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Fundamentals of Magnetic
Devices

1.1 Introduction

Many electronic circuits require the use of inductors and transformers [1]–[47]. These are usually
the largest, heaviest, and most expensive components in a circuit. They are defined by their elec-
tromagnetic behavior. The main feature of an inductor is its ability to store magnetic energy in the
form of a magnetic field. The important feature of a transformer is its ability to couple magnetic
fluxes of different windings and transfer ac energy from the input to the output through the magnetic
field. The amount of energy transferred is determined by the operating frequency, flux density, and
temperature. Transformers are used to change the ac voltage and current levels as well as to provide
dc isolation while transmitting ac signals. They can combine energy from many ac sources by the
addition of the magnetic flux and deliver the energy from all the inputs to one or multiple outputs
simultaneously. The magnetic components are very important in power electronics and other areas
of electrical engineering. Power losses in inductors and transformers are due to skin and proximity
effects in windings, as well as to eddy currents and hysteresis in magnetic cores. Failure mechanisms
in magnetic components are mostly due to excessive temperature rise. Therefore, these devices should
satisfy both magnetic requirements and thermal limitations.

In this chapter, fundamental laws, quantities, and units of the magnetic theory are reviewed. Mag-
netic relationships are given and an equation for the inductance is derived. Hysteresis and eddy-current
losses are studied. There are two kinds of eddy-current effects: skin effect and proximity effect. Both
of these effects cause nonuniform distribution of the current density in conductors and increase the
conductor ac resistance at high frequencies. The winding and core losses are determined. The winding
resistance of magnetic components is studied using Dowell’s equation [1]. Three shapes of winding
conductors are considered: rectangular, square, and round. Properties of magnetic materials are also
discussed.
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2 HIGH-FREQUENCY MAGNETIC COMPONENTS

1.2 Magnetic Relationships

The magnetic field is characterized by magnetomotive force F, magnetic field intensity H , magnetic
flux density B , magnetic flux φ, and magnetic flux linkage λ.

1.2.1 Magnetomotive Force

An inductor with N turns carrying an ac current i produces the magnetomotive force (MMF), which
is also called the magnetomotance. The MMF is given by

F = Ni (A · turns). (1.1)

Its descriptive unit is the ampere-turn (A.t ). However, the approved SI unit of the MMF is the ampere
(A). The MMF is a source in magnetic circuits. The magnetic flux φ is forced to flow in a magnetic
circuit by the MMF F = Ni driving the magnetic circuit. Every time another complete turn with the
current i is added, the result of the integration increases by current i . The magnetomotive force is
analogous to the electromotive force, which causes a current flow i .

1.2.2 Magnetic Field Intensity

The magnetic field intensity (or magnetic field strength) is given by

H = F
l

= Ni

l

(
A

m

)
, (1.2)

where l is the inductor length and N is the number of turns.

1.2.3 Magnetic Flux

The amount of magnetic flux passing through a surface S is given by

φ =
∫ ∫

S
B · dS (Wb). (1.3)

The unit of the magnetic flux is the weber. If the magnetic flux is uniform and perpendicular to the
surface A, the amount of the magnetic flux passing through the surface A is

φ = AB (Wb). (1.4)

The direction of a magnetic flux φ is determined by the right-hand rule. This rule states that if
the fingers of the right hand encircle a coil in the direction of the current i , the thumb indicates the
direction of the magnetic flux φ.

1.2.4 Magnetic Flux Density

The magnetic flux density, or induction, is given by

B = φ

A
(T). (1.5)
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The relationship between the magnetic flux density and the magnetic field intensity is given by

B = μH = μrμ0H = μNi

l
= μF

l
(T) (1.6)

where the permeability of free space is

μ0 = 4π × 10−7 (H/m); (1.7)

μ = μrμ0 is the permeability, and μr = μ/μ0 is the relative permeability (i.e., relative to free space).
For free space, insulators, and nonmagnetic conductors, μr = 1. For diamagnetics such as copper (Cu),
lead (Pb), silver (Ag), and gold (Au), μr ≈ 1 − 10−5 ≈ 1. However, for ferromagnetic materials such
as iron (Fe), cobalt (Co), nickel (Ni), and their alloys, μr > 1 and it can be as high as 100 000. The
permeability is the measure of the ability of a material to conduct magnetic flux. It describes how
easily a material can be magnetized. For a large value of μr , a small current i produces a large flux
density B . The magnetic flux takes the path of the highest permeability.

For ferromagnetic materials, the relationship between B and H is nonlinear because the relative
permeability μr depends on the magnetic field intensity H . Figure 1.1 shows simplified plots of the
magnetic flux density B as a function of the magnetic field intensity H for air core inductors and
for ferromagnetic core inductors. The straight line describes the air core inductor and has a slope
μ0 for all values of H . These inductors are linear. The piecewise linear approximation corresponds
to the ferromagnetic core inductors, where Bs is the saturation flux density and Hs = Bs/(μrμ0) is
the magnetic field intensity corresponding to Bs . At low values of the magnetic flux density B <

Bs , the relative permeability μr is high and the slope of the B –H curve μrμ0 is also high. For
B > Bs , the core saturates and μr = 1, reducing the slope of the B –H curve to μ0.

The total peak magnetic flux density Bpk , which in general consists of both the dc component BDC

and the amplitude of the ac component Bm , should be lower than the saturation flux density Bs of a
magnetic core at the highest operating temperature Tmax:

Bpk = BDC + Bm ≤ Bs . (1.8)

The dc component of the magnetic flux density is caused by the dc component of the inductor
current IL:

BDC = μrμ0NIL

lc
. (1.9)

μ0

H

μ
0

μr μ0

Bs

B

Bs

Hs

Figure 1.1 Simplified plots of magnetic flux density B as a function of magnetic field intensity H for air core
inductors (straight line) and ferromagnetic core inductors (piecewise linear approximation).
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The ac component of the magnetic flux density is caused by the ac component of the inductor current
with its amplitude Im :

Bm = μrμ0NIm

lc
. (1.10)

Hence,

Bpk = μrμ0NIL

lc
+ μrμ0NIm

lc
= μrμ0N (IL + Im )

lc
≤ Bs . (1.11)

The saturation flux density Bs decreases with temperature. For ferrites, Bs may decrease by a factor
of 2 as the temperature increases from 20◦C to 90◦C.

1.2.5 Magnetic Flux Linkage

The magnetic flux linkage is the sum of the flux enclosed by each turn of wire wound around the
core. The magnetic flux linkage is the magnetic flux linking N turns and is described by

λ = N φ = NAcB = NAcμH = μAcN 2i

lc
= Li (V s). (1.12)

This equation is analogous to Ohm’s law v = Ri and the equation for the capacitor charge Q = Cv .
The unit of the flux linkage is the weber-turn. For sinusoidal waveforms, the relationship among the
amplitudes is

λm = N φm = NAcBm = NAcμHm = μrμ0AcN 2Im

lc
. (1.13)

The change in the magnetic linkage can be expressed as

�λ =
∫ t2

t1

vdt = λ(t2) − λ(t1). (1.14)

1.3 Magnetic Circuits

1.3.1 Reluctance

The reluctance R is the resistance of the core to the flow of the magnetic flux φ. It opposes the
magnetic flux flow, similarly to the way the resistance opposes the electric current flow. An element
of a magnetic circuit can be called a reluctor. The concept of reluctance is illustrated in Figure 1.2.
The reluctance of a basic magnetic circuit element is given by

R = 1

P = lc
μAc

(
A · turns

Wb

)
= lc

μAc

(
turns

H

)
, (1.15)

where Ac is the cross-sectional area of the core (i.e., the area through which the magnetic flux flows)
and lc is the mean magnetic path length (MPL), which is the mean length of the closed path that the
magnetic flux flows around the magnetic circuit. The reluctance is directly proportional the length of
the magnetic path lc and is inversely proportional to the cross-sectional area Ac through which the
magnetic flux φ flows. The permeance of a basic magnetic circuit element is

P = 1

R = μAc

lc

(
Wb

A · turns

)
= μAc

lc

(
H

turns

)
. (1.16)

When the number of turns N = 1, L = P. The reluctance is the magnetic resistance because it opposes
the establishment and the flow of a magnetic flux φ in a material. A poor conductor of the magnetic
flux has a high reluctance and a low permeance. The magnetic Ohm’s law is expressed as

φ = F
R = PF = μAcNi

lc
= μrcμ0AcNi

lc
(Wb). (1.17)

Magnetic flux always takes the path with the highest permeability μ.
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Figure 1.2 Reluctance. (a) Basic magnetic circuit element conducting magnetic flux φ. (b) Equivalent magnetic
circuit.
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Figure 1.3 Magnetic circuit. (a) An inductor composed of a core and a winding. (b) Equivalent magnetic
circuit.

In general, the magnetic circuit is the space in which the magnetic flux flows around the coil(s).
Figure 1.3 shows an example of a magnetic circuit. The reluctance in magnetic circuits is analogous to
the resistance R in electric circuits. Likewise, the permeance in magnetic circuits is analogous to the
conductance in electric circuits. Therefore, magnetic circuits described by the equation φ = F/R can
be solved in a similar manner as electric circuits described by Ohm’s law I = V /R = GV = (σA/l)V ,
where φ, F, R, P, B , λ, and σ correspond to I , V , R, G , J , Q , and μ, respectively. For example,
the reluctances can be connected in series or in parallel. In addition, the reluctance R = lc/μAc is
analogous to electric resistance R = l/σA, and flux density B = φ/Ac is analogous to current density
J = I /A. Table 1.1 lists analogous magnetic and electric quantities.

1.3.2 Magnetic Kirchhoff’s Voltage Law

Physical structures made of magnetic devices, such as inductors and transformers, can be analyzed
just like electric circuits. The magnetic law, analogous to Kirchhoff’s voltage law, states that the
sum of the magnetomotive forces Fk and the magnetic potential differences Rk φk around the closed
magnetic loop is zero:

n∑
k=1

Fk −
m∑

k=1

Rk φk = 0. (1.18)

For instance, an inductor with a simple core having an air gap as illustrated in Figure 1.4 is given by

Ni = F = Fc + Fg = φ(Rc + Rg ) (1.19)
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Table 1.1 Analogy between magnetic and
electric quantities

Magnetic quantity Electric quantity

F = Ni V
φ I
H E
B J
P G
λ Q
μ σ

L C

φ = F
R I = V

R

B = φ

A
J = I

A

H = F
l

= Ni

l
E = V

l

R = l

μA
R = l

σA

B = μH D = εE

λ = Li Q = Cv

wm = 1

2
μH 2 we = 1

2
εE 2

Wm = 1

2
Li 2 We = 1

2
Cv2

(b)

lg
F = Ni

+

φ

− Rc

Rg
N

φ

Ac

i

lc

(a)

Figure 1.4 Magnetic circuit illustrating the magnetic Kirchhoff’s voltage law. (a) An inductor composed of a
core with air gap and a winding. (b) Equivalent magnetic circuit.

where the reluctance of the core is

Rc = lc
μrcμ0Ac

, (1.20)

the reluctance of the air gap is

Rg = lg
μ0Ac

, (1.21)

and it assumed that φc = φg = φ. The reluctance of the air gap Rg is much higher than the reluctance
of the core Rc .
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Figure 1.5 Magnetic circuit illustrating the continuity of the magnetic flux. (a) An inductor composed of a
core and a winding. (b) Equivalent magnetic circuit.

1.3.3 Magnetic Flux Continuity

The continuity of the magnetic flux law states that the net magnetic flux through any closed surface
is always zero,

φ = ©
∫∫

A
BdA = 0, (1.22)

or the net magnetic flux entering the node is zero,
n∑

k=1

φk =
n∑

k=1

Ak Bk = 0. (1.23)

This law is analogous to Kirchhoff’s current law introduced by Gauss and can be called Kirchhoff’s
flux law. Figure 1.5 illustrates the continuity of the magnetic flux law. For example, when three core
legs meet at a node,

φ1 = φ2 + φ3, (1.24)

which can be expressed by

F1

R1
= F2

R2
+ F3

R3
. (1.25)

If all three legs of the core have windings, then we have

N1i1
R1

= N2i2
R2

+ N3i3
R3

. (1.26)

Usually, most of the magnetic flux is confined inside an inductor, e.g., for an inductor with a toroidal
core. The flux outside an inductor is called the leakage flux.

1.4 Magnetic Laws

1.4.1 Ampère’s Law

Ampère’s law (1826) states that a time-varying current i (t) induces a time-varying magnetic field
H (t). When a conductor (such as an inductor) carries a time-varying current i (t), a magnetic field
H (t) is induced. In a conductor, the induced magnetic field may be due to the conductor’s own ac
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current or the ac current of other adjacent conductors. The integral form of Ampère’s circuital law,
or simply Ampère’s law, states that the closed line integral of the magnetic field intensity H around a
closed path C is equal to the total current ienc passing through the interior of the closed path bounding
the surface S : ∮

C
H · d l =

∫ ∫
S

J · dS =
N∑

n=1

in = i1 + i2 + · · · + iN = ienc, (1.27)

where d l is the vector length element pointing in the direction of the Amperian path. The current
ienc enclosed by the path C is given by the integral of the normal component J over the surface S .
The surface integral of the current density J is equal to the conduction current I flowing through the
surface S . For good conductors, the displacement current can be ignored. For an inductor with N
turns, Ampère’s law is ∮

C
H · d l = Ni . (1.28)

Ampère’s law in its discrete form can be expressed as

n∑
k=1

Hk lk =
m∑

k=1

Nk ik . (1.29)

For example, Ampère’s law for an inductor with an air gap is

Hclc + Hg lg = Ni . (1.30)

If the current density J is uniform and perpendicular to the surface S ,

HC = SJ . (1.31)

The current density J in winding conductors of magnetic components used in power electronics is
usually in the range of 0.1 to 10 A/mm2. The displacement current is neglected in (1.27). Ampère’s
law constitutes one of Maxwell’s equations in integral form.

Example 1.1

An infinitely long round straight wire of radius ro carries current i = Im cos ωt in steady state at low
frequencies. Determine the waveforms of the magnetic field intensity H (r , t) inside and outside the
wire.

Solution: At low frequencies, the skin effect can be neglected and the current is uniformly distributed
over the cross section of the wire, as shown in Figure 1.6.

The magnetic field intensity inside the wire. The current in the conductor induces a concentric
magnetic field inside and outside the conductor. The current flowing through the area enclosed by
the cylindrical shell of radius r at low frequencies is given by

ienc = Im(enc) cos ωt (1.32)

where Im(enc) is the amplitude of the current enclosed by the shell. Hence, the amplitude of the current
density at a radius r is

Jm (r) = Im(enc)

πr2
, for r ≤ ro , (1.33)

and the amplitude of the current density at the wire surface r = ro is

Jm (ro) = Im

πr2
o
. (1.34)
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−ro
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−ro

ro0 r
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r
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iC2
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Im

Hm

r

Figure 1.6 Cross section of an infinitely long round straight wire carrying a uniform current i and amplitudes
of current density Jm , enclosed current Im(enc), and magnetic field intensity Hm as a function of the distance from
the wire center r at low frequencies (i.e., when the skin effect can be neglected).

The current density is uniform at low frequencies (where the skin effect can be neglected), i.e.,
Jm (r) = Jm (ro), yielding the amplitude of the enclosed current

Im(enc) = Im

(
r

ro

)2

, for r ≤ ro . (1.35)

From Ampère’s law,

Im(enc) =
∮

C1

H · d l = Hm (r)

∮
C1

dl = 2πrHm(r), for r ≤ ro , (1.36)

where C1 = 2πr with r ≤ ro . Figure 1.6 shows a plot of Im(enc) as a function of distance from the
conductor center r . Equating the right-hand sides of (1.35) and (1.36), we obtain the amplitude of
the magnetic field intensity inside the wire for low frequencies

Hm(r) = Im

(
r

ro

)2 1

2πr
= Im

r

2πr2
o

, for r ≤ ro . (1.37)

Figure 1.6 shows a plot of the amplitude of the magnetic field intensity Hm as a function of r . The
amplitude of the magnetic field intensity Hm is zero at the wire center because the enclosed current
is zero. The waveform of the magnetic field inside the wire at low frequencies is given by

H (r , t) = Im
r

2πr2
o

cos ωt , for r ≤ ro . (1.38)

Thus, the amplitude of the magnetic field intensity Hm inside the wire at radius r is determined solely
by the amplitude of the current inside the radius r .
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The magnetic field intensity outside the wire. The entire current i = Im cos ωt is enclosed by a
path of radius r ≥ ro . From Ampère’s law, the amplitude of the entire current i is

Im =
∮

C2

H · d l = Hm (r)

∮
C2

dl = 2πrHm(r), for r ≥ ro , (1.39)

where C2 = 2πr with r ≥ ro . The amplitude of the magnetic field intensity outside the conductor at
any frequency is given by the expression

Hm (r) = Im

2πr
, for r ≥ ro , (1.40)

and the waveform of this field is

H (r , t) = Im

2πr
cos ωt , for r ≥ ro . (1.41)

The amplitude of the magnetic field intensity increases linearly with r inside the wire from 0 to
Hm(ro) = Im/(2πro) at low frequencies. The amplitude of the magnetic field intensity is inversely
proportional to r outside the wire at any frequency.

1.4.2 Faraday’s Law

A time-varying current produces a magnetic field, and a time-varying magnetic field can produce an
electric current. In 1820, Hans Christian Oersted showed that a conductor carrying a current produces
a magnetic field, which can affect a compass needle. Ampère measured that this magnetic field
intensity is linearly related to the current which produces it. In 1831, Michael Faraday discovered
that a current can be produced by an alternating magnetic field and that a time-varying magnetic field
can induce a voltage, or an electromotive force, in an adjacent circuit. This voltage is proportional
to the rate of change of magnetic flux linkage λ, or magnetic flux φ, or the current i , producing the
magnetic field.

Faraday’s law (1831) states that a time-varying magnetic flux φ(t) passing through a closed loop,
such as an inductor turn, generates a voltage v(t) in the loop and for a linear inductor it is expressed
by

v(t) = dλ

dt
= d(N φ)

dt
= N

dφ

dt
= N

d

dt

(
Ni

R

)
= N 2

R
di

dt
= L

di

dt

= NA
dB

dt
= NAμ

dH

dt
= μAN 2

l

di

dt
. (1.42)

The voltage v is proportional to the rate of change of current i . This voltage, in turn, may produce a
current in the circuit. The inductance L relates the induced voltage v to the current i . The voltage v
across the terminals of an inductor L is proportional to the time rate of change of the current i in the
inductor. If the inductor current is constant, the voltage across an ideal inductor is zero. The inductor
behaves as a short circuit for a dc current. The inductor current cannot change instantaneously.

For sinusoidal waveforms, the derivative d/dt can be replaced by jω and Faraday’s law in phasor
form can be expressed as

VLm = jωλm. (1.43)

For nonlinear, time-varying inductors, the relationships are

λ(t) = L(t)i (t) (1.44)

and

v(t) = L(t)
di (t)

dt
+ i (t)

dL(t)

dt
. (1.45)

The impedance of lossless inductive components in terms of phasors of sinusoidal inductor current
ILm and voltage Vm = jωλm is

Z = Vm

ILm
= jωλ

Im
= jωL. (1.46)
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The impedance of lossy inductive components in terms of phasors is

Z = Vm

Im
= jωλm

Im
= R + jωL. (1.47)

Since

vdt = L

(
di

dt

)
dt = Ldi , (1.48)

the current in an inductor is given by

i (t) = 1

L

∫ t

0
vdt + i (0) = 1

ωL

∫ ωt

0
vd(ωt) + i (0). (1.49)

1.4.3 Lenz’s Law

Lenz’s law (1834) states that the voltage v(t) induced by an applied time-varying magnetic flux
φa (t) has a direction that induces current iE (t) in the closed loop, which in turn induces a magnetic
flux φi (t) that tends to oppose the change in the applied flux φa (t), as illustrated in Figure 1.7.
The direction of the induced current is always such that it produces a magnetic field that opposes
the change in the original flux. If φa (t) increases, the induced current produces an opposing flux
φi (t). If φa (t) decreases, the induced current produces an aiding flux φi (t). The induced currents
in the closed loops are called eddy currents. Eddy currents occur when a conductor is subjected to
time-varying magnetic fields. In accordance with Lenz’s law, the eddy currents produce their own
magnetic fields to oppose the original field. The effects of eddy currents on winding conductors and
magnetic cores are: nonuniform current distribution, increased effective resistance, increased power
loss, and reduced internal inductance. If the resistivity of a conductor was zero (as in a perfect
conductor), eddy-current loops would be generated with such a magnitude and phase to exactly
cancel the applied magnetic field. A perfect conductor would oppose any change in externally applied
magnetic field. Circulating eddy currents would be induced to oppose any buildup of magnetic field
in the conductor.

1.4.4 Ohms’s Law

The point form of Ohm’s law (1827) for conducting materials is

E = ρJ = J
σ

, (1.50)

where ρ is the resistivity and σ = 1/ρ is the conductivity of a material.

fa(t )

fi (t )

iE

Figure 1.7 Illustration of Lenz’s law generating eddy currents. The applied time-varying magnetic flux φa (t)
induces eddy current iE (t), which in turn generates induced flux φi (t) that opposes changes in the applied flux
φa (t).



12 HIGH-FREQUENCY MAGNETIC COMPONENTS

1.4.5 Maxwell’s Equations

Maxwell’s equations (1865) govern electromagnetic waves. They couple electric fields, magnetic
fields, and current densities. Maxwell’s equations in differential (point) form in the time domain at
any point in space and at any time are given by

∇ × H = J + ∂D
∂t

(Ampère’s law), (1.51)

∇ × E = −∂B
∂t

= −μ
∂H
∂t

(Faraday’s law), (1.52)

∇ · D = ρv (Gauss’s law), (1.53)

∇ · B = 0 (flux continuity law). (1.54)

where ∂D/∂t is the displacement current density. The current density J and the volume charge
density ρv are the sources of electromagnetic fields H, B = μH, E , and D = εE , where μ is the
permeability and ε is the permittivity. They are related by the charge or current conservation equation

∇ · J + ∂ρv

∂t
= 0. (1.55)

Script letters are used to designate instantaneous field quantities, which are functions of position and
time, e.g., E(x , y , z , t).

The phasor technique is a useful mathematical tool for solving problems in linear systems that
involve periodic sinusoidal or nonsinusoidal waveforms in steady state. A periodic nonsinusoidal
waveform, such as the rectangular wave, can be expanded into a Fourier series of sinusoidal com-
ponents, which is a superposition of harmonic sinusoids. If the excitation is a sinusoidal function of
time, the steady-state waveforms described in the time domain can be represented by phasors and
integro-differential equations become linear equations with no sinusoidal functions, which are easy to
solve. Differentiation in the time domain is equivalent to multiplication by jω in the phasor domain,
and integration in the time domain is equivalent to division by jω in the phasor domain. The solutions
in the phasor domain can be converted back into the time domain.

The electric field intensity for the one-dimensional case in the time domain is given by

E(x , t) = Em (0)e− x
δw cos

(
ωt − x

δw
+ φo

)
= Re{E(x)ejωt }, (1.56)

where δw is the skin depth and the phasor of the electric field intensity is

E(x) = Em (0)e− x
δw e−j x

δw ejφo . (1.57)

Similarly, the magnetic field intensity is

H(x , t) = Hm (0)e− x
δw cos

(
ωt − x

δw
+ θo

)
= Re{H(x)ejωt }, (1.58)

where the phasor of the magnetic field intensity is

H(x) = Hm (0)e− x
δw e−j x

δw ejθo . (1.59)

Substituting the electric and magnetic field intensities into Maxwell’s equation in the time domain,
we obtain

∇ × Re{E(x)ejωt } = − ∂

∂t
Re{μH(x)ejωt }, (1.60)

which becomes

Re{∇ × E(x)ejωt } = Re{−jωμH(x)ejωt }. (1.61)



FUNDAMENTALS OF MAGNETIC DEVICES 13

Thus, ∂
∂ t in Maxwell’s equations in the time domain can be replaced by jω to obtain Maxwell’s

equations for sinusoidal field waveforms in phasor form:

∇ × E = −jωμH = −jωB, (1.62)

∇ × H = J + jωD = (σ + jωε)E, (1.63)

∇ · D = ρv , (1.64)

∇ · B = 0. (1.65)

The constitutive equations for linear and isotropic materials are:

B = μH, (1.66)

D = εH, (1.67)

J = σE. (1.68)

1.4.6 Maxwell’s Equations for Good Conductors

In general, Maxwell’s equation in phasor form, which is the differential form of Ampère’s equation,
together with Ohm’s law (J = σE), is given by

∇ × H = J + jωD = σE + jωεE = (σ + jωε)E, (1.69)

where σ is the conductivity. For good conductors, conduction current density J = σE dominates
displacement current density jωεE, and the following inequality is satisfied:

σ � ωε. (1.70)

For copper, this inequality is satisfied for frequencies up to 1016 Hz. Maxwell’s equation for good
conductors becomes

∇ × H ≈ J. (1.71)

Maxwell’s equation in phasor form, which is the differential form of Faraday’s law, is expressed as

∇ × E = −jωμH. (1.72)

Using Ohm’s law E = J/σ , we obtain

∇ × J
σ

= −jωμH, (1.73)

producing another form of Maxwell’s equation,

∇ × J = −jωμσH. (1.74)

Assuming that σ and μ are homogeneous, taking the curl on both sides of the above equation, and
substituting into Maxwell’s equation,

∇ × (∇ × J) = −jωμσ∇ × H = −jωμσJ. (1.75)

Expanding the left-hand side,

∇(∇ · J) − ∇2J = −jωμσJ, (1.76)

where the principle of conservation of charge states that charge can be neither created nor destroyed,
and its point form is expressed by ∇ · J = 0. It is a point form of Kirchhoff’s current law. The
conduction current density J in good conductors must satisfy the second-order partial differential
equation

∇2J = jωμσJ. (1.77)
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For good conductors,

∇ · (∇ × H) = (σ + jωε)(∇ · E) = 0. (1.78)

Hence, Maxwell’s equation for good conductors becomes

∇ · D = ρv = 0. (1.79)

In good conductors, mobile electrons drift through a lattice of positive ions encountering frequent
collisions. On average, the net charge over a large volume (compared with atomic dimensions) is zero
even though some of the charges are moving and causing current flow. The net movement velocity
or drift velocity is proportional to the electric field intensity.

1.4.7 Poynting Vector

The instantaneous Poynting vector (1884) at a given point is expressed by

S = E × H (W/m2). (1.80)

The Poynting vector represents the direction and density of power flow at any point, i.e., it is the rate
at which energy flows through a unit surface area perpendicular to direction of wave propagation.
The direction of S is normal to both E and H. The cross product E × H points in the direction of
power flow. The vector S represents an instantaneous surface power density, i.e., an instantaneous
power per unit area. Since E is measured in V/m and H in A/m, S is measured in (V/m) × (A/m)
= VA/m2 = W/m2.

For time-harmonic fields, the complex Poynting vector is

Sc = E × H∗ (W/m2). (1.81)

The time-averaged power density (i.e., averaged over one period of the sinusoidal excitation) is given
by the time-averaged Poynting vector

Sav = 1

2
Re{E × H∗} (W/m2). (1.82)

The amount of time-averaged power passing through a surface S is

Pav =
∫

S
Sav · ds = 1

2
Re

{∫
s

(
E × H∗) • ds

}
(W). (1.83)

For a linear, isotropic, and time-invariant medium, the Poynting theorem is∮
S
(E × H) · ds = −

∫
V

J · EdV − ∂

∂t

∫
V

(
1

2
μH 2 + 1

2
εE 2

)
dV . (1.84)

For sinusoidal field waveforms,∮
S
(E × H∗) · ds = −

∫
V

[E · J∗ + jω(H∗ · B + E∗ · D]dV

= −1

2

∫
V

ρJ 2dV − jω
∫

V

(
1

2
μH 2 + 1

2
εE 2

)
dV (1.85)

= −
∫

V
pd dV − ∂

d∂

∫
V
(wm + we)dV ,

where an asterisk ∗ indicates a complex conjugate quantity, E = ρJ is point Ohm’s law, wm = 1
2 μH 2

is the point magnetic energy density, and we = 1
2 εE 2 is the point electric energy density. The first

term on the right-hand side of (1.85) represents the ohmic power dissipated as heat in the volume
V as a result of the flow of conduction current density J = σE due to the presence of the electric
field E. This power exits the volume V through its surface S . The second and third terms represent
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the time rate of change (decrease) of the magnetic and electric energies stored in the magnetic and
electric fields, respectively. The principle of conservation of energy states in this case that the total
power flow out of a closed surface S at any instant is equal to the sum of the ohmic power dissipated
within the enclosed volume V and the rates of decrease of the stored magnetic and electric energies.

In steady state, the complex power flowing into a volume V surrounded by a closed surface S is
given by

P = 1

2

∮
S
(E × H∗) · ds = PD + 2jω(Wm + We) (W), (1.86)

where the time-averaged real power dissipated in the volume V is given by Joule’s law as

PD = 1

2

∫
V

E · J∗dV = 1

2

∫
V

ρ|J|2dV = 1

2

∫
V

σ |E|2dV . (1.87)

wm = μH 2/2 (J/m3) is the magnetic energy density stored in the magnetic field in the volume V ,
we = εE 2/2 (J/m3) is the electric energy density stored in the electric field in the volume V , B · H/2
is the magnetic energy density, D · E/2 is the electric energy density, and pD = ρJ 2 (W/m3) is the
ohmic power loss density.

1.4.8 Joule’s Law

The current density in a conductor in the time domain in steady state for the one-dimensional case is
described by

Re{J(x)ejωt } = J (x , t) = Jm (0)e− x
δw cos

(
ωt − x

δw
+ φo

)
, (1.88)

where δw is the skin depth and φo is the initial phase. It is assumed that the current amplitude varies
only in the x direction. From Ohm’s law,

E (x , t) = ρJ (x , t) = ρJm (0)e− x
δw cos

(
ωt − x

δw
+ φo

)
, (1.89)

where Em (0) = ρJm (0). Assuming that ρ is a real number, the phase shift between J (x , t) and E (x , t)
is zero. The instantaneous power density at a point is given by

p(x , t) = J (x , t)E (x , t) = Jm (0)Em(0)e− 2x
δw cos2

(
ωt − x

δw
+ φo

)

= ρJ 2
m (0)e− 2x

δw cos2
(

ωt − x

δw
+ φo

)

= Jm (0)Em (0)

2
e− 2x

δw + Jm (0)Em(0)

2
e− 2x

δw cos 2

(
ωt − x

δw
+ φo

)

= ρJ 2
m (0)

2
e− 2x

δw + ρJ 2
m (0)

2
e− 2x

δw cos 2

(
ωt − x

δw
+ φo

)

= pD (x) + pD (x) cos 2

(
ωt − x

δw
+ φo

)
, (1.90)

where cos2 z = 1
2 + 1

2 cos 2z . The first term in the above equation represents the time-averaged real
power density dissipated in a conductor at a point, and the second term represents the ac component
of the instantaneous real power density dissipated in a conductor as heat at a point. The time-averaged
real power density dissipated in a conductor at a point is

pD (x) = 1

T

∫ T

0
p(x , t)dt = 1

2π

∫ 2π

0
p(x , ωt)d(ωt) = Jm (0)Em(0)

2
e− 2x

δw = ρJ 2
m (0)

2
e− 2x

δw , (1.91)
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where T is the period. The total time-averaged power dissipated as heat in a conductor of volume
V is

PD =
∫ ∫ ∫

V
pD (x)dV = 1

2

∫ ∫ ∫
V

Jm (0)Em(0)e− 2x
δw dxdydz

= 1

2

∫ ∫ ∫
V

ρJ 2
m (0)e− 2x

δw dxdydz . (1.92)

When electromagnetic fields are sinusoidal, phasors are described in space as follows: H(r) =
H(x , y , z ), E(r) = E(x , y , z ), and J(r) = J(x , y , z ). The point (local) power density is

p(r, t) = Re{J(r, t} · Re{E(r, t} = 1

4

[
J(r, t) + J∗(r, t)

] [
E(r, t) + E∗(r, t)

]
= 1

4

[
J(r) · E∗(r) + J(r) · E(r)e2jωt + J∗(r) · E(r) + J∗(r) · E∗(r)e−2jωt ]

= 1

2
Re
[
J(r) · E∗(r) + J(r) · E(r)e2jωt ] . (1.93)

The time-averaged real power density dissipated in a conductor at a point r is

pD (r) = 1

T

∫ T

0
p(r, t)dt = 1

2
Re
[
J(r) · E∗(r)

]
. (1.94)

The time-averaged power dissipated as heat in the conductor of volume V is given by

PD =
∫ ∫ ∫

V
pD (r)dV = 1

2
Re
∫ ∫ ∫

V
J(r) · E∗(r)dV

= 1

2

∫ ∫ ∫
V

ρJ(r) · J∗(r)dV = 1

2

∫ ∫ ∫
V

ρ|J(r)|2dV . (1.95)

The current density in phasor form for the one-dimensional case is given by

J(x) = Jm (0)e− x
δw e−j x

δw ejφo = Jm (x)ej (φo− x
δw

) (1.96)

where the amplitude is

Jm (x) = Jm (0)e− x
δw . (1.97)

The time-averaged point power density for sinusoidal waveforms is given by point Joule’s law in
phasor form:

PD (x) = 1

2
Re(J · E∗) = 1

2
ρJ · J∗ = 1

2
ρ|J (x)|2 = 1

2
ρJ 2

m (0)e− 2x
δw , (1.98)

where δw is the skin depth. For periodic waveforms, the time-averaged real power dissipated in a
conductor of volume V and resistivity ρ due to conversion of electromagnetic energy to thermal
energy (heat) is given by Joule’s law in phasor form:

PD = 1

2
Re
∫ ∫ ∫

V
J · E∗dV = 1

2

∫ ∫ ∫
V

ρJ · J∗dV = 1

2

∫ ∫ ∫
V

ρ|J |2dV , (1.99)

where J and E are the amplitudes of the current density and the electric field intensity, respectively.
The time-averaged power loss density Pv is defined as the total time-averaged power loss PD per
unit volume,

Pv = PD

V
, (1.100)

where V is the volume carrying the current.
Since B = μH, the point (local) magnetic energy density for sinusoidal waveforms is given by

wm(x) = 1

2
B · H∗ = 1

2
μH · H∗ = 1

2
μ|H (x)|2. (1.101)
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The total magnetic energy stored in inductor L is given by

Wm =
∫

ivdt =
∫

iL
di

dt
dt = L

∫ Im

0
idi = 1

2
LI 2

m = 1

2

N 2

R
= F 2

m

2R
= 1

2

μN 2S

l

(
Bl

μN

)2

= 1

2

∫ ∫ ∫
V

μ|H (x)|2dV , (1.102)

where V is the volume of the interior of the inductor and v = Ldi/dt . The magnetic energy density
wm is defined as the magnetic energy Wm per unit volume,

wm = Wm

V
. (1.103)

The time-averaged local magnetic energy density is given by

wm(x) = 1

2
B · H∗ = 1

2
μH · H∗ = 1

2
μ|H (x)|2

(
J

m3

)
. (1.104)

The total time-averaged magnetic energy is

Wm = 1

2

∫ ∫ ∫
V

B(x) · H∗(x)dV = 1

2

∫ ∫ ∫
V

μ|H (x)|2dV (J). (1.105)

1.5 Eddy Currents

Figure 1.8 illustrates eddy current induced by a time-varying magnetic field. Eddy currents circulate
in closed paths. In a conductor, the induced magnetic field may be caused by the conductor’s own
ac current or by the ac current of other adjacent conductors. According to Lenz’s law, the magnetic
field induces eddy currents, which generate magnetic field that opposes the original magnetic field.
According to Ampère’s law,

� × H = Ja + Je , (1.106)

where Ja is the applied current and Je is the eddy current. When the applied current Ja is zero and
the magnetic field is generated by adjacent conductors, we have

� × H = Je . (1.107)

The eddy-current density can be described by

Je = σE = E
ρ

. (1.108)

For sinusoidal waveforms, the phasor of the eddy-current density is given by

Je = −jωσA, (1.109)

where A is the phasor of the magnetic vector potential.

z

y

x

Conductor
H = Hm cos ωt

Je

Figure 1.8 Eddy current.
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1.6 Core Saturation

For an inductor with a magnetic core of cross-sectional area Ac and a saturation magnetic flux density
Bs , the magnetic flux at which the magnetic core begins to saturate is

φs = AcBs . (1.110)

Hence, the magnetic flux linkage at which the magnetic core begins to saturate is given by

λs = N φs = NAcBs = LIm(max). (1.111)

Thus,

NmaxAcBpk = LIm(max), (1.112)

yielding the maximum number of turns

Nmax = LIm(max)

AcBmax
. (1.113)

According to (1.2), the magnetic field intensity H is proportional to F = Ni . Therefore, there is
a maximum amplitude of the inductor current Im(max) at which the core saturates. Figure 1.9 shows
plots of B as a function of H and i . Since

Bs = μHs = μ
NIm(max)

lc
, (1.114)

to avoid core saturation, the ampere-turn limit is given by

NmaxIm(max) = Bs lc
μrcμ0

= Bs AcR = Bs lc
μrcμ0

. (1.115)

From Faraday’s law, dλ = vL(t)dt . Hence, the general relationship between the inductor voltage
and the flux linkage is given by

λ(t) =
∫ t

0
vL(t)dt + λ(0) = 1

ω

∫ ωt

0
vL(ωt)d(ωt) + λ(0). (1.116)

For a transformer,

(N1i1 + N2i2 + · · ·)max ≤ Bs AcR = Bs lc
μrcμ0

.

1.6.1 Core Saturation for Sinusoidal Inductor Voltage

Consider an inductor with a magnetic core of saturation flux density Bs . Figure 1.10 shows sinusoidal
waveforms of the inductor voltage vL and the magnetic flux linkage λ. The dc components of these
waveforms are assumed to be zero. The inductor voltage is given by

vL = VLm sin ωt . (1.117)

The magnetic flux linkage is

λ(t) = 1

ω

∫ ωt

0
vL(ωt)d(ωt) + λ(0) = 1

ω

∫ ωt

0
VLm sin ωtd(ωt) + λ(0)

= VLm

ω
(1 − cos ωt) + λ(0) = VLm

ω
− VLm

ω
cos ωt + λ(0). (1.118)

Thus, the peak-to-peak value of the magnetic flux linkage is

�λ = λ(π) − λ(0) = 2VLm

ω
= N φ = NAcBm < NAcBs . (1.119)
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μ0
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μr μ0

Bs

B

Hs

(a)

iIm (max)

(b)

Bs

Bs

B

Bs

Figure 1.9 (a) Magnetic flux density B as a function of magnetic field intensity H . (b) Magnetic flux density
B as a function of inductor current i at a fixed number of turns N .

ωt

0

vL

λ

0

VLm

2ππ

λm

π 2π ωt
−λm

(a)

(b)

Figure 1.10 Waveforms of the inductor voltage and the magnetic flux linkage for sinusoidal inductor voltage.
(a) Waveform of the inductor voltage vL. (b) Waveform of the magnetic flux linkage λ.
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The initial value of the flux linkage is

λ(0) = −�λ

2
= −VLm

ω
. (1.120)

The steady-state waveform of the magnetic flux linkage is given by

λ(t) = −VLm

ω
cos ωt = −λm cos ωt , (1.121)

where the amplitude of the flux linkage is

λm = VLm

ω
. (1.122)

Thus, the amplitude of the magnetic flux linkage λm increases as the frequency f decreases. The
minimum frequency fmin occurs when the amplitude of the magnetic flux linkage λm reaches the
saturation value λs :

λm = λs = VLm(max)

ωmin
. (1.123)

The lowest frequency at which the inductor can operate without saturating the core is given by

fmin = VLm(max)

2πλs
= VLm(max)

2πNAcBs
=

√
2VLrms(max)

2πNAcBs
= VLrms(max)

Kf NAcBs
, (1.124)

where the waveform factor for a sinusoidal inductor voltage is

Kf = 2π√
2

= 4.44. (1.125)

The minimum frequency fmin decreases as N increases, Ac increases, Bs increases, and VLm(max)

decreases. As the temperature increases, Bs decreases. For ferrite cores, Bs may decrease by a factor
of 2 as T increases from room temperature to 100◦C.

Another method to derive the minimum frequency is as follows. Assume that the initial condition
is λ(0) = −λs . The magnetic flux linkage at core saturation is given by

λs = 1

ωmin

∫ π

0
vLd(ωt) + λ(0) = 1

ωmin

∫ π

0
VLm sin ωtd(ωt) − λs = 2VLm

ωmin
− λs , (1.126)

resulting in

λs = �λmax

2
= VLm(max)

ωmin
. (1.127)

Hence, the lowest frequency at which the inductor can operate without saturating the core is given by

fmin = VLm(max)

2πλs
= VLm(max)

2πNAcBs
. (1.128)

The maximum root mean square (rms) value of the sinusoidal voltage across an inductor is

VLrms(max) = ωNAcBs√
2

= 2π fNAcBs√
2

= Kf fNAcBs = 4.44 fNAcBs . (1.129)

1.6.2 Core Saturation for Square Wave Inductor Voltage

If the inductor voltage waveform is a square wave ±V , the magnetic flux linkage is a symmetrical
triangular wave, as shown in Figure 1.11. For the first half of the cycle,

vL = V , for 0 ≤ t ≤ T

2
, (1.130)

and

λ(t) =
∫ t

0
vL(t)dt + λ(0) =

∫ t

0
Vdt + λ(0) = Vt + λ(0), for 0 ≤ t ≤ T

2
. (1.131)
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t
0

t
0

TT
2

λm

vL

V

−V

λ

−λm

Figure 1.11 Waveforms of the inductor voltage and the magnetic flux linkage for a square wave inductor
voltage.

The flux linkage at t = T/2 is

λ

(
T

2

)
= VT

2
+ λ(0). (1.132)

For the second half of the cycle,

vL = −V , for
T

2
≤ t ≤ T , (1.133)

and

λ(t) =
∫ t

T/2
vL(t)dt + λ

(
T

2

)
=
∫ t

T/2
(−V )dt + λ

(
T

2

)

= −V

(
t − T

2

)
+ λ

(
T

2

)
, for

T

2
≤ t ≤ T . (1.134)

Hence, the peak-to-peak value of the magnetic flux linkage is

�λ = λ

(
T

2

)
− λ(0) = VT

2
+ λ(0) − λ(0) = VT

2
= V

2 f
, (1.135)

− λm = λ(0) = −�λ

2
= −VT

4
= − V

4 f
, (1.136)

and

λm = λ

(
T

2

)
= �λ

2
= VT

4
= V

4 f
. (1.137)

The steady-state waveform of the magnetic linkage is

λ(t) = Vt − V

4 f
, for 0 ≤ t ≤ T

2
, (1.138)

and

λ(t) = −V

(
t − T

2

)
+ V

4 f
, for

T

2
≤ t ≤ T . (1.139)

The rms value of the square wave inductor voltage is obtained as

Vrms =
√

1

T

∫ T

0
v2

L dt =
√

1

T

∫ T

0
V 2dt = V . (1.140)
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For core saturation,

λs = �λm

2
= Vmax

4 fmin
= N φs = NAcBs , (1.141)

where Vmax = VLrms(max) for the square wave inductor current. The minimum frequency at which the
core can be operated without saturation is given by

fmin = Vmax

4λs
= Vmax

4NAcBs
= Vmax

Kf NAcBs
(1.142)

where the waveform coefficient of the square inductor voltage is

Kf = 4. (1.143)

The maximum peak voltage of the square inductor voltage at the operating frequency f is

Vrms = Vmax = 4 fNAcBs . (1.144)

In general, the minimum core cross-sectional area is given by

Ac = VLrms

Kf fminNBpk
= VLrms

Kf fminN (BDC + Bm )
, (1.145)

where

Bpk = BDC + Bm ≤ Bs , for T ≤ Tmax, (1.146)

and Kf is the waveform coefficient of the inductor voltage. The peak value of the flux density Bpk

must be lower than Bs at the maximum operating temperature Tmax to avoid core saturation. The
amplitude of the ac component of the flux density Bm must be limited to avoid core saturation or to
reduce core loss. As the amplitude of the ac component of the flux density Bm increases, the core
loss also increases.

The saturation flux density Bs limits the maximum amplitude of the magnetic field intensity

Hs = Hm(max) = Bs

μrcμ0
= NILm(max)

lc
. (1.147)

The maximum amplitude of the current in the winding at which the core saturates is

Im(max) = lcBs

N μrcμ0
. (1.148)

As the amplitude of the inductor current ILm increases, the amplitude of the magnetic field Hm also
increases. To avoid core saturation,

NILm(max) <
Bs lc

μrcμ0
. (1.149)

When a core with an air gap is used, both amplitudes Hm and ILm can be increased to

Hm(max) = Bs

μreμ0
(1.150)

and

ILm(max) = lcBs

N μreμ0
, (1.151)

where μre is the core effective relative permeability.

1.6.3 Core Saturation for Rectangular Wave Inductor Voltage

Consider the situation where the inductor voltage waveform is a rectangular wave whose high level
is VH and low level is −VL, as depicted in Figure 1.12. The magnetic flux linkage is an asymmetrical
triangular wave, as shown in Figure 1.11. For the first part of the cycle,

vL = VH , for 0 ≤ t ≤ DT , (1.152)
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Figure 1.12 Waveforms of the inductor voltage and the magnetic flux linkage for a rectangular wave inductor
voltage.

and

λ(t) =
∫ t

0
vL(t)dt + λ(0) =

∫ t

0
VH dt + λ(0) = VH t + λ(0), for 0 ≤ t ≤ DT , (1.153)

where D is the duty cycle. The flux linkage at t = DT is given by

λ(DT ) = VH DT + λ(0). (1.154)

For the second part of the cycle,

vL = −VL, for DT ≤ t ≤ T , (1.155)

and

λ(t) =
∫ t

DT
vL(t)dt + λ(DT ) =

∫ t

DT
(−VL)dt + λ(DT )

= −VL(t − DT ) + λ(DT ), for DT ≤ t ≤ T . (1.156)

Hence, the peak-to-peak value of the magnetic flux linkage is

�λ = λ(DT ) − λ(0) = VH DT + λ(0) − λ(0) = VH DT = DVH

f
. (1.157)

The rms value of the inductor voltage is

VLrms =
√

1

T

∫ T

0
v2

L dt =
√

1

T

(∫ DT

0
V 2

H dt +
∫ T

DT
V 2

L dt

)
=
√

DV 2
H + (1 − D)V 2

L . (1.158)

Using the volt-second balance law, we obtain

VH DT = VL(1 − D)T (1.159)

yielding

VL

VH
= D

1 − D
. (1.160)
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Figure 1.13 Waveform coefficient Kf as a function of duty cycle D .

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

D

1/
K

f

Figure 1.14 Coefficient 1/Kf as a function of duty cycle D .
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Therefore,

VLrms = VH

√
D

1 − D
= VL

√
1 − D

D
. (1.161)

The flux linkage at the beginning of core saturation is

λs = �λmax

2
= DVH

2 fmin
= N φs = NAcBs . (1.162)

Hence, the minimum operating frequency is

fmin = DVH

2NAcBs
= VLrms

NAcBs

√
D(1 − D)

2
= VLrms

Kf NAcBs
, (1.163)

where the waveform coefficient is

Kf = 2√
D(1 − D)

. (1.164)

The minimum cross-sectional area is given by

Ac = VLrms

Kfmax fBs
. (1.165)

Figure 1.13 shows a plot of Kf as a function of the duty cycle D ; like many of the figures in this
book, it was created in MATLAB (see Appendix B). The minimum value of Kf occurs at D = 0.5.
The lowest value of fmin occurs at D = 0.5. Figure 1.14 depicts 1/Kf as a function of D . The core
cross-sectional area Ac is proportional to 1/Kf . The maximum value of Ac occurs at D = 0.5.

1.7 Volt-Second Balance

For periodic waveforms in steady state,

λ(T ) − λ(0) =
∫ T

0
vL(t)dt = 0. (1.166)

This equation is called a volt-second balance, which states that the area enclosed by the waveform
vL above zero must be equal to the area enclosed by the waveform vL below zero for steady state.
The volt-second balance can be expressed by∫ to

0
vL(t)dt = −

∫ T

to

vL(t)dt . (1.167)

1.8 Inductance

1.8.1 Definitions of Inductance

A coil is generally formed by winding a wire on a cylindrical former, called a bobbin. The inductance
depends on (1) winding geometry, (2) core geometry, (3) permeability of the core material, and (4)
frequency. There are several methods to determine the inductance.

Magnetic Flux Linkage Method
The inductance (or self-inductance) for linear inductors is defined as the ratio of the total magnetic
flux linkage λ to the time-varying (ac) current i , producing the flux linkage

L = λ

i
. (1.168)
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L

λ

i

Figure 1.15 Magnetic flux linkage λ as a function of current i producing the flux linkage for linear inductors.

The inductance of a linear inductor is a proportionality constant in the expression λ = Li . In gen-
eral, an ac current flowing through a conductor produces the magnetic linkage inside the conductor
(an internal magnetic linkage) λint and outside the conductor (an external magnetic linkage) λext.
Therefore, the inductance is defined as

L = λ

i
= λint + λext

i
. (1.169)

A single conductor carrying an ac current i is linked by its own magnetic flux. For linear inductors,
the flux linkage λ is proportional to current i , resulting in λ = Li . The inductance L is the slope of
the λ– i characteristic, as illustrated in Figure 1.15. This characteristic is analogous to the resistor
characteristic v = Ri or the capacitor characteristic Q = Cv . A circuit that is designed to have a
self-inductance is called an inductor. An inductor has a self-inductance of 1 H if a current of 1 A
produces a flux linkage of 1 V·s (or 1 Wb·turn).

A change in the current flowing through the inductor produces an induced electromotive force,
called an electromotance, or voltage ∮

C
E · d l = λ

dt
= L

di

dt
. (1.170)

An inductor has a self-inductance of 1 H if the current flowing through it changes at a rate of 1 A/s
when the voltage difference between its terminals is 1 V. The inductance L is a function of the number
of turns N , core permeability μrc , core geometry, and frequency f .

The inductance can be defined as

L = λ

i
= 1

i

∫ ∫
S

B · dS. (1.171)

The magnetic field produced by a current-carrying conductor links itself. The associated inductance
is called self-inductance. In some cases, the magnetic flux links only a part of the current and the
inductance is defined as

L = 1

i

∫ ∫
S

ienclosed

i
dφ. (1.172)

The total inductance of a conductor is made up of two components: an external inductance Lext

and an internal inductance Lint:

L = Lext + Lint. (1.173)

The external inductance Lext is due to the magnetic energy stored in the magnetic field outside the
conductor. This inductance is usually independent of frequency. The internal inductance Lint is due
to the magnetic energy stored in the internal magnetic field inside the conductor. This inductance
depends on frequency because the magnetic field intensity H distribution inside the conductor is a
function of frequency due to the skin effect. The internal inductance usually decreases with frequency.

The voltage across the inductance is

vL = dλ

dt
= N

dφ

dt
= N

dφ

diL

diL
dt

= L
diL
dt

. (1.174)

The self-inductance L relates the voltage induced in an inductor vL to the time-varying current iL
flowing through the same inductor.
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Reluctance Method
The inductance of an inductor can be determined using the core reluctance R or the core permeance P:

L = N 2

R = PN 2 = μrcμ0AcN 2

lc
. (1.175)

If N = 1, L = P = 1/R.

Magnetic Energy Method
Inductance may be equivalently defined using magnetic energy,

Wm = 1

2
LI 2

m = 1

2

∫
V
(B · H∗)dV , (1.176)

yielding the inductance

L = 2Wm

I 2
m

= 1

I 2
m

∫
V
(B · H∗)dV , (1.177)

where Im is the amplitude of the current flowing in the closed path and Wm is the energy stored in
the magnetic field produced by the current flowing through the inductor,

Wm = 1

2μ

∫ ∫ ∫
V

B2dV . (1.178)

Small-Signal Inductance
The small-signal (or incremental) inductance of a nonlinear inductor is defined as the ratio of the
infinitesimal change in the flux linkage to the infinitesimal change in the current producing it at a
given operating point Q(IDC , λDC ):

L = dλ

di

∣∣∣∣
Q
. (1.179)

Inductors with ferrous cores are nonlinear because the permeability depends on the applied magnetic
field H . Figure 1.16 shows a plot of the magnetic flux linkage λ as a function of current i for nonlinear
inductors. At low values of current, the core is not saturated and the relative permeability is high,
resulting in a high slope of the λ– i curve and a large inductance L1. When the core saturates, the

L2

λS

λS

λ

L1

Im (max) i

Figure 1.16 Magnetic flux linkage λ as a function of current i producing the flux linkage for nonlinear
inductors.
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relative permeability μrc becomes equal to 1, the slope of the λ– i curve decreases and the inductance
decreases to a lower value L2.

Vector Magnetic Potential Method
The inductance can be determined using the vector magnetic potential A:

L = 1

I 2

∫ ∫ ∫
V

A · JdV . (1.180)

The vector magnetic potential is given by

A(r) = μ

4π

∫ ∫ ∫
V

J(r)
R

dV . (1.181)

Hence, the inductance is given by

L = 1

I 2

∫ ∫ ∫
V

[
μ

4π

∫ ∫ ∫
V

J(r)
R

dV

]
· J(r)dV . (1.182)

Example 1.2

An inductor is wound on a CC core (see Figure 2.9) whose cross-sectional area is 2 cm × 2 cm,
lc = 16 cm, the core window is 3 cm × 3 cm, and μrc = 100. The core has no air gap. There is a
magnetic flux in the core φc and a leakage flux φl in the air. The inductor has 10 turns. Estimate the
inductance using the reluctance method.

Solution: The total magnetic flux is

φ = φc + φl . (1.183)

The inductance is

L = N φ

i
= N 2

(
1

Rc
+ 1

Rl

)
= N 2

(
μrcμ0Ac

lc
+ μ0Al

ll

)
. (1.184)

Let ll = lc/2 and Al = 4Ac . In this case, the inductance is given by

L = N 2
(

μrcμ0Ac

lc
+ 8μ0Ac

lc

)
= N 2

(
μ0Ac

lc

)
(μrc + 8)

= 102
(

4π × 10−7 × 4 × 10−4

16 × 10−2

)
(100 + 8) = 33.929 μH. (1.185)

The inductance is increased by 8% due to the leakage magnetic flux.

1.8.2 Inductance of Solenoid

Neglecting the end effects, the magnetic flux density inside a long solenoid is uniform and it is
given by

B = μNI

lc
. (1.186)

The magnetic flux inside is

φ = AcB = μNIAc

lc
= πμNIr2

lc
. (1.187)
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The flux linkage is

λ = N φ = μN 2IAc

lc
= πμN 2Ir2

lc
. (1.188)

The inductance of a long solenoid (theoretically infinitely long) with a core and without an air gap
at low frequencies is

L∞ = λ

I
= μrcμ0AcN 2

lc
= πμrcμ0r2N 2

lc
= N 2

lc/(μAc)
= N 2

R (1.189)

where Ac = πr2 is the core cross-sectional area, r is the mean coil radius, lc is the mean core length,
μrc is the relative permeability of the core, and N is the total number of turns. The inductance L is
proportional to the square of the number of turns N 2 and the cross-sectional area Ac , and is inversely
proportional to its length lc . More precisely, the inductance L is proportional to the ratio of the core
cross-sectional area to the magnetic path length Ac/lc .

The inductance of a short solenoid is smaller than that of an infinitely long round solenoid. As r/lc
increases, L/L∞ decreases, where L∞ is the inductance of an infinitely long solenoid. For example,
K = L/L∞ = 0.85 for r/lc = 0.2, K = 0.74 for r/lc = 0.4, K = 0.53 for r/lc = 1, K = 0.2 for
r/lc = 5, and K = 0.12 for r/lc = 10. A first-order approximation is

K = L

L∞
≈ 1

1 + 0.9
r

lc

, (1.190)

resulting in L ≈ KL∞ = L∞/(1 + 0.9r/lc). The inductance of a round single-layer solenoid of a
finite length lc can be approximated by Wheeler’s formula [38], which is correct to within 1% for
r/lc < 1.25 (or lc/(2r) > 0.4):

L = L∞

1 + 0.9
r

lc

= μrcμ0AcN 2

lc

(
1 + 0.9

r

lc

) = πμrcμ0r2N 2

lc

(
1 + 0.9

r

lc

) = πμrcμ0r2N 2

lc + 0.9r
(H)

= 0.4π2μrcr2N 2

lc + 0.9r
(μH), for

r

lc
< 1.25. (1.191)

Figure 1.17 shows a plot of L/L∞ as a function of r/lc . As the ratio of the external diameter to the
internal diameter decreases, the inductance also decreases.

The inductance of a multi-layer solenoid is given by

L = 0.8μπr2N 2

lc + 0.9r + b
, (1.192)

where b is the thickness of all layers (or coil build) and r is the average radius of the winding.
A more accurate equation for the inductance of a multi-layer inductor is

L = μπr2N 2

lc

1

1 + 0.9
r

lc
+ 0.32

b

r
+ 0.84

b

lc

. (1.193)

The inductance predicted by this equation is within 2% of the exact value.

Example 1.3

An air core solenoid has N = 20, lc = 15 cm, and r = 3 cm. Find the inductance.

Solution: The inductance of the solenoid is

L = πμrcμ0r2N 2

lc

(
1 + 0.9

r

lc

) = π × 1 × 4π × 10−7 × (3 × 10−2)2 × 202

15 × 10−2

(
1 + 0.9 × 3 × 10−2

15 × 10−2

) = 8.0295 μH. (1.194)

Note that the inductance calculated in this example is about 15% less than the inductance calculated
for a very long inductor because K = 0.8475.
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Figure 1.17 Plot of L/L∞ as a function of r/lc .

1.8.3 Inductance of Inductor with Toroidal Core

An idealized toroid can be thought as a finite-length solenoid bent around to close on itself to form
a doughnut shape. A toroidal inductor with a rectangular cross section is shown in Figure 1.18. The
dimensions of the magnetic core are: a is the inner radius, b is the outer radius, and h is the toroid
height. The toroid is symmetrical about its axis. Thus,

dl = rdϕ. (1.195)

Applying Ampère’s law, ∮
C

B · d l =
∫ 2π

0
Brdϕ = Br

∫ 2π

0
dϕ = 2πrB . (1.196)

I

I

b

a drr

h

Figure 1.18 Toroidal inductor.
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Since the path of integration encircles a total current NI , we obtain

2πrB = μNI . (1.197)

Hence, the magnetic flux density inside the toroidal core is given by

B(r) = μNI

2πr
, for a ≤ r ≤ b. (1.198)

Since dS = hdr, the magnetic flux inside the toroidal core is

φ =
∫ ∫

S
B(r)dS =

∫ b

a

∫ h

0

(
μNI

2πr

)
(hdr) = μNIh

2π

∫ b

a

dr

r
=
∫

S

(
μNI

2πr

)
(hdr)

= μNIh

2π
ln

(
b

a

)
(1.199)

where S is the surface bounded by the path C . The flux linkage of the toroidal inductor is

λ = N φ = μhN 2I

2π
ln

(
b

a

)
(1.200)

resulting in the inductance of a toroidal coil

L = λ

I
= μrcμ0hN 2

2π
ln

(
b

a

)
. (1.201)

The inductance of a toroidal coil with a round cross section can be described by the expression for
the inductance of a long solenoid

L = μrcμ0AcN 2

lc
= μrcμ0AcN 2

2πR
(1.202)

where R = (a + b)/2 is the mean radius of the core, lc = 2πR = π(a + b), and Ac = π(b − a)2/4
is the cross-sectional area of the core. Hence,

L = μrcμ0N 2(b − a)2

4(a + b)
. (1.203)

Example 1.4

An inductor is wound on a toroidal core where μrc = 150, h = 1 cm, a = 4 cm, and b = 5 cm. The
inductor has 20 turns. Find the inductance.

Solution: The inductance is

L = μrcμ0hN 2

2π
ln

(
b

a

)
= 150 × 4π × 10−7 × 10−2 × 202

2π
ln

(
5

4

)
= 26.777 μH. (1.204)

1.8.4 Inductance of Inductor with Pot Core

The geometry of an inductor with a pot core is very complex and the inductance of these inductors
can be determined only approximately. The core cross-sectional area of the pot core is approximately
equal to the cross-sectional area of the center post,

Ac = πd2

4
, (1.205)
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where d is the diameter of the center post. The average diameter of the mean magnetic path is
given by

Dav = Di + Do

2
(1.206)

where Di is the inner diameter of the outer core area and Do is the outer diameter of the outer core
area. The mean magnetic path length is given by

lc = 2Dav + 4H = Di + Do + 4H (1.207)

where H is the height of the core halve. The inductance of an inductor with a pot core can be
approximated by

L = μrcμ0AcN 2

lc
= πμrcμ0d2N 2

4(Di + Do + 4H )
. (1.208)

1.8.5 Air Gap

The overall reluctance R can be controlled by an air gap in the core. Therefore, the magnetic flux
φ, flux density B , and inductance L can be controlled by the length of the air gap lg . Air gaps can
be bulk or distributed. In a gapped core, a small section of the magnetic flux path is replaced by a
nonmagnetic medium, such as air or nylon. It is often filled with a spacer. The air gap length lg is
usually twice the spacer thickness. Some cores have pre-fabricated air gaps. Standard values of lg are
0.5, 0.6, 0.7, . . . , 5 mm. Adding an air gap in a core is equivalent to adding a large gap reluctance
in series with the core reluctance (i.e., a series reluctor). As a result, the magnitude of the magnetic
flux φm at a fixed value of NIm is reduced. This effect is analogous to adding a series resistor in an
electric circuit to reduce the magnitude of the current at a fixed source voltage.

Figure 1.19(a) illustrates an inductor whose core has an air gap. An equivalent magnetic circuit
of an inductor with an air gap is shown in Figure 1.19(b). The inductance of a coil with a magnetic
core having an air gap at low frequencies is expressed as

L = N 2

Rg + Rc
= N 2

lg
μ0Ac

+ lc
μrcμ0Ac

= μrcμ0AcN 2

lc + μrc lg
= μ0AcN 2

lg + lc
μrc

= μrcμ0AcN 2

lc

(
1 + μrc lg

lc

) = μrcμ0AcN 2

lcFg
, (1.209)

where the reluctance of the air gap is

Rg = lg
μ0Ac

, (1.210)

μr

lg

i

(b)

F = Ni

(a)

Rg

Rc

N f

f

f

Figure 1.19 Inductor with an air gap. (a) Inductor. (b) Magnetic circuit of an inductor with an air gap.
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the reluctance of the core is

Rc = lc − lg
μrcμ0Ac

≈ lc
μrcμ0Ac

, (1.211)

the overall reluctance is

R = Rc + Rg = lc
μrcμ0Ac

+ lg
μ0Ac

= lc
μrcμ0Ac

(
1 + μrc lg

lc

)
= FgRc , (1.212)

the air gap factor is

Fg = R
Rc

= Rc + Rg

Rc
= 1 + Rg

Rc
= 1 + μrc lg

lc
, (1.213)

and the effective relative permeability of a core with an air gap is

μre = μrc

1 + μrc lg
lc

= μrc

Fg
. (1.214)

The air gap causes a considerable decrease in the effective relative permeability. However, it pro-
duces a more stable effective permeability and reluctance, resulting in a more predictable and stable
inductance. For example, inductors used in resonant circuits should be predictable and stable. Usually,
at least 95% of the inductance comes from the air gap. The length of the air gap is given by

lg = μ0AcN 2

L
− lc

μrc
. (1.215)

The number of turns of an inductor whose core has an air gap is given by

N =

√√√√√L

(
lg + lc

μrc

)
μ0Ac

. (1.216)

For lg � lc/μrc , Rg � Rc , and

L ≈ μ0AcN 2

lg
= N 2

Rg
. (1.217)

Therefore, the inductance of an inductor with a core air gap is a function of the air gap length lg and
is almost independent of the core relative permeability μrc . The number of turns is

N ≈
√

Llg
μ0Ac

, for lg � lc
μrc

. (1.218)

The core permeability varies with temperature and flux level. Inductors that carry dc currents and
have dc magnetic flux require long air gaps to avoid saturation.

The relationships for the inductor with an air gap can be written as

F = Ni = Hclc + Hg lg = Bclc
μrcμ0

+ Bg lg
μ0

= φc lc
Acμrcμ0

+ φg lg
Aaμ0

= Rcφc + Rgφg . (1.219)

For Rg � Rc , φ ≈ Ni/Rg . Neglecting the flux fringing effect, Bg = Bc . Hence,

Ni = Bc

(
lc

μrcμ0
+ lg

μ0

)
. (1.220)

The magnetic flux density in the core with an air gap is given by

Bc = μ0Ni

lg + lc
μrc

. (1.221)
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Hence, the maximum flux density in the core with an air gap, which is caused by the dc component
of the inductor current IL and the amplitude of the ac component of the inductor current Im , is
expressed by

Bc(pk) = BDC + Bm = μ0N (IL + Im )

lg + lc
μrc

≤ Bs , for T ≤ Tmax. (1.222)

The magnetic flux density and the magnetic field intensity in the core are

Bc = φc

Ac
(1.223)

and

Hc = Bc

μrcμ0
. (1.224)

Assuming a uniform magnetic flux density in the air gap and neglecting the fringing effect, the
magnetic flux, magnetic flux density, and magnetic field intensity in the air gap are

φg = φc = AcBc = Ag Bg , (1.225)

Bg = Ac

Ag
Bc ≈ Bc , (1.226)

and

Hg = Bg

μ0
= Bc

μ0
= μrcHc . (1.227)

Gap losses consist of winding loss, core loss, and hardware loss (e.g., power loss in clamps or bolts).
The maximum MMF is

Fmax = NmaxILmax = φ(Rg + Rc) = Bpk Ac(Rg + Rc) ≈ Bpk AcRg = Bpk lg
μ0

, (1.228)

where Rg = lg/(μ0Ac). To avoid core saturation, the maximum number of turns is given by

Nmax = Bpk lc
μ0ILmax

. (1.229)

As the air gap length lc increases, NIm can be increased and the core loss decreases. However, the
number of turns N must be incressed to achieve a specified inductance L. Increasing the number of
turns increases the winding loss. In addition, the leakage inductance increases and the air gap radiates
a larger amount of electromagnetic interference (EMI).

The behavior of an inductor with an air gap is similar to an amplifier with negative feedback,

Af = A

1 + βA
= μrc

1 + μrc
lg
lc

. (1.230)

Thus, μrc is analogous to A and lg/lc is analogous to β.

Example 1.5

A PQ4220 Magnetics core [48] has μrc = 2500, lc = 4.63 cm, and Ac = 1.19 cm2. The inductor
wound on this core has N = 10 turns. The required inductance should be L = 55.6 μH. Find the
length of the air gap lg .

Solution: The length of the air gap in the core is

lg = μ0AcN 2

L
− lc

μrc
= 4π × 10−7 × 1.19 × 10−4 × 102

55.6 × 10−6
− 4.63 × 10−2

2500

= (0.2689564 − 0.01852) × 10−3 = 0.2504 mm. (1.231)
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1.8.6 Fringing Flux

A fringing flux is present around the air gap whenever the core is excited, as shown in Figure 1.20.
Figure 1.21 depicts fringing flux in an inductor with an EE core (see Figure 2.14) and air gap. The
magnetic flux lines bulge outward because the magnetic lines repel each other when passing through
nonmagnetic material. As a result, the cross-sectional area of the magnetic field is increased and the
flux density is decreased. Typically, 10% is added to the air gap cross-sectional area. This effect is
called the fringing flux. The percentage of the fringing flux in the total magnetic flux increases as
the air-gap length lg increases. The maximum increase in the radius of the magnetic flux due to the
fringing effect is approximately equal to the length of the air gap length lg . Figure 1.22 shows a
magnetic equivalent circuit for the inductor with an air gap and fringing flux. The fringing permeance
is shunting the gap permeance.

Due to the continuity of magnetic flux, the magnetic flux in the core φc is equal to the sum of the
magnetic flux in the air gap φg and the fringing flux φf :

φc = φg + φf . (1.232)

The permeance of the core is

Pc = 1

Rc
= μrcμ0Ac

lc
. (1.233)

The permeance of the air gap is

Pg = 1

Rg
= μ0Ac

lg
. (1.234)

Figure 1.20 Fringing magnetic flux in an air gap.
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Figure 1.21 Fringing magnetic flux in an inductor with gapped pot core.
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Rc

Rg Rf

φc

φg φfF = Ni

Figure 1.22 Magnetic equivalent circuit of an inductor with an air gap and fringing magnetic flux.

The permeance of the fringing area is

Pf = 1

Rf
= μ0Af

lf
(1.235)

where Af is the fringing area and lf is the magnetic path length in the fringing area. Assuming that
Ag = Ac , the total reluctance is given by

R = Rc + Rg ||Rf = Rc + RgRf

Rg + Rf
= lc

μrcμ0Ac
+

lg
μ0Ag

× lf
μ0Af

lg
μ0Ag

+ lf
μ0Af

= lc
μrcμ0Ac

+ lg lf
lgμ0Af + lf μ0Ag

= lc
μrcμ0Ac

(
1 + μrcAc

lc

lg lf
lf Ag + lg Af

)

= lc
μrcμ0Ac

⎛
⎜⎜⎝1 + μrc lg

lc

1

1 + lg Af

lf Ag

⎞
⎟⎟⎠ . (1.236)

Hence, the inductance of an inductor with an air gap and a fringing flux is given by

Lf = N 2

R = N 2/

⎡
⎢⎢⎣ lc

μrcμ0Ac

⎛
⎜⎜⎝1 + μrc lg

lc

1

1 + lg Af

lf Ag

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (1.237)

Neglecting the permeance of the core, the total permeance of the air gap an the fringing area is

P = Pg + Pf = μ0Ac

lg
+ μ0Af

lf
= μ0Ac

lg

(
1 + Af lg

Aclf

)
= μ0AcFf

lg
= Ff Pg . (1.238)

Thus, R = Rg/Ff . The inductance of the inductor with an air gap and the fringing flux is

Lf = PN 2 = μ0AcN 2

lg
+ μ0Af N 2

lf
= μ0AcN 2

lg

(
1 + Af lg

Aclf

)
= μ0AcN 2Ff

lg
= Ff L, (1.239)

where the fringing factor is defined as the ratio of the inductance with an air gap and with the fringing
effect Lf to the ideal inductance with an air gap and with no fringing effect,

Ff = Lf

L
= 1 + Af lg

Aclf
. (1.240)

Thus, the fringing effect increases the inductance. The number of turns required to obtain a desired
inductance is

N =
√

lg L

μ0AcFf
. (1.241)
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If the air gap is enclosed by the winding, the fringing flux is reduced, lowering the value of Ff .
However, the inductor losses increase by as much as 5 times. To reduce these losses, the winding
should be moved away from the air gap by a distance equal to two to three times the air gap length
lg . Short distributed air gaps significantly reduce the fringing flux and power losses. Cores with a
large relative permeability require long air gaps, which increase the fringing flux.

Consider a round core with a single air gap. The cross-sectional area of the core with diameter Dc

is given by

Ac = π

4
D2

c . (1.242)

It is difficult to determine the cross-sectional area Af and the mean path length lf of the magnetic
flux. Assume that the outer diameter of the fringing magnetic flux is Df = Dc + 2lg and the mean
magnetic path length of the fringing flux is lf = 2lg . The cross-sectional area of the fringing flux is

Af = π

4
(Dc + 2lg )2 − π

4
D2

c = π lg (Dc + lg ). (1.243)

Hence, the fringing factor is

Ff = 1 + Af lg
Aclf

= 1 + 2lg

(
1

Dc
+ lg

D2
c

)
. (1.244)

The permeance of the air gap is

Pg = μ0Ac

lg
= πμ0D2

c

4lg
. (1.245)

The permeance of the fringing area is

Pf = μ0Af

lf
= πμ0(Dc + lg )

2
. (1.246)

The total permeance of the air gap and the fringing area is

P = Pg + Pf = μ0Ac

lg
+ μ0Af

lf
= πμ0D2

c

4lg
+ πμ0(Dc + lg )

2
. (1.247)

The inductance is

Lf = PN 2 =
[

πμ0D2
c

4lg
+ πμ0(Dc + lg )

2

]
N 2 = πμ0D2

c N 2

4lg

[
1 + 2lg (Dc + lg )

D2
c

]
= Ff L, (1.248)

where

Ff = 1 + 2lg (Dc + lg )

D2
c

≈ 1 + 2lg
Dc

for lg � Dc . (1.249)

Example 1.6

An inductor with an air gap has a round core with Dc = 10 mm and lg = 1 mm. Find Ff and Nf /N .

Solution: The fringing factor is

Ff = Lf

L
= 1 + 2lg (Dc + lg )

D2
c

= 1 + 2 × 1 × (10 + 1)

102
= 1.22. (1.250)

The ratio of the turns is
Nf

N
= 1√

Ff
= 1√

1.22
= 0.9054. (1.251)

If we use the approximate equation for Ff , we have

Ff = Lf

L
= 1 + 2lg

Dc
= 1 + 2 × 1

10
= 1.2 (1.252)



38 HIGH-FREQUENCY MAGNETIC COMPONENTS

and
Nf

N
= 1√

Ff
= 1√

1.2
= 0.9123. (1.253)

Consider a core with a single rectangular air gap. The dimensions of the air gap are a and b. The
cross-sectional area of the air gap is

Ac = ab. (1.254)

Assume that the outer dimensions of the fringing magnetic flux are A = a + 2lg and B = b + 2lg ,
and the mean magnetic path length of the fringing flux is lf = 2lg . The cross-sectional area of the
fringing flux is

Af = (a + 2lg )(b + 2lg ) − ab = 2lg (a + b) + 4lg . (1.255)

The fringing factor is

Ff = Lf

L
= 1 + lg (a + b + 2lg )

ab
. (1.256)

Example 1.7

An inductor with a single rectangular air gap has a = 10 mm, b = 20 mm, and lg = 1 mm. Find Ff

and Nf /N .

Solution: The fringing factor is

Ff = Lf

L
= 1 + lg (a + b + 2lg )

ab
= 1 + 1 × (10 + 20 + 2 × 1)

10 × 20
= 1.16. (1.257)

The ratio of the turns is
Nf

N
= 1√

Ff
= 1√

1.16
= 0.9285. (1.258)

The fringing factor given in [5], [10] is described by

Ff = 1 + alg√
Ac

ln

(
2w

lg

)
≈ 1 + lg√

Ac
ln

(
2w

lg

)
(1.259)

where w is the width of the core window, a lies between 0.85 and 0.95 for round cores and between
1 and 1.1 for rectangular cores. Typical values of the fringing factor Ff are between 1.1 and 1.4.
The fringing flux reduces the total reluctance of the magnetic path R, and therefore it increases the
inductance L. The inductance is increased due to the fringing effect and is given by

Lf = Ff L =
[

1 + alg√
Ac

ln

(
2w

lg

)]
L =

[
1 + alg√

Ac
ln

(
2w

lg

)]
μrcμ0AcN 2

lc(1 + μrc lg )

= μ0AcN 2Ff

lg + lc
μrc

. (1.260)

Therefore, the number of turns N to obtain a required inductance L of an inductor with an air gap
and the fringing effect should be reduced to

Nf =

√√√√√Lf

(
lg + lc

μrc

)
μ0AcFf

= N√
Ff

. (1.261)

Fringing flux generates eddy currents, which cause hot spots in both the core and the winding,
resulting in power losses. The winding, banding, and clips should be kept away from the fringing
flux to reduce power losses. A distributed air gap along the magnetic path reduces winding loss, as
compared to the winding loss due to a single air gap.
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1.8.7 Inductance of Strip Transmission Line

Consider a strip transmission line, where d is the distance between the conductors, l is the length of
the strip, and w is the width of the strip. The magnetic field intensity between conducting parallel
plates is

H = Il

w
, (1.262)

resulting in the flux linkage

λ =
∫ ∫

S
B · dS =

∫ l

0

∫ d

0

μI

w
dxdz = μIld

w
. (1.263)

Hence, the inductance of the strip transmission line is given by

L = λ

I
= μdl

w
. (1.264)

1.8.8 Inductance of Coaxial Cable

The inductance of a coaxial cable of inner radius a , outer radius b, and length lw is given by

L = μlw
2π

ln

(
b

a

)
. (1.265)

1.8.9 Inductance of Two-Wire Transmission Line

The inductance of a two-wire transmission line of round conductor of radius a , distance between the
conductor centers d , and length lw is

L = μlw
π

cosh−1
(

d

2a

)
= μlw

π
ln

⎡
⎣ d

2a
+
√(

d

2a

)2

− 1

⎤
⎦

≈ μlw
π

ln

(
d

a

)
, for

(
d

2a

)2

� 1, (1.266)

where cosh−1 x ≈ ln(2x) for x � 1.

1.9 Inductance Factor

Equation (1.189) for the inductance can be written as

L = μrcμ0AcN 2

lc
= ALN 2. (1.267)

The specific inductance of a core, also called the core inductance factor, is defined as the inductance
per single turn,

AL = L

N 2
= μrcμ0Ac

lc
= 1

R = P
(

H

t2

)
. (1.268)

Each core of different materials, shapes, and sizes will have a unique value of AL, some of which
are not easy to predict analytically, especially for complex core shapes. Core manufacturers give the
values of AL in data sheets.
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The specific inductance (or the inductance index) AL is usually specified in henries per turn, in
millihenries per 1000 turns, or in microhenries per 100 turns for cores without and with air gaps. If
the specific inductance AL is expressed in henries per turn, the number of turns is given by

N =
√

L(H)

AL
. (1.269)

If the specific inductance AL(1000) is expressed in millihenries per 1000 turns, the inductance is
given by

L = AL(1000)N 2

(1000)2
(mH) (1.270)

and the number of turns is

N = 1000

√
L(mH)

AL(1000)

. (1.271)

For most ferrite cores, the specific inductance AL(100) is specified in microhenries per 100 turns. In
this case, the inductance is given by

L = AL(100)N 2

(100)2
(μH). (1.272)

To compute the required number of turns N in order to achieve a desired inductance L in microhenries,
the following formula can be used for ferrite cores:

N = 100

√
L(μH)

AL(100)

. (1.273)

Common values of AL(100) are 16, 25, 40, 63, 100, 250, 400, and so on.
Air core inductors are linear devices because the relationship B = μ0H is linear. In general,

inductors with magnetic cores are nonlinear devices as the relationship between B and H is nonlinear.
For B < Bs , inductors can be modeled as linear devices.

Example 1.8

The relative permeability of the Ferroxcube ferrite magnetic core material is μrc = 1800. The toroidal
core made of this material has inner diameter d = 13.1 mm, external diameter D = 23.7 mm, and
height h = 7.5 mm. Find the specific inductance of this core. What is the inductance of the inductor
with this core if the number of turns is N = 10?

Solution: The magnetic path length is

lc = π
d + D

2
= π

13.1 + 23.7

2
= 57.805 mm (1.274)

and the cross-sectional area of the core is

Ac = h
(D − d)

2
= 7.5 × 10−3 × (23.7 − 13.1) × 10−3

2
= 39.75 × 10−6 m2. (1.275)

Hence, the specific inductance of the core is

AL = μrcμ0Ac

lc
= 1800 × 4π × 10−7 × 39.75 × 10−6

57.805 × 10−3
= 1.5554 μH/turn . (1.276)

The inductance at N = 10 is

L = N 2AL = 102 × 1.5554 × 10−6 = 155.54 μH. (1.277)
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1.10 Magnetic Energy

The instantaneous power of an inductor is

p(t) = iL(t)vL(t) = iL

(
L

diL
dt

)
= LiL

diL
dt

. (1.278)

Power is the time rate of change of energy P = W /�t . The instantaneous magnetic energy stored in
the magnetic field of an inductor without an air gap is given by

wm(t) =
∫ t

0
p(t)dt =

∫ t

0
iLvLdt =

∫ t

0
iLL

diL
dt

dt = L
∫ iL

0
iLdiL = 1

2
Li 2

L = 1

2
λiL = λ2

2L

= 1

2

N 2

R i 2
L = 1

2

N 2

lc
μrcμ0Ac

(
Hlc
N

)2

= 1

2
μrcμ0H 2Aclc (1.279)

= B2lcAc

2μrcμ0
= B2Vc

2μrcμ0
(J)

where Vc = lcAc is the core volume, vL = LdiL/dt , iL = λ/L, L = N 2/R, and H = B/μ. The mag-
netic energy is proportional to the core volume Vc and the flux density B , and it is inversely
proportional to the core relative permeability μrc .

The magnetic energy density is

wm = Wm

Vc
= B2

2μrcμ0
= 1

2
μrcμ0H 2 = 1

2
μH 2

(
J

m3

)
. (1.280)

For an inductor with an air gap, the energy stored in the gap is

Wg = B2lg Ag

2μ0
≈ B2lg Ac

2μ0
(1.281)

where Ag ≈ Ac . The energy stored in the core is

Wc = B2lcAc

2μrcμ0
. (1.282)

The total energy stored in an inductor with an air gap is equal to the sum of the energy stored in the
gap Wg and the energy stored in the core Wc :

Wm = Wg + Wc = B2Ac

2μ0

(
lg + lc

μrc

)
. (1.283)

For lg � lc/μrc , almost all the inductor energy is stored in the air gap:

Wm ≈ Wg = B2lg Ag

2μ0
≈ B2lg Ac

2μ0
. (1.284)

The maximum energy that can be stored in an inductor is limited by the core saturation flux density
Bs , the core volume Vc , and the core relative permeability μrc . The maximum energy stored in an
inductor with a core without an air gap is given by

Wc(max) = B2
s lcAc

2μrcμ0
= B2

s Vc

2μrcμ0
. (1.285)

The maximum energy that can be stored in an inductor with a core with an air gap is

Wg(max) = B2
s lg Ac

2μ0
= B2

s Vg

2μ0
(1.286)

where Vg = lg Ac is the air gap volume. The ratio of the two energies is

Wg(max)

Wc(max)
= lg

lc
μrc . (1.287)
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A winding represents a series combination of an inductance and a frequency-dependent resistance.
The quality factor of an inductor at a given frequency f is defined as

QLo = ωL

rL
, (1.288)

where rL is the equivalent series resistance at frequency f .

Example 1.9

A Ferroxcube 528T500-4C4 ferrite magnetic core has Ac = 1.17 cm2, lc = 8.49 cm, and μrc = 125.
(a) Determine the maximum magnetic energy that can be stored in the inductor with this core. (b)
Determine the maximum magnetic energy that can be stored in the inductor whose core has an air
gap lg = 0.5 mm. (c) Find the ratio of the maximum magnetic energies.

Solution: The saturation flux density Bs for ferrite cores is Bs = 0.3 T at room temperature. At
T = 100◦C, the saturation flux density Bs for ferrite cores decreases by a factor of 2. Thus,

Bs = 0.3

2
= 0.15 T. (1.289)

The maximum magnetic energy that can be stored in the inductor is

Wm(max) = B2
s lcAc

2μrcμ0
= 0.152 × 8.49 × 10−2 × 1.17 × 10−4

2 × 125 × 4π × 10−7
= 0.711 mJ. (1.290)

The maximum magnetic energy that can be stored in the inductor whose core contains an air gap is

Wg(max) = B2
s lg Ac

2μ0
= 0.152 × 0.5 × 10−3 × 1.17 × 10−4

2 × 4π × 10−7
= 0.5237 mJ. (1.291)

Hence,

Wg(max)

Wm(max)
= 0.5237

0.711
= 0.7362. (1.292)

1.11 Self-Resonant Frequency

The distributed capacitance between the winding turns acts like a shunt capacitance, conducting
a high-frequency current. This capacitance is called a stray capacitance or a self-capacitance Cs

[32], [33]. It depends on the winding geometry, the proximity of turns, core, and shield, and the
permittivity of the dielectric insulator, in which the winding wire is coated. A single, well-spaced
secondary winding is recommended to reduce the interwinding capacitance. The core should be
insulated to reduce the capacitance between the winding and the core. The inductance and the
self-capacitance form a parallel resonant circuit, having a fundamental (parallel) self-resonant fre-
quency

fr = 1

2π
√

LCs
. (1.293)

Below this frequency, the inductor impedance is inductive. Above the self-resonant frequency fr ,
the inductor impedance is capacitive. Therefore, the useful operating frequency range of an inductor
is usually from dc to 0.9 fr .
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Winding Loss Core Losses

Hysteresis
Loss

Eddy-Current
Loss

Magnetic Losses

Figure 1.23 Classification of power losses in magnetic components.

1.12 Classification of Power Losses in Magnetic
Components

Figure 1.23 shows a classification of power losses in magnetic components. These losses can be
categorized into winding (or copper) loss PRw and core losses PC . In turn, core losses can be divided
into hysteresis loss PH and eddy-current loss PE :

PC = PH + PE . (1.294)

Hence, the total inductor power loss PL is given by

PL = PRw + PC = PRw + PH + PE . (1.295)

There are two kinds of eddy-current losses: the skin-effect loss and the proximity-effect loss. Both
these effects cause current crowding. Eddy-current losses are magnetically induced losses.

1.13 Noninductive Coils

In some applications, it is desired to have a noninductive coil. Precision resistors are usually noninduc-
tive. For example, current probes require noninductive resistors. A noninductive coil is usually made
using closely spaced, parallel windings, called the bifilar winding, as illustrated in Figure 1.24(a).
Therefore, every coil turn has an adjacent turn, which carries current in the opposite direction. The
magnetic fields generated by adjacent turns cancel each other, as shown in Figure 1.24(b). As a result,
the coil does not store magnetic flux and presents no inductance.

i i

+ −

+ −

(a) (b)

φ

φ

Figure 1.24 Noninductive coil. (a) Bifilar winding (b) Magnetic flux cancellation.
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1.14 Summary

• Magnetic fields can be categorized as self, proximity, and fringing magnetic fields.

• The instantaneous field vector is a function of position and time.

• The phasor field vector is a function of position only.

• The magnetomotive force F = Ni is a source in magnetic circuits.

• A changing current in an inductor produces a changing magnetic flux, which induces voltage
between the terminals of the inductor.

• Ampère’s law states that the line integral of H around a closed contour C is equal to the current
traversing the surface bounded by the contour.

• Faraday’s law states that an ac voltage is induced in a coil, which contains a time-varying magnetic
flux, regardless of the source of flux.

• According to Faraday’s law, the voltage induced in the inductor is proportional to the number of
turns N and the time rate of change of the magnetic flux φ.

• The magnetic flux always takes the path with the highest permeability μ.

• The Poynting vector represents the direction and the density of power flow.

• The self-inductance of a wire-wound inductor depends on its geometry and is proportional to the
square of the number of turns N .

• The reluctance is directly proportional to the length of the magnetic path lc and inversely propor-
tional to the core cross-sectional area Ac through which the magnetic flux φ flows.

• The inductance is proportional to the ratio of the core cross-sectional area to the magnetic path
length Ac/lc .

• The inductance of an inductor with a ferromagnetic core is μrc times higher than that of an air
core inductor. An inductor has an ampere-turn maximum value of (NIm)max limited by the core
saturation flux density Bs .

• An air gap is used to prevent core saturation and to make the inductance almost independent of
μrc , yielding good inductance repeatability.

• The air gap contains nearly all of the magnetic field energy.

• An air gap in the core increases the energy storage capability of an inductor or a transformer.

• The core relative permeability μrc varies considerably with temperature and current. Therefore, it
is desirable to maintain Rc � Rg to achieve a stable inductance.

• The inductance of an inductor with an air gap is lower than the inductance of an inductor without
an air gap.

• Whenever the core is excited, the fringing flux is present around the air gap, increasing the induc-
tance and causing power losses. The fringing field decreases substantially within one air-gap length
lg of the edge of the core.

• Fringing flux represents a larger percentage of the total flux for larger gaps.

• Fringing flux and inductor losses can be reduced by dividing a large air gap into several shorter
air gaps.

• The fringing flux reduces the total reluctance R and increases the inductance L. Therefore, the
number of turns should be reduced if the exact value of the inductance is required.

• The winding should be moved away from the air gap by a distance of twice the air gap length.
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• The thickness of the shield foils should be low compared to the skin depth. As the distance between
the shields decreases, the inductance also decreases.

• The self-resonant frequency of an inductor is the resonant frequency of the resonant circuit formed
by the inductance and stray capacitance.

• Power losses in inductors and transformers consist of winding and core losses.

• Core losses consist of hysteresis loss and eddy-current loss.

• The turns should be evenly spaced to achieve consistent inductance and reduce leakage inductance.
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1.16 Review Questions

1.1. What is the magnetomotive force?

1.2. What is the magnetic field intensity?

1.3. What is the magnetic flux density?
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1.4. What is the magnetic linkage?

1.5. Define magnetic susceptibility.

1.6. Define relative permeability.

1.7. What is the reluctance of an inductor?

1.8. What is the magnetic circuit? Give an example.

1.9. Can magnetic field exist in a good conductor?

1.10. State Ampère’s circuital law.

1.11. State Faraday’s law.

1.12. State Lenz’s law.

1.13. What is Joule’s law?

1.14. What is the point form of Ohm’s law?

1.15. Give Maxwell’s equations.

1.16. Give Maxwell’s equations for good conductors.

1.17. What is core saturation?

1.18. Define the inductance of a linear inductor.

1.19. Define the inductance of a nonlinear inductor.

1.20. Give an expression for the current of a nonlinear inductor.

1.21. What is the core inductance factor?

1.22. How is the inductance of a coil related to its number of turns?

1.23. What is the effect of an air gap on the inductance?

1.24. What is the fringing factor?

1.25. What is the effect of an air gap on core saturation?

1.26. Where is the magnetic energy stored in an inductor with an air gap?

1.27. Is the magnetic field intensity in the air gap higher or lower than that in the core?

1.28. Is the magnetic flux density in the air gap higher or lower than that in the core?

1.29. What is the volt-second balance?

1.30. Give expressions for magnetic energy in terms of H and B .

1.31. What are the mechanisms of power losses in magnetic components?

1.32. What are winding losses?

1.33. What is hysteresis loss?

1.34. What is eddy-current loss?

1.35. What are the effects of eddy currents on winding conductors and magnetic cores?

1.36. What is the self-resonant frequency?

1.37. What is the difference between fringing flux and leakage flux?

1.38. The line integral of the magnetic field intensity H over a closed contour is zero. What is the
net current flowing through the surface enclosed by the contour?
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1.17 Problems

1.1. A current flows in the inner conductor of a long coaxial cable and returns through the outer
conductor. What is the magnetic field intensity in the region outside the coaxial cable? Explain
why.

1.2. Sketch the shape of the magnetic field around a current-carrying conductor and show how the
direction of the field is related to the direction of the current in the conductor.

1.3. A toroidal inductor has N = 20 turns, inner radius a = 1 cm, outer radius b = 2 cm, and height
h = 1 cm. The core relative permeability is μr = 100. Find the inductance.

1.4. An inductor has N = 300 turns, current I = 0.1 A, and B = 0.5 T. The cross-sectional area
Ac = 4 cm2, and the length lc = 15 cm. Find the magnetic field intensity, the magnetic flux,
and the flux linkage.

1.5. An inductor has μr = 800, N = 700, φ = 0.4 mWb, lw = 22 cm, and Ac = 4 × 10−4 m2. Find
the current I .

1.6. An inductor has L = 100 μH, lc = 2.5 cm, and Ac = 2 cm2. Find the number of turns N for (a)
μrc = 1, (b) μrc = 25 and no air gap, (c) μrc = 25 and lg = 3 mm, and (d) μrc = 2500 and
lg = 3 mm.

1.7. A core has AL = 30 μH/100 turns. Find N to make an inductor of L = 1 μH.

1.8. A toroidal core inductor has: N = 500, μr = 200, Ac = 4 cm2, r = 2 cm, Im = 1 A, f =
10 MHz, ρw = ρCu = 1.724 × 10−6 �cm, and ρc = 105 �m. Find L, AL, R, Hm , Bm , φm , and
λm .

1.9. A toroidal core of μrc = 3000 has a mean radius R = 80 mm and a circular cross section with
radius b = 25 mm. The core has an air gap lg = 3 mm and a current I flows in a 500-turn
winding to produce a magnetic flux of 10−4 Wb. Neglect the leakage flux. (a) Determine the
reluctances of the air gap and the core. (b) Find Bg and Hg in the air gap and Bc and Hc in
the core. (c) Find the required current I .

1.10. An inductor has N = 100, Ac = 1 cm2, Bs = 0.3 T, and vL = VLm cos ωt = 10 cos ωt (V). Find
λ(t) and fmin.

1.11. Derive an expression for the internal and external inductances of a two-wire transmission line
consisting of two parallel round conductors of radius a , which carry currents I in opposite
directions. The axis-to-axis distance between the two conductors is d � a .


