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Introduction

1.1 Array Signal Processing

Array signal processing is one of the major areas of signal processing and has been
studied extensively in the past due to its wide applications in various areas ranging from
radar, sonar, microphone arrays, radio astronomy, seismology, medical diagnosis and
treatment, to communications (Allen and Ghavami, 2005; Brandstein and Ward, 2001;
Fourikis, 2000; Haykin, 1985; Hudson, 1981; Johnson and Dudgeon, 1993; Monzingo
and Miller, 2004; Van Trees, 2002). It involves multiple sensors (microphones, antennas,
etc.) placed at different positions in space to process the received signals arriving from
different directions. An example for a simple array system consisting of four sensors with
two impinging signals is shown in Figure 1.1 for illustrative purposes, where the direction
of arrival (DOA) of the signals is characterized by two parameters: an elevation angle θ

and an azimuth angle φ.
We normally assume the array sensors have the same characteristics and they are

omnidirectional (or isotropic), i.e. their responses to an impinging signal are independent
of their DOA angles. According to the relative locations of the sensors, arrays can be
divided into three classes (Van Trees, 2002):

• one-dimensional (1-D) arrays or linear arrays;

• two-dimensional (2-D) arrays or planar arrays;

• three-dimensional (3-D) arrays or volumetric arrays.

Each of them can be further divided into two categories:

• regular spacing, including uniform and nonuniform spacings;

• irregular or random spacing.

Our study in this book will be based on arrays with regular spacings.
For the impinging signals, we always assume that they are plane waves, i.e. the array

is located in the far field of the sources generating the waves and the received signals
have a planar wavefront.

Now consider a plane wave with a frequency f propagating in the direction of the
z-axis of the Cartesian coordinate system as shown in Figure 1.2. At the plane defined
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Figure 1.1 An illustrative array example with four sensors and two impinging signals
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Figure 1.2 A plane wave propagating in the direction of the z-axis of the Cartesian coordinate
system

by z = constant, the phase of the signal can be expressed as:

φ(t, z) = 2πf t − kz (1.1)

where t is time and the parameter k is referred to as the wavenumber and defined as
(Crawford, 1968):

k = ω

c
= 2π

λ
(1.2)

where ω is the (temporal) angular frequency, c denotes the speed of propagation in the
specific medium and λ is the wavelength. Similar to ω, which means that in a temporal
interval t the phase of the signal accumulates to the value ωt , the interpretation of k

is that over a distance z, measured in the propagation direction, the phase of the signal
accumulates to kz radians. As a result, k can be referred to as the spatial frequency of a
signal.

Different from the temporal frequency ω, which is one-dimensional, the spatial fre-
quency k is three-dimensional and its direction is opposite to the propagating direction of
the signal. In a Cartesian coordinate system, it can be denoted by a three-element vector:

k = [kx, ky, kz]T (1.3)
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with a length of:

k =
√

k2
x + k2

y + k2
z (1.4)

This vector is referred to as the wavenumber vector. In the case shown in Figure 1.2, we
have kx = ky = 0 and kz = −k. Let ẑ = [0, 0, 1]T denote the unit vector along the z-axis
direction, then we have k = −kẑ.

These two quantities are not independent of each other and as shown in Equation (1.2),
they are related by the following equation:

k = 2πf

c
(1.5)

Any point in a 3-D space can be represented by a vector r = [rx, ry, rz]T , where rx , ry and
rz are the coordinates of this point in the Cartesian coordinate system. With the definition
of the wavenumber vector k, the phase function φ(t, r) of a plane wave can be expressed
in a general form:

φ(t, r) = 2πf t + kT r (1.6)

For the case in Figure 1.2, we have:

kT r = −k(ẑT r) = −krz (1.7)

Therefore, as long as the points have the same coordinate rz in the z-axis direction, they
have the same phase value at a fixed time instant t .

For the general case, where the signal impinges upon the array from an elevation angle
θ and an azimuth angle φ, as shown in Figure 1.1, the wavenumber vector k is given by:

k =
⎡
⎣ kx

ky

kz

⎤
⎦ = k

⎡
⎣ sin θ cos φ

sin θ sin φ

cos θ

⎤
⎦ (1.8)

Then the time independent phase term kT r changes to:

kT r = k(rx sin θ cos φ + ry sin θ sin φ + rz cos θ) (1.9)

The wavefront of the signal is still represented by the plane perpendicular to its propaga-
tion direction.

There are three major research areas for array signal processing:

1. Detecting the presence of an impinging signal and determine the signal numbers.

2. Finding the DOA angles of the impinging signals.

3. Enhancing the signal of interest coming from some known/unknown directions and
suppress the interfering signals (if present) at the same time.

The third research area is the task of beamforming, which can be divided into nar-
rowband beamforming and wideband beamforming depending on the bandwidth of the
impinging signals, and wideband beamforming will be the focus of this book. In the next
sections, we will first introduce the idea of narrowband beamforming and then extend it
to the wideband case.
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1.2 Narrowband Beamforming

In beamforming, we estimate the signal of interest arriving from some specific directions
in the presence of noise and interfering signals with the aid of an array of sensors. These
sensors are located at different spatial positions and sample the propagating waves in
space. The collected spatial samples are then processed to attenuate/null out the interfering
signals and spatially extract the desired signal. As a result, a specific spatial response of
the array system is achieved with ‘beams’ pointing to the desired signals and ‘nulls’
towards the interfering ones.

Figure 1.3 shows a simple beamforming structure based on a linear array, where
M sensors sample the wave field spatially and the output y(t) at time t is given by
an instantaneous linear combination of these spatial samples xm(t), m = 0, 1, . . . ,

M − 1, as:

y(t) =
M−1∑
m=0

xm(t)w∗
m (1.10)

where ∗ denotes the complex conjugate.
The beamformer associated with this structure is only useful for sinusoidal or narrow-

band signals, where the term ‘narrowband’ means that the bandwidth of the impinging
signal should be narrow enough to make sure that the signals received by the opposite
ends of the array are still correlated with each other (Compton, 1988b), and hence it is
termed a narrowband beamformer.

We now analyse the array’s response to an impinging complex plane wave ejωt with an
angular frequency ω and a DOA angle θ , where θ ∈ [−π/2 π/2] is measured with respect
to the broadside of the linear array, as shown in Figure 1.3. For convenience, we assume
the phase of the signal is zero at the first sensor. Then the signal received by the first
sensor is x0(t) = ejωt and by the mth sensor is xm(t) = ejω(t−τm), m = 1, 2, . . . , M − 1,
where τm is the propagation delay for the signal from sensor 0 to sensor m and is a
function of θ . Then the beamformer output is:

y(t) = ejωt

M−1∑
m=0

e−ωτmw∗
m (1.11)

signal

*

*

*

q

tM−1

t1 1

0w

w

wx1(t)

xM−1

x0(t)

y (t)

(t)

M−1

Figure 1.3 A general structure for narrowband beamforming
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with τ0 = 0. The response of this beamformer is given by:

P(ω, θ) =
M−1∑
m=0

e−jωτmw∗
m = wH d(ω, θ) (1.12)

where the weight vector w holds the M complex conjugate coefficients of the sensors,
given by:

w = [w0 w1 . . . wM−1]T (1.13)

and the vector d(ω, θ) is given by:

d(ω, θ) = [
1 e−jωτ1 . . . e−jωτM−1

]T
(1.14)

We refer to d(θ, ω) as the array response vector, which is also known as the steering
vector or direction vector (Van Veen and Buckley, 1988). We will use the term ‘steering
vector’ to avoid confusion with the response vector used in linearly constrained minimum
variance beamforming introduced later in Section 2.2 of Chapter 2.

In our notation, we generally use lowercase bold letters for vector valued quantities,
while uppercase bold letters denote matrices. The operators {·}T and {·}H represent trans-
pose and Hermitian transpose operations, respectively.

Based on the steering vector, we briefly discuss the spatial aliasing problem encountered
in array processing. In analogue to digital conversion, we sample the continuous-time
signal temporally and convert it into a discrete-time sequence. In this temporal sampling
process, aliasing is referred to as the phenomenon that signals with different frequencies
have the same discrete sample series, which occurs when the signal is sampled at a
rate lower than the Nyquist sampling rate, i.e. twice the highest frequency of the signal
(Oppenheim and Schafer, 1975). With temporal aliasing, we will not be able to recover
the original continuous-time signal from their samples. In array processing, the sensors
sample the impinging signals spatially and if the signals from different spatial locations
are not sampled by the array sensors densely enough, i.e. the inter-element spacing of the
array is too large, then sources at different locations will have the same array steering
vector and we cannot uniquely determine their locations based on the received array
signals. Similar to the temporal sampling case, now we have a spatial aliasing problem,
due to the ambiguity in the directions of arrival of source signals.

For signals having the same angular frequency ω and the corresponding wavelength
λ, but different DOAs θ1 and θ2 satisfying the condition (θ1, θ2) ∈ [−π/2 π/2], aliasing
implies that we have d(θ1, ω) = d(θ2, ω), namely:

e−jωτm(θ1) = e−jωτm(θ2) (1.15)

For a uniformly spaced linear array with an inter-element spacing d , we have τm =
mτ1 = m(d sin θ)/c and ωτm = m(2πd sin θ)/λ. Then Equation (1.15) changes to:

e−jm(2πd sin θ1)/λ = e−jm(2πd sin θ2)/λ (1.16)

In order to avoid aliasing, the condition |2π(sin θ)d/λ|θ=θ1,θ2 < π has to be satisfied.
Then we have |d/λ sin θ | < 1/2. Since | sin θ | ≤ 1, this requires that the array distance
d should be less than λ/2.
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In the following, we will always set d = λ/2, unless otherwise specified, then ωτm =
mπ sin θ and the response of the uniformly spaced narrowband beamformer is given by:

P(ω, θ) =
M−1∑
m=0

e−jmπ sin θw∗
m (1.17)

Note for an FIR (finite impulse response) filter with the same set of coefficients (Oppen-
heim and Schafer, 1975), its frequency response is given by:

P(�) =
M−1∑
m=0

e−jm�w∗
m (1.18)

with � ∈ [−π π] being the normalized frequency. For the response of the beamformer
given by Equation (1.17), when θ changes from −π/2(−90◦) to π/2(90◦), π sin θ

changes from −π to π accordingly, which is in the same range as � in Equation (1.18).
With this correspondence, the design of uniformly spaced linear arrays can be achieved
by the existing FIR filter design approaches directly.

As a simple example, if we want to form a flat beam response pointing to the direc-
tions θ ∈ [−π/6 π/6]([−30◦ 30◦]), while suppressing signals from directions θ ∈ [−π/2
−π/4] and [π/4 π/2], then it is equivalent to designing an FIR filter with a passband of
� ∈ [−0.5π 0.5π] and a stopband of � ∈ [−π − 0.71π] and [0.71π π] (sin π/6 = 0.5
and sin π/4 = 0.71). We can use the MATLAB© function remez to design such a filter
(Mat, 2001), and then use the result directly as the coefficients of the desired beamformer.
One of the design results is given by (M = 10):

wH = [0.0422 0.0402 − 0.1212 0.0640 0.5132

0.5132 0.0640 − 0.1212 0.0402 0.0422] (1.19)

Substituting this result into Equation (1.17), we can draw the resultant amplitude
response |P(θ, ω)| of the beamformer with respect to the DOA angle θ . |P(θ, ω)| is
called the beam pattern of the beamformer to describe the sensitivity of the beamformer
with respect to signals arriving from different directions and with different frequencies.
Figure 1.4 shows the beam pattern (BP) in dB, which is defined as follows:

BP = 20 log10
|P(θ, ω)|

max |P(θ, ω)| (1.20)

For the general case of d = αλ/2, α ≤ 1, the response of the beamformer given by
Equation (1.17), will change to:

P(ω, θ) =
M−1∑
m=0

e−jmαπ sin θw∗
m (1.21)

Its design can be obtained in a similar way as above and the only difference is that the
FIR filter can have an arbitrary response over the regions � ∈ [−π − απ] and [απ π]
without affecting that of the narrowband beamformer.
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Figure 1.4 The beam pattern of the resultant narrowband beamformer with M = 10 sensors

1.3 Wideband Beamforming

The beamforming structure introduced in the last section works effectively only for nar-
rowband signals. When the signal bandwidth increases, its performance will degrade
significantly. This can be explained as follows.

Suppose there are in total M impinging signals sm(t), m = 0, 1, . . . , M − 1, from direc-
tions of θm, m = 0, 1, . . . , M − 1, respectively. The first one s0(t) is the signal of interest
and the others are interferences. Then the array’s steering vector dm for these signals is
given by:

dm(ω, θ) = [
1 e−jωτ1(θm) . . . e−jωτM−1(θm)

]T
(1.22)

Ideally, for beamforming, we aim to form a fixed response to the signal of interest and
zero response to the interfering signals. Note for simplicity, we do not consider the effect
of noise here. This requirement can be expressed as the following matrix equation:⎛

⎜⎜⎜⎝
1 e−jωτ1(θ0) . . . e−jωτM−1(θ0)

1 e−jωτ1(θ1) . . . e−jωτM−1(θ1)

...
...

. . .
...

1 e−jωτ1(θM−1) . . . e−jωτM−1(θM−1)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w∗
0

w∗
1
...

w∗
M−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

constant
0
...

0

⎞
⎟⎟⎟⎠ (1.23)

Obviously, as long as the matrix on the left has full rank, we can always find a set of
array weights to cancel the M − 1 interfering signals and the exact value of the weights
for complete cancellation of the interfering signals is dependent on the signal frequency
(certainly also on their directions of arrival).

For wideband signals, since each of them consists of infinite number of different fre-
quency components, the value of the weights should be different for different frequencies
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and we can write the weight vector in the following form:

w(ω) = [w0(ω) w1(ω) . . . , wM−1(ω)]T (1.24)

This is why the narrowband beamforming structure with a single constant coefficient for
each received sensor signal will not work effectively in a wideband environment.

The frequency dependent weights can be achieved by sensor delay-lines (SDLs), which
were proposed only recently and will be studied in Chapter 7. Traditionally, an easy way
to form such a set of frequency dependent weights is to use a series of tapped delay-lines
(TDLs), or FIR/IIR filters in its discrete form (Compton, 1988a; Frost, 1972; Mayhan
et al., 1981; Monzingo and Miller, 2004; Rodgers and Compton, 1979; Van Veen and
Buckley, 1988; Vook and Compton, 1992).

Both TDLs and FIR/IIR filters perform a temporal filtering process to form a frequency
dependent response for each of the received wideband sensor signals to compensate
the phase difference for different frequency components. Such a structure is shown in
Figure 1.5. The beamformer obeying this architecture samples the propagating wave field
in both space and time. The output of such a wideband beamformer can be expressed as:

y(t) =
M−1∑
m=0

J−1∑
i=0

xm(t − iTs) × w∗
m,i (1.25)

where J − 1 is the number of delay elements associated with each of the M sensor
channels in Figure 1.5 and Ts is the delay between adjacent taps of the TDLs.
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Figure 1.5 A general structure for wideband beamforming



Introduction 9

In vector form, Equation (1.25) can be rewritten as:

y(t) = wH x(t) (1.26)

The weight vector w holds all MJ sensor coefficients with:

w =

⎡
⎢⎢⎢⎢⎣

w0

w1

...

wJ−1

⎤
⎥⎥⎥⎥⎦ (1.27)

where each vector wi , i = 0, 1, · · · , J − 1, contains the M complex conjugate coefficients
found at the ith tap position of the M TDLs, and is expressed as:

wi = [w0,i w1,i · · · wM−1,i]
T (1.28)

Similarly, the input data are also accumulated in a vector form x as follows:

x =

⎡
⎢⎢⎢⎢⎣

x0(t)

x1(t − Ts)

...

xJ−1(t − (J − 1)Ts]

⎤
⎥⎥⎥⎥⎦ (1.29)

where xi (t − iTs), i = 0, 1, . . . , J − 1, holds the ith data slice corresponding to the ith
coefficient vector wi :

x(t − iTs) = [
x0(t − iTs) x1(t − iTs) · · · xM−1(t − iTs)

]T
(1.30)

Note that this notation incorporates the narrowband beamformer with the special case of
J = 1.

Now, for an impinging complex plane wave signal ejωt , assume x0(t) = ejωt . Then we
have:

xm(t − iTs) = ejω(t−(τm+iTs )) (1.31)

with m = 0, 1, . . . ,M−1, i = 0, . . . , J − 1. The array output is given by:

y(t) = ejωt

M−1∑
m=0

J−1∑
i=0

e−jω(τm+iTs ) · w∗
m,i

= ejωt × P(θ, ω) (1.32)

where P(θ, ω) is the beamformer’s angle and frequency dependent response. It can be
expressed in vector form as:

P(θ, ω) = wH d(θ, ω) (1.33)
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where d(θ, ω) is the steering vector for this new wideband beamformer and its elements
correspond to the complex exponentials e−jω(τm+iTs ):

d(θ, ω) = [e−jωτ0 . . . e−jωτM−1 e−jω(τ0+Ts) . . . e−jω(τM−1+Ts )

. . . e−jω(τ0+(J−1)Ts ) . . . e−jω(τM−1+(J−1)Ts )]T (1.34)

For J = 1, it is reduced to the steering vector introduced for the narrowband beamformer
in Equation (1.14).

For an equally spaced linear array with an inter-element spacing d , we have τm =
mτ1 and ωτm = m(2πd sin θ)/λ for m = 0, 1, . . . , M − 1. To avoid aliasing, d < λmin/2,
where λmin is the wavelength of the signal component with the highest frequency ωmax.
Assume the operating frequency of the array is ω ∈ [ωmin ωmax] and d = αλmin/2 with
α ≤ 1. In its discrete form, Ts is the temporal sampling period of the system and should
be no more than half the period Tmin of the signal component with the highest frequency
according to the Nyquist sampling theorem (Oppenheim and Schafer, 1975), i.e. Ts ≤
Tmin/2.

With the normalized frequency � = ωTs , ω(mτ1 + iTs) changes to mμ� sin θ + i�

with μ = d/(cTs), then the steering vector d(θ, ω) changes to:

d(θ, ω) = [1 . . . e−j (M−1)μ� sin θ e−j� . . . e−j�(μ sin θ(M−1)+1)

. . . e−j (J−1)� . . . e−j�(μ sin θ(M−1)+J−1)]T (1.35)

and we have:

P(θ, ω) =
M−1∑
m=0

J−1∑
i=0

e−j�(mμ sin θ+i) × w∗
m,i

=
M−1∑
m=0

e−jmμ� sin θ

J−1∑
i=0

e−j i� × w∗
m,i

=
M−1∑
m=0

e−jmμ� sin θ × Wm(ej�) (1.36)

where Wm(ej�) = ∑J−1
i=0 e−j i� × w∗

m,i is the Fourier transform of the TDL coefficients
attached to the mth sensor. For the case where α = 1 and Ts = Tmin/2, we have μ = 1.

Now given the coefficients of the wideband beamformer, we can draw its 3-D beam
pattern |P(θ, ω)| with respect to frequency and DOA angle, according to Equation (1.36).
To calculate the beam pattern for Nθ number of discrete DOA values and N� number
of discrete temporal frequencies, an Nθ × N� matrix is obtained holding the response
samples on the defined DOA/frequency grid.

As an example, consider an array with M = 5 sensors and a TDL length J = 3. Suppose
the weight vector is given as:

W = [0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0]T (1.37)

The beam pattern of such an array is shown in Figure 1.6 for N� = 50 and Nθ = 60,
where the gain is displayed in dB as defined in Equation (1.20).
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Figure 1.6 A 3-D wideband beam pattern example based on an equally spaced linear array with
M = 5, J = 3 and μ = 1

In the above example, the values of the weight coefficients are fixed and the resultant
beamformer will maintain a fixed response independent of the signal/interference sce-
narios. In statistically optimum beamforming, the weight coefficients need to be updated
based on the statistics of the array data. When the data statistics are unknown or time
varying, adaptive optimization is required (Haykin, 1996), where according to different
signal environments and application requirements, different beamforming techniques may
be employed. Both kinds of beamformers will be studied later in this book.

1.4 Wideband Beam Steering

For a narrowband beamformer, we can steer its main beam to a desired direction by adding
appropriate steering delays or phase shifts (Johnson and Dudgeon, 1993; Van Trees, 2002).
The relationship between the steered response and the original one is simple for a half
wavelength spaced linear array: the former one is a circularly shifted version of the latter
one, i.e. the sidelobe shifted out from one side is simply shifted back from the other side.

Intuitively, we may think that adding steering delays for wideband beamformers has
the same effect as in the narrowband case. However, this is not true and in general there
is not a one-to-one correspondence between the original beam response and the steered
one (Liu and Weiss, 2008c, 2009a).

In this section we will give a detailed analysis about this relationship. We will see
that after adding steering delays to the originally received wideband array signals, the
main beam will be shifted to the desired direction; however for the sidelobe region, for
one side, it is shifted out of the visible area and for the other side, it is not a simple
shifted-back of those shifted out, but exhibits a very complicated pattern.
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1.4.1 Beam Steering for Narrowband Arrays

For a uniformly spaced narrowband linear array, its response can be expressed as:

P(sin θ) =
M−1∑
m=0

w∗
me−jmμ� sin θ (1.38)

which is a special case (J = 1) of Equation (1.36).
Suppose the set of coefficients w∗

m, m = 0, 1, . . . , M − 1, forms a main beam pointing
to the broadside of the array (θ = 0). In order to steer the beam to the direction θ0,
we can add a delay of (M − 1)(d sin θ0)/c to the first received array signal, a delay of
(M − 2)(d sin θ0)/c to the second received array signal, and so on. Then the new response
with a main beam pointing to θ0 is given by:

P(sin θ − sin θ0) = e−j (M−1)μ� sin θ0

M−1∑
m=0

w∗
me−jmμ�(sin θ−sin θ0) (1.39)

where the term e−j (M−1)μ� sin θ0 represents a constant delay for all signals and will be
ignored in the following equations and discussions.

To avoid spatial aliasing, d = λ/2, where λ is the signal wavelength. We also assume
the sampling frequency is twice that of the signal frequency. Then, we have μ = 1 and
� = π . As a result, Equation (1.39) changes to:

P(sin θ − sin θ0) =
M−1∑
m=0

w∗
me−jmπ(sin θ−sin θ0) (1.40)

Since the function e−jmπx is periodic with a period of 2, compared to Equation (1.38),
the response given by Equation (1.40) is simply a circularly shifted version of the response
in Equation (1.38) for one period sin θ ∈ [−1 1]. As an example, suppose we have a
broadside main beam response P(sin θ) with a maximum response at sin θ = 0 for sin θ ∈
[−1 1], as shown in Figure 1.7. Then after shifting it by sin θ0 < 0, the new response
will be given by Figure 1.8.

Now we consider the effect as a function of θ . For the remaining part of Section 1.4,
without loss of generality, we always assume θ0 < 0. For −1 < sin θ ≤ (1 + sin θ0), we
have:

−1 < −1 − sin θ0 < sin θ − sin θ0 ≤ 1 (1.41)

P(sin q )

sin q−1 1

Figure 1.7 A broadside main beam example for an equally spaced narrowband linear array
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1

P(sin q−sin q0)

−1 sin q0
sin q

Figure 1.8 The broadside main beam is shifted to the direction θ0 for the example in Figure 1.7

Then, the response at θ after steering for −1 < sin θ ≤ (1 + sin θ0) will be the same as
the response of the original broadside one at:

θ̂ = arcsin(sin θ − sin θ0) (1.42)

For (1 + sin θ0) < sin θ ≤ 1, we have:

2 ≥ (1 − sin θ0) ≥ (sin θ − sin θ0) > 1 (1.43)

Then:

0 ≥ (sin θ − sin θ0 − 2) > −1 (1.44)

Therefore, for this range of θ , the steered response at θ will be the same as the response
of the original one at:

θ̆ = arcsin(sin θ − sin θ0 − 2) (1.45)

1.4.2 Beam Steering for Wideband Arrays

1.4.2.1 Wideband Arrays with TDLs or FIR/IIR Filters

As discussed in Section 1.3, for wideband beamforming, we will need the structure shown
in Figure 1.5. Recall that its beam response has been given in Equation (1.36) as follows:

P(�, sin θ) =
M−1∑
m=0

J−1∑
i=0

w∗
m,i × e−jmμ� sin θ × e−j i� (1.46)

Suppose the set of coefficients w∗
m,i , m = 0, 1, . . . ,M − 1, i = 0, 1, . . . , J − 1 forms

a broadside main beam (θ = 0), with an example shown in Figure 1.10. In order to steer
the beam to the direction θ0, we add delays in the same way as in the narrowband case
and the new response is given by:

P(�, sin θ − sin θ0) =
M−1∑
m=0

J−1∑
i=0

w∗
m,i × e−jmμ�(sin θ−sin θ0) × e−j i� (1.47)
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To avoid aliasing, d = λmin/2 and Ts = π/ωmax. Then we have μ = 1 and:

P(�, sin θ − sin θ0) =
M−1∑
m=0

J−1∑
i=0

w∗
m,i × e−jm�(sin θ−sin θ0) × e−j i� (1.48)

Note the required steering delays can be implemented by some analogue devices and
digital interpolation methods (Pridham and Mucci, 1978, 1979; Schafer and Rabiner,
1973), or FIR/IIR filters with fractional delays (Lu and Morris, 1999). A special case is
a delay over the whole normalized frequency range [0 π], which can be realized by a
series of truncated sinc functions.

As an example, we steer the main beam in Figure 1.9 in this way to the direction
θ0 = −30◦ and the result is shown in Fig. 1.10. Although the main beam is indeed
steered to the desired direction, there are some problems. The first one is the distorted
response at around the frequency � = π , which is due to the fact that the delay cannot
be approximated well by the sinc function at � = π . More importantly, the relationship
between Figure 1.9 and Figure 1.10 is clearly not a simple shift between each other
because we can see the irregularity in the steered response at the sidelobe region between
about 40◦ and 90◦ and we cannot find it in the original broadside main beam in Figure 1.9.
This difference indicates that beam steering with delays for wideband beamformers has
quite a different effect. In the next section, we will give a detailed analysis about this
relationship.
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Figure 1.9 A broadside main beam for a linear wideband array with M = 21 sensors and J = 25
coefficients for each of the attached FIR filters (μ = 1)
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Figure 1.10 The result after the broadside main beam in Figure 1.9 is steered to an off-broadside
direction (−30◦)

Since θ0 < 0, for −1 < sin θ ≤ (1 + sin θ0), we have:

−1 < −1 − sin θ0 < sin θ − sin θ0 ≤ 1 (1.49)

Then the steered response at θ for −1 < sin θ ≤ (1 + sin θ0) will be the same as the
response of the original broadside main beam design at:

θ̂ = arcsin(sin θ − sin θ0) (1.50)

However, for (1 + sin θ0) < sin θ ≤ 1, we have (sin θ − sin θ0) > 1. Then the shift
relationship cannot be expressed as Equation (1.50) any more and we need to further
consider the following two cases bearing in mind the periodicity of the function e−jm�:

1. For � ≤ π/(sin θ − sin θ0), we have �(sin θ − sin θ0) ≤ π , since (sin θ −
sin θ0) > 1, it seems that we cannot find any correspondence between the steered
response and the original one for this case.

2. For � >π/(sin θ − sin θ0), we have:

�(sin θ − sin θ0) >π (1.51)

Then we have

e−jm�(sin θ−sin θ0) = e−jm�(sin θ−sin θ0−2π/�) (1.52)
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If sin θ − sin θ0 − 2π/� < −1, namely:

� <
2π

1 + sin θ − sin θ0
(1.53)

then we come to the same conclusion as in the first case. Otherwise, we have:

� ≥ 2π

1 + sin θ − sin θ0
(1.54)

Then we can assume:

sin θ̃ = sin θ − sin θ0 − 2π/� (1.55)

Then the steered response for this case will be the same as the response of the original
one at frequency � and DOA angle θ̃ = arcsin(sin θ − sin θ0 − 2π/�).

Note since (sin θ − sin θ0)> 1, we have:

2π

1 + sin θ − sin θ0
>

π

sin θ − sin θ0
(1.56)

Then the above two cases for (1 + sin θ0) < sin θ ≤ 1 can be simplified as:

1. For � < 2π/(1 + sin θ − sin θ0), there is no correspondence between the two beam
responses.

2. For � ≥ 2π/(1 + sin θ − sin θ0), the steered response will be the same as the response
of the original one at frequency � and DOA angle θ̃ .

1.4.2.2 Wideband Arrays with a Narrowband Structure

Sometimes we also use the narrowband beamforming structure for wideband signals and
then Equation (1.46) changes back to the one given in Equation (1.38). In this case, the
steered response for μ = 1 is given by:

P(sin θ − sin θ0) =
M−1∑
m=0

w∗
me−jm�(sin θ−sin θ0) (1.57)

Now for −1 < sin θ ≤ (1 + sin θ0)(θ0 < 0), the relationship between the steered
response and the original one is the same as the one given in Equation (1.50). For
(1 + sin θ0) < sin θ ≤ 1, we have (sin θ − sin θ0) > 1 and we again need to consider
two different cases:

1. For � ≤ π/(sin θ − sin θ0), we have:

e−jm�(sin θ−sin θ0) = e−jmπ[�(sin θ−sin θ0)]/π (1.58)

and:

�(sin θ − sin θ0)

π
≤ 1 (1.59)
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Then the steered beam response for this case will be the same as the response of the
original broadside one at frequency � = π and DOA angle:

θ̄ = arcsin(
�(sin θ − sin θ0)

π
) (1.60)

2. For � >π/(sin θ − sin θ0), we have:

e−jm�(sin θ−sin θ0) = e−jmπ(�(sin θ−sin θ0)−2π)/π (1.61)

and:

�(sin θ − sin θ0) − 2π

π
> −1 (1.62)

Then the steered beam response for this case will be the same as the response of the
original one at frequency � = π and a DOA angle of:

θ̌ = arcsin

(
�(sin θ − sin θ0) − 2π

π

)
(1.63)

1.4.3 A Unified Interpretation

In summary, the relationship between the steered beam response and the original one,
given in Sections 1.4.2 and 1.4.2, respectively, is complicated and not as straightforward
as in the narrowband one. However, there is another way to understand the relationship
between the steered beam response and the original one.

Since θ0 < 0, we have | sin θ − sin θ0| ≤ (1 − sin θ0) and 1 − sin θ0 = μ̂> 1, then
Equation (1.48) can be rewritten as:

P(�, sin θ) =
M−1∑
m=0

J−1∑
i=0

w∗
m,ie

−jmμ̂�(sin θ−sin θ0)/μ̂e−j i� (1.64)

Since |(sin θ − sin θ0)/μ̂| ≤ 1, we can assume:

sin θ̈ = sin θ − sin θ0

μ̂
(1.65)

Then Equation (1.64) changes to:

P(�, θ) =
M−1∑
m=0

J−1∑
i=0

w∗
m,ie

−jmμ̂� sin θ̈e−j i� (1.66)

When dx = λmin/2, we have μ = 1 in Equation (1.46). Then when μ = μ̂, it is equiv-
alent to dx = μ̂λmin/2, i.e. the inter-element spacing is increased by μ̂> 1. As a result,
the steered beam response at θ ∈ [−π/2 π/2] will be the same as the response of the
original broadside design at θ̈ ∈ [arcsin((−1 − sin θ0)/μ̂) π/2] with the inter-element
spacing increased by μ̂ and subject to a nonlinear mapping between θ and θ̈ given in
Equation (1.65).
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Figure 1.11 The resultant beam pattern with the inter-element spacing increased by 1.5, given
the same set of coefficients for obtaining Figure 1.9

Now for the example of θ0 = −30◦, we have μ̂ = 1.5 and arcsin((−1 − sin θ0)/μ̂) ≈
−20◦. We can draw the response of Equation (1.66) given the same set of coefficients
for the example of Figure 1.9. The result is shown in Figure 1.11. Compared to the
beam pattern of Figure 1.10, we can see a clear match between Figure 1.10 and that of
Figure 1.11 for θ̈ ∈ [−20◦ 90◦], taking into consideration the nonlinear mapping effect of
the sinusoidal function.

1.5 Summary

In this chapter, we have given a brief introduction to array signal processing and in
particular narrowband beamforming, including how to calculate its beam pattern and
obtain a desired beamformer using existing FIR filter design techniques. We then extend
the narrowband beamforming structure to the wideband case by considering the need of
forming a series of frequency dependent weight coefficients, which can be realized by
tapped delay-lines or FIR/IIR filters. Another possibility is to employ sensor delay-lines
for wideband beamforming, which will be the topic of Chapter 7.

A detailed analysis is provided at the end for the beam steering process in both narrow-
band and wideband beamforming. It is shown that unlike the narrowband case, where the
steered beam response is a circularly shifted version of the original one given a half wave-
length spacing, a more complicated relationship exists for wideband beamformers and a
unified interpretation is provided for an easy understanding by considering a wideband
beamformer with an increased inter-element spacing.


