Temporal and spatial networks

Our primary concern is understanding both large temporal and large spatial networks in
ways going beyond simple general descriptions of their structures. For the former, doing
this amounts to discerning the structure(s) of such networks as they develop over time, and
grasping the social forces driving these changes. For the latter, it involves understanding
spatial social patterns and the processes by which they were generated. For both network
types, these two broad tasks — delineating structures and understanding their formation —
go hand in hand: doing one without the other leaves our understanding of these networks
incomplete. However, in order to understand the impact of social forces, it is necessary to
know the structure(s) of networks. We focus, initially, on outlining foundational network
concepts in Chapter 2. A detailed presentation of methods for analyzing citation networks is
included in Chapter 3. In the remaining chapters, we study how temporal networks change
and social phenomena are distributed over spatial networks. We provide substantively based
interpretations of the results we obtain. As is usually the case, for us, creating these under-
standings was an iterative process where empirical results led to substantive understandings
which, in turn, triggered further analyses. We report results of these analytic sequences but
without reporting the iterations.

1.1 Modern social network analysis

Freeman (2004) argued that four features define modern social network analysis (SNA). In a
slightly expanded form they are:

1. SNA is founded on a ‘structural intuition’ regarding social ties linking social actors.
This motivates the study of the social networks formed by these social ties when they
form coherent wholes.

2. ‘Itis grounded in systematic empirical data (emphasis added).” Implicitly, network data
must be meaningful for studying social networks: not all social network data sets are
useful.
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3. ‘It draws heavily on graphical imagery’ to represent these social networks and their
salient features in useful ways. Visualization of these features is useful both for
displaying results and for suggesting further avenues of inquiry.

4. ‘It relies on the use of mathematical and/or computational models.” This dual reliance
has grown even stronger since 2004.

We add the following three items:

1. Fully understanding social networks in time and across space requires a concern with
substance.

2. When studying the operation of social processes creating, sustaining, and dissolv-
ing social networks, Doreian and Stokman (1997), the relevant network data must
be temporal. Intuitively, a temporal network has units and relational ties distributed
through time.

3. Given that most social networks are conditioned by the contexts within which they exist,
ignoring these contexts imposes major constraints on understanding network phenom-
ena. One contextual feature is the geographic space within which these networks are
located. Spatial networks have units and relational ties distributed across geographical
space.

While substance can never be ignored safely, we note that many networks have been studied
without considering time. Other networks were studied while ignoring space. Quite often, nei-
ther time nor space had relevance for analyzing network data. This has changed dramatically in
recent years with considerable attention being devoted to both space and time when studying
social networks. Consistent with this new emphasis, the networks we consider here involve
time or involve space and, occasionally, both. In the main, we focus on temporal networks.

Building upon the above seven items, our study of temporal networks and spatial networks
is informed by four working assumptions:

1. Social networks form through the operation of social processes. These processes have
direct relevance for studying networks, implying that substantive ideas really matter.
In turn, the contexts within which social networks are generated are crucial for
understanding network creation and the consequences they have for the people, groups,
organizations, states, and nations located in them.

2. As Freeman noted, computation has been crucial. However, practical and sound com-
putational methods are required for detecting useful structural patterns in networks.
Developing these methods is necessary, even mandatory. Ideally, computational
methods are informed by substantive concerns. However, we have no objection to
developing methods for their own sake. Even so, the use of methods developed in this
fashion requires some justification in terms of both substance and relevance, at least as
far as understanding social network processes is concerned. Methods are more useful
when coupled to the substantive issues for which analyses are performed.

3. Temporal network data have to be meaningful in terms of both social substance and
social contexts. This implies that temporal network data need to be selected carefully
in order to be relevant substantively. The same arguments hold for spatial networks.



TEMPORAL AND SPATIAL NETWORKS 3

4. Coupling substance, context, methods, and data is most effective when these items are
combined into a single coherent framework.

1.2 Network sizes

We define the terms small, large, and huge for network sizes in Section 2.3. The networks
discussed by Freeman (2004) are small. Indeed, for many decades, social network analysis
dealt primarily with small or very small networks. This was driven by traditional ways
of collecting data and by the technical constraints on the collection and analysis of social
network data. However, since the 1990s, large networks (having from thousands to many
millions of units) have become abundant, for which information technology (IT) has been
particularly important in assembling these data. This development has serious implications
both for visualizing networks and for implementing computational models. Many of the earlier
traditional computational methods useful for studying small networks are now completely
impractical for analyzing large networks. As a result, developing new practical computation
methods has become essential. We focus on some newly designed computationally feasible
methods for handling these networks and present the results of using them while being
attentive to substantive concerns.

1.3 Substantive concerns

At face value, the only feature common to the networks studied here is being large. While
the book title emphasizes this, its most important word is ‘understanding.” The datasets we
use were selected to cover different substantive domains, to have different sizes, and to be
characterized by different structures. We have no single ‘cookie cutter’ method suitable for
all temporal networks because of these differences. However, two methods used repeatedly
in our analyses are line islands (used in Chapters 4-6) and clustering symbolic data (used
in Chapters 5 and 8). We focus briefly on substantive concerns here and more fully in
Chapters 4-9 where different combinations of methods, based on the foundations laid out in
Chapter 2, and developed in Chapter 3, are used. Methods employed only in single chapters
are presented therein.

1.3.1 Citation networks

Chapters 4—6 consider three distinct citation networks. While citation networks may seem to
be the ‘same’ in their general structure, with later units (documents) citing earlier units, these
three networks differ greatly with regard to their sizes and network structures in addition to
substance.

1.3.1.1 Scientific citation networks

Hummon et al. (1990) noted three features of science: 1) ‘Science is a cumulative venture
where each new discovery or development depends on some prior work;’ 2) ‘The products
are generated at the research fronts of specialty fields’ where the products are scientific
productions; and 3) ‘The resulting written record, in the form of citation networks, left as
research fronts move on, contains valuable information for understanding the processes of
science.” The small citation network they studied concerned the centrality literature between
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the initial task-oriented group experiments of Bavelas (1948) through Freeman’s (Freeman,
1979) systematic statement of three distinct operationalizations of centrality. This network,
while complete, was small with only 119 scientific productions. Since then, centrality became
accepted widely as one of the most important concepts in social network analysis. Certainly, it
is one of the most frequently used ideas: in short, this literature has exploded. We were curious
about the extent to which this literature grew and the structure of the resulting citation network.

Although, as documented by Freeman (2004), SNA has been in existence for over a
century, physicists have developed a recent interest in networks within the rubric of what has
become known as ‘network science.” See, for example, Watts and Strogatz (1998), Newman
(2001), Barabasi (2003), and Newman et al. (2006). This interest was triggered, in part, by the
availability of large networks obtained readily via electronic methods. Despite some notable
exceptions, physicists have tended to ignore most of the prior social network literature while
claiming the creation of a ‘new’ field resulting from their endeavors. In the memorable phrase
of Bonacich (2004), this was (seen as) ‘the invasion of the physicists.” We were curious as to
the structure of the citation network of the SNA citation network following this ‘invasion.’
Some results of our analyses are laid out in Chapter 4 together with a narrative concerning the
ways citation network structures are developed and some of the institutional forces involved
in this process.

We study two scientific citation networks. One is restricted to the centrality literature
while the other, more broadly, is the SNA literature. In the main, the former is located within
the latter. However, as centrality was initially a very narrowly focused concept, there is
interest value in looking at it especially as the concept has been applied in many substantive
domains. Of additional interest is that we have learned (see Chapter 4) that the concept has
been formulated and found valuable in areas remote from SNA. Indeed, tracking how a
technical concept has been applied in different substantive areas adds to the value of looking
at the citation network for centrality. One implication of the results reported in Chapter 4 is
that the centrality literature in no longer located fully within the SNA literature.

We were interested also in the nature of the linkages between the traditional SNA liter-
ature, as seen by social network analysts, and the network science literature. To the extent
that different fields merged in pursuit of studying social networks, it is reasonable to expect
flows of ideas between them. A rival expectation is that the fields partially diverged while
cleaving to their own conceptual frameworks, network interests, and methods.

As described below, both the patent citation network and the Supreme Court citation
network were ‘cleaned’ explicitly (for patents) or implicitly (for the Supreme Court). This
cannot be done fully with academic citation networks. Once publications are in the literature,
these works remain. Of course, never-cited works can be removed as a part of a data analytic
process removing them. Even so, apparent dead-end lines of work remain, a topic we do not
pursue here.!

1.3.1.2 Patent citation networks

Patents are legal devices attempting to confer some protection of intellectual property rights
for the inventors of new technological items. They have been seen as particularly interesting

!'It remains an open question whether approaches simply dying out (for example, ‘functional theories’ in sociol-
ogy), or because of scientific revolutions in their fields (Kuhn 1970), can be tracked in citation networks.
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regarding their role in the study of innovation and technological change. Economists have long
sought to link technological innovation to economic change and development. Examining
patents and their role in triggering technological change has been a part of this effort.
However, our concern differed: we sought an understanding of the temporal patterns of
patents citing earlier patents. This includes when and how inventions protected by earlier
patents become useful for later inventions and patent applications. More precisely, we sought
an understanding of the time scales regarding how earlier inventions became useful for later
inventions. We learned that there are at least four distinctive patterns to these time scales. Also
of interest is the influence patterns between broad technological areas (they are significant),
how they vary over time, and how specific technologies decline temporally, to be replaced
by others in specific eras. We document some of these changes in Chapter 5.

We learned that inventors, or their proxies, applying for patents enter complex technical
and legal arenas. The technological arena alone is intellectually complex as is documented in
Chapter 5. As a result, applications for patents to protect inventions trigger a stringent review
process performed by experts in the United States Patent and Trademark Office (USPTO),
at least for patents issued in the USA.? The result — in addition to the granting of patents for
inventions or deciding specific inventions cannot be patented — is a complete citation network
that is ‘efficient’ in the sense of citations being made only to all relevant earlier patents. The
institutionalized review process of the USPTO is the first phase for creating a cleaner citation
network.

In addition, when existing patents are revoked, they and all citations to them, as well
as citations from them, are removed from the patent citation database by the USPTO. As a
result, only genuinely useful patents remain in the available data. This is particularly important
because, in essence, the boundary problem (Laumann et al., 1979) — one posing problems
for many social network studies — is solved completely: these patent data are the cleanest
citation data we examine. Intuitively, the boundary problem for networks is simple to state
and has two basic components. One is the exclusion of relevant data points (units) and all of
the (real) network ties involving them. The other is the inclusion of data points that are not
part of the network being studied but are included in the network along with their network
ties. Both types of errors have great potential for distorting networks and analyses of them.3

However, more than technological issues are involved when considering patents. Many
economic actors seek to capitalize on the patents they have by creating production processes
and services, new physical products and new substances for economic gain. Conflict over
them leads to legal issues involving both apparent and real patent infringements when other
economic actors produce similar or identical products for sale. The parties involved in these
disputes either attempt to protect inventions covered by patents they hold or challenge the
legitimacy of patents already granted to others.

Conflicts over inventions and patents often lead to court cases. Some reach the US
Supreme Court, where the Justices on this court weigh in on technological matters and the
patentability of inventions. We sought an understanding of patent citation phenomena in
technological contexts defined by the USPTO. The primary tools used were line islands
(see Section 2.9) and clustering symbolic data (described in Section 3.10). The results of

2 No doubt, this is true elsewhere, but our data are for US patents.

3 There is also the separate measurement problem, even if the boundary problem has been solved, of erroneously
excluding network ties, erroneously including them or recording ties inaccurately. These problems are solved also
for the patent data.
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using these methods for the patent data are presented in Chapter 5. The involvement of
the Supreme Court in these technological matters added an unexpected (for us) connection
between Chapters 5 and 6. The technique of identifying line islands was important for
considering the role of the Supreme Court in evaluating rival claims over patents.

1.3.1.3 A US Supreme Court citation network

Fowler and Jeon (2008) compiled an extensive citation database for US Supreme Court (SC)
decisions citing earlier SC decisions based on the content of their majority opinions and the
citations they contain. At face value, this data set is complete also in including all decisions
in a specified and very long period (1789-2002).* These citation data differ from the patent
citation data in at least one important respect. There are no constraints on Supreme Court
Justices writing opinions regarding which earlier decisions they cite as precedent nor on which
earlier decisions they choose to ignore as precedent. This is a luxury unavailable in patent
applications where, as noted above, relevant, and only relevant, citations to earlier patents
are permitted. This adds an intriguing wrinkle for understanding this temporal network.

Fowler and Jeon’s primary focus was the evolution of precedent as a legal concept:
earlier decisions inform (and therefore constrain) later decisions. For analyzing precedent,
the frequency of decisions being cited, especially by other salient decisions, takes centre
stage. We take their results as a given.

Our interest takes a complementary form: we focused on subsets of Supreme Court
decisions forming coherent parts within the overall citation network. In terms of methods,
we did not focus on computing measures for single decisions but examined sets of decisions
instead. We approached this by considering the extent to which earlier decisions are co-
cited by later decisions. The rationale behind this interest was driven by a key intuition:
decisions cited fogether have import by having common substantive or legal principles (or
both) holding them together. To qualify for this additional closer scrutiny, earlier decisions
have to be co-cited frequently (by pairs of subsequent decisions).? The primary method used
in studying these coherent parts of the Supreme Court citation network was identifying line
islands, a procedure described in Section 2.9.

By definition, never cited earlier decisions — of which there are very many — can never be
co-cited. Similarly, decisions citing no earlier decisions cannot contribute much of interest
regarding precedent nor for considering co-citating. Decisions neither citing other decisions
nor receiving citations are easily removed. In effect, doing this helps ‘clean’ the US Supreme
Court citation network to achieve implicitly an effect similar to the results due to the process
enforced by USPTO’s review process. Removing these isolated decisions, having no historical
relevance, prunes the citation network. While this serves our purposes very well, this may
affect the fitted distributions of measures computed for single decisions.

4 On looking closer, and examining many decisions, we learned that some decisions were omitted from the Fowler
and Jeon dataset. While we have inserted the missed decisions that we located, there is no guarantee that the list of
decisions we studied is complete. Indeed, all large datasets contain errors as Fowler and Jeon note for the dataset
they created. However, it is very close to being complete for relevant decisions. Never cited decisions are the most
likely to be overlooked. These omissions are unimportant because they have no relevance in this citation network.
A potentially much more serious data recording problem was unearthed, and this is examined in Section 6.6.

51t is possible to examine pairs of decisions in terms of frequently co-citing earlier decisions, a line of inquiry
not pursued here.
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The Supreme Court network can be looked at as a stand-alone entity to be studied by
itself. However, the Supreme Court is only one of three ‘top’ branches for governing the
US. The other branches are the President and the US Congress (made up of the House of
Representatives and the Senate). In principle, the three branches were created as independent
entities designed to constrain each other through the much discussed ‘checks and balances.’
As we show in Chapter 6, there were periods when the three branches acted in concert while
being in sharp conflict at other times. Both of these contextual conditions have relevance
for understanding the actions of the Supreme Court. The same applies more generally with
regard to historical contexts for all social networks.

At face value, the task of the Supreme Court is simple: its members use the Constitution as
the foundation for establishing the legitimacy (or not) of laws and the appropriateness (or not)
of decisions rendered by lower courts. Unfortunately for this naive view, the Constitution is
profoundly ambiguous, a built-in feature reflecting the greatly divergent positions of the rival
parties and political interests represented by those involved in drafting this document. These
deep conflicts have never been resolved. Indeed, it seems impossible to resolve them, and the
vague (ambiguous) language of this constitutional document papered over these differences
in order to get enough signatures to it. The deep political conflicts did not end with the
signing of the Constitution, and the subsequent ratification process in the separate states was
deeply conflictual within them. As a result, the whole judicial system, and the Supreme Court
in particular, as authorized by the Constitution, was ‘political’ from its inception and has
remained so. This alone implies caution in taking the Constitution as an ‘objective’ document
free of biases and contradictions and viewing the resulting citation network as a simple record
of the processes leading to its decisions. It cannot be studied as a network detached from
broader social contexts.

Further, this citation network covers by far the longest time interval (more than two
centuries) of the citation networks we consider. In this long period, the USA experienced great
economic, political, and social change. In short, the context within which the Supreme Court
operated changed dramatically over time. This suggests that the resulting citation network
cannot be studied solely as if it were simply just another citation network. The changing
contexts within which decisions were made matters greatly for understanding it. Some results
using line islands in the Supreme Court citation network are presented in Chapter 6. With
these identified islands, close attention was paid to the changing history of the USA and
the Court in understanding both the citation network’s structure and the more important
actions of the Court. This included attention to ‘accidents’ (sudden deaths of Justices and
Presidents, plus unanticipated electoral outcomes) and changes in the composition of the Court
over time.

1.3.2 Other types of large networks

The US patent network is acyclic (a concept defined in Section 3.1). Both the Supreme Court
network and the scientific citation network lack this feature which creates technical problems
for analyzing them. Fortunately, such networks can be transformed easily to an acyclic form
by using the methods described in Chapter 3. In order to obtain completely different types of
temporal networks, we focused on different substantive issues where the techniques useful
for citation networks were not relevant. These other networks are not acyclic networks and
cannot be studied as such. Including them was important because ‘large temporal networks’
can take many forms, including some we do not consider here.
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1.3.2.1 The movement of football players across the globe

For the first alternative type of network, we focused on the movement of football (soccer)
players as they traveled across the globe to play football. Football players, almost from
the formal inception of the game, following its codification, moved between clubs and
countries. In doing so, they created club-to-club networks because clubs had to agree on the
movements of players between them. We conceive of football players’ careers fundamentally
as movements between clubs.® These movements define and create basic social networks
linking clubs and, secondarily, countries. While this is our primary interest, we use these
movements also to examine some common presumptions about ‘the beautiful game.” Alas, no
single systematic nor reliable dataset comprising these movements exists. So, we constructed
one, albeit with a geographically restricted focus. The details of this database are described
fully in Appendix A.4, along with the many difficulties encountered while constructing it.
These data are unique. We recognize that this claim can be made for any dataset but this one
was created by combining information from over a thousand different sources.

Recognizing that the game is played in over 200 countries, we restricted attention to just
one country because one of us (Doreian) has had a long-term interest in football played in
England. Our data were defined by all of the football players who appeared in the English
Premier League (EPL) during its first 15 seasons (1992/3 through 2006/7).” This temporal
restriction was, primarily, a practical issue — although we did track these players through to
the end of 2012. To set the broad background for the analyses that we pursue, we describe
football in England in Chapter 7 as a local institutionalized representation of the so-called
world game. Additional reasons for focusing on football in England, beyond familiarity,
stem from its unique history, one having major impacts on player movements within and to
England. This is part of the context for these player-induced networks.

English officials administering the game were, and continue to be, acutely aware of the
game having been invented in their land. Of course, the game quickly spread to many other
places but this diffusion was ignored largely by these administrators for close to a century.
As a result of the assumed historical primacy of their legacy and a presumption of English
‘superiority’ regarding ‘their’ game, these officials assumed that they had little to learn
from developments in football at other places on the globe. Indeed, they attempted, with
great success, to keep (most, but not all) ‘foreigners’ out of the game as well as ‘foreign’
conceptions of strategy, tactics, and styles for playing football.

This fundamental restrictive control of the game in England was shattered by a series of
court cases. One was indigenous to England (resulting in the Eastman decision as described
in Chapter 7). Far more importantly, the European Union (EU) ruled on labor practices for
all its members in the Bosman Decision, also described in Chapter 7. The so-called ‘transfer
and control” system by which football clubs controlled their players did not come close

6 Other conceptions of careers focus on player and club performances on the field in terms of goals scored,
defensive plays made, appearances for national teams, club victories, and trophies won. This conception of careers
in terms of success has little interest for us beyond operationalizing temporal sequences of club success (overall
ranks) to characterize player careers as sequences of moves between the clubs, in nationally and internationally
stratified systems, for which they play. This is described more fully in Chapter 8.

7 For this study period, the EPL is an accurate label. Much more recently, Swansea City and Cardiff City, both
located in Wales, were promoted to this top league. The term Premiership is now used frequently rather than EPL
as a label. An alternative label is BPL, presumably for ‘British Premier League,” although this usage ignores the
Scottish Premiership.
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to conforming to EU rules, especially with regard to people moving between its members
to find employment. These court decisions changed forever the relations between football
players and the clubs for which they played. Suddenly, players had greater (but not complete)
freedom to move between clubs (and between countries). Some of this changes are described
in Chapter 7. We were curious about the resulting network patterns of player movements and
what this implied for the organization of football.

Much has been written about player movements fo England, the nature of football in
England, and the impact of TV money flooding into the game since the late 1980s. These
include arguments about the impact of this flow of foreign football players on football in the
place where it was invented. Some concern the widely held belief about the EPL being the
‘best’ league on the world and how beneficial this has been locally. Other arguments claim
that these flows were disastrous for English football, especially at the national level. Clearly,
skepticism is merited regarding these arguments. Kuper and Szymanski (2009) exemplify
this skepticism, a stance which prompted some of our analyses. As conventional (assumed)
wisdom often rests on ignoring relevant information, our interest was piqued by these rival
claims.

We examine some claims about modern football using the network of players moves that
we constructed, together with some ancillary data. Our results and conclusions are reported
in Chapters 7 and 8. Some of the hypotheses were confirmed and some failed while others
turned out to be untestable.

1.3.2.2 A large US spatial network

As an example of a large spatial network, we examined the network defined for all US
counties in the Continental USA.® We had two motivations for considering these data. One
was substantive while the other was methodological. The Continental USA has 3111 counties.
Pairs of counties are linked through sharing a common border. This adjacency in geographical
space defines an unambiguous spatial relation linking counties. The Continental USA is
divided also into 48 states each made up of counties. Each state has its ‘own’ history. In these
histories, events and outcomes are described frequently as being unique to the ‘proud’ history
of each state. Yet, on the ground, the boundaries between many pairs of states are evident only
by signs marking them.? Certainly, social processes operate across the boundaries between
these large aggregates. Attempts to understand these broad social processes need to move
beyond state boundaries.'?

There have been two broad approaches to characterizing the spatial distribution of the
large social, economic, and political diversity within the USA. One attempts to map broad
contiguous areas of the landscape within which greater homogeneity is thought to exist.
Two examples of doing this are Garreau (1981) who defined and delineated Nine Nations
covering the USA, Canada, Mexico, and the Caribbean Islands, and Woodard (2011) who
argued for there being eleven such nations. Their general argument has appeal, with both
authors assembling considerable qualitative evidence in support of their theses. While there

8 Hawaii and Alaska were excluded, for obvious reasons.
9 Rivers are one of the exceptions when they form clear boundaries between states. Occasionally lakes do this.
10 The same argument can be made with regard to counties. However, as we claim in Chapter 9, counties represent
areasonable compromise between large heterogeneous areas like states and very small potentially more homogenous
local areas for which systematic data do not exist.
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are some commonalities to the two sets of nations they defined, there are also considerable
differences. This alone merits a closer examination of their detailed delineation of nations
within North America.

A second broad approach is exemplified by Chinni and Gimpel (2010) who eschewed
geography during their detailed data analysis. After assembling statistical data for counties,
Chinni and Gimpel clustered them using these constructed variables. They then plotted these
clusters of counties in geographical space to describe a ‘patchwork’ nation with very different
patches distributed across the nation and within states.

It seemed reasonable to seek a middle ground between focusing solely in large contiguous
regions and focusing solely on the attributes of the units (counties) located in geographical
space. The general problem is one of clustering units based on measured variables while
being attentive to relations among the units. Although it was not proposed initially for
dealing with spatially distributed data, one method for doing this — clustering with relational
constraints — was proposed by Ferligoj and Batagelj (1982, 1983). It clusters units based
on a set of measured variables, consistent with the approach of Chinni and Gimpel (2010),
while constraining cluster memberships according a relation linking the units being clustered.
The obvious relation in the US context is the spatial adjacency of counties. However, the
method, as initially formulated, is impractical for any large network, especially for one as
large as this spatial network. The technical concern motivating our analysis was establishing
a practical computational method for networks of this size while remaining faithful to the
core conception of clustering with relational constraints. The newly developed algorithms
and the results of applying them are described in Chapter 9.

1.4 Computational methods

We develop extensive formal foundations for the methods we use in Chapter 2. It serves as
a preliminary introduction to graph theoretical representations of networks. We then extend
this systematically to deal with temporal networks, as defined in Section 2.2 and detailed in
Chapter 3. Our focus on large networks is driven, primarily, by the intriguing computational
difficulties of handling them efficiently. The notion of a ‘large network’ is defined in Sec-
tion 2.3 to include networks with many millions of units. In terms of computation, the central
workhorse for the empirical results we present is Pajek (Batagelj and Mrvar, 1998; de Nooy
et al., 2012). Indeed, Pajek was designed explicitly for analyzing large networks efficiently.
We do not claim that Pajek is the only useful software for this purpose: it was simply
the one we chose for our computational efforts when analyzing large networks. It served our
purposes well. Doreian (2006) noted that Pajek is not a ‘one button’ set of routines. Instead,
the results obtained from most of the analyses we present were completed by combining
sets of commands. This design feature of Pajek facilitates great flexibility. However, it also
requires users to understand the program’s logical structure. Given this, we include Pajek
commands wherever they are appropriate so that readers can do the analyses leading to our
results for themselves if they wish — either on the data we used or with data of their own.
Figure 1.1 shows the primary (initial) dialogue box for Pajek. There are two distinct listings
of objects. The general concept of a network is that it is composed of vertices (representing
units) and lines representing relational ties between units. These terms are defined fully in
Chapter 2. On the left (reading from the top), is a column listing objects: Networks (described
by vertices and lines); Partitions (assigning values to units to split them into clusters); Vectors
(assigning numerical values to units); Permutations (to rearrange the order of units as they are
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Figure 1.1 The Pajek main dialogue box.

stored in files); Cluster; and Hierarchy. The icons for each of these objects are used (reading
from the left) for reading objects saved as Pajek files, saving objects as Pajek files, examining
the contents of objects, and getting summary information about these objects.

Across the top of the main dialogue box, the listed objects are (reading from the left) File,
Network, Networks (for handling more than one network), Operations (using different com-
binations of networks, partitions, vectors, permutations, and hierarchies), Partition, Partitions
(for using multiple partitions), Vector, Vectors (for using more than one vector), Permutation,
Permutations (for utilizing multiple permutations), Cluster and Hierarchy. Clicking on these
icons produces drop-down menus with more detailed data analytic options. These icons on
the top row are followed by Options, Draw (for visualizing networks), Macro, Info, and Tools
(for exporting selected information to other programs, including R and SPSS, for supplemen-
tary analyses) which are concerned also with mobilizing procedures. Clicking the Macro icon
presents a list of prepared and stored sets of commands presented in Pajek. Users can define
and save their own macros for combinations of commands they use often enough to merit the
construction of macros. Clicking on each of these opens a dialogue box for working with, and
using, objects, pairs of objects, or triples of objects. When we present commands for using
Pajek, we use primarily the items across the top of this dialogue box followed by the relevant
options.

In Section 2.5, we distinguish statistical summaries of network features and summaries
formed through network analytic methods. While they differ in the analyses performed, these
methods are most effective when coupled. In the main, for the former, we used R.!! Where
necessary, we provide the R code used for some of our analyses, as Pajek permits easy
transitions to analyses using network outputs within R.

11'See http://www.r-project.org/.
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Given our focus on large citation networks, Chapter 3 builds on Chapter 2 to lay out
formal tools designed for examining such temporal networks. In general, methods used in
multiple chapters are described in these two chapters. As noted above, methods specific to
single substantive chapters are presented in those chapters, especially for the patent citation
network (Chapter 5), the EPL football player movement network (Chapter 8), and the US
spatial network (Chapter 10).

We are fully aware of a wider literature discussing the topology of large temporal net-
works, the importance of which we do not deny. See, for example, all of the contributions
brought together in Newman et al. (2006) and the many scientific productions built on these
foundations. Our goal here is not to provide a broad comparison with all of the methods used
in other literatures.'? Instead, in the spirit of ‘letting many flowers bloom’ we lay out another
complete framework for studying large temporal networks. If the results of using this ap-
proach do have value, then comparisons between different approaches will have considerable
merit. It is simply too early to impose a single approach for studying large networks on the
study of all such networks. Of course, we are not proposing the methods introduced here as
the only appropriate ones for studying large networks.

1.5 Data for large temporal networks

The datasets we use fall into two categories. The first contains data defined by the substantive
interests outlined in Section 1.3. These data are used for the analysis and results presented
in Chapters 4-9. The other (secondary) category'® has data used for illustrating concepts
and methods introduced in Chapters 2 and 3. We know that the term ‘interesting’ (when it
is not used as cover for not expressing an opinion one way or another) is in the eye of the
beholder. The distinction between main (primary) and secondary datasets is not intended as
an evaluative statement about their relative merits even though we do insist that the data
considered here need to be relevant for specific substantive concerns. The secondary data
sets have different substantive interests and technical issues in mind.

1.5.1 The main datasets

We describe briefly these main datasets, each driven by substantive interests, and present
their dimensions here. Appendix A contains detailed descriptions of them, including how
they were obtained and the data processing for getting them into the form we use. Their
initial'* dimensions are provided in Table 1.1. Some!® of these data are freely available at
Pajek datasets (see http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm).

12 We have noticed in submitted manuscripts involving blockmodeling (see Doreian et al. (2005)), reviewers
often demand a full coverage of the community detection literature (created mainly by physicists) ideas even when
community detection ideas are tangential. While there is, at face value, some commonality between these approaches,
the differences are quite marked and rather subtle. Such broad summaries often are distractions — and, when complied
with, can affect citation networks.

13 With a few exceptions, we maintain this distinction to have our substantively relevant results remain within
single chapters.

14 For some analyses, not all of these data were used. For other analyses various subsets were used and the results
combined. (See Section 2.4 for a description of the ‘divide and conquer’ strategy that we employ for simplifying
large networks.)

15 The exception is the football data because we intend to explore them further before making them available
publicly.
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Table 1.1 Dimensions of the datasets used in Chapters 4—10.

Substantive Number of Number of Pajek data-set
network units lines name

Patent > 3.2 million > 32 million patent.net
Supreme Court 30,288 216,758 allcitesV4.net
Centrality 995,783 1,856,102 Cite.net
SNA 193,376 324,616 SN5cite.net
Football 2355 40,246 not available
Spatial USA 3111 7101 UScounties.zip

The patent citation network (for patents citing earlier granted patents) features patents
issued in the USA. The time period is relatively short, covering 19762006, a mere 30 years.
However, this network is the largest dataset we consider for the substantive chapters, having
more than 3.2 million patents linked by over 32 million citation links. The US Supreme Court
citation network, in contrast, is much smaller with more than 30,000 units and over 216,000
citation links. However, it covers more than 200 years; this is by far the longest time span of
all of the networks we study.

There are intrinsic differences beyond their sizes of these two networks. We noted in
Section 1.3.1 the strict constraints on patent citations, in contrast to the freedom that SC
Justices have in citing prior decisions. There are many SC decisions that neither made nor
received citations. One practical consequence is that the relevant citation network has fewer
units than the number listed in Table 1.1. However, the long time span and the depth (defined
in Chapter 3) of the SC citation network created technical problems requiring attention before
the general methods for acyclic networks presented in Chapter 3 could be used. The patent
citation network was acyclic as received. This was not the case for the SC data: some decisions
handed down by the same Court in a short period of time do cite each other, a phenomenon
present also in the scientific citation data for publications appearing in the same year. Solutions
for handling this problem are described in Chapter 3 and mobilized in the analyses of both
the centrality and the broader SNA literature, in addition to the Supreme Court network. In
analysis of centrality and SNA literature we used also some other bibliometric networks.

The football data that we constructed have a far more complex structure, featuring football
players, football clubs, and countries. It was defined by the 3749 football players playing in
any of the first 15 seasons of the EPL. These players had 148 nationalities (dual citizenship is
precluded for defining the nationality of players). Even though the player network is defined
by these players, our primary interest centered on the clubs for which they played. More
specifically, the network ties for this network are the links between these clubs as created
by players moving between them. The number of clubs involved in their migrations to and
from the EPL was 2355. These clubs are located in 152 countries. The total number of player
moves between clubs was 40,246. We also used ancillary data (described in Appendix A.4)
on clubs and player presence by nationality in other top European leagues for additional
analyses.

Our example of a large spatial network features all of the counties of the contiguous USA
and was motivated by trying to reconcile two very different approaches to mapping social
diversity in geographic space. The substantive problem has intrinsic interest, and the network
we study is one of the larger substantively interesting networks we have located.
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Table 1.2 Dimensions of the illustrative datasets.

Substantive Number of Number of Pajek data

network units lines set name

EAT 23,219 325,589 eatSR.net
NBER 174 11755 NBERwt.zip
KEDS 325 78,667 BalkanDays.net
e-companies 219 631 krebs.paj

1.5.2 Secondary datasets

We report our results for the networks described in Section 1.5.1 extensively in the relevant
chapters. To avoid repetition of results, we used data from other sources to illustrate our
methods in Chapters 2 and 3. These data, the dimensions of which are listed in Table 1.2,
came from the following sources.

1.5.2.1 The Edinburgh Associative Thesaurus (EAT)

The primary goal of the EAT project!® was to understand how words in the English language
are coupled. This was done by examining empirical ‘associations’ between words. The
approach taken to obtain these word associations was straightforward. Subjects were shown a
word and then asked to provide the first word coming to their minds. The procedure presented
batches of words to each subject. The presented words were regarded as stimuli and the words
offered by subjects as responses. The established links between stimuli and responses were
provided by subjects. There were no imposed rules dictating the nature (appropriateness)
of the responses. The pairings of stimuli and responses were simply empirical associations.
For each pair of words, they were aggregated across subjects as a way of quantifying these
associations. For example, some frequent couplings included ‘husband’ in response to ‘wife’
and ‘cheddar’ in response to ‘cheese’.

The resulting Edinburgh Thesaurus association norms were started from a nucleus set of
words. Further associations were collected by expanding from the nucleus: initial words were
used to obtain further responses, together with additional words. The EAT website reports
this cycle was repeated about three times. By then, the number of different responses became
so large they could not be reused as stimuli in a systematic fashion. The EAT data collection
stopped after 8400 stimulus words were used.!” The result was a total of 23,219 words in the
Thesaurus network linked by 325,589 associations. The database has two files: one is a SR
(stimulus-response) file, with the other being a RS (response—stimulus) file. These data are
used in Section 2.5.

1.5.2.2 The NBER-United Nations Trade Data, 1962-2000

This network was used for illustrative purposes in Section 2.6. The network ties are trade
exchanges (exports and imports) between nations. The data we used came from 1999: there are

16 See http://www.eat.rl.ac.uk/ for a description of this project.

17 Each stimulus word was presented to 100 different subjects. Their website reports that the subjects were mostly
undergraduates from many British universities whose ages ranged from 17 to 22 with a modal age of 19. The sex
distribution was about 64 per cent male and 36 per cent female. The data were collected between June 1968 and
May 1971. Any bias in the distribution of associations due to using university students as subjects has no relevance
for our illustrative purposes regarding methods.
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174 vertices and 11755 trade flows linking nations. The weight of the arcs are trade values in
$US1000. The source for these data is http://cid.econ.ucdavis.edu/data/undata/undata.html.
The complete dataset is available as the zipped Pajek project file listed in Table 1.2.

1.5.2.3 The Kansas Event Data (KEDS)

The data in this resource are the results of a 20-year project, originally based in the Department
of Political Science at the University of Kansas. This project and its data were known as the
Kansas Event Data System (KEDS), a label we use here. It was moved to the Department of
Political Science at Pennsylvania State University in January 2010 (http://eventdata.psu.edu/).
The project uses automated coding of English-language news reports from a variety of news
resources to generate political event data focusing on the Middle East, the Balkans, and West
Africa. These data were designed primarily for use in statistical early warning models to
predict political change in these regions with attention given to suggestions and policies for
mediating conflicts. The units for this network are nations and organizations. The relations
include ties between nations in the form of actions by one nation directed towards another
nation, as described by verbs. These actions include visits, seeking information, issuing
warnings, and expelling persons. Data for the Balkans for KEDS are used in Section 2.2. The
full dataset is available also at the KEDS website.

1.5.2.4 Krebs Internet industry partnerships

Valdis Krebs collected in 2002 (http://www.orgnet.com/netindustry.html) a network of
Internet industry partnerships. Two companies are linked with a line if they have announced
a joint venture, strategic alliance, or other partnership during the period 1998-2001. The
companies are classified into three classes: 1 — content, 2 — infrastructure, 3 — commerce.

1.5.2.5 Data archives

There are variety of sources containing many datasets, both large and small, but with a pri-
mary focus on large datasets. One is SNAP, the Stanford Large Network Dataset Collection
maintained by Jure Leskovec. It is documented at http://snap.stanford.edu/data/. The topics
covered include on line social networks, communication networks, citation networks, and
collaboration networks. There are also graphs of the internet and physical road systems.
Signed networks are included in this archive. KONECT, the Koblenz Network Collection,
contains large network datasets assembled at the Institute of Web Science and Technologies
at the University of Koblenz-Landau. As stated on its website (http://konect.uni-koblenz.de/):
‘KONECT contains over a hundred network datasets of various types, including directed,
undirected, bipartite, weighted, unweighted, signed and rating networks. The networks of
KONECT are collected from many diverse areas such as social networks, hyperlink net-
works, authorship networks, physical networks, interaction networks and communication
networks.’

These archives of datasets are used in Section 2.3 when describing the distribution of
network sizes in terms of the number of units and relational ties. Networks are sparse when
they have roughly the same number of units and relations ties. More specifically, the numbers
of these ties are not orders of magnitude larger than the number of units. Networks being
sparse is crucial for developing efficient methods for analyzing large networks.
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1.6 Induction and deduction

Throughout this book we have been both inductive and deductive in our approach, with
a strong bias in favor of being inductive when examining large networks. However, our
uses of both induction and deduction were based on substance and driven by curiosity. For
the three citation networks, induction reigned. When examining the social network citation
networks, we wanted to learn the citation structure following two salient events. One was the
formalization of centrality (and network centralization) in the Freeman (1977, 1979) papers.
As we have noted, this triggered an explosion of work both extending and using these ideas.
The other event was the recent interest of physicists in studying social networks. We stated
rival expectations regarding the possible convergence or divergence of the traditional SNA
and network science literatures. But, lacking anything beyond broad statements about this
question in the literature, we had no foundation for a specific hypothesis.

This was just as well. One of our expectations was that the physicist conception regarding
network science supplanted the SNA conception, especially regarding centrality. This was
born out but, as noted in Chapter 4, this was not the end of the story. The full disciplinary
sequence, for the centrality citation data ending in early 2013, was SNA — network science
— neuroscience. We learned that the general concept of ‘centrality’ has multiple sources.
There are parts of the broader centrality literature having nothing to do with traditional
SNA concerns. Worries about ‘the invasion of the physicists’ may be a somewhat parochial
conception within the older SNA community. This issue is explored more extensively in
Chapter 4.

Our exploration of the patent citation network was inductive also. Given the four broad
technological domains for ‘utility patents’ defined by USPTO and described in Section 5.1,
we were curious about the flow of ideas between these broad technological areas as reflected
by citations between patent applications and how they changed over time. Further, as tech-
nologies change over time, specific inventions are likely to have a limited shelf life. One
crucial feature related to this is the lag between patents being granted and their ideas being
picked up and used fruitfully for later inventions. Our interest centered on the distribution of
these lags and their temporal dynamics.

Again, we were inductive in our approach to the Supreme Court citation network. How-
ever, there was an implicit hypothesis — about the line islands we identified having coherence —
which underlay our analysis. Alternatively put, we gambled on this hypothesis being correct.
If the gamble was lost, then this approach would be seen as severely flawed. Fortunately, thus
far, every line island we have examined has a singular coherence even though the specific na-
ture of their coherence differs by island. Establishing the presence of coherence of decisions
being co-cited frequently was a purely inductive, but not surprising, outcome. This coherence
among a set of frequently co-cited decisions comes either from the constitutional principles
underlying these sets of decisions, the substantive domains of the decisions, or both. Induction
of a different sort followed the identification of coherent patches in this citation network.
Having identified them, we sought to understand both the decisions and the citations between
them in their historical, social, and political contexts. Beyond the line islands considered in
Chapter 6, two we considered were technologically driven. One concerned railraids when rail
was an emerging technology with great commercial and social implications. Another featured
maritime law, first defined over centuries for travel on seas and oceans, and then adapted as
internal waterways — rivers and lakes — were used in the USA, especially for commerce.
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For the football network, our approach was completely deductive. Based on our reading of
the literature regarding football player moves, we formulated an explicit set of hypotheses. We
knew that players move in the hope of advancing their careers, while clubs recruited players
with the intent of achieving greater success (or avoiding failure) on the field. Coupling the
decisions of players and the decisions of clubs is a highly uncertain processes for reasons
outlined in Chapter 7. We state 21 hypotheses in Chapter 7 and test them. The results of these
tests are reported in Chapters 7 and 8. While some hypotheses were obvious, others were
counter to conventional thinking about player movements. Many hypotheses passed muster,
some failed miserably, and others, while sounding plausible, turned out to be untestable in
the sense of there being both supporting and refuting evidence about them. Not surprisingly,
regarding the failed hypotheses and the untestable hypotheses, conventional wisdom about
football in England does tend to be supported by selective attention to the evidence.

In essence, we returned to induction for our analysis of the large US spatial network. In-
deed, we state no hypotheses. Our intent was to combine two broad— seemingly incompatible—
approaches to mapping spatial diversity. The resulting compromise led to results sitting
between these two broad approaches. Of course, this does not have surprise value because
we were more attentive to both network geography (adjacency in space) and also appropriate
statistical data. As a result, our results provide the foundations for a deeper characterization
of the spatial distribution of diversity in the USA.

The final chapter provides a partial summary of the results provided in Chapters 4-9,
together with commentary on the utility of the methods used throughout this book. Also
proposed in the final chapter are some suggestions for further work. Despite all that is
accomplished here, one salutary implication is that much more needs to be done. Pursuing
these issues has immense appeal.



