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Self-Assembled Delivery Vehicles for
Poorly Water-Soluble Drugs: Basic

Theoretical Considerations and
Modeling Concepts

Sylvio May and Alfred Fahr

1.1 Introduction

Poor solubility is a well-recognized property of many drug molecules [1]. Unprotected
administration of poorly water-soluble drugs is problematic. Aggregation, precipitation,
uncontrolled binding, and direct exposure to a harsh biological environment render this
process inefficient. The putative ‘solution’ of using higher drug concentrations narrows
the window between a therapeutic success and unwanted side effects such as locally toxic
drug levels. It comes as no surprise that the administration of poorly water-soluble drugs
can benefit dramatically from using delivery vehicles. Such vehicles can, in principle, be
designed not only to encapsulate a drug and protect it from biological defense mecha-
nisms, but also to release the drug in a controlled manner at the target site and then to be
recycled through biodegradation. Different types of delivery vehicles are currently being
investigated, including microemulsions [2,3], gels [4], micelles [5,6], liposomes [7], poly-
mersomes [8], dendrimers [9], and nanopcrystals [10], or lipid nanoparticles [11]. Notably,
most of these are self-assembled structures. Self-assembly is an ubiquitous process in cellu-
lar systems, most strikingly perhaps in the cell membrane where a matrix (lipids) contains
highly specialized functional units (poorly water-soluble proteins). Functionalization is an
advantage that is also increasingly integrated into drug delivery vehicles. As an example
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2 Drug Delivery Strategies for Poorly Water-Soluble Drugs

we mention liposomes, which were originally designed as long-circulating transport vehi-
cles for drug molecules [12]. Extending the circulation time by decorating the liposome
surface with PEG-chains (stealth liposomes [13]) can be viewed as the first step toward
functionalization. Currently designed liposomes raise the concept of functionalization to a
new height: they contain targeting ligands and carry out stimuli-sensitive triggering of the
drug release [14–16].

Optimizing drug delivery vehicles is promising but also challenging. Self-assembled
nanostructures are soft and responsive materials, where entropy becomes an important
factor for structure and stability. It is virtually impossible to manipulate one property
without affecting others (and sometimes this has drastic implications as one of the authors
vividly recalls the disintegration of an entire colloidal formulation upon the replacement of
a single -H group by an -OH group in a 1 kDalton drug molecule). Nanocarrier properties
are affected by a range of interactions that are well known from colloidal science, including
solvation energies, electrostatic and van der Waals interactions, depletion and packing
effects, etc. [17, 18]. Appreciation and understanding of these interactions are likely to
reflect upon nanocarrier design and optimization. For example, one of the challenges that
drug encapsulation in nanocarriers faces is related to the retention of the drug in the carrier.
A lipophilic drug does not necessarily remain in a rigid lipophilic matrix [19] but is rapidly
squeezed out, whereas soft structures (like liposomal membranes) tend to increase the
residence time in the membrane. What physical mechanisms underlie the ability of soft
rather than rigid self-assembled structures to accommodate small lipophilic drugs? And
what physical properties determine the release? The latter question relates to the fact that
a carrier keeping the drug completely in the interior will ultimately prevent a therapeutic
effect. The authors’ experience with a liposomal formulation of a peptide showed an
increase of lifetime from 3 mins to 24 hours in blood, but there was no pharmacological
activity, as the liposomes with the drug inside were eliminated without releasing the drug
to blood components or organs. Other practical hurdles are discussed, for example, by van
Hoogevest et al. [20].

The present chapter presents a conceptual framework for physics-based modeling
approaches of self-assembled nanoscaled carrier systems that are associated with lipophilic
drugs. Our focus is clearly on the basic physics and underlying concepts [21]. We start with
an account of basic thermodynamic relations (Section 1.2) which we subsequently exploit
to discuss principles of self-assembly (Section 1.3) and the partitioning of drug molecules
into self-assembled carrier systems (Section 1.4). The energetics of individual delivery
vehicles depends on a multitude of inter-molecular interactions; of these we discuss elec-
trostatics and the packing of chain-like molecules (Section 1.5). We finally consider kinetic
properties of drug transfer from mobile nano-carriers to a target system (Section 1.6). Note
that none of the sections aims to give a comprehensive account of the available theoretical
concepts (for more comprehensive accounts and discussions of specific applications, see
[21–24]). However, for those subjects that we discuss, it is our goal not only to state the final
results but also provide some guidance through the physical and mathematical basis of their
derivation. We shall focus on simple and generic models, namely those that highlight the
underlying physical principles, thereby excluding more advanced theoretical concepts and
atomistic simulations. In summary, the present chapter approaches the pharmaceutical sci-
entist who is interested in the process of developing theoretical models for self-assembled
delivery vehicles of drug molecules from first principles.
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1.2 Brief Reminder of Equilibrium Thermodynamics

We start by briefly recalling some basic concepts of equilibrium thermodynamics and stat-
istical mechanics, thereby focusing on those aspects that will become important in the
subsequent parts of this chapter. For each thermodynamic system there exists a thermo-
dynamic potential F that contains all thermodynamic information. This means it encodes
for all thermodynamic equations of state (such as the van der Waals equation of state for
a van der Waals fluid, etc.). The potential F depends on a number of degrees of freedom
that the system possesses. Some of these degrees of freedom can adjust only slowly; they
are referred to as constrained variables. The remaining degrees of freedom correspond to
unconstrained variables: they can adjust quickly. Equilibrium thermodynamics can only
be applied if there exists a time window that separates the constrained from the uncon-
strained variables. (Note that this statement is very different from the demand of true
thermal equilibrium.) Equilibrium thermodynamics – like most other fundamental physical
theories – can be formulated as a minimization principle: The thermodynamic potential F
adopts its minimum state with respect to all unconstrained variables. This eliminates the
unconstrained variables from F . We note that statistical mechanics performs the very same
minimization, yet starting from a representation of the potential F that includes all relevant
microscopic degrees of freedom. In this entire chapter we treat the temperature T as a fixed
constant. The thermodynamic potential – referred to as Helmholtz free energy – can then
be expressed as F = U − TS where U and S are the internal energy and entropy of the
system under consideration. The free energy F = U − TS can be viewed as a Legendre
transformation from given entropy to fixing the temperature of the system by adding a heat
bath of temperature T .

It is instructive to actually perform the minimization of F with respect to all its uncon-
strained variables. To this end, we consider a system that can exist in many different
states α. To be specific, the different states α could refer to different spatial arrange-
ments of surfactants and drug molecules that form a mixed surfactant micelle. This is
schematically illustrated in Figure 1.1. Obviously, there are many different arrangements
of the drug molecules and corresponding conformations of the micelle – so the total num-
ber of states may be extremely large. Each state α will be adopted with a probability
P(α). These probabilities are normalized according to

∑
α P(α) = 1. If each state has

an internal energy u(α), we can write the total internal energy as U = ∑
α u(α)P(α).

αα α= 3= 2= 1α = 4

Figure 1.1 Schematic illustration of a micelle, formed by six single-chained surfactants and
two drug molecules (filled circles). Four arbitrarily chosen states α (out of a very large
number of possible states) are displayed. Real surfactant micelles are typically composed
of 50 to several hundred individual molecules and can contain some tens to 200 of drug
molecules [25].
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The entropy can be expressed as a function of P(α) only: S = −kB
∑

α P(α) ln P(α).
Here, kB = 1.38 × 10−23 J/K is the Boltzmann constant. We note that only the form
P ln P translates a multiplicativity of the probabilities into an additivity of the entropies;
hence, this form of the entropy ensures extensivity of S. The thermodynamic potential
thus reads F = U − T S = ∑

α P(α)[u(α) + kBT ln P(α)]. Clearly, the probabilities P(α)
are not constrained; so they correspond to the set of unconstrained degrees of freedom
for the present system. Hence, F must adopt a minimum subject to P(α). From the mini-
mization of F we obtain the equilibrium distribution P(α) = exp[−u(α)/kBT ]/Q where
Q = ∑

α exp[−u(α)/kBT ] ensures proper normalization as stated above. The distribution
of probabilities for the different states α is the familiar Boltzmann distribution, and Q
is referred to as the partition sum. The partition sum plays a central role as can be seen
upon inserting the Boltzmann distribution back into F , yielding F = −kBT ln Q. Hence
calculating Q gives immediate access to the thermodynamic potential F .

As a specific example we consider a fluid that has all its particles (i.e., molecules)
confined to the sites of a lattice (this is also known as a lattice gas [26]). The lattice gas
is certainly oversimplified but it serves as an instructive model, particularly for a binary
fluid with roughly equal-sized solute and solvent molecules. Assume the lattice consists
of M sites total; N sites are occupied by solute molecules and M − N sites host solvent
molecules. Figure 1.2(a) shows the lattice model. The dimensionality and connectivity of
the lattice are irrelevant as long as the molecules do not interact with each other. In this case,
the partition sum simply corresponds to the number Q = M!/[N !(M − N )!] of available
arrangements of the solute and solvent molecules. The use of Stirling’s approximation
ln x! ≈ x ln x − x (which is valid for x � 1) leads to the thermodynamic potential F =
−kBT ln Q = kBT M[φ ln φ + (1 − φ) ln(1 − φ)] where we have defined the mole fraction

M1

N1

M2

N2

ω12

ω11

(c)(b)(a)
solutesolvent

M lattice sites
ω 22

sites occupied by solvent moleculesM−N

N sites occupied by solute molecules

Figure 1.2 (a) Schematic illustration of the lattice model. A two-dimensional square lattice
of M = 100 lattice sites is shown, it contains N = 30 solute molecules and M − N = 70
solvent molecules. (b) Inter-molecular interactions can be characterized by a solute-solute
(ω11), solute-solvent (ω12), and solvent-solvent (ω22) interaction strength. (c) For sufficiently
strong interactions the system may phase separate into a solute-rich phase (with N1 solute
molecules in a sublattice of M1 sites), and a solute-poor phase (with N2 = N − N1 solute
molecules in a sublattice of M2 = M − M1 sites). Note that M1, M2, N1, N2 are determined by
the common tangent construction; see Equation 1.2.
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φ = N/M of solute molecules. Dissolving the solute in the solvent leads to a decrease in F
which, in principle, can be used as work. This available (free) energy is entirely of entropic
origin (i.e., U = 0 in F = U − TS). We note that for small solute mole fraction, φ � 1,

the free energy F = kBT Mφ(ln φ − 1) is identical to the free energy of an ideal gas. In
fact, for any mixed system sufficient dilution leads to an ideal gas.

Let us go one step further and introduce interactions between the molecules. We will do
this only on the so-called mean-field level, where correlations are ignored [26]. (Roughly
speaking, in mean-field theory the interactions of a given particle are approximated by
an effective interaction that only accounts for the net effect but not the details of the
environment.) To this end, we consider a lattice of coordination number z. The coordination
number simply denotes the number of next neighbors of each given lattice site, i.e., z = 4
for the two-dimensional square lattice illustrated in Figure 1.2(a), etc. Denote the (nearest-
neighbor) solute-solute, solute-solvent, and solvent-solvent interaction strengths by ω11,
ω12, and ω22; see Figure 1.2(b). Neglecting correlations amounts to a random mixing
approximation [26] where the total internal energy of the system is U = Mz[ω11φ

2 +
2ω12φ(1 − φ) + ω22(1 − φ)2 − φω11 − (1 − φ)ω22]/2. The first three terms account for
the solute-solute, solute-solvent, and solvent-solvent interactions, and the last two terms
subtract the fully demixed reference state, one for the solute and the other for the solvent.
The total internal energy per lattice site, U/M = χφ(1 − φ), can thus be expressed in terms
of a single effective interaction parameter χ = z[ω12 − (ω11 + ω22)/2], also referred to as
the non-ideality parameter. Note that the non-ideality parameter is positive if molecules of
the same type effectively attract each other, (ω11 + ω22)/2 < ω12. Based on the interaction
term U and the ideal mixing free energy −TS, the overall free energy F = U − TS of the
interacting lattice gas can be expressed as F = M f where the free energy per lattice site is

f = χφ(1 − φ) + kBT [φ ln φ + (1 − φ) ln(1 − φ)] . (1.1)

The left diagram of Figure 1.3 displays f = f (φ) for different choices of χ . For sufficiently
large χ the curves exhibit a concave region, centered about φ = 0.5. Concavity of f (φ) is of
thermodynamic significance as it implies that the system is locally unstable. To explain this
instability we consider two equal-sized sublattices with initially the same composition φ. If
a small number of solute molecules migrate from one to the other sublattice, the total free
energy decreases given that the free energy f (φ) is concave. Mathematically this instability
can be expressed as f (φ + �φ) + f (φ − �φ) < 2 f (φ) for small �φ, or, equivalently, as
f ′′(φ) < 0, where the prime denotes the derivative with respect to the argument ( f ′(φ) =
d f/dφ, etc). Regions with f ′′(φ) > 0 are locally stable, and regions with f ′′(φ) < 0 are
locally unstable. They are separated by points of inflection where f ′′(φ) = 0. The points
of inflection are marked in Figure 1.3(a) by the symbol � for the curve corresponding to
χ = 3 kBT ). For Equation 1.1 the condition f ′′(φ) < 0 translates into kBT/χ < 2φ(1 − φ).
Concavity is a sufficient but not a necessary condition for thermodynamic instability to
occur. A more general condition can be derived by considering two different phases (one of
size M1 with N1 solute molecules and the other of size M2 = M − M1 with N2 = N − N1

solute molecules) with corresponding free energy F = M1 f (φ1) + (M − M1) f (φ2) where
φ1 = N1/M1 and φ2 = (N − N1)/(M − M1) are the mole fractions of solute molecules in
the two phases. A lattice that contains two different phases is illustrated in Figure 1.2(c).
If the two phases are indeed thermodynamically stable, they must represent a minimum
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Figure 1.3 Left diagram: Free energy per lattice site F /(MkBT ) = f/kBT according to Equation
1.1 for different choices of the non-ideality parameter, χ/kBT = 0, 1, 2, 3, 4 (from bottom to
top). For χ/kBT = 3, the points of inflection and the points that give rise to a common tangent
are marked by the symbols � and ◦, respectively. The common tangent is indicated by the
dotted line. Right diagram: Phase diagram kBT/χ versus φ, with the spinodal (SP) and binodal
(BI) lines indicated. Upon increasing the temperature T the system generally passes from a
locally unstable region via a metastable region to a stable single phase system. It thereby
crosses first the spinodal and then the binodal line. The symbols � and ◦ in the left diagram
correspond to the ones in the right diagram (i.e., for χ/kBT = 3). The dotted lines in the right
diagram indicate the critical point χc/kBT = 2 and φc = 1/2.

of F with respect to the two unconstrained parameters N1 and M1. This implies the two
equations ∂ F/∂ N1 = f ′(φ1) − f ′(φ2) = 0 and ∂ F/∂ M1 = f (φ1) − f (φ2) − φ1 f ′(φ1) +
φ2 f ′(φ2) = 0, giving rise to the common tangent construction [27]

f ′(φ1) = f ′(φ2) = f (φ2) − f (φ1)

φ2 − φ1
(1.2)

for the two coexisting compositions φ1 and φ2. As long as the system contains coexisting
phases, the free energy moves along the common tangent, thus ensuring that the adopted
thermodynamic potential does not become concave. The common tangent, which marks
the region of global instability, is indicated in the left diagram of Figure 1.3 for the curve
corresponding to χ = 3 kBT (see the dotted line between the two ◦ symbols). The regions
of local and global instability can be mapped into a phase diagram kBT/χ versus φ; see
the right diagram of Figure 1.3. The lines separating regions of local and global instability
are called spinodal (SP) and binodal (BI), respectively. The region between the spinodal
and binodal is metastable. Here, the system can reside in a homogeneous single-phase state
or phase separate (which lowers the free energy below that of the single-phase state). The
largest kBT/χ where phase separation occurs is the critical point; that point can generally
be found by solving the two equations f ′′(φ) = f ′′′(φ) = 0 with respect to χ and φ.
For Equation 1.1, this yields the critical point χ = χc = 2kBT and corresponding critical
composition φ = φc = 1/2.

We note that the free energy in Equation 1.1 is based on a simple lattice model which
despite being too simplistic to quantitatively describe real systems captures the principal
features that lead to a phase transition. There are plenty of other, more elaborate and
realistic, free energy expressions that predict phase diagrams (and corresponding critical
points) using the same formalism that yields the phase diagram in Figure 1.3. For example,
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the van der Waals fluid has a free energy, expressed per lattice site (of unit volume)
of f = aφ2 + kBT φ ln[φ/(1 − bφ)]. The two material parameters a and b describe the
degree of intermolecular attraction and the molecular eigenvolume; φ is the mole fraction
of the solute as above. Calculation of the pressure

P = −d[ f (φ)/φ]

d(1/φ)
= φ

df

dφ
− f = φkBT

1 − bφ
+ aφ2 (1.3)

yields the familiar van der Waals equation of state [26]. Upon solving the two equa-
tions f ′′(φ) = f ′′′(φ) = 0 we obtain the critical point of the van der Waals fluid,
a = −27b kBT/8 and φ = 1/(3b). The mean-field lattice gas model leading to Equa-
tion 1.1 can also be extended to a polymer/solvent mixture. Here, the solute (i.e., the
polymer) is represented by n (connected) segments, each occupying a single lattice site.
Denoting the volume fraction of the polymer by φ, the (mean-field) free energy per lattice
site becomes

f = χφ(1 − φ) + kBT

[

φ ln φ + 1

n
(1 − φ) ln(1 − φ)

]

, (1.4)

where χ/kBT is known as the Flory-Huggins parameter that describes the effective polymer
segment-solvent interaction strength [28]. The segment number n has a profound influence
on the phase behavior as can be seen from the critical point χc = (1 + 1/

√
n)2 kBT/2

and φc = 1/(1 + √
n). Large n (103 is a typical value) drives phase separation already

at polymer volume fractions of only a few percent. Flory-Huggins parameters for drug-
polymer systems can either be extracted from experiments [29] or predicted via computer
simulations [30].

1.3 Principles of Self-Assembly in Dilute Solutions

Self-assembly is a fundamental process with relevance for many of the delivery vehicles
that are being used to deliver poorly water-soluble drugs [31]. Among the most relevant
examples are micellar structures that are composed of surfactants, lipids, or polymers
[24, 32]. Yet, self-assembly is also encountered for hydrophobic drug molecules, such
as photosensitizers, when dissolved in an aqueous environment [33]. In this case, the
aggregation state can be modulated by adding additional drug-binding proteins [34].

In this section we review the thermodynamic principles behind self-assembly processes
[35, 36]. Rather than merely stating the results we aim to make the thermodynamic origin
of the principles transparent. We focus on dilute solutions where a number of N chemically
identical solute molecules are able to form Ni aggregates of aggregation number i . That
is, N1 is the number of monomers, N2 the number of dimers, etc. This is illustrated for a
specific example in Figure 1.4. As in the previous section, we adopt a lattice description of
the system where a solvent molecule and a solute molecule each occupy one single lattice
site. The N solute molecules thus self-assemble on a lattice of M sites. Note that using a
lattice is convenient and does not limit the generality of the model in the dilute limit (as it
did not for the ideal gas). The total volume of the system is then V = Mν, where ν denotes
the volume per lattice site. Dilute conditions require N � M . Here, the system can be
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V

Figure 1.4 Schematic illustration of N = 30 solute molecules (each represented by the symbol
◦) that – in this particular snapshot – self-assemble into N1 = 5 monomers, N2 = 4 dimers,
N3 = 3 tri-mers, and N4 = 2 four-mers. Note that

∑
i i Ni = N.

described as a mixed ideal gas, where each component is represented by the corresponding
Ni aggregates of aggregation number i . The free energy of the system

F =
N∑

i=1

[

Niμ
0
i + kBT Ni

(

ln
Ni

M
− 1

)]

(1.5)

is then simply the sum of the individual ideal gas free energies, each with its own standard
chemical potential μ0

i per i-mer. The sum runs from i = 1 (monomers) to i = N where
all solute molecules form one single aggregate. The limit i = N can be relevant. Lipid
bilayers, for example, tend to fuse, despite the loss of translational entropy upon the
merger of two bilayers into one. We note that the conservation of the total number of solute
molecules implies

∑N
i=1 i Ni = N . In the following it is convenient to use the mole fractions

φi = i Ni/M of solute molecules that form i-mers. Similarly, we introduce the total mole
fraction of solute molecules φ = N/M in the system. The free energy in Equation 1.5,
expressed per lattice site, then reads

f = F

M
=

N∑

i=1

[

φi μ̃
0
i + kBT

φi

i

(

ln
φi

i
− 1

)]

, (1.6)

where we have introduced the standard chemical potential μ̃0
i = μ0

i / i per solute molecule in
an i-mer. The distribution φi constitutes a set of unconstrained degrees of freedom (similar to
the probabilities P(α) in the preceding sub-section). Yet, the minimization of f with respect
to the φi s must account for the additional conservation

∑N
i=1 φi = φ of the total number

of solute molecules. A minimization subject to an additional constraint is a problem that
occurs frequently in science and for which mathematics offers the method of introducing a
so-called Lagrange multiplier [37]. Let us illustrate its use. We define the auxiliary function
f̃ = f − μ

∑N
i=1 φi which introduces the Lagrange multiplier μ. Note that μ is unspeci-

fied as of now but can be determined later so that the additional constraint
∑N

i=1 φi = φ

becomes satisfied. The introduction of μ allows us to minimize f̃ with respect to all φi . From
∂ f̃ /∂φi = 0 we find the equilibrium distribution φi = i exp[−(μ̃0

i − μ)/kBT ]. The role of
the Lagrange multiplier μ becomes transparent after calculating the chemical potential
μi = ∂ F/∂(i Ni ) = ∂ f/∂φi = μ̃0

i + (kBT/ i) ln(φi/ i) of a solute molecule that resides in
an i-mer. Comparing this with the equilibrium distribution μ = μ̃0

i + (kBT/ i) ln(φi/ i),
we conclude μi = μ for all i-mers. Hence, in equilibrium all solute molecules have
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the same chemical potential, and that chemical potential is equal to the Lagrange
multiplier μ. We proceed with two more remarks. First, the relation μ1 = μi can be
expressed [17] as

(Ni/M)

(N1/M)i
= φi/ i

φi
1

= e−i(μ̃0
i −μ̃0

1)/kBT = Ki . (1.7)

This can be interpreted as the familiar mass action law for the association reaction iA
Ki� Ai ,

where i monomers form one single i-mer; Ki is the corresponding equilibrium constant,
and i(μ̃0

i − μ̃0
1) is the standard change in free energy for the association event. Note that

the association reaction does not imply that an i-mer actually forms from i monomers;
that process may take a different route such as adding a single monomer and an (i − 1)-
mer. Second, inserting the equilibrium distribution φi back into the free energy yields,
f = μφ − kBT

∑N
i=1 φi/ i . This can be interpreted as the familiar thermodynamic relation

for the Helmholtz free energy F = G − PV in terms of the Gibbs free energy G = μN and
the pressure P = (∂ F/∂V )T (where we recall V = Mν). Further analysis of the aggregation
behavior requires the specification of the function μ̃i . We consider two cases of principal
importance: linear growth and cooperative assembly.

1.3.1 Linear Growth

Here aggregates can grow along one dimension only as is the case for biological filaments or
worm-like micelles. Each monomer within the aggregate contributes the same (namely μb)
to the standard chemical potential μ0

i = iμ̃0
i per aggregate. Only the two terminal segments

each add an additional contribution δ/2; see the illustration at the top of Figure 1.5. The
model for linear growth can thus be written as μ0

i = iμb + δ. It is the excess terminal

Figure 1.5 Plot of φ(i ) according to Equation 1.8. The excess contribution to the standard
chemical potential is δ = 18kBT for all curves. The total mole fraction of the solute is φ = 10−6

(a), φ = 5 × 10−6 (b), and φ = 10−5 (c). Note that for each curve the relation
∫ ∞

0 φ(i ) di = φ

is fulfilled. The top of the diagram shows an illustration of a 10-mer, i.e., a linear aggregate
with i = 10. Here, μb is the standard chemical potential per monomer in the bulk of the
aggregate. The two terminal segments each make an additional (i.e., excess) contribution δ/2
to the standard chemical potential μ0

i = iμb + δ.



JWST230-c01 JWST230-Douroumis November 12, 2012 7:28 Printer Name: Yet to Come Trim: 244mm × 168mm

10 Drug Delivery Strategies for Poorly Water-Soluble Drugs

contribution δ that is gained when two linear aggregates combine into a single one. This
gain drives the growth into fewer and longer aggregates, despite the larger entropy that
many small aggregates would have. Note that a monomeric unit need not necessarily be
identified with a single solute molecule. For example, when modeling worm-like micelles
it is convenient to identify a single spherical micelle with a monomeric unit [36]. Upon
initiating growth these micelles dynamically combine into elongated (i.e., linearly extended)
structures.

Let us investigate the thermodynamics behind self-assembled linear structures. To sim-
plify the calculation we assume δ � kBT for which the aggregates grow very long so that we
can treat φi → φ(i) as a function of the continuous variable i and approximate the summa-
tion by an integration,

∑N
i=1 → ∫ ∞

0 di . From the normalization condition φ = ∫ ∞
0 φ(i)di

we then find the chemical potential μ = μb − kBT e−δ/(2kBT )/
√

φ. Inserting this into the
distribution φ(i) yields

φ(i) = i exp

[

− δ

kBT
− i√

φ
e− δ

2kBT

]

. (1.8)

This distribution adopts a maximum at the aggregation number i = im with im =√
φ eδ/(2kBT ). To further characterize the distribution, we define the weight-average

〈Q〉 = ∫ ∞
0 φ(i) Q(i) di/

∫ ∞
0 φ(i) di of any physical quantity Q = Q(i). The weight aver-

age of the size distribution is then 〈i〉 = 2im . Similarly, for the standard deviation of the
size distribution we obtain σ =

√
〈(i − 〈i〉)2〉 = √

2 im .
Hence, we conclude that the linear growth model leads to a broad equilibrium distribution

of aggregate lengths, where the standard deviation of the sizes σ = 〈i〉/√2 is about 70%
of the average size distribution 〈i〉. In Figure 1.5 we display φ(i) for some examples (all
with δ = 18kBT but different choices of φ). Since μ and φ(i) are known, we can explicitly
calculate the Helmholtz free energy F of the system; this leads to

F = N

[

μb − 2kBT√
φ

e− δ
2kBT

]

. (1.9)

For small T all solute molecules assemble into one single aggregate, implying F = Nμb.

1.3.2 Cooperative Assembly

The second principal scenario that we discuss is when a certain number of solute molecules
must come together to form a single aggregate. This is the case, for example, when sur-
factants start forming micelles or when peptides cooperatively form a pore in a lipid
membrane. While the number of surfactants in micelles can certainly vary, we only con-
sider the most simple scenario, where exactly n solute molecules form one single aggregate.
To exclude all other aggregation numbers, we chose μ̃0

i → ∞ (implying φi = 0) for all
i unless i = 1 or i = n. The distribution of the remaining monomers and n-mers is then
specified by φ1 = e−(μ̃0

1−μ)/kBT and φn = e−n(μ̃0
n−μ)/kBT , subject to φ1 + φn = φ. We thus

have three equations for the three unknown quantities φ1, φn , and μ. These equations can
be solved numerically. In Figure 1.6 we show φ1(φ) and φn(φ) for the two different choices
n = 10 and n → ∞, both at fixed μ̃0

1 − μ̃0
n = 5kBT . The limiting behavior for n → ∞

is given by φ1 = φ and φn = 0 for φ < φcmc, as well as φ1 = φcmc and φn = φ − φcmc

for φ > φcmc. The critical value φcmc reflects the so-called critical micelle concentration
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Figure 1.6 The mole fractions φ1 and φn as function of the total mole fraction φ for cooperative
assembly with n = 10 (curves marked by the symbol ◦) and n → ∞ (marked by the symbol
�), both calculated for μ̃0

1 − μ̃0
n = 5kBT . The corresponding two critical mole fractions φcmc

are indicated by the vertical broken lines. Note exp[−(μ̃0
1 − μ̃0

n)/kBT ] = 0.673 × 10−2; see
Equation 1.10. The dotted line marks the total solute mole fraction φ = φ1 + φn.

(CMC). A general definition (one that does not require large n) for φcmc simply identifies the
point where 50% of the newly added solute molecules are used to form aggregates (whereas
the other 50% remain as monomers) [18]. This can be expressed as (dφ1/dφ)φcmc = 1/2.
Evaluating this expression leads to

φcmc = (1 + n) n
1+n
1−n exp

[

−
(

n

n − 1

) (
μ̃0

1 − μ̃0
n

kBT

)]

≈ exp

(

− μ̃0
1 − μ̃0

n

kBT

)

, (1.10)

where the approximate expression on the right-hand side of Equation 1.10 corresponds
to the limit n → ∞. Hence, the CMC can be used to extract the standard free energy of
formation μ̃0

1 − μ̃0
n = −kBT ln φcmc. Finite values of n (see Figure 1.6 for n = 10) lead to

a smeared-out transition at somewhat smaller φcmc than for n → ∞.

1.4 Solubility and Partitioning of Drugs

1.4.1 Simple Partitioning Equilibria

The basis of designing delivery vehicles for poorly water-soluble drugs is their much higher
solubility in apolar solvents as compared to water. We can characterize the thermodynamic
partitioning of a solute between two strongly immiscible fluids most simply in the dilute
limit. Here, the solute can be treated in each phase as an ideal gas, with corresponding
free energy, F = kBT N (ln φ − 1) + Nμ0 where φ = N/M is the mole fraction of the
solute (i.e., N solute molecules are dissolved in a phase that contains M solvent molecules).
The chemical potential of the solute is μ = d F/d N = μ0 + kBT ln φ. Indexing the two
phases ‘1’ and ‘2’, and setting the chemical potentials in the two phases equal, μ1 = μ2,
leads to φ2/φ1 = exp[−(μ0

2 − μ0
1)/kBT ] = K ∗ where K ∗ is the partition coefficient. Hence,

−kBT ln(φ2/φ1) = μ0
2 − μ0

1 directly yields the difference in the standard chemical potential
of the solute in the two phases.
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As the concentrations grow, deviations from ideal behavior become important. In this
case, an activity coefficient γ = γ (φ) can be introduced into the expression for the chemical
potential through μ = μ0 + kBT ln(γφ). Hence, the partition coefficient

K = φ2

φ1
= γ1

γ2
e−(μ0

2−μ0
1)/kBT = γ1(φ)

γ2(φ)
K ∗ (1.11)

now depends on the activity coefficients and thus on the mole fractions of the solute in the
two phases. Let us discuss a very simple but illustrative example that is based on the lattice
model and corresponding mean-field free energy as introduced in Equation 1.1. Specifically,
we consider two separated phases corresponding to M1 and M2 lattice sites, filled with two
different solvents and, respectively, N1 and N2 identical solute molecules. The two phases
may be immiscible or may be separated by a semi-permeable barrier (permeable only for
the solute). For simplicity we assume M1 = M2 = M/2 so that the overall mole fraction
of the solute becomes φ = (N1 + N2)/(M1 + M2) = (φ1 + φ2)/2, where φ1 = N1/M1 and
φ2 = N2/M2 are the mole fractions of the solute in the two phases. Let phase ‘1’ be
dilute and phase ‘2’ be concentrated. The free energy f1 = kBT φ1(ln φ1 − 1) + μ0

1φ1 of
the dilute phase can be treated as that of an ideal gas. According to Equation 1.1, we
express the free energy of the concentrated phase as f2 = kBT [φ2 ln φ2 + (1 − φ2) ln(1 −
φ2)] + χφ2(1 − φ2). The partitioning coefficient is then given by Equation 1.11 with the
activity coefficients γ1 = 1 and γ2 = e−(2φ2χ/kBT )/(1 − φ2) as well as K ∗ = e−(χ−μ0

1)/kBT .
The relation φ1(φ), together with φ2(φ) = 2φ − φ1, is displayed in Figure 1.7 for K ∗ = 10
and three different choices of χ . Note that the tendency of the solute to accumulate in phase
‘2’ is implied by our choice K ∗ > 1. For small φ the behavior is ideal and from φ2/φ1 = K ∗

and φ = (φ1 + φ2)/2 we find φ1 = 2φ/(1 + K ∗) as well as φ2 = 2φK ∗/(1 + K ∗). The
ideal behavior is marked in Figure 1.7 by the two dotted lines. For larger φ there are
deviations from ideal behavior. For χ = 0 (curves b and e in Figure 1.7) the lattice gas
does not exhibit intermolecular interactions. Still, the mole fraction φ2 in the concentrated
phase (curve b) is smaller than it would be under ideal conditions. The reason is that the

Figure 1.7 The solute mole fractions φ1(φ) (curves d–f) and φ2(φ) (curves a–c) of the two
phases as function of the total mole fraction φ = (φ1 + φ2)/2, calculated for χ = −1 kBT (curves
c and d), χ = 0 (curves b and e), and χ = +1 kBT (curves a and f). Basis of the calculation
is Equation 1.11 with γ1 = 1, γ2 = e−(2φ2χ/kBT )/(1 − φ2), and K ∗ = 10. The two dotted lines
show the ideal cases, φ1 = 2φ/(1 + K ∗) and φ2 = 2φK ∗/(1 + K ∗), where the activities are
γ1 = γ2 = 1.
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non-vanishing solute size implied by the lattice model acts as a hard core repulsion and thus
tends to displace solute molecules from the concentrated to the dilute phase. This effective
repulsion between solute molecules for χ = 0 is manifested by γ2 = 1/(1 − φ2) > 1 for
φ2 > 0. For χ = −1 kBT (curves c and d) the additional repulsive interactions between the
solvent molecules further enhance the depletion of solvent molecules from the concentrated
phase (curve c). In contrast, for χ = +1 kBT (curves a and f) the solvent molecules attract
each other. The attraction overcompensates the hard core repulsion of the solute molecules
and thus enriches solute molecules in the concentrated phase (curve a) as compared to the
ideal case. Indeed, for χ = +1 kBT the activity coefficient γ2 = e−(2φ2)/(1 − φ2) of the
solute in the concentrated phase is below that of an ideal gas (γ2 = 1) as long as φ2 � 0.8.

1.4.2 Partitioning and Micellization

Consider now the case of drug partitioning into mobile carriers, where the carriers are
self-assembled structures such as micelles [38] or polymeric aggregates [37]. We have
discussed the cooperative self-assembly of solute molecules in Section 1.3.2. The present
section adds the presence of drug molecules that due to their low solubility in water exhibit
a tendency to be integrated into the self-assembled aggregates. As in Section 1.3.2, we
assume that exactly n solute molecules (we refer to them as surfactants in the following)
cooperatively associate into n-mers (i.e., micelles that consist of n surfactants). We now add
the presence of drug molecules that are poorly soluble in the solvent but can be integrated
into the micelles. There will generally be a maximal number of drug molecules that can
be incorporated into a single micelle. To keep the present model transparent, we assume
the maximal number to be one. That is, each micelle can carry either one single or no drug
molecule. A schematic illustration of the system (monomeric surfactants, monomeric drug
molecules, empty micelles, and drug-carrying micelles) is displayed in Figure 1.8. We can
express the two processes – micellization in the absence of drug and incorporation of a
drug molecule into a micelle – as a system of two chemical reactions

n A
KS� An, D + n A

K D� DAn, (1.12)

V

empty micelle surfactant monomer

drug-loaded micelle drug monomer

Figure 1.8 Schematic illustration of surfactants (represented by the symbol ◦) and drug
molecules (represented by the symbol •). The surfactants are able to self-assemble into micelles
(here displayed with aggregation number n = 6). Each micelle can carry either one or no drug
molecule.
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with corresponding equilibrium constants KS and K D . We are already familiar from Section
1.3.2 with the reaction on the left-hand side of Equation 1.12. It expresses the association
of n monomeric surfactants (each denoted by A) to an empty micelle that consists of n
surfactants (denoted by An). The reaction on the right-hand side of Equation 1.12 accounts
for the assembly of n surfactants and a single drug molecule (denoted by D), resulting in a
drug-filled micelle (denoted by D An). The mass action law that corresponds to the reaction
schemes in Equation 1.12 can be written as

φZ
S

n(φM
S )n

= e−n(μ̃Z
S −μ̃M

S )/kBT = KS,
φZ

D

(φM
D )(φM

S )n
= e−(μ̃Z

D−μ̃M
D −nμ̃M

S )/kBT = K D. (1.13)

Here, φZ
S is the mole fraction of surfactant molecules that are engaged in forming empty

micelles. (We again use a lattice description as in Section 1.3.2 where each molecule –
solvent, surfactant, and drug – occupies one single lattice site). Similarly, φM

S denotes
the mole fraction of monomeric surfactant molecules, φZ

D denotes the mole fraction of
drug molecules that are incorporated into micelles (which equals the mole fraction of the
drug-loaded micelles), and φM

D denotes the mole fraction of monomeric drug molecules.
The equilibrium constants KS and K D are related to the standard chemical potentials of a
surfactant when monomeric (μ̃M

S ) or incorporated into an empty micelle (μ̃Z
S ), as well as to

the standard chemical potentials per monomeric drug molecule (μ̃M
D ) and of a drug-filled

micelle (μ̃Z
D). More specifically, �gempty = n(μ̃Z

S − μ̃M
S ) and �gfilled = μ̃Z

D − μ̃M
D − nμ̃M

S
represent the standard Gibbs free energies of formation for an empty and drug-filled micelle,
respectively. The (experimentally fixed) overall mole fractions of surfactants and drug
molecules are

φS = φZ
S + φM

S + nφZ
D, φD = φZ

D + φM
D , (1.14)

respectively. The four relations in Equations 1.13 and 1.14 can be used to calculate the four
mole fractions φZ

S , φM
S , φZ

D , φM
D . Figure 1.9 shows an example, calculated for n = 10, KS =

9.76 × 1022, K D = 104 × KS . That implies each surfactant gains a standard Gibbs free
energy μ̃M

S − μ̃Z
S = (kBT/n) ln KS = 5.3 kBT upon incorporation into an empty micelle.

For an entire empty micelle this amounts to �gempty = −53 kBT . Formation of a drug-
loaded micelle gains a standard Gibbs free energy �gfilled = −kBT ln K D = −62 kBT .
Hence, incorporating a single drug molecule into an initially empty micelle is associated
with an energy gain of (62 − 53)kBT = 9kBT .

The left diagram of Figure 1.9 displays the mole fractions φM
S (mole fraction of

monomeric surfactants), φZ
S (mole fraction of surfactants in empty micelles), and nφZ

D (mole
fraction of surfactants in drug-loaded micelles) as function of φs for fixed φD = 0.2 × 10−3.
The inset shows the corresponding mole fractions φM

D (mole fraction of monomeric drug)
and φZ

D (mole fraction of drug in micelles). Clearly, for n = 10 there is a well-established
CMC (roughly at φS = 2 × 10−3), above which micelle formation starts. Immediately
above the CMC there is a region (roughly for 2 × 10−3 < φS < 4 × 10−3) where there are
slightly more drug-filled than empty micelles. Yet, the majority of drug molecules are still
monomeric. At φS = 4 × 10−3 (which is twice the CMC), half of the drug molecules reside
in micelles and half of the surfactants are engaged in micelle formation. Of all micelles
50% are drug-loaded. This is the optimal case. Further increasing the overall number of
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Figure 1.9 Left: Mole fraction of monomeric surfactants φM
S , mole fraction of surfactants in

empty micelles φZ
S , and mole fraction of surfactants in drug-loaded micelles nφZ

D, displayed as
function of the overall mole fraction of surfactants φS. The inset shows the corresponding mole
fraction of monomeric drug φM

D , and mole fraction of drug in micelles φZ
D. It is φD = 0.2 × 10−3

in both the main figure and inset. Right: Mole fractions φM
S , φZ

S , nφZ
D, φM

D , and φZ
D (the latter two

are displayed in the inset) as function of the overall mole fraction of drug molecules φD, derived
for fixed φS = 4 × 10−3. All calculations (in both diagrams) use n = 10, K S = 9.76 × 1022, and
K D = 104 × K S. The dotted lines refer to either φS or φD.

surfactants, φS , leads to more drug becoming incorporated into micelles but also drastically
increases the number of empty micelles.

The right diagram of Figure 1.9 (including the inset) shows the mole fractions φM
S , φZ

S ,
nφZ

D , φM
D , and φZ

D as function of φD for fixed φS = 4 × 10−3. As we have discussed above,
at φD = 0.2 × 10−3 half of all drug molecules reside in micelles, half of the surfactants
form micelles, and half of all micelles contain drug. For φD < 0.2 × 10−3 most micelles are
empty and for φD > 0.2 × 10−3 most drug molecules do not reside in micelles. Note also
that the total number of micelles is only slightly increased upon increasing φD . Still, some
initially monomeric surfactants become engaged in forming micelles when hydrophobic
drug molecules are added to the system.

1.4.3 Hydrophobicity and Ordering of Water

Water solubility is one of the key characteristics in drug design [40]. Yet, what is the physical
origin of poor water solubility? Water is a polar molecule that preferentially forms a highly
dynamic tetrahedral network of hydrogen bonds between the nonbonding, electron-rich
oxygen orbitals and the electron-deficient hydrogen atoms. Hydrogen bonding is sufficiently
strong so that in the vicinity of an apolar surface (which is not able to engage in hydrogen
bonds) water attempts to maintain or even increase the average number of hydrogen bonds,
yet at the cost of being accommodated in a more structured configuration [41, 42]. That
is, water rearranges in the vicinity of a hydrophobic solute, forming ordered solvation
shells (sometimes also referred to as ‘clathrates’ or ‘cages’) that essentially preserve their
enthalpy, yet at the cost of a reduced entropy. The interaction of hydrophobic solutes with
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their aqueous environment is thus dominated by entropy. As a rough approximation the
free energy of transfer of a hydrophobic solute from an oily phase to water (the so-called
solvation free energy is proportional to the solute’s water-accessible surface area [43]. The
corresponding order of magnitude is equal to the surface tension between water and air
(≈ 17kBT/nm2). Modeling the underlying physics of solvation has been [44] and continues
to be [45, 46] an area of active research. We point out that these first-principle models are
very different in nature (and must be distinguished) from descriptor-based models such
as ASMS (aqueous solubility based on molecular surface), ASM-SAS (aqueous solubility
model based on solvent accessible surface areas), and others, which aim to pre-select drugs
prior to high throughput screenings [47].

Can we use simple phenomenological models to describe the solvation of solute
molecules? A number of approaches are available. Among them are solvation models that
incorporate the dipolar properties of water into continuum electrostatics [48, 49]. Another,
(particularly instructive) approach, the so-called Mercedes-Benz model, has been suggested
by Dill and coworkers [50]. Yet, here we suffice to briefly mention the most basic phe-
nomenological model which goes back to Marcelja and Radic [51]. It describes water by a
vectorial order parameter P = {Px , Py, Pz} and – assuming a small perturbation – employs
a quadratic form of the free energy

F = C
∫

V

dv
[
ξ 2(∇ · P)2 + P2

]
. (1.15)

Here, C is a constant and ξ is a characteristic length for the decay of the water pertur-
bation (ξ ≈ 0.2nm [52]). Minimization of F leads to the vectorial differential equation
ξ 2∇2P = P. For example, assume a single planar surface is located at z = 0 and imposes
an order parameter P = {0, 0, P0} at the surface (z = 0). The order parameter is then P =
{0, 0, P0e−z/ξ }, and the corresponding free energy per unit area (i.e., the surface tension)
becomes C P2

0 ξ . Despite being so simple, Marcelja’s model correctly predicts the water-
mediated repulsion between two identical hydrophilic surfaces as a function of their mutual
distance (which has been measured accurately using the surface force apparatus [52]). It also
allows for the possibility of attractive water-mediated interactions for hydrophilic surfaces
that induce opposite surface orientations of the order parameter. Clearly, the model can
serve as a conceptual starting point and reference for more detailed descriptions of water.

1.5 Ways to Model Interactions in Colloidal Systems

In the previous section structural and material properties (partitioning equilibria, CMC, etc)
appeared in the form of standard chemical potentials μ0

i (see Equation 1.5) and activities γi

(see Equation 1.11). Their magnitudes result from an often complex interplay of colloidal
interactions that include – besides the hydrophobic effect as discussed above – also van
der Waals and steric interactions, as well as electrostatic and packing energies of linear
chain-like molecules [17, 18]. In the following we focus only on the latter two. That is, we
briefly discuss methods to model electrostatic interactions and chain-packing energies and
what we can learn from such approaches in terms of designing delivery vehicles for poorly
water-soluble drug molecules.
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1.5.1 Electrostatic Interactions: The Poisson–Boltzmann Model

Although poorly water-soluble drugs are typically uncharged, electrostatic interactions are
essential for the stability of drug carriers, partitioning equilibria, and release mechanisms.
According to basic electrostatics, the electric potential � = �(r) can be calculated in a
medium of uniform dielectric constant εW (with εW = 80 in water) from a given local vol-
ume charge density ρ(r) at position r = {x, y, z} using Poisson’s law ∇2� = −ρ/(εW ε0),
where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian and ε0 = 8.85 × 10−12 As/(V m)
is the permittivity of free space. It is convenient to switch from � and εW and to the
dimensionless potential � = e�/kBT and Bjerrum length lB = e2/(4πεW ε0kBT ), where e
denotes the elementary charge. The Bjerrum length is the distance at which two indi-
vidual elementary charges have an interaction energy of kBT . At room temperature
lB ≈ 0.7 nm in water and lB ≈ 56 nm in vacuum. In terms of the dimensionless poten-
tial and the Bjerrum length, Poisson’s equation reads ∇2� = −4πlBρ/e. If the potential
� is known we can calculate the energy stored in the corresponding electric field through
U = kBT

∫
dv (∇�)2/(8πlB), where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) denotes the gradient and

where the integration runs over all space.
Aqueous solutions usually contain mobile charges such as counterions or salt. Because of

their mobility, the positions of these charge carriers are not known. For example, consider
the presence of monovalent cations and anions in a large aqueous volume V , with local con-
centrations n+ = n+(r) and n− = n−(r), respectively, and bulk concentration n0 (both bulk
concentrations need to be equal to ensure electroneutrality). The local volume charge density
is then ρ = e(n+ − n−) (and ρ = 0 in the bulk). Hence, to solve Poisson’s equation for � we
first need to know n+ and n−. The mobile ions can, as a first approximation (more accurate
is the term mean-field approximation), be described as an ideal gas with corresponding
entropies S+ = −kB

∫
V dv n+[ln(n+/n0) − 1] and S− = −kB

∫
V dv n−[ln(n−/n0) − 1],

where the integrations run over the aqueous region V that is accessible to the mobile ions.
Because the entropies of an ideal gas mixture are additive, the total entropy is S = S+ + S−,
and the total thermodynamic potential of the system F = U − TS becomes

F

kBT
=

∫

V

dv

[
(∇�)2

8πlB
+ n+ ln

n+
n0

− n+ + n− ln
n−
n0

− n− + 2n0

]

. (1.16)

This expression of the free energy depends on the yet unknown concentrations n+ and n−
(also � depends on n+ and n− through Poisson’s equation). In a thermodynamic sense n+
and n− constitute two unconstrained degrees of freedom. Hence, in thermal equilibrium F
must adopt its minimum with respect to n+ and n−. One can show [53] that F becomes
minimal for the Boltzmann distributions n+ = n0e−� and n− = n0e� . Inserting these into
Poisson’s equation yields the Poisson–Boltzmann equation

l2
D∇2� = sinh �, (1.17)

where lD = (8πlBn0)−1/2 is the Debye screening length. Equation 1.17 is a partial differen-
tial equation that usually must be solved numerically within the aqueous region; analytical
solutions are available only for a few basic geometries [54]. Boundary conditions for Equa-
tion 1.17 reflect the presence of macroions in solution. Typical macroions are bodies of low
dielectric constant εL with surface charge density σ at the surface. Because of εW � εL

the boundary condition can, approximately, be written (∂�/∂n)A = −4πlBσ/e, where the
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partial derivative of � is taken at the macroion surface A along the surface normal direction,
denoted by n and pointing into the aqueous region. Once �(r) is known, the local concen-
trations n+ and n− can be calculated, and the free energy F can be computed according to
Equation 1.16. In fact, an equivalent but sometimes more convenient way to compute the
free energy is through a so-called charging process [18] F = ∫

A do
∫ σ

0 dσ̄�0(σ̄ ), where
the equilibrium potential �0 = �(x = 0) [or, equivalently, �0 = �(x = 0)] needs to be
known only at the macroion surface A as function of the surface charge density σ . Increas-
ing σ from zero to its final value and integrating the corresponding surface potential �0 over
the macroion surface A then yields the free energy F . A conceptually important limiting
case is the Debye-Hückel approximation, which assumes small potential � � 1 (corres-
ponding to � � 25 mV) and turns Equation 1.17 into the linear Debye-Hückel equation
l2

D∇2� = �. In this limit �0 ∼ σ and the charging process
∫ σ

0 dσ̄�0(σ̄ ) = σ�0(σ )/2 can
be carried out. The free energy in the Debye-Hückel limit is thus F = (1/2)

∫
A do σ�0,

where the integration extends over the macroion surface.
We illustrate the use of the Poisson–Boltzmann model for two examples. The first is

a charged lipid layer that we model as a (sufficiently large) single planar surface with
charge density σ . For anionic lipids σ < 0, and for cationic lipids σ > 0. The lipid layer
is in contact with an aqueous region that contains monovalent salt ions of bulk concen-
tration n0. The potential � = �(x) depends only on the distance x to the surface. It
fulfills the Poisson–Boltzmann equation l2

D� ′′(x) = sinh �(x) with the boundary condi-
tions �(∞) = 0 and � ′(0) = −4πlBσ/e. Here, the second derivative of � ′′(x) corresponds
to the Laplacian (∇2) in one single dimension, and � ′(0) denotes the first derivative of the
potential taken at position x = 0. A first integration of the Poisson–Boltzmann equation,
subject to �(∞) = 0, yields � ′(x) = −(2/ lD) sinh[�(x)/2]. At x = 0 this equation can
be combined with the second boundary condition, implying �(0) = 2arsinh(2πlBlDσ/e).
Yet, this exactly is the surface potential �0(σ ) = �(x = 0, σ ) as a function of the surface
charge density that allows us to compute the free energy through the charging process
F = ∫

A do
∫ σ

0 dσ̄�0(σ̄ ) = kBT A/e
∫ σ

0 dσ̄�0(σ̄ ). Denoting the total lateral area of the
lipid layer by A and using the expression of the surface potential, we obtain the free energy
per unit area

F

AkBT
= 2

e

σ∫

0

dσ̄ arsinh

(

2πlBlD
σ̄

e

)

= 1

πlBlD

[
1 −

√
1 + p2 + p arsinh(p)

]
, (1.18)

where we have defined the dimensionless quantity p = 2πlBlDσ/e. Note that positive
and negative surface charge density σ corresponds to positive and negative sign of p,
respectively. Although the derivation of F did not require calculation of the potential �(x),
we can easily do so by performing a second integration of the Poisson–Boltzmann equation,
which yields

�(x) = 2 ln

{

1 + 2

ex/ lD coth [arsinh(p)/2] − 1

}

. (1.19)

We also note the linearized Debye-Hückel results, �(x) = 2p e−x/ lD and F/(AkBT ) =
2πlBlD (σ/e)2, which follow from Equations 1.18 and 1.19 in the limit of small p. Here,
the potential decays exponentially, and we indeed identify lD as the corresponding screening
length. Note that linearization generally overestimates the magnitude of the potential �.
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Figure 1.10 The (dimensionless) potential �(x ) as function of x for σ = −0.5e/nm2 (left
diagram) and the free energy per unit area F /(AkBT ) as function of −σ/e (right diagram).
Both diagrams are calculated for lB = 0.7 nm; curves a correspond to lD = 1 nm, and curves
b correspond to lD = 10 nm. Solid and broken lines correspond to the nonlinear (Poisson–
Boltzmann) case and linearized (Debye-Hückel) approximation. (The broken line for case (b)
in the left diagram is located outside the displayed region; �(0) = −44). The inset in the left
diagram shows the surface potential �0 = �(x = 0) as function of p = 2π l BlDσ/e according
to Equation 1.19 (solid line) and in the linearized limit (dotted line) where �0 = 2p.

This can be seen in the inset of Figure 1.10 (left diagram) which shows the surface
potential �0 = �(x = 0) according to Equation 1.19 together with the linearized Debye-
Hückel result �0 = 2p. The main diagrams of Figure 1.10 display �(x) from Equation
1.19 and F from Equation 1.18 for two different choices of the Debye screening length,
lD = 1 nm and lD = 10 nm. Molarity and Debye screening length are connected through
M = (0.304 nm/ lD)2, so lD = 1 nm corresponds to physiological conditions, and lD =
10 nm to a 1 mM solution. Surface charge densities of σ � e/nm2 are typically found for
biomacroions such as DNA, lipid membranes, or proteins. Figure 1.10 indicates that the
linearized Debye-Hückel limit works reasonably well for lD = 1 nm, but even here there
are significant deviations from the prediction of the non-linear model.

Our second example addresses a specific question that is of basic relevance also for the
formation of carrier vehicles for drug molecules: What is the energetic cost of incorporating
a single charged molecule into a hydrophobic cavity that resides in the aqueous solution?
Such a cavity arises, for example, in spherical micelles due to the apolar nature of the
surfactant’s hydrocarbon chains. For simplicity we model the charged molecule as a sphere
of radius RD with z charges uniformly attached to its surface, implying a charge density
σ = ze/(4π R2

D). The charged molecule is located at the center of the hydrophobic cavity,
which we represent by a sphere of radius RC . We assume that both the charged molecule
and the cavity have the same dielectric constant εL (with εL � εW ). We ask the question
how much free energy �F it would cost to incorporate the charged molecule into the
cavity, starting from a separated state as illustrated in Figure 1.11. To make our final result
physically insightful, we shall perform the calculation of �F within the linear Debye-
Hückel approximation. We first calculate the free energy of the charged molecule when
residing within the cavity; see the right diagram of Figure 1.11. Because of the spherical
symmetry the potential depends only on the radial distance r from the center of the charged
sphere. The potential �o(r ) outside the cavity (RC < r < ∞) fulfills the Debye-Hückel
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FΔ
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Figure 1.11 Schematic illustration of a spherical cavity (of radius RC and dielectric constant
εL ) and a charged spherical particle (of radius RD, dielectric constant εL , and surface charge
density σ ). Cavity and particle are initially separated (see the left diagram). Inserting the particle
into the cavity (see the right diagram) incurs a free energy cost �F .

equation � ′′
o (r ) + (2/r )� ′

o(r ) = �o(r )/ l2
D . Similarly, the potential �i (r ) inside the cavity

(RD < r < RC ) fulfills the Laplace equation � ′′
i (r ) + (2/r )� ′

i (r ) = 0. The corresponding
boundary conditions are �i (RC ) = �o(RC ), �o(∞) = 0, εW � ′

o(RC ) − εL� ′
i (RC ) = 0, and

� ′
i (RD) = −lB zεW /(R2

DεL ). The latter two account for the change in the dielectric constant
at r = RC and for the presence of the surface charges at r = RD . The solution can be
written as

�i (r ) = zlB

RC

[
εW

εL

(
RC

r
− 1

)

+ 1

1 + RC
lD

]

, �o(r ) = z

1 + RC
lD

lB

r
e

RC −r
lD . (1.20)

As argued above, the free energy in the Debye-Hückel limit can be calculated according
to F = (1/2)

∫
A do σ�0, where the integration runs over the surface A = 4π R2

D of the
charged molecule and �0 = kBT �i (RD)/e. Hence,

F

kBT
= z

2
�i (RD) = z2lB

2

⎡

⎣εW

εL

(
1

RD
− 1

RC

)

+ 1

RC

(
1 + RC

lD

)

⎤

⎦ . (1.21)

The first contribution to the free energy in Equation 1.21 is the energy of a spherical
capacitor, the second contribution arises due to the diffuse layer of mobile anions in the
aqueous solution. In the separated state, see the left diagram of Figure 1.11, potential
and thus energy of the cavity vanish, and the energy of the charged particle (which now
is immersed in the aqueous solution) can be obtained from Equation 1.21 by replacing
RC → RD . Hence, we obtain our final result for the change in free energy

�F

kBT
= z2lB

2

⎡

⎣εW

εL

(
1

RD
− 1

RC

)

+ 1

RC

(
1 + RC

lD

) − 1

RD

(
1 + RD

lD

)

⎤

⎦ . (1.22)

Note that �F is positive because the energy penalty of the spherical capacitor (the first
term in Equation 1.22) overcompensates the energy gain in the diffuse counterion layer. In
fact, because of εW � εL the energy cost �F is not only dominated by the capacitor energy
but also becomes prohibitively large. For example, z = 5, lB = 0.7 nm, lD = RD = 1 nm,
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RC = 1.5 nm, εW = 20εL yield �F/kBT = 58 + 2 − 4 = 56, or more than 10kBT per
charge. Although this model is certainly oversimplified, it correctly captures the high energy
cost that is associated with inserting small charged molecules from the aqueous environment
intro hydrophobic cavities. Similar arguments also rationalize the permeability barrier that
prevents the crossing of lipid bilayers by charged molecules [55].

1.5.2 Chain Packing Model

Carriers for poorly water-soluble drug molecules are often composed of chain-like
molecules such as surfactants or polymers. This is the case for micelles, liposomes, and
polymeric aggregates. Inserting a drug molecule into such an aggregate perturbs the pack-
ing properties of the chains. We briefly discuss the corresponding energy penalty that arises
from this perturbation. To this end, we focus on a mean-field model for chain packing
in amphiphilic aggregates [56]. The model ignores chain-chain correlations and assumes
a uniform density of chain segments everywhere in the aggregate. Both are reasonable
assumptions well above the main transition temperature [57]. The starting point of the
model is an aggregate of given geometry that is composed of a fixed number N of surfac-
tants with their chains residing in the fluid state. Thus, the hydrocarbon chains are flexible
and able to adopt a large number of different conformations. In addition, although the chains
are anchored to the aggregate’s interface A, the local surface density of surfactant head-
groups is able to adjust. Yet, because N is given, the average headgroup density σ̄ = N/A
on the interface A is must be fixed. The most relevant case with regard to modeling a
delivery vehicle for drug molecules is the additional presence of rigid bodies (i.e., drug
molecules) in the hydrophobic core. The left diagram of Figure 1.12 illustrates such a case,
where a long cylinder-like inclusion (of radius R) is immersed into the hydrocarbon core
of a lipid bilayer with a certain penetration depth p. What is the perturbation energy of the
chain packing when inserting the cylinder-like inclusion into the membrane, and how does
that energy depend on the penetration depth?

The central quantity of the mean-field chain packing model is the probability P(r, α)
of a given hydrocarbon chain being anchored at position r on the polar-apolar inter-
face A and residing in a conformation α. We normalize this probability according to∫

A d2r
∑

α P(r, α) = A where the integration
∫

A d2r extends over the polar-apolar interface
of the aggregate (which is represented by an infinitely thin sheet of surface area A) and the
summation runs over all possible chain conformations α. For known P(r, α) we can calcu-
late the local area density of amphiphiles on the surface according to σ (r) = σ̄

∑
α P(r, α),

and the total number of amphiphiles in the aggregate is then N = ∫
A d2rσ (r) = σ̄ A. The

conformational free energy of the N chains can be expressed as the sum of the internal
chain energy and an entropic contribution

F = U − T S = N

A

∫

A

d2r
∑

α

P(r, α) [ε(α) + kBT ln P(r, α)] . (1.23)

Here, ε(α) denotes the trans-gauge isomerization energy of a chain in conformation α.
In thermal equilibrium, F adopts a minimum with respect to the probability distribution
P(r, α). Yet, before the minimization can be carried out, we must account for the additional
constraint of constant chain segment density everywhere in the hydrocarbon core (thereby
excluding the inserted inclusion). If we denote by φ(α, r′, r) the number of chain segments
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Figure 1.12 Left: Schematic illustration of a surfactant bilayer with an inserted drug molecule.
Shown is a unit cell with N surfactant molecules per drug molecule. The drug molecule is
modeled as a long cylinder-like rigid inclusion (shown is the cross-section of the cylinder).
The cylinder radius is R, and the hydrocarbon core of the bilayer has thickness h. The pen-
etration depth of the inclusion is p, defined so that for p = (h/2) + R the inclusion resides
right in the center of the bilayer. Note that the hydrocarbon chains can adopt many different
conformations, subject to being packed uniformly on average and remaining within the hydro-
carbon core, excluding the rigid cylinder. Right: Change in chain conformational free energy
�F /(NkBT ) induced by inserting the cylinder-like inclusion into the bilayer, calculated for a
system of N = 80 surfactant chains [of structure −(CH2)13 − CH3] per inclusion and plotted as
function of the inclusion’s penetration depth p. The different curves correspond to h = 22 Å
(∗), h = 24 Å (∗), h = 26 Å (�), h = 28 Å (�), and h = 30 Å (◦). Reproduced with permission
from [58].

at point r′ within the hydrocarbon core contributed from a surfactant that is located at point
r on the interface A and resides in conformation α, we can compute the average segment
density at point r′ through

φ̄(r′) =
∫

A

d2r
∑

α

P(r, α)φ(α, r′, r). (1.24)

The constraint of constant segment density can then be expressed simply as φ̄(r′) = φ̄ =
const (namely, independent of r′) everywhere in the hydrocarbon chain region, excluding
the inserted inclusion. Minimization of F with respect to P(r, α) and subject to Equation
1.24 yields

P(r, α) = e
− 1

kBT

[

ε(α)+∫

V
d3rλ(r)φ(α,r′,r)

]

1
A

∫

A
d2r

∑

α

e
− 1

kBT

[

ε(α)+∫

V
d3rλ(r)φ(α,r′,r)

] , (1.25)

where the function λ(r) is a Lagrangian multiplier that ensures the constraint in Equation
1.24 to be fulfilled. In fact, one finds λ(r) by inserting P(r, α) into Equation 1.24 and
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solving the resulting self-consistency relation numerically. This requires the generation of
a representative set of chain conformations at various positions along the interface A, based
on a molecular model such as Flory’s isomeric state model [28]. Once λ(r) is known, the
probabilities P(r, α) can be used to compute the free energy according to Equation 1.23.
This can be carried out for different choices of the penetration depth (F(p)) or in absence
of the cylinder (Fref ); the difference �F(p) = F(p) − Fref is then the change in chain
conformational free energy induced by inserting the cylinder-like inclusion into the bilayer,
at given penetration depth p.

The right diagram of Figure 1.12 displays computational results for the change in chain
conformational free energy �F of a planar surfactant bilayer as function of the inclusion’s
penetration depth p. The conformational free energy profile for translation of the inclu-
sion through the bilayer (i.e., changing the penetration depth p) strongly depends on the
thickness of the surfactant layer. For a thick layer (see the upper curve in the right dia-
gram of Figure 1.12) the hydrocarbon chains are significantly stretched. The corresponding
large entropic penalty can be relieved by placing the inclusion right in the center of the
bilayer. Away from that position the free energy exhibits a large barrier. Hence, in bilay-
ers where strong headgroup attractions lead to small cross-sectional area per surfactant,
hydrophobic inclusions tend to be located in the center of the bilayer. In contrast, in thin
bilayers (see the lower curve in the right diagram of Figure 1.12) the chains from one
monolayer dynamically interdigitate into the apposed monolayer. Here, the center exhibits
an energy barrier and is thus an unfavorable location. We emphasize that the right diagram
of Figure 1.12 displays the energy per surfactant chain. Because the calculation is based
on N = 80 chains per inclusion, an energy change of, say, 0.2 kBT would translate into
40 kBT per inclusion. Hence, the conformational properties of the chains are expected
to provide a significant contribution to defining the position of a hydrophobic inclusion
within a surfactant aggregate. These considerations apply to liposomes and similarly to
micellar aggregates.

1.6 Kinetics of Drug Transfer from Mobile Nanocarriers

The theoretical concepts we have discussed so far refer exclusively to thermodynamic
equilibrium. Yet, the delivery of drugs inevitably involves dynamic properties as well.
Dynamic properties determine the kinetics, i.e., the retention properties of the delivery
vehicle and the amount of drug molecules transferred from the delivery vehicle to a target
system as function of time [59]. Modeling the corresponding transfer properties is often
accomplished using methods based on chemical reaction kinetics [60].

In the following we consider a simple and instructive scenario, mobile delivery vehicles
and mobile targets that are enclosed in a fixed volume V . We will refer to the delivery
vehicles as donors and to the target system as acceptors. We assume that the numbers
of both donors (ND) and acceptors (NA) remain unchanged. Hence ND + NA = N is
a fixed constant. Initially, the donors contain a certain number of drug molecules M
(or, equivalently, ND/M drug molecules per delivery vehicle on average), whereas the
acceptors are empty. Over time, some of the drug molecules will migrate from the donors
to the acceptors. We can describe the corresponding time dependence by the numbers
MD = MD(t) and MA = MA(t) of drug molecules residing in the donors and acceptors,
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acceptordonor

V V

initial state final state

drug molecule

Figure 1.13 Schematic illustration of drug transfer from Nd donors (dark shaded) to Na

acceptors (light shaded). Drug molecules can reside in either donors or acceptors; they are
represented by the dark bullets. Initially (left diagram), all M drug molecules are located inside
the donors. The kinetics of drug transfer can be described by the numbers Md(t) and Ma (t), of
drug molecules in donors and acceptors, respectively. After thermal equilibrium is established
(right diagram), the drug molecules are distributed between donors and acceptors with an
equilibrium distribution Md(t → ∞) = Meq

d and Ma (t → ∞) = Meq
a . The displayed example

corresponds to Nd = Na = 6 and M = Meq
d + Meq

a = 6 + 18 = 24.

respectively. For poorly water-soluble drugs MD(t) + MA(t) = M is a constant, implying
that very little drug is dissolved in the aqueous phase. In addition, if the transfer of
drug molecules is slow compared to typical diffusion times of donors and acceptors, we
may ignore spatial variations of donor and acceptor concentrations. Figure 1.13 shows an
illustration of the system. Note that we make a number of significant assumptions (including
the fixed volume, the presence of only one type of mobile target system, the slow transfer
dynamics of the drugs between donors and acceptors, and the fixed numbers of donors
and acceptors). Yet, our system still provides a convenient starting point as it is a generic
model for various types of mobile drug delivery vehicles such as liposomes, micelles, and
polymeric aggregates.

It is generally useful to distinguish between the dynamics of drug transport within a single
delivery vehicle (such as the flip-flop of drug molecules between the two leaflets of a liposo-
mal membrane) and the dynamics of transport from the delivery vehicle to a target site. The
latter involves two principal mechanism, namely transfer through collisions and transfer
through diffusion [61]. Both are illustrated in Figure 1.14. Note that the collision mech-
anism requires temporary physical contact between a donor and acceptor (or, similarly,

collision mechanism:

diffusion mechanism:

Figure 1.14 Schematic illustration of the collision and diffusion mechanisms for the transfer
of drugs from donor (dark shaded) to acceptor (light shaded). Drug molecules are represented
by filled bullets. The collision mechanism involves direct drug transfer upon the collision of
donor and acceptor. For the diffusion mechanism, drug molecules are first released into the
aqueous phase. In a second step they are taken up by the acceptor.
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donor-donor or acceptor-acceptor), whereas the diffusion mechanism involves drug
molecules transferring via the intermediate step of diffusing through the aqueous envi-
ronment. Both mechanisms have been invoked to explain the transport of lipids and choles-
terol [62] between membranes. Let us discuss a model for the kinetics of the collision and
diffusion mechanisms.

1.6.1 Collision Mechanism

Because of the need for individual collision between pairs of donor-donor, donor-acceptor
or acceptor-acceptor, the kinetics of the collision mechanism is based on a second-order
process. Specifically, if only di donors that each contain i drug molecules and a j acceptors
that each contain j drug molecules are present, the collision rate between donors and
acceptors is proportional to the product di a j . If donors and acceptors of given distributions
di and a j are present, then all possible combinations of i and j will contribute to the collision
rate. Any modeling effort requires knowledge of how the proportionality factor depends
on i and j . Typically, it simply reflects the concentration difference. This ignores any non-
ideal behavior (such as aggregation of the drug molecules in the donors or acceptors), but it
allows us to express the resulting kinetic equations only in terms of Md (t) and Ma(t). The
result [63]

d Md

dt
= Kcoll

V
(Ma Nd − Md Na + k Na Nd ),

d Ma

dt
= Kcoll

V
(Md Na − Ma Nd − k Na Nd ),

(1.26)

contains two constants: a unit transfer rate Kcoll and the difference k of drug molecules
carried on average by each donor and acceptor in thermal equilibrium (i.e., k = 2 in the
schematic representation of Figure 1.13). The solution of Equations 1.26

Ma(t) = M − Md (t) =
(

1 − e− N
V Kcoll t

) Na

N
(M − k Nd ). (1.27)

corresponds to simple exponential behavior. The equilibrium distributions Meq
d = Md (t →

∞) and Meq
a = Ma(t → ∞) indeed fulfill the relation (Meq

d /Nd ) − (Meq
a /Na) = k, thus

verifying our interpretation of k above. We point out that the rate constant K = Kcoll N/V
of the transfer through collisions depends on the total concentration N/V = (Nd + Na)/V
of donors and acceptors. Hence, larger concentrations N/V increase the transfer speed as
collisions become more likely.

Equations 1.26 represent a first-order process. The reason for the microscopic second-
order collision mechanism to translate into a first-order process for the overall kinetic
behavior is the conservation of the numbers ND and NA. That is, collisions do not affect
the numbers of ‘reactants’, namely the donors and acceptors. We can describe the transfer
of drug molecules from donors (D) to acceptors (A) by the chemical reaction scheme

D
K1�
K2

A (1.28)

with rate constants K1 = (1 − k Nd/M) K Na/N and K2 = (1 + k Na/M) K Nd/N . The
corresponding equilibrium constant Keq = K1/K2 = (M − k Nd )/(M + k Na) allows us to
calculate the standard Gibbs free energy �g0 = kBT ln[(M/Nd + k)/(M/Na − k)]. Specif-
ically, if donors and acceptors are chemically similar, k = 0 and �g0 = kBT ln(Nd/Na)
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contains only an entropic component. For Nd > Na we have �g0 > 0. More drugs will
reside in the donors simply because more donors are available. An enthalpic component
may arise in �g0 through the temperature dependence of k.

1.6.2 Diffusion Mechanism

For the diffusion mechanism the drug molecules pass through the aqueous phase as illus-
trated in Figure 1.14. If the rates of drug release/uptake of each individual donor and
acceptor are strictly proportional to the number of occupied/free binding sites, then the
kinetics of the diffusion mechanism can be described according to the chemical reaction
scheme

D
K rel

d�
K upt

d

W
K upt

a�
K rel

a

A (1.29)

where the additional water-dissolved state of the drug molecules is denoted by W. Because
the drug molecules are poorly water-soluble, it is appropriate to introduce a steady-state
approximation d Mw/dt = 0, where Mw(t) � M ≈ Ma(t) + Md (t) is the number of drug
molecules in the aqueous phase. If we also assume equal uptake rates K upt

d = K upt
a of

donors and acceptors, we can express the kinetic equations for the diffusion mechanism as

d Md

dt
= Kdiff (Ma Nd − Md Na + k Na Nd ),

d Ma

dt
= Kdiff (Md Na − Ma Nd − k Na Nd ),

(1.30)

where we have defined K rel
d = Kdiff (1 − k Nd/M) and K rel

a = Kdiff (1 + k Na/M). Compar-
ison with Equations 1.26 reveals that the diffusion mechanism follows the same first-order
kinetics as the collision mechanism, yet with a different rate constant Kdiff . The total rate
constant of the combined collision and diffusion process is thus K = Kcoll (N/V ) + Kdiff .
The total rate constant K is a measurable quantity; its dependence on the total concen-
tration of donors and acceptors gives insights into the mechanism of drug transfer. A
specific example is the transfer of the drug molecule temoporfin (a second generation
photosensitizer) from donor liposomes to acceptor liposomes. Transfer experiment have
been conducted [64] using radioactive-labeled temoporfin residing initially in donor lipo-
somes. Addition of acceptor liposomes initiates a transfer process that can be measured as
a function of time. To this end, donor and acceptor liposomes carry different amounts of
charged lipids and can thus be separated from each other using an ion exchange column.
The experimental results for Ma(t) can indeed typically be described by a simple expo-
nential function with inverse rate constants K −1 on the order of several hours. Analysis
of the concentration dependence K = K (N/V ) of the rate constant suggested for unil-
amellar liposomes (consisting mostly of phospholipids and having a diameter of about
100 nm) that for concentrations of N/V < 200/μm3 the transfer was dominated by the
diffusion mechanism whereas for N/V > 200/μm3 the collision mechanism was more
prevalent [64].

1.6.3 Internal Kinetics

So far, we have assumed that drug molecules in donors and acceptors can reside in only
one single state. This may be appropriate for some cases such as lipid bilayers with all
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drug molecules buried within the hydrocarbon core; see the upper curve in Figure 1.12.
In general, however, there will be a set of either discrete or continuously distributed states
in which the drug molecules can reside. The most simple example is a two-state system.
Consider, for example, drug molecules that preferentially interact with either the inner
or outer leaflet of a liposome; see the lower curve in Figure 1.12. Here, drug molecules
initially associated with the inner monolayer need to first flip to the outer monolayer before
they can transfer to the target site. Hence a characteristic flip-flop time will enter into the
description of the kinetic behavior. A more complex example for the internal dynamics are
reservoir systems such as polymeric aggregates [65], hydrogels [66], or microemulsions
[67]. Here, the set of accessible states is continuous, and solutions of the diffusion equation
determine the availability of the drug molecules at the interface of the carrier with the
ambient environment. Different relevant scenarios and theoretical models for these cases
have been reviewed recently [23].

Let is briefly discuss the extension of our one-state model for the collision and diffusion
kinetics to a two-state model. To make our analysis most instructive, we assume that donors
and acceptors are sufficiently large (so that curvature effects can be ignored) and chemically
identical liposomes that can host drug molecules in either the inner or outer monolayer;
see the illustration on the left-hand side of Figure 1.15. The chemical rection scheme for
the transfer of drug molecules from the inner (DI ) to first the outer (DO ) leaflet of the
donor liposomes, next to the outer (AO ) to finally to the inner (AO ) leaflets of the acceptor
liposomes, can be written as

DI G
�
G

DO K1�
K2

AO G
�
G

AI. (1.31)

Figure 1.15 Left: Mixture of Nd donor and Na acceptor liposomes where the M drug
molecules are incorporated either in the inner or outer monolayer. The instantaneous numbers
of drug molecules in the inner and outer leaflets of the donor liposomes is denoted by MI

d (t)
and MO

d (t), respectively. For the acceptor liposomes the corresponding notation is MI
a (t) and

MO
a (t). Right: Plots of MO

d (t), MI
d (t), MO

a (t), and MI
a (t) according to Eqs. 1.33 for G/K = 1/10

and Na/N = Nd/N = 0.5. The broken lines show the biexponential behaviors of the sums
Md = MO

d + MI
d and Ma = MO

a + MI
a . The time is plotted in units of the inverse rate constant

K . Note also ω1 = 1.11K and ω2 = 0.09K are the effective rate constants for the decay. The
right diagram is reproduced from [63].
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Here, due to the symmetry of liposomes with regard to the inner and outer leaflet, a single
rate constant G fully describes the internal kinetics of the donor and acceptor liposomes. The
rate constants for the inter-liposomal transfer are given, as in Equation 1.28 but with k = 0
and K = Kcoll (N/V ) + Kdiff , by K1 = K Na/N and K2 = K Nd/N . Denote the numbers
of drug molecules residing in the inner and outer monolayers of the donor liposomes by
M I

d (t) and M O
d (t), respectively. For the acceptor liposomes, the corresponding quantities

are M I
a (t) and M O

a (t). They fulfill the equations

d M O
d

dt
= K

N
(M O

a Nd − M O
d Na) − G(M O

d − M I
d ),

d M I
d

dt
= G(M O

d − M I
d ),

d M O
a

dt
= K

N
(M O

d Na − M O
a Nd ) − G(M O

a − M I
a ),

d M I
a

dt
= G(M O

a − M I
a ), (1.32)

which depend only on the two rate constants K and G. Initially, all drug molecules are
distributed in the donor liposomes, with 50% in each monolayer. The solution of Equations
1.32 is then

M I
d (t) = M

2

[
Nd

N
+ Na

N

ω2e−ω1t − ω1e−ω2t

ω2 − ω1

]

,

M O
d (t) − M I

d (t) = M

2
K

Na

N

e−ω2t − e−ω1t

ω2 − ω1
,

M I
a (t) = M Na

2N

[

1 − ω2e−ω1t − ω1e−ω2t

ω2 − ω1

]

,

M O
a (t) − M I

a (t) = M

2
K

Na

N

e−ω1t − e−ω2t

ω2 − ω1
, (1.33)

which describes a biexponential decay with the two effective rate constants ω1 and ω2. They
follow from G and K through 2G + K = ω1 + ω2 and 4G2 + K 2 = (ω2 − ω1)2. A plot
of M O

d (t), M I
d (t), M O

a (t), and M I
a (t), derived for G/K = 1/10 and Na/N = Nd/N = 0.5,

is shown in the right diagram of Figure 1.15. In this example, the flip-flop of drug
molecules between the liposome leaflets is the rate-limiting step. Hence, the drug molecules
in the outer monolayers of donor and acceptor liposomes are quickly exchanged, but
it takes much longer to also transfer the drug molecules that initially resided in the
inner monolayers of the donor liposomes. It is also interesting to mention two limiting
cases. First, for G = 0 the drug molecules in the inner leaf do not participate in the
transfer, and Equation 1.33 yield M I

d (t) = M/2, M I
a (t) = 0, M O

a (t) = M/2 − M O
d (t) =

(1 − e−K t ) (M Na)/(2N ), which corresponds to simple exponential decay for M/2 drug
molecules. Second, for G → ∞ the drug molecules exchange (i.e., flip-flop) fast between
the liposome leaflets. Equations 1.33 then read M I

a (t) = M O
a (t) = M/2 − M I

d (t) = M/2 −
M O

d (t) = (1 − e−K t/2) (M Na)/(2N ). Here again, we find simple exponential behavior, yet
with an apparent rate constant K/2 because only the drug molecules in the outer leaflets
contribute to the concentration gradients that drive the transport.

We point out that the present two-state model with the identical donor and acceptor
liposomes is perhaps the simplest case that leads to biexponential behavior. Different rate
constants Gdonor and Gacceptor or the presence of more internal states can be included in a
straightforward matter. Also, the two states introduced in our model may not necessarily
correspond to the two leaflets of a lipid membrane. They can refer to any states in which
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the drug is able to reside. For example, for temoporfin in PEGylated liposomes Reshetov
et al. [68] have suggested that only a fraction of the drug molecules reside inside the lipid
bilayer whereas the remaining fraction partitions into the PEG shell. This then leads to a
fast and slow component in the transfer process. More generally, biexponential behavior is
often observed for the release of drug molecules from nanocarriers; for an account of some
experimental systems, see Zeng et al. [69].

1.7 Conclusion

We reiterate the scope of our present modeling approach: elucidating basic physical princi-
ples that are important for the design of drug delivery vehicles. What contribution can this
have to the actual design of specific delivery systems, say, the retention of temoporfin in
lipid vesicles?

We first point out that the comprehensive modeling of drug delivery (including that
of temoporfin) from basic physical principles is currently an illusion. However, there
is an ever increasing body of experimental data that calls for understanding and inter-
pretation rather than mere accumulation and classification. The quest for understanding
suggests ultimately envisioning a complete physico-chemical modeling framework of self-
associating drug carrier systems, including their interactions with the target system. What
would need to be included in this model is the specificity of each drug and drug car-
rier system, including a molecular-level description of the drug’s state inside the carrier
and the abundance of potential drug acceptor systems, i.e., in the blood after injecting
the carrier. This kind of quantitative modeling would inevitably require large-scale com-
puter simulations, where the complex interactions between carriers, carrier formation, drug
encapsulation, and interactions with the target system emerge ‘naturally’ (i.e., as a result
of the simulation). Yet even if an incredibly fast computer were, in principle, able to
carry out atomistic simulations of an entire organism, the understanding of the underlying
principles will still benefit from the simple kind of models that we have discussed in the
present chapter.

Second, some of the models described in the present chapter actually can be applied to
specific systems, given that experimental data are present to an extent that allows validation
of the model approach. Optimally, modeling and experimental verification proceed in par-
allel, not independently from each other. For example, the identification of the diffusion and
collision mechanism for the transfer of temoporfin from donor to acceptor liposomes (see
Section 1.6) requires the measurement of rate constants as a function of the total concen-
tration of acceptors and donors (instead of only the concentration of acceptor liposomes).
Someone who is testing this theory needs to have this information prior to carrying out the
kinetic transfer experiments. Conversely, modeling of the transfer process is futile unless
guided by a set of well-defined experimental conditions (such as the information that lipo-
some fusion normally can be ignored during a kinetic transfer experiment, that the transfer
is typically a first-order process, etc.). In addition, the transfer of measurements have to
be done in a system undisturbed by the measurement method. Methods which have been
described to investigate the in vitro drug release of colloidal drug delivery systems, includ-
ing sample-and-separate methods, membrane-barrier methods, continuous-flow methods
and in situ methods [70], are for the majority of the methods not adequate as filtration steps
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Surfactant
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Figure 1.16 Upper part: Illustration of the in vitro formation of a carrier system from surfactants
and drug molecules. The drug molecules partition into the micelles or, alternatively, form an
aggregate on their own. Different rate constants k1, k2 and k3 are involved in the kinetics of this
process. Lower part: Illustration of the in vivo transfer of drug molecules from a drug-loaded
carrier to a biomembrane target. Again, different rate constants k4, k5 and k6 are involved in
the kinetics of this process. (See colour plate section.)

or dialysis membrane barriers introduce a distortion of the real parameters necessary for
the modeling process (the described methods are of course usable when comparing and
ranking carrier systems). In this respect, fluorescence-based methods (i.e., employing the
intrinsic fluorescence of a drug or of the carrier system) offer valuable advantages over
invasive methods [19].

The models presented in this chapter may be extended. Recall, for example, the addition
of the internal kinetics to the overall transfer kinetics of drugs between mobile nanocarriers
(in Section 1.6.3). The final result, see Equations 1.33, depends on the two intrinsic rate
constants K and G, corresponding to the transfer between carriers and within each carrier.
Already here the final result is of considerable complexity. Yet, many interesting phenomena
involve more than two rate constants (and thus even more complexity than Equations 1.33).
Figure 1.16 shows two examples, one in vitro and one in vivo. The first example illustrates
the kinetics of forming a carrier system, where surfactants form a micelle and the drug
molecules may partition into that micelle or stay in the aqueous phase as monomers or as
an aggregate. In contrast to Section 1.4.2, the drug can either partition into the micelle or
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form an aggregate on its own. Hence, there is a competition to see which one to include
in a theoretical model is more relevant and more interesting than our treatment in Section
1.4.2. It is also more complex, but the present chapter has discussed all the tools needed
to write down and analyze the kinetic equations. Similarly for the second example, the
interaction of a drug-loaded carrier with a biomembrane target, the kinetic equations do not
only involve more than two rate constants, but they also require an understanding of the
driving forces of the drug molecules to partition between the carrier and the biomembrane.
Again, in the present chapter we have introduced some of the basic concepts that contribute
to the modeling of these complex systems.
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