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A short history of compositional
data analysis

John Bacon-Shone
Social Sciences Research Centre, The University of Hong Kong, Hong Kong

1.1 Introduction

Compositional data are data where the elements of the composition are non-negative and
sum to unity. While the data can be generated directly (e.g. probabilities), they often arise
from non-negative data (such as counts, area, volume, weights, expenditures) that have been
scaled by the total of the components. Geometrically, compositional data with D components
has a sample space of the regular unit D-simplex, SD . The key question is whether standard
multivariate analysis, which assumes that the sample space is R

D , is appropriate for data
from this restricted sample space and if not, what is the appropriate analysis? Ironically, most
multivariate data are non-negative and hence already have a sample space with a restriction
to R

D
+ . This chapter tries to summarize more than a century of progress towards answering

this question and draws heavily on the review paper by Aitchison and Egozcue (2005).

1.2 Spurious correlation

The starting point for compositional data analysis is arguably the paper of Pearson (1897),
which first identified the problem of ‘spurious correlation’ between ratios of variables. It is
easy to show that if X, Y and Z are uncorrelated, then X/Z and Y/Z will not be uncorrelated.
Pearson then looked at how to adjust the correlations to take into account the ‘spurious
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correlation’ caused by the scaling. However, this ignores the implicit constraint that scaling
only makes sense if the scaling variable is either strictly positive or strictly negative. In short,
this approach ignores the range of the data and does not assist in understanding the process
by which the data are generated. Tanner (1949) made the essential point that a log transform
of the data may avoid the problem and that checking whether the original or log transformed
data follow a Normal distribution may provide some guidance as to whether a transform
is needed.

Chayes (1960) later made the explicit connection between Pearson’s work and composi-
tional data and showed that some of the correlations between components of the composition
must be negative because of the unit sum constraint. However, he was unable to propose a
means to model such data in a way that removed the effect of the constraint.

1.3 Log and log-ratio transforms

The first step towards modern compositional data analysis was arguably the use by McAlister
(1879) of Log-Normal distributions to model data that are constrained to lie in positive real
space. Interestingly, he proposed this as the law of the geometric mean (versus the Normal
distribution as the law of the arithmetic mean) and pointed out the lack of practical value for
variance of a variable that must be positive, which can be seen in retrospect as recognition of
the need for a different metric for data from restricted sample spaces, that takes constraints
into account. Instead, he emphasized the meaning of the cumulative distribution. This is by no
means the only way to model data on the positive real line and competes with, for example,
the Gamma and Weibull distributions. It is equivalent to taking a log transform of the data,
so that the non-negative constraint is removed, and then assuming a Normal distribution. One
of the key texts for the Log-Normal distribution is the book by Aitchison and Brown (1969).
However, this only addresses the non-negative constraint of compositional data and does not
address the unit sum constraint.

The simplest meaningful example of a composition is with just two components, so the
unit-sum constraint implies that the second component is just one minus the first component.
This is just the situation that arises with probabilities for a binary outcome. Cox and Snell
(1989) use the logit or logistic transformation of the probability in this case, which enables
the use of regression models for the logit transformed probabilities. However, it appears that
nobody saw the potential for a similar approach for the more general case of compositional data
until the first known reference to using the log-ratio transform to solve the constraint problem
for compositional (or simplicial) data by Obenchain in a personal communication to Johnson
and Kotz (Kotz et al. 2000). Indeed, Obenchain contributed to the discussion of the Royal
Statistical Society paper by Aitchison (1982), where he stated that he became discouraged by
the problem of zero components and thus never attempted to publish his simplex work, even
though he had derived many properties of the logistic-normal distribution.

The first public introduction of the properties of the logistic-normal distribution can be
found in Aitchison and Shen (1980). This distribution is written in terms of log-ratios relative
to the last component, so that y(x) = {log(x1/xD), . . . , log(xD−1/xD)} follows a Multivariate
Normal distribution.

Up to that time, the only known tractable distribution on the simplex was the Dirichlet
distribution. However, the Dirichlet distribution has some very restrictive properties, such
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as complete subcompositional independence, i.e. for each possible partition of the compo-
sition, the set of all its subcompositions must be independent. This makes it impossible to
model any reasonable dependence structure for compositional data using the Dirichlet dis-
tribution. In contrast, the logistic-normal distribution yields a distribution on the interior of
the simplex that does not require these inflexible properties, but instead they become testable
linear hypotheses on the covariance matrix within a broad flexible modelling framework.
In addition, the Aitchison and Shen (1980) paper showed that the logistic-normal distri-
bution is close to any Dirichlet distribution in terms of the Kullback–Leibler divergence.
Later Aitchison (1985) derived a more general distribution that contains both the Dirichlet
and logistic-normal distributions, although the potential for using this distribution for testing
Dirichlet against logistic-normal distributions within the same class is diminished as these hy-
potheses are on the boundary of the parameter space. More recently, the generalization of the
logistic-normal distribution to the additive logistic skew-normal distribution on the simplex
(Mateu-Figueras et al. 2005) applies the skew-normal distribution (Azzalini 2005) to log-
ratios on the simplex and offers the useful possibility of modelling data where the distribution
of y(x) is not symmetrical. Use of the logistic-normal distribution opens up the full range of
linear modelling available for the multivariate Normal distribution in R

D .

1.4 Subcompositional dependence

As mentioned above, the logistic-normal distribution has the ability to model useful depen-
dence structures. In his seminal book, Aitchison (1986) developed this idea, showing that the
covariance structure can be modelled in terms of covariances on the log scale and is com-
pletely determined by the D(D − 1)/2 log-ratio variances τi j = Var{log(xi/x j )}(where i =
1, . . . , D − 1; j = i + 1, . . . , D).

However, finding a convenient matrix formulation seems tricky, either yielding formu-
lations that require selecting a specific component as divisor [when using �, which is the
log-ratio covariance matrix for the D − 1 log-ratios relative to one component as divisor
(Aitchison 1986, p. 77)], have a zero diagonal [when using T, which is the variation matrix
for all pairs of log-ratios (Aitchison 1986, p. 76)] or are singular [when using �, which is
the centred log-ratio covariance matrix (Aitchison 1986, p. 79)]. However, it turns out that
there are simple linear relationships between these alternative formulations, so it is feasible
to choose whichever formulation is simplest to use in any specific context.

1.5 alr, clr, ilr: which transformation to choose?

One key question for using the log-ratio transformations is choosing the divisor. Most of the
literature initially used an arbitrary component as the divisor, known as using alr (additive log-
ratio) transformation. This is potentially problematic because the distances between points
in the transformed space are not the same for different divisors. However, as shown in
Aitchison (1986) and further developed in Aitchison et al. (2000), linear statistical methods
with compositional data as the dependent variable are invariant to the choice of divisor as the
implicit linear transformations between different representations cancel out in any F ratio of
quadratic or bilinear forms, so this is a conceptual rather than practical problem.
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One way of avoiding this problem of choosing a divisor is to divide by the geometric
mean, known as the clr (centred log-ratio) transformation. As noted above, the disadvantage
of this is that the clr covariance matrix is singular, making it difficult to use in some standard
statistical procedures without adaption.

A key step forward was recognition that compositions can be represented by their co-
ordinates in the simplex with a suitable orthonormal basis. This suggests an alternative
transformation, known as ilr (isometric log-ratio) transformations (Egozcue et al. 2003),
which avoids the arbitrariness of alr and the singularity of clr. Thus ilr has significant con-
ceptual advantages, but unfortunately, there is no clear ‘simplest’ or canonical basis, unlike
R

D . One possibility is to use a sequential binary partition of the components (Egozcue and
Pawlowsky-Glahn 2005), known as balances, although this alone still does not ensure unique-
ness. This approach is explained in detail in Chapter 3. However, despite the mathematical
elegance of this approach, it has practical disadvantages in the relative difficulty of choosing
the basis when that is not motivated by the statistical question being investigated and also
when relating the coordinates back to the original statistical question.

1.6 Principles, perturbations and back to the simplex

At this point, the reader may have concluded that compositional data analysis is entirely a prag-
matic approach to avoiding the unit sum constraint that may have mathematical weaknesses.
Indeed, mathematical geologists, typified by Rehder and Zier (2001) argued that log-ratio
analysis implied an illogical and arbitrary distance metric. In fact, the log-ratio approach can
be derived entirely from a few key principles, which enable the derivation of the entire math-
ematical framework including an appropriate distance metric on the simplex. As explained in
Aitchison et al. (2000), it should be obvious that compositional data analysis can only make
meaningful statements about ratios of components, i.e. the first principle is scale invariance.
This should be obvious in that compositional data is unit-free, but some geologists, such as
Watson and Philip (1989), did not find this obvious. The second key principle is subcomposi-
tional coherence (Aitchison 1992), which states that inferences about subcompositions should
be consistent, regardless of whether the inference is based on the subcomposition or the full
composition. For R

D , this would translate into the self-evident principle that inference about a
subset of variables should be the same regardless of whether we base the inference on the subset
of variables or the full set. Any meaningful metric for the simplex should satisfy these two prin-
ciples and the Euclidean metric for R

D clearly does not satisfy either for compositional data.
Aitchison (1986) introduced the idea of perturbation as the analogue to linear operations in R

D ,
which was further developed in Aitchison and Ng (2005). A perturbation p = (p1, . . ., pD) is
a differential scaling operator that when applied to the composition x = (x1, . . ., xD) yields
the composition

X = p ⊕ x = C(p1x1, . . ., pD xD) ,

where C is the closure operator that scales elements to ensure that we remain in the unit
simplex.

The set of perturbations (if restricted to SD) form a group with an inverse and an identity
perturbation e = (1/D, . . ., 1/D). As any composition can be expressed as a result of a
perturbation on any other composition, the distance between any two compositions must be
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expressible in terms of perturbations. Perturbation clearly corresponds to addition in R
D and

we can define powering to correspond to multiplication in R
D as

X = a � x = C(xa
1 , . . ., xa

D) .

The simplicial metric, or Aitchison distance is then given by

da(x, y) =
{

D∑
i=1

[
log

xi

gm(x)
− log

yi

gm(y)

]2
} 1

2

,

where gm(·) is the geometric mean of the components, which can be shown to satisfy all the
usual metric axioms and to depend only on perturbation distance. It is also easy to show that
this metric satisfies the two key principles mentioned above.

The centre for a compositional distribution is then

Cen[x] = C(exp{E[log(x)]}),

with the variation matrix, T, as the most convenient measure of variability. In summary, this
allows us to transfer the analysis back to the simplex, without the asymmetry of using alr.

1.7 Biplots and singular value decompositions

It is essential to have simple ways to summarize and display multivariate data sets. Fortunately,
singular value decompositions and the related graphical tool of the biplot (Gabriel 1971),
provide precisely the tools we need for compositional data when adapted to the simplex
(Aitchison and Greenacre 2002). The biplot for the simplex is based on a singular value
decomposition of the row and column centred log-ratio matrix. It enables us to graphically
display which combinations of the log-ratios contain large and small amounts of variability.
The former provides a useful simplification of the major contributions to total compositional
variability, while the latter identifies any likely linear dependencies amongst the log-ratios.

1.8 Mixtures

One important application of compositional data is as the covariate that determines a mixture.
This yields log-contrast models for experiments with fixed mixtures where the dependence is
only on the composition (Aitchison and Bacon-Shone 1984).

Compositional data can also occur doubly as the mixture of compositions. In this case,
the mixed composition does not stay within the class of logistic-normal distributions, but
can often be approximated well by a logistic-normal distribution as shown in Aitchison and
Bacon-Shone (1999).

One specific problem where the mixture of compositions occurs is what geologists call
the end-member problem (Renner 1993; Weltje 1997). In this case, the key question is
which of the end members (of usually known compositions) are being mixed to form the
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outcome composition. A full Bayesian analysis of the end-member problem including spatial
dependence is found in Palmer and Douglas (2008).

1.9 Discrete compositions

In the discussion of the Royal Statistical Society paper by Aitchison (1982), R.L. Plackett
raised the question about how best to model discrete compositions and whether this might
provide a solution to the problem of zeros (see below). The first full analysis of discrete
data using compositional data models can be found in Billheimer et al. (2001), who use the
logistic-normal distribution to model the probabilities for a multinomial distribution to allow
much more sophisticated modelling of the occurrence data for species. This can be seen as a
more sophisticated approach to the multivariate count modelling of Aitchison and Ho (1989),
who use a logistic-normal model for the log means of Poisson data. However, the resultant
data in both cases were counts, rather than discrete compositions, although in Billheimer’s
case, it is the relative occurrence that is of interest. As shown in Bacon-Shone (2008), it may
be helpful to model discrete compositions even without knowing the total counts, helped by
the knowledge that the original counts are non-negative integers.

1.10 Compositional processes

One of the nice consequences of analysing in the simplex, is that it is easy to investigate
compositional processes as in Thomas and Aitchison (2005), who examine dependence on
time through

Dx(t) = C
{

exp

[
d

dt
log x(t)

]}
,

where d/dt denotes differentiation with respect to time.
This approach allows easy investigation and modelling of any processes that can be

parameterized, including the possibility of change-points (Bacon-Shone 2011).

1.11 Structural, counting and rounded zeros

Aitchison recognized from the start that there was a need to solve the problem of zeros in
compositional data as the log-ratio is undefined in this case. He wrote a much earlier paper
(Aitchison 1955) which looked at the related problem of zeros for non-negative data, which
presents a similar problem when using Log-Normal, Gamma or Weibull distributions, all of
which have zero probability of observing zero. This paper used a conditional approach that
separates the zeros from the continuous distribution and was applied to household expen-
diture data, which is a compositional data problem when classified into different categories
of expenditure.

The original approach to compositional zeros in Aitchison (1982) was to simply replace
all zeros by a small positive amount less than the detection limit, with the closure operator
applied to apply the unit sum constraint and then sensitivity analysis to check the impact of
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the replacement value. However, this positive replacement approach potentially distorts the
compositional data.

Proper ‘in the simplex’ approaches were independently proposed by Martı́n-Fernández
et al. (2000) and Fry et al. (2000). Palarea-Albaladejo et al. (2007) used a parametric model
to handle the zeros as missing data using the expectation-maximization (EM) algorithm.

As pointed out by Aitchison and Kay (2003) and by Bacon-Shone (2003), zeros can occur
for at least three distinct reasons. First, there may be a structural reason why the component
must be zero, such as alcohol expenditure components for household expenditure data in
families that do not drink alcohol. This situation is best modelled by the conditional approach.
Secondly, there may be a zero because of an underlying discrete process (Bacon-Shone 2008),
such as expenditure on white goods (i.e. major household appliances) in household expenditure
data, where people may go several years between making purchases and may miss capture
in the data collection process. This situation is best modelled by modelling the underlying
discrete process. Lastly, there may be a limit in the measurement or recording processes,
such that very small components are recorded as zero. For this situation, the approaches of
Martı́n-Fernández et al. (2000) and Fry et al. (2000) mentioned above seem most relevant.

Recently Butler and Glasbey (2008) proposed another modelling approach to composi-
tional data with zeros, using Euclidean projections onto the simplex, with the probability
‘outside’ the simplex used to model the point probabilities on the boundaries. Unfortunately,
this approach does not have a special case of log-ratio analysis and fails the test of the two
key principles mentioned above.

A more comprehensive discussion of how to handle zeros in compositions can be found
in Chapter 4.

1.12 Conclusion

This brief summary shows how much progress has been made in the last century in finding
appropriate analyses for compositional data, much of it in the last 30 years, relying heavily
on the insights of John Aitchison.
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