply voltage is firstly converted into a square waveform. Then, the square waveform is

converted into a near sinusoidal waveform by a resonant tank circuit. Finally, the sinusoidal waveform is
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Figure 1.53 Principle of a controlled cyclical operation of a SC converter (rch¼ equivalent DC resistance in the

charging circuit of the capacitors; rdisch¼ equivalent DC parasitic resistance in the discharging circuit of the

capacitors to the load).
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rectified to a DC voltage. The principal advantage is the property of a sinusoid of going naturally through

the zero value, thus creating the possibility of realizing the switching action under a zero current or a zero

voltage condition. Therefore, in resonant converters, soft-switching can be obtained naturally, without the

need for additional snubbers. This allows a high-frequency operation without the concern of switching

losses and electromagnetic radiation. And since the parasitic inductances and capacitances (like the leakage

inductance of a transformer or the output parallel capacitance of a switch) can be included in the resonant

process, they are no longer a burden that requires special care but become useful. However, as we shall see

immediately, resonant converters have their drawbacks. Due to the character of their voltage and current

waveforms, the resonant converters are also called sinusoidal-wave converters. Different resonant tank cir-

cuits give different types of resonant converters.

Figure 1.54 (a) SC step-down 12 to 5 V DC-DC converter; (b)–(e) topological stages; (f) switching diagram.
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To exemplify the switching operation of a resonant power supply, consider the series-loaded resonant

converter shown in Figure 1.55a. The capacitors C1 and C2, of a large, equal value, are used to provide a

stable DC voltage, Vin=2, as the input to the resonant tank circuit when either one of the switches, S1 or

S2, is in the on-state. S1 and S2 are used to convert the DC input voltage into an AC square waveform, vAB.

The parallel capacitors CS1 and CS2 include the drain-source capacitances of the switches S1 and S2,

respectively. Diodes DS1 and DS2 are the anti-parallel diodes of S1 and S2, respectively. The resonant tank

is formed by an Lr�Cr circuit in series with the reflected load. A high-frequency transformer is used to get

the desired DC input-to-output voltage ratio. A rectifier formed by a bridge of four diodes, D1–D4, and an

output capacitor, C, realizes the conversion of the sinusoidal waveform on the secondary side of the trans-

former into a DC load voltage. In practical converters, an inductor L is inserted at the input for smoothing

the input current. In the following analysis, we will not take L into account because it does not affect the

explanation of the operation of the converter.

Figure 1.54 (Continued )
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The duty cycles of the switches S1 and S2 are equal and slightly less than 0.5 (Figure 1.55b). Let us

explain the operation of the converter in a typical steady-state cycle, starting at a moment denoted as t0.

Consider that S2 is conducting before t0. The voltage across CS2 will then be zero and the voltage across CS1

will be Vin. The rectifier diodes D2 and D3 conduct, and D1 and D4 are off (Figure 1.56a). The voltage vAB is

given by vAB¼�Vin/2 (giving iL< 0). At t0, S2 is turned off. The current will be diverted from S2 through

CS2, charging it. As Kirchhoff’s voltage law has to be fulfilled at any moment, it means that the total voltage

across capacitors CS1 and CS2 has to remain Vin. Consequently, the primary current iL will divide into two

currents of value iL=2 (by assuming that the two switches have identical parallel capacitances), charging

slowly (depending on the values of the capacitance and reflected load current) CS2 from zero to Vin and

Figure 1.54 (Continued )
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Figure 1.55 Series-loaded resonant converter: (a) power stage circuit; (b) main steady-state waveforms.

Introduction 105



discharging CS1 from Vin to zero (Figure 1.56b). Therefore, the presence of the parallel capacitance assures

the zero voltage (ZVS) turn-off of S2. During the interval [t0, t1], following the charging and discharging

process of CS2 and CS1, respectively, the voltage, vAB, given by vAB ¼ �Vin=2þ vCS2ðtÞ is increasing from

–Vin/2 to Vin/2. As iL is still negative, D2 and D3 still conduct, and D1 and D4 are off. When CS1 is com-

pletely discharged, at t1, the antiparallel diode of S1, DS1, starts conducting naturally, taking all the current

iL. The voltage across CS2 remains Vin. The voltage vAB becomes equal to Vin/2 (Figure 1.56c). The rectifier
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Figure 1.56 Switching stages of the series-loaded resonant converter: (a) before t0; (b) [t0, t1]; (c) [t1, t2];

(d) [t2, Ts/2]; (e) [Ts/2, t3]; (f) [t3, t4].
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diodes, D1–D4, keep their states. After t1, during the conduction interval of DS1, the gate signal for

turning on S1 is applied. We saw in Section 1.3 that the turn-off process of a switch is not instantaneous.

This means that, practically, at t0, S2 may not have finished its turn-off process. If S1 is turned on exactly at

the instant t1, it would be possible that S1 and S2 conduct concomitantly, thus short-circuiting the supply

source and causing a huge input current pulse (called shoot-through of the switches). To avoid shoot-

through, a “dead time” is inserted between the instants of turning off S2 and turning on S1. When the

Figure 1.56 (Continued )
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primary current, iL, reaches zero, at t2, DS1 stops conducting and S1 takes over the current, iL, which changes

its direction (Figure 1.56d). Therefore, by discharging CS1, the zero voltage turn-on of S1 is realised. During

the interval [t2, Ts/2], vAB¼Vin/2, iL is given by:

iLðtÞ ¼
Vin

2
� vCrðt2Þ
vrLr

e
� R0

2Lr
t
sin vrt

Figure 1.56 (Continued )

108 Power Electronics and Energy Conversion Systems



where

vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LrCr

� R02

4L2r

s

and R0 is the reflected load resistance R to the primary side.

As iL becomes positive at t2, D2 and D3 turn off and D1 and D4 start conducting. One can see that the

sinusoidal current, iL, reaches a peak that can be many times larger than the nominal input current. As iL
flows through the on-state resistance of the switch and through the parasitic resistances in the circuit, such a

sinusoidal waveform attracts considerable conduction loss. This is one of the main disadvantages of reso-

nant converters.

At Ts/2, S1 is turned off with ZVS due to the presence of CS1: the current iL charges CS1 from zero to Vin

and discharges CS2 from Vin to zero, preparing the later zero voltage turn-on of S2 (Figure 1.56e). Following

these capacitors charging and discharging, respectively, vAB decreases from Vin/2 to �Vin/2. D1–D4 keep

their states. When CS2 is completely discharged, at t3, DS2 starts conducting naturally. The voltage vAB
becomes equal to �Vin/2 (Figure 1.56f). D1–D4 keep their states. The current iL continues its sinusoid from

the previous time intervals. Immediately after t3, a turn-on signal is applied to switch S2. Again, practically,

a dead time must be applied between the instants when S1 is turned off and S2 is turned on. When iL reaches

zero, at t4, DS2 stops conducting. The current, iL, now in the opposite direction, is taken over by S2, arriving

again to the topological stage of Figure 1.56a. The equation of iL is similar to the previous formula given for

the interval [t2, t4], only that it has a negative sign. The converter will operate in this stage until the end of

the cycle, Ts, when a similar new cycle begins.

In the above described converter, it is essential that iL does not finish its negative part of the sinus-

oid before a new cycle begins (otherwise, when turning off S2, iL would be positive and DS1 would

not start conducting at t1). Similarly, iL must still be positive when turning off S1 at Ts/2 (otherwise,

DS2 will not start conducting at t3). This means that the current, iL, has to lag the voltage, vAB. The

equivalent AC model of the converter is given in Figure 1.57. For ILðjvsÞ lagging VABðjvsÞ, we need

the load angle

u ¼ tan�1
vsLr � 1

vsCr

R0

)( sL jI ω rs Ljω
rs Cj ω

1

'R)( sAB jV ω

Figure 1.57 Equivalent circuit of a series-loaded resonant converter with R0 representing the reflected load to

the primary-side.
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to be positive. Thus,

vs >
1ffiffiffiffiffiffiffiffiffiffi
LrCr

p :

In other words, the switching frequency vs has to be higher than the resonant frequency. Such an oper-

ation is called “above resonance operation.” As the current iL lags the voltage vAB, this type of operation is

also called “lagging power factor mode.” The advantages of the above resonance operation are clear: ZVS

turn-on and turn-off of the switches, and an operation at a high switching frequency, implying a

smaller size of the transformer and reactive elements. The method is suitable for resonant converters

using MOSFETs; therefore, is less useful for converters with high supply voltage, Vin, for which no MOS-

FETs are available (we saw that the switch has to withstand the input voltage when it is in the off-state).

Another type of operation is “the below resonance” or “leading power factor mode,” in which the switch-

ing frequency is lower than the resonance frequency, and iL leads voltage vAB. In such an operation, the

switches are turned on and off with ZCS, giving other advantages and disadvantages, and other applica-

tions to such a resonant converter.

It is possible to use resonant tanks other than the series one we saw above, such as a parallel one, in which

the resonant capacitor is connected in parallel with the load, or a series-parallel tank of type LCC, in which

one capacitor is in series with the inductor and another capacitor is in parallel with the load, or a series-

parallel tank of type LLC, in which there are two inductors in series with a capacitor, one of them being in

parallel with the load. Each one of the converters obtained with these different tanks has its advantages and

its applications, as we shall see in Volume III.

As in resonant converters there is no interruption of the energy flow from supply to load, no duty cycle

can be defined and no possibility for regulating the output voltage is available based on controlling

the conducting time of a certain switch. In order to control the flow of energy going from supply to load, we

have to control the average value of the instantaneous power, vAB iL. From Figure 1.55b we can see that, in a

designed converter, we can achieve this only by extending or compressing the waveforms of vAB and iL, that

is, by extending or shortening Ts. Therefore, to regulate the output voltage of the resonant converters, a

switching frequency - control is required. An example of an integrated circuit for a frequency controller for

resonant converters is STMicroelectronics’ L6598. It can change the switching frequency from 240 to

60 kHz for a variation of the power from 25 to 150W.

The disadvantage of frequency control is the implied difficulty of designing the filter of the converter.

When choosing the circuit elements for filters, we have to know the operating frequency of the converter,

because each reactive element has a specific frequency response. In addition, if we choose a magnetic ele-

ment by considering the lowest possible operating frequency, that element will be oversized for all other

frequencies in the controlling range. If we choose the magnetic element by using the highest possible

operating frequency for a desired line and load regulation, that element might become saturated at the lower

frequencies of the controlling range. Practically, when designing an inductor operating in a frequency-

controlled converter, we have to choose a core material suitable for the designed controlling frequency

range by using the datasheet provided by the manufacturer. We shall choose the magnetic material

which has the highest performance factor for the required frequency range. The performance factor is fre-

quency-dependent, so even if the design is optimized at a particular frequency, the performance will change

for the other frequencies in the considered range.

1.6.2 Quasi-resonant converters (QRC)

We saw that duty cycle controlled converters have the advantage of a simple and robust PWM control.

Depending on the type of converter, the voltages and currents the switches have to withstand are either the
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values of the input or output voltage, respectively the values of the input or output current (e.g., in the case

of the buck converter, the switches have to withstand the input voltage and output current; for the boost

converter the switches have to withstand the output voltage and input current; the worst case being the

buck-boost converter where the sum of the input and output voltage appears across the switch in the off-

state). No extra voltage or current stresses appear for the above basic converters. The main disadvantage of

these converters is their hard-switching. The resonant converters possess a natural soft-switching. However,

their frequency control necessitates a more complicated design of the magnetic elements. And, in the reso-

nant process, the waveforms of the voltages and currents in the converter reach sinusoidal peaks, which

cause large stresses on the switches, requiring their overdesign. The ideal converter would combine the

advantages of the PWM and resonant converters, and eliminate their drawbacks.

In the quest for such a converter, in 1984 a quasi-resonant converter (QRC) was proposed. It developed

some ideas originated from patents and conference papers from the period 1971–1983. The starting point

was to use a simple hard-switching converter, like those we have already met (buck, boost, or buck-boost),

and insert, near the switch, a resonant block formed by two very small reactive elements, Lr and Cr, its

resonant period, Tr, being much smaller than Ts:

Tr ¼ 2p
ffiffiffiffiffiffiffiffiffiffi
LrCr

p
� Ts

The series resistances of Lr and Cr are negligible due to the use of small value elements; therefore, the

additional conduction losses will not be important.

The resonant circuit can be inserted with the inductor in series with the switch (Figure 1.58a and b) or

with the capacitor in parallel to the switch (Figure 1.59a and b). We will see that the structures represented

in Figure 1.58 create a ZCS condition. Remember that a MOSFET presents an intrinsic, built-in antiparallel

diode. Therefore, a MOSFET will allow a bidirectional flow of current. If we want to have a unidirectional

flow, we can insert a diode in series with the switch – we used to say then that the switch is operated in a

“half-wave mode.” Remember that the body diode presents recovery problems. Practically, if we want a

bidirectional flow (an operation called “full-wave mode”), we use an additional diode in parallel with the

MOSFET. As we already know, the presence of a series inductor will slow the rise of the current when we

turn on the switch. The resonant process taking place in the Lr�Cr circuit will create a sinusoidal current;

when the sinusoid reaches a zero value, we turn off the switch with ZCS.

The structures represented in Figure 1.59 are used to create a ZVS condition. As we remember, the pres-

ence of a parallel capacitor will slow the rise of the voltage across the switch when this is turned off. The

sinusoidal waveform of the capacitor voltage created in the resonant circuit will pass naturally through zero.

At that moment, the antiparallel diode of the switch will start conducting, creating a zero voltage condition

for turning on the switch. The antiparallel diode of the switch will allow only the positive half-cycle of the

sinusoidal resonant capacitor voltage, as this voltage is clamped to zero by the diode during the negative

half-cycle. In such a case, it is said that the bidirectional switch with the resonant circuit is operated in a

half-wave mode. If a unidirectional switch is used, the voltage across Cr can oscillate in both positive and

negative half-cycles, giving a full-wave mode operation.

In resonant converters, the resonant circuit was present all the time in the energy flow, leading to a large

circulation of energy. The resonant block was an integral part of the power conversion circuit. Unlike the

resonant converters, in quasi-resonant converters the resonant circuit is used only when needed to obtain

ZCS or ZVS. In other words, the resonant block in quasi-resonant converters is attached to the switch and

used only to create the zero-switching (ZCS or ZVS) condition – this is why the structures in Figures 1.58

and 1.59 are also called “resonant switches.”

To understand the operation of a quasi-resonant converter, consider the case when a resonant circuit is

inserted in a buck converter, with the inductor in series with the switch, as in Figure 1.58a. A unidirectional
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Figure 1.58 Switch-resonant circuit structures for creating a ZCS condition.
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Figure 1.59 Switch-resonant circuit structures for creating a ZVS condition.
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flow of energy is obtained by adding a series diode, Ds. The ZCS quasi-resonant buck converter in a half-

wave mode operation is obtained (Figure 1.60a). As we saw in Figure 1.10, the output filter L–C with the

load resistor R can be seen, in a first approximation, as a current sink, Iout (Figure 1.60b). We shall use this

equivalent circuit here during the analytical analysis to reduce the number of reactive elements from four to

two, thus having to solve only differential equations of order two. The accuracy will not be affected, as Lr
and Cr have much smaller values. As Tr� Ts, iLr and vCr can make full sinusoids within a switching cycle,

during which Iout can be considered approximately constant.

In a steady-state cycle, the converter will go through several switching stages (topologies). A switching

diagram containing the main steady-state waveforms (the driving signal of the switch, resonant inductor

current iLr and resonant capacitor voltage vCr) is given in Figure 1.61a. The equivalent circuits for each

switching stage are given in Figure 1.61b–e. When we analyze a circuit, we always have to begin from its

state in the last switching topology before starting a new switching cycle. Then, at the end of the analysis of

the operation in the steady-state cycle, if our supposition was correct, we should arrive at the initial state.

In our case, as the circuit is a buck converter, we know that its last switching stage is the freewheeling one

(Figure 1.61b): S is turned off and the load current, Iout, freewheels through diode D. Obviously, in this

stage, iLr (t)¼ 0, vCr(t)¼ 0.

A new steady-state switching cycle starts at t0 by turning on switch S. Due to the presence of Lr, the

switch current, iLr, rises slowly, giving the ZCS character for the switch turn-on. From Figure 1.61c we

obtain:

Vin ¼ Lr
diLr

dt

with the solution:

iLr ¼ Vin

Lr
t

where, for simplicity, t0 was taken as zero.

The slope of the rising switch current is limited by Lr. As long as iLr is smaller than Iout, the diode D

conducts, its current being given by iD(t)¼ Iout� iLr. As a result:

vCrðtÞ ¼ 0

When iLr(t) reaches the value of Iout, say at the instant t1, the current through the diode drops to zero and

the diode turns off naturally, that is, with ZCS, as iD(t1�)¼ iD(t1þ)¼ 0. The converter enters the second

switching stage, shown in Figure 1.61d. As diode D is now off, the current will flow through capacitor Cr.

Kirchhoff’s equations in the circuit of Figure 1.61d give:

Vin ¼ Lr
diLr

dt
þ vCr

iLr � Iout ¼ Cr

dvCr

dt

8>><
>>:

By differentiating these equations:

0 ¼ Lr
d2iLr

dt2
þ dvCr

dt

diLr

dt
¼ Cr

d2vCr

dt2

8>><
>>:
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Figure 1.61 (a) Switching diagram and (b)–(e) switching stages of a QRC ZCS buck converter in half-wave mode

operation for the time intervals: (b)< t0; (c) [t0, t1]; (d) [t1, t2]; (e) [t2, t3].
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and introducing diLr/dt and dvCr/dt in the preceding equations, we get:

Vin ¼ LrCr

d2vCr

dt2
þ vCr

iLr � Iout ¼ Cr �Lr
d2iLr

dt2

� �
8>>><
>>>:

or

d2vCr

dt2
þ 1

LrCr

vCr ¼ 1

LrCr

Vin

d2iLr

dt2
þ 1

LrCr

iLr ¼ 1

LrCr

Iout

8>>><
>>>:

with the initial conditions:

iLr t1ð Þ ¼ Iout; vCr t1ð Þ ¼ 0

Figure 1.61 (Continued )
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the solution of these equations being:

iLr tð Þ ¼ Iout þ Vinffiffiffiffiffi
Lr

Cr

r sin
1ffiffiffiffiffiffiffiffiffiffi
LrCr

p t� t1ð Þ

vCr tð Þ ¼ Vin 1� cos
1ffiffiffiffiffiffiffiffiffiffi
LrCr

p t� t1ð Þ
� �

8>>>>><
>>>>>:

We can notice that the resonant current, iLr (which, let us not forget, is also the current flowing through the

switch) has a sinusoidal peak of the value

Vinffiffiffiffiffi
Lr

Cr

r ;

that is, while in a hard-switching buck converter the switch had to withstand the input current, in a quasi-

resonant ZCS buck converter it has to conduct a current the maximum value of which is given by the output

current in addition to a component that depends on the value of the input voltage. For large values of the

input voltage, this peak can reach much higher values than the nominal input current. The resonant capaci-

tor voltage, vCr, can reach two times the input voltage. As Cr is placed in parallel to the output diode D, it

means that D has to withstand a voltage which is twice the value that a diode in a hard-switching buck

converter has to withstand.

We see in Figure 1.61a that the sinusoidal resonant inductor current reaches zero at the instant t2. If we want

to turn off the switch S with ZCS, then we have to take the action exactly at this moment. This means that the

interruption of the power flow from the supply to load cannot be done according to an instant “dictated” by a

control circuit of the PWM type, as was the case for hard-switching converters. In quasi-resonant converters, S

has to be switched off when a sensor indicates that the resonant inductor current has reached the value zero.

Therefore, control of the “duty cycle” type is not possible in quasi-resonant converters.

By turning off S at t2, the converter enters the third switching stage, described in Figure 1.61e. In this figure:

Cr

dvCr

dt
þ Iout ¼ 0

giving:

vCr tð Þ ¼ vCr t2ð Þ � Iout

Cr

t� t2ð Þ

that is, the resonant capacitor discharges linearly to the load.

When vCr(t) reaches zero, diode D, which is in parallel to Cr, starts conducting with ZVS because

vD t2�ð Þ ¼ vD t2þð Þ ¼ 0:

The converter enters the typical buck freewheeling switching stage shown in Figure 1.61b.

If we did not add diode Ds to the converter, the resonant inductor current would continue to flow in the

second switching stage through the antiparallel diode of the switch, in the opposite direction, until ending its

negative half-sinusoid and reaching zero again. We could turn off the switch at any moment during the
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negative part of the sinusoid, realizing both ZCS (no current in transistor before turning it off) and ZVS (as

its body diode was conducting). We will see in Volume III what the practical implications are of each mode

of operation, half-wave (with Ds) and full-wave (without Ds).

Just looking at the diagram of iLr (i.e., the current through S) (Figure 1.61a), we can notice easily the ZCS

at turn-on and turn-off of the switch:

iLr t0�ð Þ ¼ iLr t0þð Þ ¼ 0;

that is, iLr starts increasing slowly after t0;

iLr t2�ð Þ ¼ iLr t2þð Þ ¼ 0;

that is, iLr reached zero before t2.

We saw that no duty cycle control was possible in a quasi-resonant converter. As the resonant capacitor is

in parallel to the output circuit, it means that the output voltage of the converter is proportional to the aver-

age voltage on the resonant capacitor. Therefore, to regulate the output voltage we can adjust the average of

vCr. We see in Figure 1.61a that one way to accomplish this is by changing Ts. Therefore, as we controlled

the resonant converters, we also have to use a switching frequency control for the quasi-resonant converters,

with the detriments implied by such a type of control, as discussed before. Add to this disadvantage the

problem of the high sinusoidal peaks, which affect the stresses on the switch and output diode, requiring

their overdesign, which was leading to larger conduction losses, and we understand why quasi-resonant

converters did not make their way in practical applications.

However, the quasi-resonant converter signified an important milestone in the development of modern

converters. After discussing in detail the ZCS and ZVS quasi-resonant converters, we shall see in Volume

III that the next chronological step was to solve the two main drawbacks of quasi-resonant converters: fre-

quency control and sinusoidal peaks. The solution of the first problem was quite simple. We wanted to

create something similar to the duty cycle. How could we achieve it? As the main switch had to turn off at

the instant when a zero-switching condition was appearing, we had to add one more externally-controlled

switch and use it to allow and interrupt the flux of energy from supply to load as desired. Thus, the relative

duration between the instants of turning on the two switches became the new controlling quantity, allowing

a PWM control. By adding one or more diodes or passive elements to the auxiliary switch, snubbers, as

discussed in Section 1.4, were then proposed. The modern soft-switching PWM converters were thus born.

Operating with a simple and robust PWM control, with soft-switching allowing for a very high switching

frequency, these converters, with theoretical zero switching losses and conduction losses only slightly higher

than those in hard-switching converters, spread quickly in industry. As the soft-switching PWM converters

represent a large proportion of the DC-DC converters which have been used starting the 1990s, a large part

of Volume III will be dedicated to their study. However, as the modern soft-switching PWM converters are

basically hard-switching converters with passive or active snubbers, the understanding of their operation and

their design is based on a deep knowledge of classical hard-switching converters. This is why, in Chapter 3

of this volume, all the hard-switching DC-DC converters receive considerable attention.

1.7 Overview on AC-DC Rectifiers and DC-AC Inverters

1.7.1 Rectifiers

In our daily life, we can only find single-phase or three-phase AC power out of the socket. Examples of

single-phase AC mains supplies are: 220V or 230V, 50Hz in Europe or Asia; 240V, 50Hz in Australia;
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and 110V or 120V, 60Hz in America. However, the operating voltage inside equipment is usually a low-

voltage DC. For example, the operating voltages inside a desktop computer are 1.7 V, 3.3V, 5V, 12V, and

so on. Thus, it is necessary to use an AC-DC rectifier that can convert the AC power from the socket into a

DC power for the application. Converting an AC voltage, vs, into a DC voltage, Vdc, can be implemented by

using a simple diode-bridge circuit and a capacitor, as shown in Figure 1.62a. Diodes D1 and D3 and oper-

ated complementarily with diodes D2 and D4. In the positive half-cycle of vs (Figure 1.62b), D1 and D3 will

conduct when vs>Vdc. The output capacitor will be charged by the AC mains. The output voltage will

follow the supply voltage. In the negative half cycle of vs, as shown in Figure 1.62c, D2 and D4 will conduct

when �vs>Vdc. Again, the output capacitor will be charged by the AC mains and the output voltage will

follow the supply voltage. The peak value of Vdc, Vdc,pk, is then equal to the peak value of vs. That is:

Vdc;pk ¼
ffiffiffi
2

p
Vs;rms

where Vs,rms is the root-mean-square value of vs.

When the value of the supply voltage starts to decrease and its value is smaller than Vdc, the diodes will stop

conducting. The capacitor will supply energy to the load. Figure 1.63 shows the waveforms of vs and Vdc.

If the supply voltage is 220V, the peak value of the DC voltage obtained is equal to 311V. Such a high

voltage can be used in some applications like compact fluorescent lamps and electronic ballasts. However,

many household applications require a low voltage supply, for example, 15V for a battery charger. How can

the 311V be converted into 15V? Instead of transforming the voltage on the DC side, the simplest way

would be to use a transformer to firstly step down the 220VAC voltage into a 10.6VAC voltage as shown

in Figure 1.64. Then, the low-voltage AC supply is rectified by a diode-bridge circuit. Thus, the DC voltage

is equal to
ffiffiffi
2

p � 10.6¼ 15V. Practically, the transformer will give a voltage higher than 10.6 V to compen-

sate for the voltage drops of the diodes. However, there are drawbacks associated with the low-frequency

transformer used for supplying the low voltage. For a transformer operated at 50 or 60Hz, its physical size

would be too large and its weight too heavy for today’s applications, which require small size and light

weight. Moreover, in practice, the conversion efficiency of low-frequency transformers is low.

In addition to the above disadvantage due to the transformer, the above simple circuit has another draw-

back. The current drawn from the AC supply is pulsating. As illustrated in Figure 1.63 and Figure 1.62b, D1

and D3 only conduct for a short interval in a line cycle when vs>Vdc. Similarly, as shown in Figure 1.62c,

D2 and D4 also conduct for a short interval in a line cycle when�vs>Vdc. From an energy point of view, the

energy required by the load will be transferred from the AC supply to the load during the two time intervals

in a line cycle. The larger the value of the output capacitor, C, for getting a high quality DC voltage, the

shorter the durations of the two time intervals and the higher the magnitude of the supply current pulses.

What are the side effects of high current pulses?

Firstly, for the same output power, the size of the cable connecting the AC supply and the application is

larger than necessary, because it requires using a cable that can carry such a high current pulse. Apart from

low utilization, the cable loss is also increased.

Secondly, supply current pulses create fluctuation in the supplied voltage to the applications. As illus-

trated in Figure 1.65, the applications are connected in parallel to the same supply. The unavoidable leakage

inductance of the distribution transformer of the mains supply and the stray inductance of the transmission

cable appear as a source impedance, Zs, between the AC supply and the applications. A highly pulsating

supply current is rich in harmonics. In Figure 1.66 we can see that, if the input current, io, of one application

contains harmonics, the supply current, is, will also contain harmonics. As the terminal voltage, V 0
sðsÞ, is

given by:

V 0
sðsÞ ¼ VsðsÞ � IsðsÞZs
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Figure 1.62 (a) A simple rectifier using a diode-bridge circuit with an output capacitor; (b) operation of the

circuit when vs>VDC; (c) operation of the circuit when �vs>VDC.
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(variables in capital letters denote Laplace transformed variables) the supply current harmonics will create

harmonics in the terminal voltage, v0s, which is shared by all the applications. This means that the input

current fluctuations of one application will affect other applications. This is considered to be a kind of inter-

ference through conductors, namely conducted electromagnetic interference.

Thirdly, the current pulses also introduce radiation due to the L di=dt effect, where L is the stray induc-

tance of the network. Thus, if the current pulse is fast changing, it will cause an increase in the radiated

electromagnetic interference.

D1, D3
conduct

D2, D4
conduct

line cycle

is

Vdc, pk Vdc

vs

t

t

Vdc, vs

-vs

Figure 1.63 Voltage and current waveforms of the diode-bridge-capacitor rectifier.
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Due to the above undesired effects, many countries have developed their own National Electromagnetic

Compatibility standards for limiting the harmonics content (in percentage of the amplitude of the funda-

mental component) in the current drawn by different equipment. Products entering into a country have to

comply with the standards of that country. For example, Table 1.8 shows the IEC standard IEC-61000-3-2

Limits for harmonic current emissions for equipment with input current less than 16A.

Then, what would be the ideal waveform of the supply current? Let us do a quantitative analysis. Assume

that the supply voltage is a perfect sinusoid:

vsðtÞ ¼ Vm sin vt

where Vm is the peak value of vs and v¼ 2pf is the angular frequency of the line frequency f.
Assume that we can express the supply current by the following Fourier series; this is valid because the

supply current is typically a periodic waveform:

isðtÞ ¼ Im1sinðvt� u1Þ þ
X1
n¼2

Imn sinðnvt� unÞ

Figure 1.64 A simple rectifier with an AC transformer.

Figure 1.65 Parallel connections of applications to the mains supply.
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where Imn and un are the peak value and phase angle of the n-th harmonic of the supply current, and Im1 and

u1 are the peak value and phase angle of the fundamental component of the supply current.

The root-mean-square values of vs, Vs;rms, and is, Is;rms, are equal to:

Vs;rms ¼ Vmffiffiffi
2

p

Is;rms ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼1

I2mn

s

The average power, P, transferred from the supply mains to the application can be obtained by averaging

the product of vs and is over a line cycle. Thus:

P ¼ 1

T

Z T

0

vsðtÞisðtÞdt

¼ Vs;rms Im1;rms cos u1

Figure 1.66 Explanation of the cause of conducted electromagnetic interference.

Table 1.8 IEC-61000-3-2 Limits for harmonic current emissions (input current� 16A)

(a) Class C equipment, like lighting equipment

Harmonic 2 3 5 7 9 11� n� 39

IEC limit (%) 2 30 l* 10 7 5 3

(b) Class D equipment – equipment having a pronounced effect on the electrical supply system, of a power up

to 600W, like personal computers or television receivers

Harmonic 3 5 7 9 11 13� n� 39 (n – odd)

IEC limit (%) 2.3 1.14 0.77 0.4 0.33 0.15 (15/n)
* l is the circuit power factor.
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where

Im1;rms ¼ 1ffiffiffi
2

p Im1

is the root-mean-square value of the fundamental component of is, T being the period of the line cycle (1/f).

The transferred power can then be expressed as:

P ¼ Vs;rms Is;rms Kd Kp

where

Kd ¼ Im1;rms

Is;rms

is called the distortion factor and

Kp ¼ cos u1

is called the displacement factor.

The distortion factor is the ratio between the root-mean-square value of the fundamental component of

the supply current to the root-mean-square value of the supply current. It is a measure showing the quality

of the waveshape of the supply current. The higher its value, the closer is the waveshape of the supply

current to a sinusoidal waveform. The maximum value of Kd is unity.

The displacement factor is a factor showing the displacement (phase difference) between the fundamental

component of the supply current and the mains voltage. The maximum value of Kp is unity, implying that

the fundamental component of the supply current would be in phase with the supply mains voltage.

The input power factor KPF of the application is:

KPF ¼ Active Power

Apparent Power

¼ Vs;rms Is;rms Kd Kp

Vs;rms Is;rms

¼ KdKp

For a given power, the root-mean-square supply current, Is;rms, is minimum if KPF is equal to unity, requiring

Kd ¼ 1 and Kp ¼ 1. In such a case, the supply cable would be optimally utilized. Therefore, the ideal supply

current waveform is sinusoidal and in phase with the supply voltage. An application drawing such a current

would introduce no harmonics, and therefore no interference to other applications sharing the same supply.

How then can one increase the input power factor of the circuit shown in Figure 1.62? The question can

be interpreted in another way by considering the waveshape of the supply current shown in

Figure 1.63. The input power factor will be increased if the duration of the input current pulses is increased.

The easiest way would be to use an input inductor, acting as a filter, to change the waveform (Figure 1.67)

However, this solution is less practical: as such an inductor would have to attenuate a wide frequency range

of harmonics, its required value and physical size would be too large.

Back to the root cause of the low-power factor in the rectifier shown in Figure 1.62; if the conduction

intervals of the diodes could be increased, the distortion factor Kd would be improved. A practical solution

which is widely used in low-power applications, such as compact fluorescent lamps, is shown in
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Figure 1.68a. The output capacitor is replaced by a diode–capacitor network, in which C1 and C2 are of the

same value. Denote the voltage across each capacitor by VC. The capacitors C1 and C2 are charged in series

by the supply mains through D6. The maximum voltage across them is Vm (i.e., the peak value of vs). Thus,

each one can be charged up to the maximum voltage Vm/2. They are discharged in parallel to the load

through D5 and D7. At the beginning of a line cycle, VC¼Vm/2. However, the mains voltage has a smaller

value than that of VC. The diodes D1–D4 do not conduct. The two capacitors discharge to the load through

the diodes D5 and D7 (Figure 1.68b). During this time, the load voltage is equal to the capacitor voltage

Vm/2. The circuit operates in this configuration until the angle vt becomes vt¼ 30� (i.e., p/6), when the

value of the sinusoidal source voltage reaches Vm/2. Obviously, no current is drawn from the mains during

this period of operation. Practically, the operation of this configuration ends a little earlier, before vt reaches

30�. It is because the capacitors C1 and C2 in reality do not have infinite values but finite ones, so the voltage

across them cannot remain constant during the discharging process. When the mains voltage reaches VC,

diodes D5 and D7 stop conducting. Diodes D1 and D3 start conducting. The load voltage Vdc follows

the mains voltage (Figure 1.68c). As the voltage on C1 and C2 in series is higher than the mains

voltage, D6 does not conduct. When the mains voltage reaches a value equal to that across C1 and C2

in series, D6 starts conducting (Figure 1.68d). The energy of the mains continues to supply the

application such that Vdc follows the mains voltage and, simultaneously, charges both C1 and C2 up

to Vm/2 (these capacitors were discharged to the load in the first configuration during the angle inter-

val 0–30�, so their voltage decreased then under Vm/2). During this time, the input current presents a

high peak due to the charging process of the capacitors. Immediately after the sinusoidal mains volt-

age decreases below the value of the voltage on C1 and C2 in series, D6 turns off, that is, the circuit

returns to the operation described in Figure 1.68c. The circuit continues its operation in this configu-

ration until vt reaches 150� (i.e., 5p/6), when the mains voltage becomes lower than Vm/2. Then, the

circuit operates again as in the configuration shown in Figure 1.68b. The process repeats for the nega-

tive half-cycle of the mains, the role of D1 and D3 being played now by D2, D4. The waveforms of

the input current, is, and load voltage, Vdc, are shown in Figure 1.68e.

The effect of using the diode–capacitor network was to increase the equivalent conduction intervals of

diodes D1–D4. As shown in Figure 1.68e, a current is drawn from the supply mains from 30 to 1508, and
then from 210 to 3308. No current is drawn from the supply mains from 0 to 308, 150 to 2108 and 330 to

3608. The circuit can effectively increase the conduction angle. This circuit is called a “valley-fill” power

factor corrector (PFC). As capacitors C1 and C2 have to provide energy to the load for some time intervals,

Figure 1.67 A possible solution for improving the input current waveform of a rectifier.
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they should have large values that increase with the load power, making the use of the valley-fill PFC

unsuitable for high-power applications. (In such power applications, electrolytic capacitors, which have a

short lifetime, are normally used, so solutions like that of a valley-fill circuit requiring additional capacitors

are not welcome.) We shall see in Volume V better solutions for high-power applications.

Since there is a large current pulse when C1 and C2 are being charged in the valley-fill power factor

corrector, there are some methods of reducing the pulse magnitude. The most popular method is to connect

a current-limiting resistor in series with D6, so that the capacitor charging current, and thus the supply cur-

rent peak, can be reduced. Although the waveform of the input current can be improved by the valley-fill

PFC solution, the output voltage remains problematic, because it is not a true DC but a rectified AC

Figure 1.68 Valley-fill power factor corrector (PFC): (a) circuit; (b) equivalent configuration for angle vt

[0�, 30�] and [150�, 180�]; (c) equivalent configuration for angle vt [30�, 150�], except the capacitors
charging period; (d) equivalent configuration for the capacitor charging period within the angle vt [30�, 150�];
(e) waveforms of the mains voltage, vs, input current, is, and load voltage, Vdc.
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component superimposed onto a DC voltage. The magnitude of the voltage ripple is equal to one half of the

peak voltage of the supply mains voltage, that is, Vm=2. Thus, unless the quality of the output voltage is

unimportant, the DC load cannot be directly connected to the output of a valley-fill PFC. We would have to

insert a DC-DC converter between the valley-fill PFC and load to tightly regulate the desired load voltage.
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D4 D3
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C1

Vdc
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application

(c) 
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D4 D3

vs

C1

Vdc

is

C2
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application

Figure 1.68 (Continued )
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Let us revisit the requirements of an AC-DC converter. Firstly, its input current has to be sinusoidal.

Secondly, the output voltage has to be tightly regulated. Then, the question is “how can a circuit draw a

sinusoidal current from the supply mains?” Back to a simple AC-DC voltage conversion structure – a

diode-bridge circuit. If we want to have a sinusoidal current drawn from the supply mains, the output cur-

rent of the diode-bridge circuit has to be a rectified sinusoid. Denote vin and iin the output voltage and

current of the diode-bridge circuit in the desired form of rectified sinusoids. Mathematically:

vinðtÞ ¼ Vm sin vtj j

and

iinðtÞ ¼ Im sin vtj j

Then, the next question is “how can one process a rectified sinusoidal input voltage, draw a rectified sinus-

oidal current from the diode bridge, and give a tightly regulated DC voltage at the output?”

Recall that a DC-DC converter can process a variable non-negative input voltage and provide a constant

DC output voltage. With a time-varying input voltage, the input current of the DC-DC converter can be

shaped to be in phase with the input voltage. This means that we need to insert a DC-DC converter between

the output of the diode-bridge rectifier and the load (Figure 1.69a). The desired waveforms vin and iin are

shown in Figure 1.69b. Many DC-DC converter topologies have been proposed for use in AC-DC conver-

sion. Nevertheless, no matter what the power processing method is, the ultimate goal is the same. To under-

stand the principle, use here one of the basic DC-DC converters discussed in Section 1.2 to illustrate how

Figure 1.68 (Continued )
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the AC-DC conversion is performed. Among the three basic DC-DC converters the boost converter has the

main advantage that it can be designed to take a continuous input current, while the buck and buck-boost

converters always take a pulsating input current. This is why a boost converter is used in the following

discussion. However, it should be noted that the buck and buck-boost converters can also achieve the

required objective.

The block diagram of the AC-DC converter using a boost DC-DC converter is shown in Figure 1.70.

It is necessary to (a) shape the input current, iin, as a rectified sinusoid in phase with vin, and (b)

regulate the output voltage, Vout. The controller senses and scales down the input voltage, vin, and

multiplies it with an error signal, vctr, from the output voltage error controller. The resulting signal is

passed through a voltage/current converter V/I to generate a signal that serves as the reference cur-

rent, iref . Similar to the control circuit seen in Section 1.4 for DC-DC converters, the output voltage

error controller is typically a PI controller, which amplifies and integrates the error, e, between the

actual output, Vout, and Vref . It has the transfer function A(s). The scale-down resistive networks have

Figure 1.69 Diode-bridge circuit followed by a DC-DC converter in AC-DC conversion: (a) circuit; (b) required

voltage and current at the diode-bridge output.
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the purpose of reducing the power stage voltages vin and Vout to smaller values suited for the control

circuit. As in DC-DC converters, vctr is relatively constant in steady state. If Vout is lower than Vref,

vctr will increase. Then, iref will increase. Conversely, if Vout is higher than Vref, vctr will decrease.

Then, iref will decrease. The cutoff frequency of A(s) is much lower than the line frequency, typically

less than one-tenth of the line frequency, in order to avoid the line frequency signal from getting into

(“jamming”) the control loop.

The input current, iin, is then shaped to follow iref , that is, as a rectified sinusoidal waveform in phase

with vin. The control method is based on comparing iin and iref . If iin is smaller than iref , the MOSFET

will be turned on. If iin is larger than iref , the MOSFET will be turned off. Practically, a stabilizing ramp

is added in the comparator for ensuring the system stability when the duty cycle of the MOSFET is larger

than 0.5. (Details on the stability issue of the current-mode control will be discussed in Volume IV). With

such a control method, the input current becomes a low-frequency waveform that follows the rectified

input voltage, on which a high-frequency current ripple is superposed. The high-frequency ripple is due

to the switching action in the boost converter: remember that in DC-DC converters the inductor is

charged and discharged in each cycle of period Ts, thus creating a ripple of frequency, fs, in the inductor

current, which is also the input current. To attenuate the high-frequency current ripple that can interfere

with the supply mains, a high-frequency, propylene or ceramic capacitor, Cin, is used to provide a low

impedance path for the high-frequency current ripple. The value of this capacitor has to be small, such

that at low frequency its impedance to be very large. As a result, it will not distort the fundamental

component of the current, preventing it from flowing through Cin. At high frequencies, even if Cin has a

small value, vCin is large, that is, the impedance of Cin takes a small value, creating a path for the high

frequencies, which are thus eliminated from the input current. With the supply current in phase with the

supply mains voltage, the AC-DC converter shown in Figure 1.70 is also named a power factor pre-regu-

lator or power factor corrector, because it is sometimes connected in front of another power converter in

order to keep the line current sinusoidal. In Volume V, we shall discuss different power factor correctors

and control methods for the power factor corrector.

Figure 1.70 Circuit diagram of an AC-DC converter with boost-type DC-DC converter.
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1.7.2 Inverters

One of the emerging trends in the electricity industry is a shift from large centralized to small dis-

tributed energy resources (DERs) located at the point of consumption. DERs have many advantages

over traditional energy technologies, including improved asset utilization, better power quality, and

enhanced power system reliability and capacity. The eco-energy sources, like solar cells and fuel

cells, generate DC power. Thus, a grid-connected inverter is usually needed to convert the DC power

into AC power, which is then fed into the electricity grid. Some standards, like IEEE-1547, have

imposed performance requirements on inverters interconnecting with electric power systems. Even

when the eco-energy source is not fed into the electricity grid but has to supply a local load, an AC

voltage is still needed for many applications. So, we have to see how we can invert a DC voltage

into an AC one.

A DC-AC converter, called an inverter, is used to produce, ideally, a pure sinusoidal waveform from a

DC source. As shown in Figure 1.71, the ideal output voltage, vout, is a sinusoid with the magnitude Vm and

angular frequency v¼ 2p/T. Mathematically:

voutðtÞ ¼ Vmsin vt

Let us start from the basic concept of generating an AC voltage from a DC voltage. Figure 1.72 shows a

simple configuration having two DC sources. Each source provides a voltage Vin. There are two MOSFETs,

S1 and S2, connected in totem-pair. They are operating in antiphase. That is, when S1 is on, S2 is off, and vice

versa. The output load is connected across the mid node between S1 and S2, and the mid node between the

two DC sources. The magnitude of the output load voltage, vout, is dependent on the states of S1 and S2.

When S1 is on and S2 is off, vout is equal to Vin. When S1 is off and S2 is on, vout is equal to �Vin.

Figure 1.73 shows the waveform of vout, which is a square waveform – the simplest AC output waveform.

However, the waveform obtained is far from the ideal sinusoid. How then can one get a sinusoidal

waveform from the square waveform? The direct way is to use an output low-pass filter to attenuate the

high-frequency harmonics. However, a square waveform is rich in low-frequency harmonics. Figure 1.74

shows the frequency spectrum of the square waveform. The magnitude of the n-th harmonic, vout;n, is:

vout;n ¼ 1

n
vout;1

where vout;1 is the magnitude of the fundamental component.

To obtain only the fundamental harmonic at the load, the output filter should have a low cutoff frequency.

Then, the value and physical size of the components used in the filter would be very large.

Figure 1.71 Ideal inverter function.
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How can the inverter circuit be modified such that the required value of the filter to be reduced? Consider

the basic operation of a converter and compare its output with the ideal output waveform. Figure 1.75 shows

the positive half-cycle of the ideal output voltage waveform, vout;ideal . Consider a generic time instant, t1.

The value of the ideal output voltage waveform v(t1) is:

vout;idealðt1Þ ¼ Vm sin vt1

However, when S1 is on, corresponding to the positive half-cycle considered in Figure 1.75, the actual

output voltage is Vin. How can one convert Vin into vout;idealðt1Þ? If we refer to Section 1.2, we can simply

make use of the concept of DC-DC conversion, a buck type for example, for converting a DC voltage into

another DC voltage of different value. As illustrated in Figure 1.75, if we switch S1 (S2 remains off) at a

high frequency and the duty cycle of S1 at t1 is d(t1), the average value of vout at t1 is:

vout;avgðt1Þ ¼ dðt1ÞVin

Figure 1.72 Simple inverter circuit with two DC sources.

Figure 1.73 Output waveform of the circuit shown in Figure 1.72 without filter.
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The duty cycle dðt1Þ must be controlled to make vout;avgðt1Þ ¼ vout;idealðt1Þ. Thus:

dðt1Þ ¼ vout;idealðt1Þ
Vin

¼ Vm

Vin

sin vt1

It can be seen from the above equation that the duty cycle is time-varying, in other words it is “modulated.”

The maximum value of the duty cycle depends on the ratio between the peak value of the ideal output

voltage, Vm, and the DC voltage. This ratio is also called “modulation index,” and is denoted byM:

M ¼ Vm

Vin

Figure 1.74 Harmonic spectrum of the waveform shown in Figure 1.73.

Figure 1.75 Ideal output voltage waveform and the actual output voltage waveform.
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With the above technique, vout will consist of the fundamental frequency (50/60Hz) and switching

harmonics. Depending on the power level of the inverter and characteristics of the switches, the switching

frequency of S1 and S2 can be 100 times or even 1000 times higher than the fundamental frequency of the

output. The frequencies of the switching harmonics are much higher than the fundamental frequency; they

can be attenuated by a low-pass filter with a cutoff frequency lower than the switching frequency. As the

cutoff frequency is still high, the physical size and value of the filter can be reduced in comparison with the

filter needed for eliminating the harmonics from the AC square wave of Figure 1.73.

As the original value of vout (without modulation – Figure 1.72) was either zero or Vin in the positive half-

cycle, and either zero or �Vin in the negative half-cycle, the modulation method described above is called

unipolar pulse width modulation technique. The duty cycle of the switches starts from zero at the zero

crossing point of vout (remember that voutðtÞ ¼ Vm sin vt) reaching its maximum value at the peak of the

sinusoidal waveform, that is, at 90�.
There also exists another modulation technique, named the bipolar pulse width modulation technique. In

the latter case, the value of vout is switched between Vin and �Vin. The waveform is shown in Figure 1.76. At

t1, switch S1 has the duty cycle d(t1), while switch S2 has the duty cycle [1� d(t1)]. Thus, the average value

of vout is:

vout;avgðt1Þ ¼ dðt1ÞVin þ ð1� dðt1ÞÞð�VinÞ
¼ ð2dðt1Þ � 1ÞVin

Again, the duty cycle dðt1Þ is controlled to make vout;avgðt1Þ ¼ vout;idealðt1Þ, implying:

dðt1Þ ¼ 1

2
1þ Vm

Vin

sin vt1

� �

From the above equation it can be seen that the duty cycle of S1 and S2 is 0.5 at the zero crossing points

of vout.

The ideal output waveform with a unipolar modulation technique is obtained with a low switching loss,

because only one switch can be turned on at any time, and presents a low total harmonic distortion, as we

shall see in a detailed analysis in Volume V. However, the pulses near the zero voltage region (i.e., near the

zero crossing points of vout) are practically too narrow for the switching devices to respond and they will

disappear in the actual output: the voltage voutðtÞ ¼ Vm sin vt has small values around vt¼ 0, p, . . . , and

Figure 1.76 Bipolar switching waveform.

Introduction 135



so on. There d has very small values and, practically, the actual switch does not have enough time to switch

on and then, quickly, off. Pulse dropping also happens around the peak of the modulating signal. The advan-

tage of the bipolar pulse width modulation is that the duty ratio of the pulses near the zero voltage regions is

about 0.5. The output waveform distortion is low in this region. Nevertheless, the switching loss in bipolar

pulse width modulation is higher than in unipolar pulse width modulation, as two switches are needed at any

time. Apart from the above two modulation techniques, many other modulation techniques have been pro-

posed for reducing the total harmonic distortion. These will be discussed in detail in Volume V.

For certain applications, it is necessary to generate a high-frequency sinusoid. An example is the

electronic ballast for a fluorescent lamp. The efficacy (lumen per watt) at a high-frequency operation

(above 20 kHz) is higher than that at the line-frequency operation by more than 10%. Moreover, the

physical size and weight of the electronic ballast can be highly reduced with a high-frequency opera-

tion. Is it possible to use the above described pulse width modulation technique to generate a high-

frequency sinusoid? Let us consider an example. If a 20 kHz AC sinusoidal waveform is required, by

using the above pulse width modulation technique, a switching frequency at least 100 times higher than

the output waveform frequency is needed. The required switching frequency would be then equal to

100� 20 kHz¼ 2MHz. As the switches are in hard-switching, the switching loss would be too large at

such a high switching frequency. Therefore, we have to find another method to generate a high-frequency

AC voltage waveform from a given DC voltage.

To generate a high-frequency sinusoid, it is possible to make use of the resonant technique, as in

the resonant converters discussed in Section 1.6. A typical circuit of the electronic ballast is shown in

Figure 1.77. It consists of two MOSFETs, which are operated in antiphase. The duty cycles of the switches

S1 and S2 are equal and slightly less than 0.5. A capacitor of large value, C, is added. The DC voltage across

it can be considered constant during a switching cycle. Its role is to prevent a DC component of the current

flowing through the lamp. This is why C is called a DC blocking capacitor. The current flowing through the

lamp will only contain an AC component. In steady state, as no DC current can flow through C, C is submit-

ted to the voltage Vdc when S1 is in the on-state and S2 in the off-state, that is, for approximately half of the

cycle, and to a zero voltage when S1 is off and S2 is on, that is, for approximate the other half of the cycle.

The value of C is large. As the switching frequency of S1 and S2 is high, in order to obtain a high frequency

AC voltage across the lamp, the period of a switching cycle is small. Consequently, in a steady-state cycle,

the voltage on C does not vary too much. We can assume that the voltage across it is equal to the constant

average value Vdc/2. Let us firstly explain the operation of the inverter when the fluorescent lamp is off. In

this situation, the lamp behaves like an open circuit of infinite resistance. If the switching frequency of S1
and S2 is close to the resonant frequency of the resonant circuit formed by Lr and Cr, the voltage across the

lamp is theoretically infinite. This can ignite the lamp with a high voltage.

After the lamp has been ignited, it behaves like a resistor. To analyze the operation of the circuit in a

typical steady-state cycle, consider that at a moment t0, S2 is conducting (Figure 1.77b). The voltage across

the parasitic capacitance of the switch CS2 is then zero and the voltage across CS1 is Vdc. The voltage vAB
is given by vAB¼�Vdc/2. At t0, S2 is turned off. The resonant inductor current, iLr, will divide into two

currents of value iLr=2 (as it is assumed that CS1¼CS2), slowly charging (depending on the values of the

capacitance and load current) CS2 from zero to Vdc and discharging CS1 from Vdc to zero (Figure 1.77c).

Therefore, the presence of the parallel capacitance assures the zero voltage (ZVS) turn-off of S2. During

the interval [t0, t1], following the charging and discharging processes of CS2 and CS1, respectively, the

voltage vAB, given by vAB ¼ �Vdc=2þ vCS2ðtÞ, is increasing from �Vdc/2 to Vdc/2. When CS1 is completely

discharged at t1, the antiparallel diode of S1, D1, starts conducting naturally. The voltage vAB becomes

equal to vAB¼Vdc/2 (Figure 1.77d). After t1, during the conduction interval of D1, the gate signal for turning

on S1 is applied. Like in a resonant converter, S1 is turned on here with zero voltage. When iLr reaches zero,
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Figure 1.77 An electronic ballast: (a) circuit schematic; (b) before t0; (c) [t0, t1]; (d) [t1, t2]; (e) from t2.
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Figure 1.77 (Continued )
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at t2, D1 stops conducting and S1 takes over the current iLr, which changed its direction (Figure 1.77e).

The operation is similar for turning off S1 and turning on S2. Figure 1.78 shows the waveforms of voltage

vAB and inductor current iLr.

The equivalent circuits of the topological stages shown in Figure 1.77b–e are RLC networks. By solv-

ing the second-order differential equations governing each one of these circuits, we can find the sinusoi-

dal expression of iLr. Its frequency is the switching frequency of S1 and S2, fs. We saw previously that

the ignited lamp has a resistive character; therefore, the voltage across it will also be a sinusoid of

frequency fs. It is up to us to choose this frequency as high as is needed to get a good efficacy of the

fluorescent lamp.

We can understand now the difference between the pulse width modulation technique and resonant tech-

nique in generating the AC voltage. In the PWM technique, the frequency of the output voltage is much

lower than the switching frequency. In the resonant one, the frequency of the output voltage is the same as

the switching frequency. Thus, the former technique generates a low-frequency output, while the latter one

generates a high-frequency output.

The practical applications requiring a DC-to-AC inversion are various, comprising requirements

like low frequency – high-power output, high frequency – low-power output, low power – high-

voltage output, and many more. Each one of these cases has to be treated in a different manner,

resulting in different topologies of inverters. A good part of Volume V will be dedicated to their

study.

Figure 1.77 (Continued )
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1.8 Case Studies

1.8.1 Case study 1

Keith, a fresh engineer, was asked by his supervisor to design a buck converter. The specification of the

converter is given in Table 1.9. The converter is operated in continuous conduction mode. After two weeks,

Keith came up with a design, which is shown in Figure 1.79. Unfortunately, the circuit could not operate

properly.

a. Discuss why the design does not operate properly.

b. Modify the circuit structure so that it can meet the specification.

c. Derive the expressions for the peak value of Iin and the output voltage ripple, respectively, in terms of

the duty cycle D of the MOSFET, Vin, Iout, Vout, L, C, and f s.

d. What have to be the minimum values of the output capacitor C and output inductor L?

Figure 1.78 Waveforms of the voltage between nodes “A” and “B” and inductor current, iLr for the electronic

ballast.

Table 1.9 Specification of the buck converter

Input voltage, Vin 9–12V Output power 2.5–5W
Output voltage, Vout 5V Output voltage ripple 1%
Switching frequency, fs 100 kHz
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Answer

a. The circuit does not operate properly for the following reasons:

1. The MOSFET is wrongly connected. As illustrated in Figure 1.80, the supply voltage is short-

circuited by the body diode of the MOSFET S and the freewheeling diode D. As shown in

Figure 1.81, the connections of the drain and source of the MOSFET, and the anode and cathode

terminals of the freewheeling diode, should be swapped.

2. The inverting and noninverting inputs of the comparator should be swapped. In the Keith’s circuit,

the duty cycle of the MOSFET would be reduced if the output voltage, Vout, was smaller than the

output voltage reference, Vref, which is obviously wrong.

3. The circuit also requires a floating gate drive, because when the MOSFET is in the on-state, the

freewheeling diode voltage, VD, is equal to Vin (assuming that the MOSFET has a zero on-

state resistance). Thus, in order to keep the state of the MOSFET, the gate voltage would have to be

12Vþ 4.5 V (plateau voltage)¼ 16.5 V. It would be necessary to derive 16.5 V from the input

voltage 12V! Such a technical challenge can be solved by using a bootstrap capacitor circuit as

presented in Figure 1.30.

b. Figure 1.81 shows a recommended structure for the buck converter. Readers may have other

suggestions.

c. Figure 1.82 shows the waveforms of the gate signal, vg, output voltage, vout, inductor current, iL, and

capacitor current, iC. During the interval DTs, iL is charged, that is, iL increases from its minimum to its

maximum value. During the period (1�D)Ts, when the MOSFET S is off, iL decreases from its maxi-

mum value to the minimum value. Denote by DI the ripple of the inductor current during a steady-state

Figure 1.79 Schematic diagram of Keith’s circuit.
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Figure 1.80 Short-circuit current path formed by the body diode of S and freewheeling diode D in the proposed

circuit of Figure 1.79.

Figure 1.81 Modification of the circuit given in Figure 1.79.
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cycle, that is, the difference between the maximum and minimum values of iL:

Vout ¼ L
DI

ð1� DÞTs

giving

DI ¼ Voutð1� DÞTs

L

The peak value of the input current Iin is equal to the peak value of the inductor current iL, IL,peak. In steady

state, the average inductor current is equal to the output current Iout because the average capacitor current is

zero. Thus, the peak value of Iin, Iin,peak is:

Iin;peak ¼ IL;peak ¼ Iout þDI

2

¼ Vout

R
þ 1

2

Voutð1� DÞTs

L

Figure 1.82 Main waveforms of the buck converter.
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For calculating the output voltage ripple, it is assumed that all of the inductor current ripple goes to the

output capacitor. This is valid because the output capacitor provides a low impedance path for the inductor

current ripple. As no DC current can flow through C, it means that the current iC is formed by the AC part

(the ripple) of iL. DI of the inductor current ripple indicates also the capacitor current ripple.

During the interval [0, DTs], with 0 denoting the instant when S is turned on in the considered

steady-space cycle, iC can be described by the equation:

iCðtÞ ¼ DI

DTs

t�DI

2

with

iCð0Þ ¼ �DI

2
; indicating the minimum value of iC

iC
DTs

2

� �
¼ 0; indicating the first zero-crossing of iC

iCðDTsÞ ¼ DI

2
; indicating the maximum value of iC

With a simple integration, one obtains the equation of vC:

vCðtÞ ¼ vCð0Þ þ 1

C

DI

2DTs

t2 �DI

2
t

� �
;

with

vC
DTs

2

� �
¼ vCð0Þ �DI

8C
DTs;

indicating the minimum value of vC (as the differential of vC, iC is zero at DTs/2 and the second deriva-

tive of vC is positive) and:

vCðDTsÞ ¼ vCð0Þ

During the interval [DTs, Ts], iC can be described by the equation:

iCðtÞ ¼ DI

2
� DI

ð1� DÞTs

ðt� DTsÞ;

with

iC DTs þ ð1� DÞTs

2

� �
¼ 0; indicating the second zero crossing of iC

iCðTsÞ ¼ �DI

2
; indicating the minimal value of iC

giving the equation of vC:

vCðtÞ ¼ vCð0Þ þ 1

C
� DI

2ð1� DÞTs

ðt� DTsÞ2 þDI

2
ðt� DTsÞ

� �
;
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with

vC DTs þ ð1� DÞTs

2

� �
¼ vCð0Þ þDI

8C
ð1� DÞTs;

indicating the maximum value of vC and:

vCðTsÞ ¼ vCðDTsÞ ¼ vCð0Þ

By neglecting the equivalent series resistance of C, it results that the analytical expressions of vout are

identical to those of vC for the two switching stages (note that here we denote with vC and vout the AC

components, not the instantaneous values of the respective voltages). Accordingly, vout was drawn in

Figure 1.82 (note that the waveform is not a sinusoid, but its form is due to the quantity t2 in its expres-

sions). The output voltage ripple, DV , can be calculated as the difference between the maximum and

minimum values of vC as:

DV ¼ DI

8C
Ts

From Figure 1.82, we can also notice that, at the beginning of the on-stage, iC is negative, showing that

the capacitor is discharging to the load. During this period, the source (Vin) energy is transferred to the

inductor and load. After half of the DTs interval, iC becomes positive, showing that the source energy is

used to charge C, in addition to charging L and giving energy to the load. In the first half of the off-

interval, iC is positive, showing that the inductor energy is used for charging the capacitor, in addition

to supplying the load. In the second half of the off-topology, iC becomes negative, showing that L and C

are both discharging on the load.

The time interval between two zero crossings of iC is Ts/2. Based on Figure 1.82, the average value

of the capacitor current when iC> 0, IC;avg;ch is:

IC;avg;ch ¼ 1

2

Ts

2

DI

2

1

Ts=2
¼ DI

4

giving another way of calculating the output voltage ripple, DV , as the integral of IC;avg;ch over Ts/2:

DV ¼ Ts

2

1

C
IC;avg;ch ¼ Voutð1� DÞ

8LC
Ts

2

d. The value of the inductor, L, is chosen such that the current through the inductor never drops to zero,

that is, the converter operates in CCM, according to the problem’s requirement. We need iLmin> 0, or,

according to Figure 1.82:

DI

2
< Iout

1

2

Voutð1� DÞTs

L
< Iout

L >
R

2
Tsð1� DÞ
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Therefore, the above equation gives the minimum value of the inductor that can ensure continuous

conduction mode operation. The boundary condition between CCM and DCM is reached in the case

where the decreasing inductor current reaches zero exactly at the end of the switching cycle. The value

of L for an operation at the boundary condition is obtained by changing the above inequality to

an equality.

The value of the output capacitor, C, is chosen such that the percentage of the output voltage ripple from

Vout (i.e., the “percentage output voltage ripple”) is less than 1%, as required in the problem’s specification:

DV

Vout

¼ ð1� DÞ
8LC

T2
s < 0:01

C >
ð1� DÞ
8ð0:01ÞLT

2
s

The above equation gives the minimum value of the output capacitor.

The minimum duty cycle, Dmin, is calculated at the input voltage of 12V:

Dmin ¼ 5

12
¼ 0:4167

The maximum duty cycle, Dmax, is calculated at the input voltage of 9V:

Dmax ¼ 5

9
¼ 0:5556

As a result, for the converter operating in CCM with the load power from 2.5 to 5W and output voltage

ripple less than 1%, the required minimum values of the inductor and output capacitor are calculated as in

Table 1.10.

Based on the above results, the minimum required values of L and C are 29.17mH and 50mF, respec-
tively, so that, for the entire load variation range, the converter will be operating in continuous conduction

mode and its output voltage ripple will be less than 1%.

1.8.2 Case study 2

Figure 1.83 shows the circuit diagram of a bidirectional DC-DC converter used in the electrical system of a

car. The car’s battery gives the DC voltage, Vdc, of 12V. To this DC rail there are connected several loads.

One of the purposes of the battery is to give energy for the ignition of the motor. At ignition, the motor takes

a very large current (200–300A), which would require a very large battery. As the ignition moment is brief

in the operation of a car, such a solution is not justified. Another possibility is to use an auxiliary source of

Table 1.10 Calculated minimal values of the inductor and capacitor for case study 1

Output power (W) Load

resistance (V)

Vin (V) D Minimum

value of L (mH)

Minimum

value of C (mF)

2.5 10
9 0.5556 22.22 25

12 0.4167 29.17 25

5 5
9 0.5556 11.11 50

12 0.4167 14.58 50
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energy (like a small battery or an ultracapacitor); its voltage is denoted in Figure 1.83 by VB. The auxiliary

source is connected to the DC rail by a bidirectional converter. The converter has two modes of operation:

charging mode and discharging mode. At ignition, the source VB provides energy to the DC rail. The con-

verter operates in the discharging mode, its structure being that of a boost converter (regard the figure from

the right to the left): VB is the converter’s input voltage now. The converter provides a voltage larger than

VB. During normal operation of the car, the battery VB is charged by the DC rail. The converter operates in

the charging mode, its structure being that of a buck converter (its output voltage is VB).

a. Describe the operation when the converter is in the charging mode.

b. Describe the operation when the converter is in the discharging mode.

c. If the switching period of the converter is Ts, determine the minimum value of L so that the inductor

current is nonzero during the discharging mode.

d. Suggest a modification of the above circuit to realize soft-switching. Discuss the merits and drawbacks

of such a modification.

Figure 1.83 Bidirectional DC-DC converter used in the electrical system of a car.
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Answers

a. When the converter is in the charging mode, it is operated as a buck converter. As shown in

Figure 1.84a, SA is inhibited or is operated in synchronization with diode DA (called a synchronous

rectifier). The charging current is controlled by the duty cycle of SB.

b. When the converter is in the discharging mode, it is operated as a boost converter. As shown in

Figure 1.84b, SB is inhibited or is operated in synchronization with the diode DB (called a synchronous

rectifier). The charging current is controlled by the duty cycle of SA.

c. When the converter is in the discharging mode, it goes through two switching stages. They are shown in

Figure 1.85.

When the MOSFET SA is on:

VB ¼ L
DI

DTs

Figure 1.84 Equivalent circuits of the bidirectional DC-DC converter: (a) charging mode; (b) discharging mode.
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D being the duty cycle of SA. It gives:

DI ¼ DVBTs

L

Figure 1.86 shows the gate signal vg applied to MOSFET SA and the inductor current waveform iL.

To ensure that the inductor current never goes to zero, the average battery current, IB, has to be

larger than one half of the inductor ripple current, DI. That is:

IB >
DI

2

>
DVBTs

2L

Figure 1.85 Switching stages of the bidirectional DC-DC converter in the discharging mode: (a) SA is on;

(b) SA is off.
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Assuming that the efficiency of the converter is 100%:

Vdc Idc ¼ VB IB

the output current, Idc, is:

Idc ¼ ð1� DÞIB

implying

Idc >
Dð1� DÞVBTs

2L

L >
Dð1� DÞVBTs

2Idc

The above equation gives the minimum value of the inductor such that the converter is operating in the

continuous conduction mode in the discharging mode.

d. As discussed in Section 1.6.2, one of the feasible ways of modifying the converter into a soft-

switching one is to add an LC resonant tank to each switch (resonant switch). The main advantages are

low switching losses and low electromagnetic interference. The main disadvantages are limited soft-

switching range (as will be seen in Volume III), additional passive components, extra current/voltage

stress on the switches, and variable frequency operation. We shall see in Volume III better ways to

tackle the later problems, while keeping the advantages of zero voltage/current switching.

1.8.3 Case study 3

A company has to produce a new DC power supply. During the design process, the company charged one of

its engineers to conduct an experiment to study the switching characteristics of the designed converter.

Figure 1.86 Main waveforms of the bidirectional DC-DC converter of Figure 1.83 in the discharging mode.
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The general scheme of the converter, which contains one MOSFET, is presented in Figure 1.87a. The engi-

neer is particularly interested in studying the duration of the transient times of the switch and finding the

value of the switching loss. If the switching loss is too large, he may consider adding a soft-switching snub-

ber, and repeating the experiment to verify again the switching loss with the new switching trajectories.

Figure 1.87b shows the experimental X-Y plot of the MOSFET voltage and current, and Figure 1.87c shows

Figure 1.87 Experiment conducted on a power converter containing one MOSFET: (a) converter scheme;

(b) X-Y plot of the switch voltage and current; (c) oscillogram of the switch current.
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the time waveform of the MOSFET current as obtained on an oscilloscope. For simplicity, the on-state

resistance of the MOSFET is assumed to be zero.

a. Based on the experimental figures, the engineer had to determine:

i. the turn-on and turn-off times of the MOSFET

ii. the switching frequency of the MOSFET.

b. To sketch the time waveforms of the MOSFET voltage and current.

c. To calculate the switching loss of the MOSFET.

d. To find a method for reducing the turn-off time of the MOSFET.

Answers

a. To study this case, it is necessary to identify the operating conditions of the MOSFET by using its

switching trajectories. Based on Figure 1.87b, the on/off states of the MOSFET are illustrated in

Figure 1.88. The young engineer has to deal here with a trick he has not learnt at university: when

taking the switching trajectories in the laboratory, he correctly arranged the traces in the center of the

page to avoid running off of it. However, then, he should have found the actual axes from his under-

standing of the switch operation: when the switch is on, the voltage across it is approximately zero, and

when the switch is off, the current through it is zero. According to this observation, he has to shift the

axes to the bottom-left of the figure, as shown with dotted lines in Figure 1.88.

i. Based on Figure 1.87c, the turn-on time (the time taken from the off-state to on-state) is given by

one subdivision of time, which is equal to 0.5ms (in the figure, one division, with 2ms/div, has
four subdivisions). The turn-off time (the time taken from the on-state to off-state) is given by two

subdivisions, which is equal to 1ms.

Figure 1.88 Illustration of the states of the MOSFET in the circuit shown in Figure 1.87 (switch current (Ch Y):

2A/ div; switch voltage (Ch X): 20V/ div).
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ii. Based on Figure 1.87c, the switching frequency of the MOSFET is 1/(9 divisions� 2ms/div),
which is equal to 55.56 kHz.

b. Figure 1.89 shows the time waveforms of the MOSFET voltage and current, which are derived by com-

bining the waveforms taken from Figure 1.87b and c. Start from the point when the MOSFET is fully

turned on. According to Figure 1.88 (the axes with dotted lines), its voltage is zero and its current is

10A (five divisions of 2A/div). When the switch turns off, its current decreases linearly to zero and its

voltage increases to 100V (five divisions of 20V/div), and then decreases to the fully off-state voltage

of 50V (2.5 divisions). At turning on, the voltage decreases to zero and the current increases at 5A

(which is reached when the voltage dropped to zero), and then increases to 10A for the fully on-state.

c. As discussed in Section 1.3.5.1, the turn-on power loss (PswðONÞ) and turn-off power loss (PswðOFFÞ) of
the MOSFET are given by:

PswðONÞ ¼ Vof f stateIon state

6
trf s

PswðOFFÞ ¼ Vof f stateIon state

6
tf f s

In calculating the turn-on loss, note that the voltage drops to zero after 0.25ms. At that moment, the

current is 5 A. When calculating the turn-off loss, note that during the transient time of 1ms the current
dropped from 10 A to zero and the voltage increased from zero to 100V. Thus, the total power loss Ploss

is equal to:

Ploss ¼ PswðONÞ þ PswðOFFÞ

¼ 1

6
ð50� 5� 0:25� 10�6 þ 100� 10� 1� 10�6Þ � 55:56� 103

¼ 9:84W

d. To reduce the turn-off time of the MOSFET, we must quickly extract the charge stored in the gate-

source capacitance. A simple method is to use a PNP transistor (Figure 1.90). When its gate signal has

a logic value: low, the transistor provides a short-circuit path for the gate-source capacitance to neutral-

ize its stored charge. Such a circuit has an additional advantage of eliminating nuisance triggering of

Figure 1.89 Switching trajectories of the MOSFET in the converter shown in Figure 1.87.
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the MOSFET: if the drain voltage of the MOSFET is changing quickly due to what happens in another

part in the converter, a gate current would be generated through the gate-drain capacitance, partially

turning on the MOSFET. The added PNP transistor will create a bypass to the source for such a gate-

drain capacitance current and, as a result, the undesired current will not get into the gate. Another

method of reducing the turn-off time is the use of a negative gate voltage in the off-state. However, this

solution requires an additional circuit for generating the negative voltage.

1.9 Highlights of the Chapter

� Power electronics circuits are widely used in every practical area of our life.
� Power electronics convert energy, so their efficiency is of prime interest.
� Power electronics circuits operate in a switching mode. They must deliver a controllable output voltage

despite variations in the supply voltage or load.
� The regulation function is realized by controlling the amount of energy transferred from the source to

load per switching cycle: duty cycle (PWM) control and switching frequency control are the regulation

means.
� The switching devices and passive elements are chosen to satisfy the maximum levels of voltages

and currents that the devices have to withstand in their operation by adding a safety margin. For the

same voltage and current ratings, choose the elements with less conduction and/or switching losses, and

longer life expectancy.

Figure 1.90 Method of reducing the turn-off time of the MOSFET.
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� The energy losses are dissipated as heat, so a better efficiency means also a smaller cooling system.
� The DC-DC hard-switching converters are used for their simplicity and robustness. They also represent

the basic topologies for the development of DC-DC soft-switching converters, AC-DC rectifiers, and

DC-AC inverters.

Problems

1.1. Derive the formulas of the switching losses in devices.

(Hint: For converters without inductors, write the time functions of ID and VDS during tr2 and tf2 and

calculate the average power.)

1.2. Calculate the switching loss of the switch Infineon SPP17N80C3 when the switch is used in a buck

converter with the input voltage of 300V and output current of 4A. The switching frequency of the

converter is 100 kHz. [A: PSW(ON)¼ 0.9W, PSW(OFF)¼ 0.36W.]

(Hint: use Figure 1.10 and Table 1.1, and neglect tr3 and tf3.)

1.3. By applying the volt-second balance to the inductor in a boost converter, derive its DC conversion

ratio.

(Hint: Refer to Table 1.7)

1.4. By applying the volt-second balance to the inductor in a buck converter, derive its DC conversion

ratio.

1.5. Derive an ampere-second balance for a capacitor in a basic DC-DC converter.

(Hint: analogous to the development of the volt-second balance on an inductor.)

1.6. Use the ampere-second balance method to re-derive the DC voltage conversion ratio and DC current

conversion ratio for the basic converters.

1.7. There is a boost converter (Figure 1.7) with input voltage Vin¼ 48V and load resistance R¼ 12V.

The required average output voltage is 120V. The value of the inductor, L, is 290mH and of the

capacitor, C, 330mF. The converter is operated at the switching frequency of 100 kHz. Calculate (a)

the duty cycle of the switch, (b) the average input current.

[Answers: (a) 0.6, (b) 25A.]

1.8. For the same problem as above, calculate (a) the inductor current ripple, (b) the minimum and maxi-

mum values of the inductor current.

[Answers: (a) 0.993 A, (b) 24.503 A, 25.497A.]

1.9. For a boost converter with Vin¼ 48V and Vout¼ 120V, L¼ 290mH and fs¼ 100 kHz, determine the

value of R for which the boost converter will enter DCM.

(Hint: at the boundary between CCM and DCM, the average input current is half of the maximum

inductor current.)

[Answer: 603.6V.]

1.10. For a boost converter with Vin¼ 48V and Vout¼ 120V, fs¼ 100 kHz, and the output power varying

from 120 W to 1.2 kW, design the minimum required value of the inductor such that the converter is

operating in CCM within the power range.

[Answer: 57.6mH.]
1.11. For the boost converter with Vin¼ 48V and Vout¼ 120V, fs¼ 100 kHz, and R¼ 12V, design the

values of the inductor and capacitor for 1% output voltage ripple and 15% input current ripple.

[Answers: 76.8mH, 50mF.]
1.12. There is a buck-boost converter (Figure 1.6) with input voltage Vin¼ 48V and load resistance R¼

120V. The required average output voltage is 120V. The value of the inductor, L, is 1000mH and of
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the capacitor, C, 10mF. The converter is operated at the switching frequency of 100 kHz. Calculate

(a) the duty cycle of the switch, (b) the average input current.

[Answers: (a) 0.714, (b) 2.5 A.]

1.13. For the same problem as above, calculate (a) the inductor current ripple, (b) the minimum and maxi-

mum values of the inductor current.

[Answers: (a) 0.343A, (b) 3.33 A, 3.67A.]

1.14. For the buck-boost converter with Vin¼ 48V and Vout¼ 120V, L¼ 1000mH and fs¼ 100 kHz,

determine the value of R for which the buck-boost converter will enter DCM.

[Answer: 2450V.]

1.15. For the buck-boost converter with Vin¼ 48V and Vout¼ 120V, fs¼ 100 kHz, and the output power

varying from 12 to 120W, design the minimum required value of the inductor such that the converter

is operating in CCM within the power range.

[Answer: 489.6mH.]
1.16. There is a buck converter (Figure 1.8) with input voltage Vin¼ 48V and load resistance R¼ 4.8V.

The required average output voltage is 24V. The value of the inductor, L, is 400mH and of the

capacitor, C, 330mF. The converter is operated at the switching frequency of 100 kHz. Calculate

(a) the duty cycle of the switch, (b) the average input current.

[Answers: (a) 0.5, (b) 2.5 A.]

1.17. For the same problem as above, calculate (a) the inductor current ripple, (b) the minimum and maxi-

mum values of the inductor current.

[Answers: (a) 0.3A, (b) 4.85A, 5.15A.]

1.18. For the buck converter with Vin¼ 48V and Vout¼ 24V, L¼ 400mH and fs¼ 100 kHz, determine the

value of R for which the buck converter will enter DCM.

(Hint: at the boundary between CCM and DCM, the average output current is half of the maximum

inductor current.)

[Answer: 160V.]

1.19. For the buck converter with Vin¼ 48V and Vout¼ 24V, fs¼ 100 kHz, and the output power

varying from 12W to 120W, design the minimum required value of the inductor such that the con-

verter is operating in CCM within the power range.

[Answer: 120mH.]
1.20. By using two capacitors per group, as in the circuit in Figure 1.54, is it possible to step-down the

voltage from 12V to 6V? Why not?

1.21. In the same circuit, is it possible to step-down to 5.7 V? Why not?

(Hint: think to the regulation problem.)

1.22. Draw a similar circuit with that in Figure 1.54 for stepping down 12V to: (a) 4V and (b) 3.3 V. Is

there any difference in the two circuits? What about their regulation capacity for changes in the

supply voltage of þ/�10%?

1.23. Find a design formula for C and Ts for realizing a certain required ripple in the output voltage for the

circuit shown in Figure 1.54 (for a given value of R).

1.24. Show a SC circuit in principle for stepping-up the supply voltage.

1.25. Draw a SC DC-DC converter for stepping-up the voltage from 5 to 9V.

1.26. Draw a SC DC-DC converter for stepping-up the voltage from (a) 5 to 12V, (b) 6 to 12V. Is there

any difference in the two circuits? What about their regulation capacity?

1.27. Consider a boost quasi-resonant ZCS converter and explain its cyclically switching operation. Draw

the switching diagram and topological stages.
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(Hint: use the equivalent scheme of a hard-switching boost converter – Figure 1.9. Before starting a

new steady-state cycle, the boost converter was in the off-topology; therefore, its output diode was

on and the voltage on the resonant capacitor was Vout. When turning on the switch, the current in the

output diode is Iin-iLr(t), until this current reaches zero, the diode remains in the on-state, clamping

the resonant capacitor voltage at Vout. Only when the output diode turns off, does the resonant capac-

itor start the resonance process with the resonant inductor.)

1.28. The supply voltage vs and input current iin of an AC-DC converter are expressed as:

vsðtÞ ¼ 311 sin 2pð50Þt
iinðtÞ ¼ 10 cos½2pð50Þt� 20�	 þ 1 sin½2pð150Þtþ 30�	 þ 0:5 sin½2pð250Þtþ 40�	

Determine:

a. the root-mean-square values of vs and iin [Answers: 220V, 7.11A].

b. the input power of the converter [Answer: 532W].

c. the displacement and distortion factors of iin [Answers: 0.342, 0.995].

d. the power factor [Answer: 0.340].
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