CHAPTER ONE

Introduction

Fare buon vino e semplice ma non facile.
(Making good wine is simple but not easy.)
Italian farmer

Requirement| ¢ | € | & | 2| 2|2 | § | § | 3
= = [
Elements| s | o | g | 3| =S |2 |2 |2
5 =l | 8|25 |3 |8
a =) o a 3
@ = S) @ 2
7 @ 2 3 =]
= Q =
© (@] > g
@ Sl g
© 2 | 2
.] g | 3
Discovery 3 2 =
el
Contexts ®]

From Individuals

From Groups

From Things
Trade-Offs
Putting it all Together

Chapter 1

1.1 Summary

Requirements work is simple but not easy: it is a craft, which requires skill.
Fortunately, that can be learned.

Requirements are discovered by the use of appropriate inquiry techniques.
They are not sitting about, waiting to be ‘captured’. Each of the many different
situations demands a varied set of techniques.

When requirements are undefined, a project knows neither what it needs to
do nor how big a problem it faces. A “soft systems” process that can handle
undefined problems is required, at least at first.

Requirements are more than a list of statements of what a system must do.
A better approach is to define a network of related elements, including such
things as definitions, goals, rationale and measurements.

This book is organised into two parts:

e Part I, Discovering Requirement Elements;

e Part II, Discovery Contexts.

The book’s chapters form the columns (Part I) and rows (Part II) of a matrix
that appears at the beginning of each chapter. Any given discovery activity
will involve an element from Part I being discovered in a context from Part
II. Each chapter in Part I, therefore, cuts across the contexts; each chapter in
Part II cuts across the elements.

Requirements work involves a discovery cycle that entails: discovering
with stakeholders; documenting; validating with stakeholders. Each chapter
in Part 1, Discovering Requirement Elements, is structured according to the
discovery cycle.

This book is designed to be entirely practical but, for success, you need to
read and reflect as well as work. Books for further reading are suggested.

1.2 Why You Should Read This Book

This book is about what you have to do to discover requirements, what-
ever kind of business you are in. There are plenty of books and tools
designed to help you organise and manage your requirements once you
have them, but actual coverage of the critical early stages—of discovery—is far
patchier.

The book looks in turn at all the basic elements of requirements, and then
at how to discover them. Strangely enough, it seems to be the first book to
do this systematically; few popular texts say much about basic requirement

Introduction

elements like goals, qualities, constraints and rationale and, while there’s
plentiful coverage on use cases, practical advice on stakeholder analysis and
trade-offs is sparse.

Requirements communicate needs from stakeholders to developers on a
development project. A development project is a time-limited undertaking
with a single purpose: to create the new thing—the product or service—that is
named in its mission.

So, if you are involved in a development project, whether as engineer
or developer, product manager or business analyst, team leader or project
manager, and you need to find out what your project should be doing, this
book is for you. We hope the book will be helpful to marketing people, too;
after all, marketing discovers requirements, even if it isn’t usually expressed
in those words.

Words like ‘requirement’ slip into and out of fashion. Terms like ‘systems
analyst” have fallen into disuse; new ones like ‘business analyst’ are becoming
popular. In this book, we have tried to focus on the essence of each activity. For
instance, we consider different ways to tell the story of what a product should
do, including user stories, operational scenarios and use cases. All have their
merits but the basic element is the human one of storytelling. We have tried
to make this book describe the unchanging core of the work of discovering
business needs, so we hope you will find it helpful whatever methodology
(and terminology) you prefer.

Because this book’s focus is purely practical, we also hope it will be useful
to students and lecturers who want to learn about requirements work in
industry. The book is arranged in chapters that we have tested as course
materials for undergraduate software engineering students. We have included
short exercises that could form the basis of tutorial or project work.

Every chapter describes how to apply its techniques to project situations,
with practical tips and examples. We have tried hard not to assume prior
knowledge on your part, though you will certainly get more from the book if
you have project experience. If you are still a student, you will probably find
some of the topics obscure until you start trying to discover requirements for
yourself. We hope, however, that the examples and illustrations from our own
experience will give you an idea of why each technique is useful in industry.

We are aware that busy practitioners have many demands on their time. We
have carefully organised this book to make it quick to use.

We believe that for any task, whether you are learning from a book or doing
practical work on a project, you need to balance periods of action with periods
of reflection. The chapters therefore contain ‘grey boxes’ that encourage you
to reflect on the main text: to read further; to understand the background of
an idea or technique; and to improve your own practice.

Chapter 1

1.3 Simple but Not Easy

Perhaps your first thought about requirements work is that it is simple, and
that you just write down what you need.

Perhaps your experience of trying to write down what you need is that it is
not easy, and that you did not get what you wanted.

‘Simple but not easy’. Why is that? Things that look simple but are not easy
include many traditional skills and crafts.

On a trip to Indonesia some years ago, Ian was lucky enough to be able to
watch some traditional boatbuilders at work. They had no workshop other
than the beach, and no tools other than hand-adzes, hand-drills and wooden
mallets. They used nothing except wood, with moss to fill in the gaps between
planks. How did they make the planks fit? How did they know what shape to
make each plank? How did they select the wood? They tapped and scraped,
a little at a time. They put wooden dowel pegs in the holes in the plank they
had just fitted. Then they carefully lined up the holes in the newly shaped
plank over the dowels, and gently tapped the plank into place until it was
snug and watertight. Each operation was beautifully simple. The final result
was a strong, seaworthy boat, like the one illustrated below.

A hand-built outrigger boat, Flores, Indonesia

What are the steps involved in making a set of requirements watertight? How
do the parts fit together? How do you create and check each part? What skills
do you need for each part? These are the questions this book tries to answer.

Introduction

7

1.4 Discovered, Not Found

Requirements cannot be observed or asked for from the users,
but have to be created together with all the stakeholders.
Vesa Torvinen

People have talked for years about requirements capture, gathering, trawling,
or elicitation. The words paint attractive pictures of requirements as things
you could imprison in a net like fishes or butterflies, harvest like berries, or
coax from taciturn experts (Figure 1.1).

But requirements are discovered in a wide range of ways. They are more
often created by collaborative work than casually found. As Hugh Beyer and
Karen Holtzblatt (1998) write in their book Contextual Design [1]: ‘Requirements
and features don't litter the landscape out at the customer site.”

Often, people do not know what they want either, so it isn’t enough just
to ask them. You might have to show them prototypes (Chapter 13), devise
tests, or work steadily with people towards defining what they want, using
the techniques described in Part 1 such as goal and context modelling.

Discovery may also sound somewhat too easy. Like most words, it has
different meanings. By discovery, we do not mean stumbling onto things by
chance. When teams of scientists discover the quark or the double helix or giant
magnetoresistivity or the golden-mantled tree-kangaroo, it is generally not by
accident. Discovery, however surprising and delightful the actual moment of
realisation, comes as the result of a deliberate search. That search is guided by
theory, which itself grows and adapts to whatever is discovered, and is built
on evidence.

7
7

)
:{é&\\
KON

N

2

%
&K

N
N
i
o

00, i

U

it
Ty
L

ay,
/","‘\'
,"'llll I
i
W/

Do requirements
exist before you go
out to capture them?

Figure 1.1: Capturing requirements.

Chapter 1

A Moment of Discovery

A development project is not a controlled scientific experiment. It is very
difficult to prove—and rare even to become aware of-what a project
would have been like had requirements not been discovered by the
normal systematic use of techniques like those described in this book.

One such moment of conscious discovery came while I was working on
a railway project. I was in a workshop, walking through the ‘big picture’
scenario of how a new train control box was to be brought into service. A
conversation ensued, which went something like this:

Me: ‘And then you'll be testing the box on the train during a quiet time
of day, in between in-service trains?’

Client: ‘Um, well, no, we can’t run it on the track while other trains are
in service in case it fails and causes delays . .. it’s against the regulations
until it has its safety certificate.”

Me: ‘Ah, I see. So you'll be running tests during the night, then, in
engineering hours?’

Client: ‘Ohno, we won’tbe able to get enough hours for that. Engineering
hours are in demand for all sorts of other purposes. Anyway, most nights
the power is turned off to enable the line to be cleaned and the track to
be maintained.’

Me: ‘Could you maybe just run it around the depot, then?’

Client: “We could ... but there are no signals there, so we can’t test most
of the functions of the box ... in any case, we're only allowed to run
trains in slow manual (5 mph) in the depot.”

Me: ‘Well, presumably you have a nice loop of test track with a couple
of signals on it so you can try things out properly?’

(Here the workshop participants shifted uncomfortably in their seats and
looked at each other nervously.)

Client: “That would be nice, but we don’t have one.”
(A penny dropped in a slot in my brain.)

Me: ‘In that case, we’ll have to build a simulator. We can tell the
contractor to build some software to tell the train control box it is leaving
the station, coming to a signal, and arriving at the next station.”

(I was still not prepared for what came next.)

Client: “Yes, butevery station is different. Some have track sloping down,
so the train tends to accelerate as it comes in, so the signals have to be
further apart on the approach; others slope up, so the signals can be
closer together. Some are underground and so are dry; others are above
ground and can get wet or icy, so again we allow more distance between
the signals there.’

Introduction

9

Me: ‘In that case, there is no choice: we need a whole-line simulator. Are
there plans of the track and signals on the line?’

This discovery was rare, in the sense that it was sudden and large,
and everyone realised that a missed requirement had been discovered.
Presumably, the omission would finally have been noticed when the test
campaign was planned. That would have been most inconveniently late
in the project. It would certainly have cost millions of pounds and caused
many months of delay.

The need for the simulator had been missed by a specification process
that largely followed tradition; for example, there were written require-
ments and state transition diagrams. But the project’s wider context and
its bigger picture scenarios had not been thought through.

If there is a lesson to be learned from this, it is that projects need
to pay attention to discovering their requirements, using a battery of
complementary techniques that include, for instance, not just analysis
but also scenarios. That way, the chance of anything large falling through
the net is greatly reduced.

Discovery, then, means many different things, such as:

e looking at the evidence;

e being open to new ideas;

e applying creative effort;

e working as a team;

e asking questions that focus the search;

e intending to find particular kinds of thing;

e fitting whatever is found into a reasoned framework;

e relating whatever is found to similar discoveries.

In these senses, requirements discovery is what you need to create a solid
foundation for your project.

1.4.1 Many Different Situations

There is no single technique for discovering universal requirements. Projects
are of very different kinds, so requirements have to be discovered in diverse
ways, most often by working with the appropriate people (Table 1.1).

Projects range from the strictly formal and contractual (as in a custom
development or subcontract), to the brief and sketchy (as in small-scale
software redevelopment in what is wrongly called software maintenance).

10 Chapter 1

Table 1.1: Where requirements come from.

In-house development
by an organisation’s IT department

People within the organisation: software
users, managers and the IT department
itself. No contract (‘We can’t sue our IT
department’).

Product or service development
for the mass market

Marketing, product management (on
behalf of the public and the company);
technical experts (specialists) in different
disciplines.

Custom development
for a single client

Business requirements from the client’s
technical people; terms and conditions
from its commercial side.

Commercial off-the-shelf (COTS)
package purchase/tailoring

Package selection, often done in-house
by matching needs to package
capabilities; tailoring, as for either
in-house or custom development.

Subcontract
e.g. within a product development

Prime contractor, by derivation from the
system requirements and design.
Most-possibly all - of this work is analysis
rather than discovery as such, though
gaps may reveal missed business
requirements.

Maintenance
support for earlier custom
development

System/software users within the client
organisation (via change requests
received once the product is in
service—these are often very informal);
problem reports.

Perhaps the projects in greatest danger from poor requirements work are
those that seem fairly small and simple, but turn out to contain hidden
complexities.

Guest Box: Robin Goldsmith on REAL Business Requirements

Robin F. Goldsmith, JD, author of the book Discovering REAL Business
Requirements for Software Project Success (2004) [6], describes a key concept
from his experience of requirements discovery.

Requirements are NOT all the Same

It’s not only that requirements must be discovered rather than gathered,
but REAL requirements also are not specified. One of the common major

Introduction

11

sources of difficulty starts with the failure to distinguish between two
fundamentally different types of requirements.

e Business requirements are the REAL requirements which provide
value when they are met, satisfied, or delivered. Business requirements
are from the perspective of, and in the language of, the business or user.
I am using the term ‘business’ broadly - for work or personal, for profit
or not. REAL business requirements are conceptual and exist within
the business environment, which is why they must be discovered. They
are business deliverable whats that provide value by serving busi-
ness objectives through solving problems, taking opportunities, and
meeting challenges. There usually are many possible ways to accomplish
them.

e Product requirements are from the perspective of, and in the lan-
guage of, a human-defined product which is one of those possible ways
presumably to accomplish the business requirements. Since these often
are phrased in terms of the product’s external functions, they are
also called ‘functional specifications’, which embraces the illusory dis-
tinction from ‘non-functional requirements.” Humans specify designs.
Product requirements are design, which is not limited to engineering
technical detail. They provide value if and only if they meet the REAL
business requirements.

People, including most fellow requirements authors, usually are refer-
ring to product requirements when they use the term ‘requirements.’
Many do use the term ‘business requirements’ to mean vague high-level
requirements, often just purposes and objectives, which they mistakenly
believe decompose into detailed product requirements. Widely-accepted
conventional wisdom also holds that creep—changes to requirements
after they’ve supposedly been defined—is due to unclear and untestable
product requirements.

In fact, much of creep occurs because product requirements, regardless
of how clear and testable they are, do not meet the REAL business
requirements. The primary reason is that the REAL business requirements
have not been defined adequately and in detail, primarily because people
concentrate mainly on product requirements.

The Problem Pyramid™ is a powerful tool that helps draw these dis-
tinctions and guide discovery of high-level REAL business requirements.
These then must be driven down to sufficient detail to make them ade-
quately clear and testable. At every hierarchical level of detail, REAL
business requirements are business deliverable whats that provide value
when delivered. They never are hows. The difference is not level of detail.

12 Chapter 1

The Problem Pyramid™ consists of six steps which must be performed in
sequence:

1. Identify the REAL Problem, Opportunity, or Challenge which pro-
vides REAL value when addressed appropriately. This is exceedingly
difficult. Failure to identify the REAL problem leads many require-
ments definitions astray from the start.

2. Identify the Current Measure(s) which tell us that the Problem is
a Problem. Defining measures is part of defining the REAL Problem.
Failure and inability to define measures often indicates that the Problem
has been not defined correctly.

3. Identify the Goal Measure(s) which tell us the Problem has been
addressed. Meeting the Goal Measures(s) provides value.

4. Identify the Cause(s) of the Problem. Causes are the As Is process
producing the Current Measures. One doesn’t solve a problem directly
but rather one solves it by identifying and addressing its causes.

5. Define the business deliverable whats that when delivered will provide
value by achieving the Goal Measure(s). These are the Should Be process
and are the REAL Business Requirements.

6. Specify a product Design how to satisfy the REAL Business Require-
ments.

Reproduced with permission of Robin F. Goldsmith.

1.5 A Softer Process, at First

Fortunately, people (in universities and in industry) have developed a broad
understanding of how to go from a situation where nobody even knows what
problems ought to be solved, to a position where everybody agrees on the
problem that is to be solved. After that point, a definite product or service can
be designed to solve the problem effectively, and a more procedural process of
‘requirements management’, supported by database tools, can take over from
discovery or ‘requirements definition’.

To reach that point, a ‘softer” process than product design, focused more on
people than on products, is needed (see Chapter 4). That process iterates the
nature of the business, its issues and ambitions, until a clear decision—-say, to
develop a product—emerges.

Once preliminary development funding, at least, is made available, work
can begin on discovering the requirements and defining the scope. Later, when

Introduction

13

the shape of the product or service is sufficiently well-defined, harder and more
definite modelling approaches can take over. Academics sometimes call these
the ‘early’ and ‘late’ requirements phases. A book on discovering requirements
must naturally focus mainly on the earlier, creative aspects of requirements
work. As Kotonya and Sommerville (1998) put it in their textbook Requirements
Engineering [5]:

‘Structured methods of requirements analysis ... are not particularly
useful for the early stages of analysis where the application domain, the
problem, and the organisational requirements must be understood. They
are based on “hard” models ... [which] are inflexible and focus on the
automated systems.”

The softer processes invariably consist of collaborative techniques that involve
a group of people with different backgrounds and experiences. Developers
tend to call people in all other roles ‘users’. Consultants know the importance
of ‘clients” or ‘customers’. Academics and politicians talk about ‘stakehold-
ers’, a safely neutral word. (Stakeholder analysis is described in Chapter 2.)
Consultants and developers, far from being experts, are often the outsiders in
whichever domain or area of expertise (such as finance, telecommunications
or aerospace) is being addressed.

People working on requirements have to learn both about the domain
and about what the stakeholders feel is the problem; requirements touch
on both ‘soft” and ‘hard” systems work (Figure 1.2; and see Chapter 4). For
consultants, analysts, developers and (in an effective requirements process)
other stakeholders alike, this really is discovery.

There are any number of job titles that cover all or part of this work. ‘Systems
engineer” applies mainly to more hardware-centred industries, whereas ‘busi-
ness analyst” seems to apply mainly to IT systems, so perhaps ‘requirements
analyst’ is a better term for our purposes. The rather loosely defined relation-
ships of some of these professions to the areas of work we are discussing are
indicated, very approximately, on Figure 1.2.

There are numerous soft! approaches. Some span all of development (usually
of software); others are meant mainly for understanding and reorganising
whole businesses. For instance:

e Contextual design [1], devised by Hugh Beyer and Karen Holtzblatt
(1998), starts by exploring the work context, models influences in the ‘cul-
ture” of a workplace, and continues right through to user interface design.

e Soft systems methodology [2], pioneered by Peter Checkland (1990), is
generally applied at a strategic level, spanning many domains and any

1“Soft’ here means that the work is ill-defined, involving many partially known concerns, not
susceptible to deterministic approaches. It does not mean ‘about software’.

14 Chapter 1

Wider e
AT .
businesses management consultancy
(processes) .kl
requirements analys:s
Soft Systems work %
(soci a /) bu$lness analysis
: : : systemsanalys:s
[H g H
g | depariments : Requwements work ¢
S | (activities) :
- : (SOCIO teChﬂlcal) objectvonented analysis
~ Design work
(technical)
systeps, engin eéring
individuals
v (tasks) e ’
Narrower (applications) (modules) (objects)
brands product lines products subsystems components
Softer Approach Harder

Figure 1.2: Requirements discovery has to span the divide between ‘soft’ and ‘hard’,
between stakeholder problems and technical solutions.

number of possible future products, but in the main stopping short of
individual product specification.

e Similar ideas in strategic planning, business analysis and other fields
attempt to understand what a business is trying to achieve, and redesign
how it works. For instance, James Dewar’s (2002) Assumption-based
planning [3] offers a fresh insight into discovering assumptions.

The techniques advocated in such processes are not difficult and do not need
elaborate tools, but together they offer the requirements analyst the chance of
creating better requirements.

None of this predetermines the development life cycle that you should
adopt. You can think of the requirements cycle as a smaller wheel inside
whatever life cycle you use.

Many organisations write a set of ‘stakeholder requirements” at the point
in their life cycle where they know they want to create a system but have not
chosenits design. They then evaluate alternative designs and select the one they

Introduction

15

Requirements “Engineering’?
Many years ago, the inventor of the DOORS requirements tool, Richard
Stevens, phoned me up and said he was working on a tool to do
requirements engineering.

‘How can you engineer a requirement?’, I asked in astonishment. I'd
only seen requirements as a list of very dull statements like, “The system
shall enable the user to edit the “Name” field.’

What did that possibly have to do with engineering? Richard asked
me to suspend my disbelief. He showed me what the tool did, and
enthusiastically painted a picture of his vision.

The tool sold very well and did an excellent job of managing require-
ments on some incredibly big systems in some amazingly complex
business environments:

e One firm used it via dedicated satellite links to share confidential
requirements on sites on opposite sides of the Atlantic Ocean.

e Another used it to monitor numerous contractors, who were each
implementing a different part of a huge specification, via an intri-
cate process of locking slices of the database and passing the slices
backwards and forwards as files.

It was fascinating to work with. It involved tools, modelling, database
design, customisation with scripts (which sometimes meant weeks of
programming), training and data handling. This was certainly software
engineering. But were we actually engineering the requirements?

I think now that we were engineering the management of the require-
ments. Other people worked on the requirements as such, in an altogether
‘softer’ way: much less like engineering; much more like discovery.

will use. In the light of that choice, they write a set of ‘system requirements’,
usually much more detailed than the stakeholder requirements, describing
what the (known design of) system will have to do. If the system is large, this
is followed by a further stage of design, breaking the system down into several
subsystems, each specified in its own set of ‘subsystem requirements’. The
design of life cycles is outside this book’s scope, but Appendix B discusses how
to identify the level to which a requirement properly belongs. Since it is easier

These are often requirements relating only to the product under design so the name ‘system’
is not ideal, but it is widely used. Where the requirements cover issues such as staff training as
well as hardware and software, system is certainly the right word. See Chapter 4 for discussion.

Chapter 1

to think about details than about the big picture, people often state ‘system” or
‘subsystem’ requirements (prematurely) in their stakeholder requirements.

1.6 More than a List of ‘The System Shalls’

The old definition of a requirement as a separately verifiable contractual
statement is still valid, but is not very useful during requirements discovery.

It is not possible to start writing formal requirements until you know who
the stakeholders are, what their goals are, what the context is and so on. These
things are not ‘requirements’ in the old, narrow sense, but defining them does
take you up to the point where you know what problem you want to solve,
and can communicate that to a supplier. In this broader sense, goals and
scenarios and so on certainly form the requirements; individually, we can call
them ‘requirement elements’.

‘The requirements’ in the broad sense means a network of interrelated
requirement elements: a requirement that satisfies a goal, is justified in a
rationale model, using terms defined in the project dictionary, etc. This is
a richer structure than an old-fashioned list of statements, and it fulfils its
purposes better. Part I of this book describes these requirement elements, and
ways of discovering each of them.

1.6.1 A Network of Requirement Elements

Just as no single technique is sufficient for discovering requirements, so there is
no single way of documenting a requirement that is suitable for every situation.
Instead, there is a set of commonly occurring elements that together can define
what is wanted. Figure 1.3 shows these, together with some relationships
between them.

Many other interrelationships are possible. For example, a scenario may
reveal the need for an interface; an assumption may justify a measurement; a
stakeholder may be responsible for some constraints.

These elements should largely be familiar, as they are simply tidied up
versions of concepts that everyone uses in daily conversation: roles, stories,
events, goals, reasons and so on. Indeed, it seems that many of them are
fundamental to the structure of every human language, if the ideas advanced
in Steven Pinker’s (2007) The Stuff of Thought [7] are correct. That Pinker really
is close to the truth can be seen in the way that different methods select subsets
of these elements (see Chapter 15 for further evidence).

Figure 1.3 is a coarse-grained® model of a possible organisation of the
requirements information within a project. Each box in the diagram (except

%In a finer grained model, more elements would appear. For instance, ‘scenario’ would resolve
into ‘scenario step’, ‘exception’, and so on.

Introduction

17

Stakeholder
plays a role in Ns owned by Priority
Scenario Goal has impdtance Interface
oceurs in satisfies connects to
verifies is justified by
Measurement » Requirement > Rationale

defines a term in

Definition

Function Quality Constraint

Figure 1.3: Requirements specification as a network of elements.

‘requirement’ itself) names a requirements element. All but one of the element
boxes correspond directly to chapters in Part I of this book. The exception is
‘function’, which is covered by Chapters 4 and 5. The writing of functions
is also described in Ian Alexander and Richard Stevens’ (2002) Writing Better
Requirements [12]. Interfaces are both design (of the containing system) and
requirements (on the contained product). Since interfaces may be known in
advance, they show that the idea that requirements come before design is not
necessarily true.

Different projects vary considerably in terms of the importance of the
different requirement elements. In practice, therefore, projects sometimes
entirely omit some of the elements shown in Figure 1.3. For example, a
project with a simple stakeholder structure might omit ‘stakeholder analysis’.
The resulting lack could be compensated for by additional explanation of
stakeholder issues in ‘scenarios’, ‘definitions’ or ‘rationale’. For more on
tailoring a requirements approach for your own project, see Chapter 15.

The information model drawn in Figure 1.3 only covers requirements.
Other related elements in a project’s information model include plans, risks,
issues/decisions and tests. These are important to projects, will have con-
nections to the requirement elements, and may be appropriately recorded in
a requirements database (see Appendix C) but are outside the scope of this
book.

Figure 1.3, and indeed the chapter structure of this book, can be seen as
a customisable template for organising the requirements on your project.
For convenience, a generalised template is provided as a starting point in
Appendix D.

18 Chapter 1

Fully Defined
A

Archaeology-directed search
Chapter 1 3

Event-directed search
Chapter 4

Context-directed search
Chapter 4

Definition-directed search

Prototyping-directed search
yping Chapter8

Chapter 1 3

Exception-directed search
Chapter 5

Scenario-directed search
Chapter 5

NFR-directed search
Chapter 6

Threat-directed search

Goal-directed search Chapter 3

Chapter 3

Requirements Completeness

Negative stakeholder-directed search

Stakeholder-directed search Chapter 2
v Chapters 2
Undefined
Early Requirements Stage Late

Figure 1.4: Requirements discovery as search, directed by the requirements elements so
far discovered.

1.6.2 Discovery as Search

A good way of thinking about discovery is as a search (Figure 1.4). You can
use different techniques, related to the requirement elements defined in Part
I of this book, to direct your search at different stages. In other words, the
structure of what you know drives what you discover next. The better you
organise your knowledge of the requirements, the better you can discover
what is really needed.

For example, you discover a goal. Then you can use a scenario to explore
how to achieve that goal. Then you can search for exceptions that can occur at
each step of that scenario.

1.7 A Minimum of Process: The Discovery Cycle

A generic discovery process can be drawn as a simple inquiry cycle (Figure 1.5).

An inquiry cycle is more or less what it says: a cycle of activities, carried
out by a team, to enable them to inquire effectively into some subject (such as
what precisely should be developed as a product).

Introduction

19

Document

Stakeholders;/é1

2 &
Discover M\l

Validate ~

Develop

Figure 1.5: Inquiry cycle for creating requirements.

What all inquiry cycles have in common is a period of action followed by a
period of reflection (Heron 1996) [4]. Both are necessary: action to get on with
the work; reflection to consider whether the work is complete, or going in the
right direction.

Agility
It is fashionable nowadays to use the word ‘agile” a lot. On some kinds of
project, you can discover a handful of requirements, implement them in a
product at once and then go back to discover a few more. This approach
can be very helpful in some situations, as it gives customers something
to look at, and this may prompt them to tell you some new requirements
that they hadn’t known about before.

Agility is not really new; people used to call it ‘rapid prototyping’,
‘iterative development’, ‘rapid application development” and other such
complicated names. Good project managers and project teams have
always practised it.

Rapid iteration does not in any way absolve you from discovering the
requirements. Agile or not, the decision depends on your situation. But,
discovering requirements is crucial.

For example, if you hold a workshop to discover scenarios (Chapter 5),
you are immersed in action. Afterwards, quietly analysing models of those
scenarios to document the workshop’s findings, you have time to reflect on

20

Chapter 1

what you have found. Then, armed with a fresh list of questions, you go back
to the relevant stakeholders and validate your findings. This may lead you to
further discovery activities.

However, the techniques for discovering, documenting, and validating a set
of scenarios (for instance) are not necessarily the same as those for discovering
goals, or risks, or stakeholders. Also, it’s no good waiting until the end
of the requirements phase before you try to validate each finely polished
requirement. You need to do that right away, checking each little discovery
as you go along. So there isn’t one enormous requirements process, but many
little inquiry cycles. You could call this ‘agile requirements discovery’. For
example, Mike Cohn’s (2004) User Stories Applied [8] offers a fully worked out
agile approach (for software). Accordingly, each chapter in Part I covers the
discovery, documentation and validation of the element it discusses.

Apart from that very basic process, this book’s focus is essentially on what
you actually need to do on your project. It does not propose some new
overarching process, framework or methodology, because:

e Every project is different; standardised processes can only describe the
average or typical case (and a few common variations). The final chapter
of this book describes how to tailor your own requirements process from
the building blocks described in the earlier chapters.

e The actual techniques don’t have to be used in some official, fixed process
or method at all. You can scribble a goal model during an interview,
or while reflecting afterwards on the train home. You can do a little
stakeholder analysis and note down a few scenarios, and then get on with
something else. If this solves a problem on a project, that’s fine.

e What is missing isn’t theory, but practice: projects creating their require-
ments simply and carefully. This book describes straightforward ways of
doing that.

1.8 The Structure of this Book

This book is divided into two main parts:

e Part I describes what you need to discover — different requirement
elements—with practical techniques to create, document and validate
them. On most projects, you will probably need to use most of these at
some stage. The requirement elements are described in roughly the order
you are most likely to use them. They do not form a single mandatory
process or anything like that. You have to use your common sense and
develop the experience to apply those that will work best on your project.

e Part Il describes the contexts where you can effectively discover require-
ments. These include the traditional environments in which consultants

Introduction

21

meet stakeholders — interviews and workshops — as well as consulting
the public, observation, ‘reverse engineering” and reuse. It also describes
how to make the transition from discovery to using the requirements to
drive your project. This includes trading off what is wanted against what
can be achieved.

Each chapter in Parts I and II is structured to help the reader, with:

a list of questions and answers;

a goal;

a summary;

the main text, illustrated with diagrams, tables and photographs;
a list of bare minimum activities;

next steps;

exercises, with hints on answers at the back of the book;

further reading.

1.8.1 Part I: Discovering Requirement Elements

Part I describes the things you need to find out, a step at a time. They may be
created directly by working with stakeholders in the contexts described in Part
II, or they may be analysed quietly in between meetings with stakeholders.

Each chapter describes one element (e.g. scenarios), with worked examples,
containing sections saying how to:

discover it;
document it;

validate it for completeness, correctness, and consistency.

The elements of Part I include:

a list of the stakeholders, and their influences on each other;
goals, including the negative side;

context, interfaces and scope of the work, and of possible future products,
including a list of the events to be handled;

stories, scenarios and use cases that describe how the product could be
used to deliver the wanted results;

qualities and constraints that any acceptable product must meet;

rationale and assumptions, arguing the case for (and against) decisions,
such as choosing particular requirements and design options;

technical terms, data definitions and roles used in a project;

acceptance criteria and verification methods, or qualities of service, defin-
ing how you will know that the requirements have been met;

22

Chapter 1

e priorities, both input (desired by stakeholders) and output (agreed by the
project for a given phase of development).

The descriptions in each case are enlivened with brief accounts of practical
experience.

1.8.2 Part II: Discovery Contexts

Part II describes practical ways for developers to work together with stake-
holders to discover the requirements. The contexts it describes include:

e interviews;

e workshops;

e observation of or participation in the work;

e ‘reverse engineering’—discovery from existing systems;

e reuse, where requirements are well enough understood or standardised
to be taken over without being re-created;

e trade-offs.

These are the contexts in which you can discover all of the elements described
in Part I. These two parts of the book therefore form a matrix of elements
against contexts. Your project will follow its own unique path through this
matrix of discovery opportunities.

The book ends with a chapter on how to put all the elements and contexts
together. Among other things, it describes the use of the element/context
matrix itself to guide the planning of the requirements process.

1.9 Further Reading

1.9.1 Books on ‘Softer’ Approaches

1. Beyer, H. and Holtzblatt, K. (1998) Contextual Design: Defining Customer-
Centered Systems, London: Morgan Kaufmann.
A good practical book from industry experts with a user interface design
background. They describe a process that moves from the ‘customer’ to
understanding the work context of a future product, to designing and
prototyping a software product and its user interface.

2. Checkland, P. and Scholes, J. (1990) Soft Systems Methodology in Action,
Chichester: John Wiley & Sons, Ltd.
Checkland essentially founded the Soft Systems Methodology (SSM)
approach, and his books present the thinking and experience behind it.
Checkland’s ‘rich pictures” and way of thinking are useful for understand-
ing a problem and the many pressures on systems and their stakeholders.

Introduction

SSM has now taken on a life of its own, but Checkland explains the basic
concepts well. SSM is a valuable precursor to requirements work, for
example when people don’t agree on what problem is to be solved.

3. Dewar, J. (2002) Assumption-Based Planning, Cambridge: Cambridge Uni-
versity Press.
Dewar’s book describes a set of effective techniques to explore and
improve strategic plans. It shows how you can discover the unspoken
assumptions that plans depend on, and work out what to do if those
assumptions should break. This leads to the reasons for decisions, and to
robust requirements.

4. Heron, J. (1996) Co-operative Inquiry: Research into the Human Condition,
London: Sage.
Heron has written a rather intellectual and academic book, but it describes
a practical way for people (groups of stakeholders) to work together in
an inquiry cycle process for any purpose. The approach can be seen as a
human-centred version of the widely used “plan, do, check’ management
cycle proposed by W. Edwards Deming. It is also a kind of ‘action
research’. A similar approach was used by Peter Checkland and his
colleagues to develop Soft Systems Methodology.

5. Kotonya, G. and Sommerville, I. (1998) Requirements Engineering, Processes
and Techniques, Chichester: John Wiley & Sons, Ltd.
This useful textbook pioneered the coverage of ‘early’ requirements work.
Its authors who, like Checkland, were researchers at Lancaster University,
were aware of that university’s tradition of collaborative work including
ethnographic observation and soft systems.

6. Goldsmith, R.F. (2004) Discovering REAL Business Requirements for Software
Project Success, Boston: Artech House.
This is one of the few books explicitly about requirements discovery
(and is very different from this book). Goldsmith offers many practical
suggestions for checking and evaluating proposed requirements so as to
weed out any that are not ‘/REAL Business Requirements’. The book is
simply and engagingly written. It is very clear on some of the common
traps and pitfalls in writing requirements.

1.9.2 Books on the Philosophical Background

7. Pinker, S. (2007) The Stuff of Thought, London: Allen Lane.
Pinker’s wonderful book explains the structures and concepts that seem
to lie below the surface of all human languages. What is fascinating is
that many of the elements that go to make up requirements (as in Part I
of Discovering Requirements) seem to be inherent in every language.

24

Chapter 1

For example, sentences have place-holders for (stakeholder) roles in
the form of expected subjects and objects; roles are expected to have
goals, and to push for those, against opposing forces (threats, hostile
stakeholders); special verbs describe (interface) events and have implied
(scenario) timelines associated with them, and so on. If Pinker is right,
then the described requirement elements are fundamental to human
thought, and will always be the natural way to express needs.

. Cohn, M. (2004) User Stories Applied: For Agile Software Development,

Boston: Addison-Wesley.

Cohn has written a radical, funny and powerfully argued book. It effec-
tively demolishes the traditional approach of, say, IEEE 830 (Institute
of Electrical and Electronics Engineers Software Requirements Specifica-
tions), that requirements can be written as a straightforward set of ‘shall
statements’. Cohn shows that more is needed. He favours short, informal
scenarios (user stories) but is wise enough to see that other elements,
such as goals, have their uses (e.g. page 135 of his book). The approach as
written is strongly tailored to software, e.g. with very rapid build cycles,
but many of the ideas have wider application.

. Gause, D.C. and Weinberg, G.M. (1989) Exploring Requirements: Quality

Before Design, New York: Dorset House.

This was one of the very first books that was explicitly about ‘require-
ments’. It remains stimulating and engaging all these years after it was
published because it looks, very simply, at the basic issues that under-
lie requirements discovery, even if it raises many more questions than it
answers. Here is a taste: ‘In one requirements review of a single eight-page
piece of an on-line banking system, we turned up 121 ambiguities that
were interpreted in at least two ways by different reviewers.’

1.9.3 Books on ‘Harder’ Approaches

10. Simon, H.A. (1996) The Sciences of the Artificial, 3rd edition, Cambridge,

Mass: MIT Press.

This small paperback contains a set of essays; Simon describes it as a
‘fugue, whose subject and countersubject were first uttered in lectures . ..
but are now woven together as ... alternating chapters’. In other words,
it is an intellectual account of the underpinnings of the hard, rational,
systems view of the world of both engineering and society. Chapters 5
and 8, on design and complexity respectively, are the most obviously
relevant. Simon writes fluently and persuasively, but from an extremely
‘hard’ standpoint.

Introduction

25

11.

12.

Stevens, R., Brook, P., Jackson, K. and Arnold, S. (1998) Systems Engineer-
ing, Coping with Complexity, London: Prentice Hall.

‘The green book’, as it is known by systems engineers, is a simple account
of how a large systems project for a product such as an aircraft should
be organised. (The Sciences of the Artificial is listed in its references.) The
book starts with a set of requirements to be managed; it is consistent with
the philosophy of requirements database tools such as Stevens’ creation,
DOORS, but focuses on processes rather than tool support.

Alexander, I. and Stevens, R. (2002) Writing Better Requirements, London:
Addison-Wesley.

Alexander and Stevens provide simple advice on framing requirements
in words, with a minimum of process.

