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1.1 Introduction

It is possibly the dream of many researchers to have an equation named after them.

One person who achieved this was Georg Duffing, and this book is devoted to various

aspects of his equation. This equation is enigmatic. In its original form, it essentially

has only one extra nonlinear stiffness term compared to the linear second-order

differential equation, which is the bedrock of vibrations theory, and this opens the

door to a whole new world of interesting phenomena. Much of this was not known at

the time ofGeorgDuffing, and is described in this book. The story behind the equation

is also very interesting, because Georg Duffing was not an academic; he was an

engineer, who carried out academic work in his spare time, as will be described later.

In the present day when academics are being constantly reminded about the impact

of their research work, and are constantly being judged by their output, in terms of

publications, it is also interesting to look at the academic output from Georg Duffing

and the impact of his work. Rarely is a paper or textbook written on nonlinear

dynamics today without some reference to the Duffing equation, such is the impact of

his work, yet he wrote less than ten publications in his life.
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The aim of this book is twofold. The first is to give a historical background to

Duffing’s work, and to track the evolution of his work to the present day. This is done

in this chapter. The second aim is to provide a thorough treatment of the different

forms of his equation through the various chapters written by the contributing authors.

This will involve qualitative and quantitative analysis coupled with descriptions of

the many physical phenomena that are described by the various forms of his equation.

Nowadays, the term ‘Duffing equation’ is used for any equation that describes

an oscillator that has a cubic stiffness term, regardless of the type of damping or

excitation. This, however, was not the case in Duffing’s original work, in which he

restricted his attention to the free and forced harmonic vibration of an oscillator in

which the stiffness force had quadratic and cubic terms, and the damping considered

was of the linear viscous type. In this book the contemporary view is taken and many

forms of the Duffing equation are studied, with the notable exceptions of a randomly

or parametrically excited oscillator.

1.2 Historical perspective

In anyhistorical perspective, the authors undoubtedly provide their own interpretation

of events, and this is also the case here. The history of nonlinear dynamics is vast

and hasmany different threads to it, from the highlymathematical to the physical. It is

not the intention of the authors to give a detailed history here – for this, the reader is

referred to a review paper written by Holmes that covers the period 1885–1975 [1]

and a slightly more recent paper by Shaw and Balachandran [2]. The authors restrict

their attention to the historical perspective with respect to Duffing’s work.

The concept of nonlinear vibrations was known long before Duffing wrote his

book on oscillations [3], in which his famous equation is given. However, Duffingwas

the one to tackle the problem of a nonlinear oscillator in a systematic way starting

with the linear oscillator, and examining the effects of quadratic and cubic stiffness

nonlinearities. He emphasised the differences between the linear and the nonlinear

oscillators for both free and forced vibration, also considering the effects of damping.

Prior to Duffing, there had been somework on the mathematical analysis of nonlinear

oscillators, for example by Hermann von Helmholtz [4] and Baron Rayleigh [5]. Two

contemporaries of Duffing, Henri Poincar�e (1854–1912) and Aleksandr Lyapunov

(1857–1918), who were both giants in the history of nonlinear dynamics, did not

appear to influence Duffing’s work – at least they were not cited in his book.

In the story of nonlinear dynamics, as well as in Duffing’s book, the pendulum

plays a dominant role, and so it is appropriate to start the story with Galileo.

Galileo Galilei: 1564–1642. Galileo studied the pendulum and noticed that

the natural frequency of oscillation was roughly independent of the amplitude of

oscillation, i.e., they are isochronous. For it to be used in a time-keeping instru-

ment, it needed to be forced because the oscillations diminished with time due to

damping. He invented a mechanism to do this called an escapement [6]. This work

was quickly followed by that of Huygens, who realised that the pendulum was

inherently nonlinear.
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Christiaan Huygens: 1629–1695. Huygens patented the pendulum clock in

1657. The early clocks had wide pendulum swings of up to 100�. Huygens discovered
that wide swings made the pendulum inaccurate because he observed that the natural

period was dependent upon the amplitude of motion, i.e., it was a nonlinear system.

Subsequently the clocks were modified with a new escapement so that the pendulum

swing was reduced to about 4–6�. Huygens also discovered that if the pendulum had

a length that varied during the oscillation, according to an isochronous curve, then

the frequency of oscillation became independent of the amplitude (effectively he

linearised a nonlinear system) [7].

In many vibrating systems, it is the interaction between stiffness and mass that

causes the ‘interesting’ dynamic behaviour. The first person to introduce the concept

of stiffness theoretically was Hooke.

Robert Hooke: 1635–1703. Hooke is famous for his law [8], which gives the

linear relationship between the applied force and resulting displacement of a linear

spring. At the same time that Hookewas formulating the constitutive law for a spring,

Newton was formulating his laws of motion, the most important of which for

dynamical systems, is his second law.

Isaac Newton: 1643–1727. Newton, of course, is famous for his three laws of

motion [9]. According to Truesdell [10], at the time of Newton and Hooke, simple

harmonic motion (SHM) was not understood in the context of elastic bodies.

However, Galileo was well aware of SHM in his study of the pendulum. Although

vibration is often studied using rigid-body, lumped parameter systems (especially the

study of nonlinear vibrations), a key area of practical interest is the vibrations of

elastic bodies, such as beams, plates and shells. The first person to extendHooke’s law

to such a system (a beam) was Liebnitz.

Gottfried Wilhelm Leibniz: 1646–1716. Leibniz is attributed with applying

Hooke’s law to a system containing moments; i.e., the bending moment is propor-

tional to the second moment of area of a beam. This is thought to be the first

application of calculus to a continuous system [10].

Although Hooke and Newton introduced some very important fundamental build-

ing blocks for mechanics, a general framework for the study ofmechanics was lacking.

The first person to provide some rudimentary tools for analysis was James Bernoulli.

James Bernoulli: 1654–1716. James Bernoulli developed the following ap-

proaches to solving problems in mechanics: balance of forces resolved in two fixed

orthogonal directions; balance of forces normal and tangential to the line; virtual

work; balance of moments. Truesdell [10] also attributes the first nonlinear law of

elasticity to James Bernoulli. Around the same time, James Bernoulli’s bother, John,

was studying the vibration of a catenary, and then the vibration of a weighted string.

During this study he formulated the equation for the natural frequency of a system.

JohnBernoulli: 1667–1748. John Bernoulli studied the case of a string in tension

loadedwithweights. In this work he determined that the natural frequency of a system

is equal to the square root of its stiffness divided by its mass,on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, [11]. This

is believed to be the first publication to state this relationship.

Some seventy years or so after Newton andHooke formulated their laws for stiffness

and mass, Euler connected them together in the form of a harmonically excited
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differential equation.This equation is theone that is taught to all students of vibrationas a

mathematical description of an undamped forced single-degree-of-freedom system.

Leonhard Euler: 1707–1783. Euler was the first person to write down the

equation of motion of a harmonically forced, undamped linear oscillator,

m€xþ kx ¼ F sinot. He formally introduced the nondimensional driving frequency

O ¼ o=on and noted that the response becomes infinite when O ¼ 1. Hence, he was

the first person to explain the phenomenon of resonance [12].

More than 100 years later, Helmholtz was the first person to add a nonlinear

stiffness term to Euler’s equation of motion.

HermannVonHelmholtz: 1821–1894. Helmholtz was the first person to include

nonlinearity into the equation of motion for a harmonically forced undamped single

degree-of-freedom oscillator. He postulated that the eardrum behaved as an asym-

metric oscillator, such that the restoring forcewas f ¼ k1xþ k2x
2, which gave rise to

additional harmonics in the response for a tonal input [4]. In the context of nonlinear

dynamics, the equationm€xþ k1xþ k2x
2 ¼ F sinot is now commonly known as the

Helmholtz equation.

Around the same time that Helmholtz published his work, Rayleigh published his

classic book on acoustics and vibration – The Theory of Sound [5]. This book had two

volumes and covered an enormous amount of fundamental material in acoustics and

vibration. In one small part of the first volume he considered a nonlinear oscillator.

JohnWilliam Strutt, Third Baron Rayleigh: 1842–1919. Rayleigh considered

the free vibration of a nonlinear single-degree-of-freedom oscillator. He studied

the same system as Helmholtz, in which the force–deflection characteristic was

quadratic, and he also investigated a system in which the force–deflection character-

istic was symmetrical, given by f ¼ k1xþ k3x
3 [5]. In the latter case the equation

of motion for this was given asm€xþ k1xþ k2x
3 ¼ 0. This is very close to Duffing’s

equation, but does not have a forcing term, and Rayleigh only provided a small

amount of analysis, showing that nonlinear systems will vibrate at a fundamental

frequency and harmonics of this frequency depending on the amplitude of vibration

and the type of nonlinear stiffness force.

Also, around the time that Helmholtz and Rayleigh published their books [4,5],

concerning vibrations and acoustics, Routh published his book on the dynamics of

rigid bodies [13]. Among other things, he considered the free vibration of a system

with a linear-plus cubic-stiffness force. For an undamped system he showed that the

frequency of oscillation is affected by the amplitude.

Apart from the great pioneers mentioned above, who, motivated by acoustics, laid

down the foundations for vibration theory, two other authors deserve a mention,

because they directly inspired Duffing in his work. They are Von. O.Martienssen [14]

and J. Biermanns [15]. In both of these papers an electrical system was studied in

which included an inductor. For high current levels, the relationship between the

current, i and the flux, f is nonlinear. Biermanns showed that the nonlinear

relationship between the current and the flux could be written as a power series,

and if this is truncated at the third power as shown above, then the resulting equation

for current is very similar to that given by Rayleigh, i.e., it can be modelled as

i ¼ A1fþA3f
3. This results in a ‘hardening’ characteristic, i.e., the current and the

flux have the nonlinear relationship in the sameway that force and displacement have
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in the mechanical system when the nonlinear term is positive. Martienssen observed

this behaviour experimentally and reported the existence of the jump-down phenom-

enon as frequency was increased and the jump-up phenomenon as frequency was

decreased. He also modelled the system and showed that between the jump-up and

jump-down frequencies, three steady-state conditions could occur.

1.3 A brief biography of Georg Duffing

In 1994, F.P.J. Rimrott published a brief biography in Technische Mechanik [16] and

part of this is translated in this chapter. The photograph ofGeorgDuffing is taken from

this article and is shown in Figure 1.1.

GeorgWilhelm Christian Caspar Duffing was born on 11 April 1861 in Waldshut

in Baden, Germany. He was the oldest of six children of the merchant Christian

Figure 1.1 George Duffing . Reprinted from [16], Copyright 1977, with permission

from Technische Mechanik.
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Duffing and his wife Julie, whose maiden name was Spies. A year after he was born

the family moved to Mannheim, where the grandfather Spies, a carpenter, had a large

woodyard on the shore of the river Neckar.

Georg Duffing had a gift for mathematics and a natural musical talent. He studied

the violin and performed in public as a child, and played in a band in his youth.

From 1878 to 1883, Duffing embarked on his formal higher education. He spent

one year at mathematical school, one year at engineering school and three years at

the Mechanical Engineering school at the Polytechnic, which is the University

Fridericiana in Karlsruhe, today [17]. Although he had a heart problem, which

subsequently prevented him from doing military service, Duffing was among the best

runners in Baden.

After his graduation, Duffing went to K€oln to work for Deutzer Motorenwerken,

where he developed steam engines, which were produced in 1905.

At age 46, he married Elizabeth Lofde from Berlin. They had four children.

In 1910 Duffing was invited to Westinghouse in the USA. He stayed there for

several months and came home with enough money to work as a self-employed

inventor and scientist.

TheDuffing familymoved toBerlin in 1913,mainly because hewanted to listen to

the lectures ofMax Planck on quantum theory. This was typical behaviour – he always

wanted to gain more knowledge.

When the First World War broke out and money lost its value, Duffing was

working on vibrations, brakes, gears and engines, by trial and error. On Sundays he

would go to the laboratory of the Royal Technical Faculty with his oldest daughter,

where Professor Eugen Meyer allowed him to conduct experiments. He patented his

inventions; however, it did not improve his financial situation. During that time,

he was studying vibrations described by particular differential equations. In 1917

he completed his 134-page monograph numbered 41/42, with the title “Forced

oscillations with variable natural frequency and their technical significance” [3].

It was published in 1918 by Vieweg & Sohn and cost five Deutsch Marks. This is the

work for which he is famous.

In 1921, when the Duffing family encountered financial difficulties, he received

an invitation of work from Ölgesellschaft Stern&SonnebornA.G., which became the

famous Shell company. He was offered the position as head of a laboratory where he

invented a viscosimeter for lubricants.

The family moved to Hamburg, where Duffing suffered from severe flu and throm-

bosis of his leg, the consequences of which remained with him for the rest of his life.

A tragical part of his life came in 1927 when the ship ‘Cap Arcona’, had technical

problems during a voyage. Stern & Sonneborn, had provided the oil that was made in

accordance with Duffing’s instructions. During the voyage, an engine failed. Duffing

checked the oil and found out that many types of oil had been mixed, probably to save

money. There was a trial, where Duffing presented facts clearly and honestly. He was

resolute as he had been throughout his life. However, because he had testified against

Stern & Sonneborn, he lost his job.

The Duffing family moved back to Berlin in 1931. Although he was 70 years old

he carried on his research and inventing activities. During the Second World War, he
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had particular difficulties during the bombing attacks, as he could not easily take

shelter in the cellar because of the problemswith his leg. They subsequentlymoved to

a small peaceful town called Schwedt on the river Oder.

Georg Duffing died there on 5 April 1944 aged 83 years. He is buried in the

Jerusalem Graveyard in Halleschen Tor in Berlin.

1.4 The work of Georg Duffing

Written records of Georg Duffing’s work comprise his patents and publications. His

patentswere registered both in theUSAandGermany.Theveryfirst patent seems tohave

been registered as a ‘Speed regulator for explosion engines’ in the USA in 1905, and has

the number 799459 [18], the illustration of which is shown in Figure 1.2. In the first

Figure 1.2 Illustration of Duffing’s patent ‘Speed regulator for explosion

engines’ [18].
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paragraph of the written part of his application [18], Duffing wrote: “Be it known that I,

GeorgDuffing, engineer, a subject of theGermanEmperor, residing at 93Deutzerstrasse,

M€ulheim-on-the-Rhine, Germany, have invented certain new and useful Improvements

in Speed-Regulators for Explosion-Engine; and I do hereby declare the following to be a

full, clear, and exact description of the invention, such aswill enable others skilled in the

art to which it apertains to make and use the same.” During the following decades

Duffing invented many ‘new and useful improvements’, fewer of which were registered

in the USA than in Germany. Some of the USA patents can be seen, for example

in [19–21], while Rimrott [16] gave an extensive list of German patents.

In terms of publictions, it is hard to qualify GeorgDuffing’s work as prolific, as he

was the author of only nine publications. On the other hand, the fact that he was not

an academic and that he was active only for about 25 years in the 20th century, make

this number respectable. His publications includes books, book chapters and journal

articles. They are listed in chronological order in Table 1.1.

Table 1.1 List of Duffing’s publications.

No Publications

1. G. Duffing, Beitrag zur Bestimmung der Formver€anderung gekr€opfter
Kurbelwellen. Verlag von Julius, Berlin, 1906.

2. G. Duffing, Erzwungene schwingungen bei ver€anderlicher eigenfrequenz
und ihre technische bedeutung, Series: Sammlung Vieweg, No 41/42.

Vieweg & Sohn, Braunschweig, 1918.

3. L. G€umbel; G. Duffing, Der heutige Stand der Schmierungsfrage. Zur

numerischen Integration gew€ohnlicher Differentialgleichungen I. und II,
Series: Forschungsarbeiten auf dem Gebiete des Ingenieurwesens,

No 224. Verlag des Vereines deutschen Ingenieure, Berlin 1920.

4. G. Duffing, Beitrag zur Theorie der Fl€ussigkeitsbewegung zwischen Zapfen
und Lager. ZAMM Zeitschrift f€ur Angewandte Mathematik und

Mechanik, 4, 296 Fig. 314, 1924.

5. G.Duffing,Reibungsversuche amGleitlager.VDI - Zeitschrift, 72, 495–499,

1928.

6. G. Duffing, Elastizit€at und Reibung beim Riementrieb, Series: Sonderheft

des Verbandes der Ledertreibriemen-Fabrikanten Deutschlands E. V.,

No 12, Berlin W 35, Kurf€urstenstr. 148: Ledertreibriemen u. Techn.

Lederartikel, 1930.

7. G. Duffing, Die Schmiermittelreibung bei Gleitfl€achenvon endlicher Breite;
in Handbuch der Physikalischen und Technischen Mechanik Edited by

F, Auerbach, W. Hort. Barth, Leipzig 1931.

8. G. Duffing, Elastizit€at und Reibung beim Riementrieb. Forschung im

Ingenieurwesen, 2, 99 Fig. 104, 1931.

9. G. Duffing, Messung der Z€ahigkeit durch gleichf€ormige koachsiale

Bewegung einer Kugel in einem Kreiszylinder, ZAMM – Zeitschrift f€ur
Angewandte Mathematik und Mechanik, 13, 366 Fig. 373, 1933.
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The motivation for this book and the publication for which Duffing is recognised,

is the monograph listed as number 2, mentioned in the previous section and listed

as [3] in the referencess of this chapter. The next section is devoted to the monograph

and contains the description of its content. It should be noted that, although it is not the

only book that Duffing wrote, the phrase ‘Duffing’s book’ will be used in relation to

this particular publication only.

1.5 Contents of Duffing’s book

The title page of Duffing’s famous book is shown in Figure 1.3. It can be seen that the

book was written in German, which was Duffing’s native tongue. To help the reader

understand what was written in the book some key pages have been translated by

Keith and HeatherWorden, and these are shown in the Appendix of this book. A brief

summary of the contents of Duffing’s book is given below.

1.5.1 Description of Duffing’s book

George Duffing was not an academic, but an engineer, as was clearly written on the

title page of his book ‘Forced oscillations with variable natural frequency and their

technical significance’. His motivation for the research reported in the book stemmed

from his personal practical experience and observations of engineering systems.

However, he was hoping that “the work would raise some interest in mathematical

circles, because it requires some additional tools/knowledge and more time than one

technician has.” Duffing repeated this wish several times through the book, wanting to

“be timely” and admitting that it was the reason for him to deliver the results despite

the fact that “they had not been completed”.

The book comprises seven chapters and five Appendices. It contains results on

the response of both linear and nonlinear oscillatory systems obtained analytically,

graphically, numerically and experimentally. The majority of the Appendices cover

some necessary mathematical background work, which Duffing included to help

the nonmathematician understand the content without having to search the

literature.

In Chapter I a linear single-degree-of-freedom system excited by an arbitrary

time-varying external force is considered using the convolution integral. An un-

damped system is analysed first, and this is followed by a damped system for periodic

excitation only. As a special case, the response of the system under harmonic

excitation is determined for resonance and offresonance conditions. This chapter

serves as a reference, and describes simple systems for which results for nonlinear

systems given in the subsequent chapters can be compared.

Chapter II is the most comprehensive – it is where free and forced undamped

oscillations of the systems with a nonlinear restoring force are treated, and where

the first significant results for these types of problems are given. Some of these

systems are subsequently named after Duffing. The restoring force is assumed to
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contain small quadratic and/or cubic nonlinearity. Duffing first considered free

vibrations of a system with such a restoring force and obtained the first integral of

motion corresponding to the energy conservation law. He then expressed the

motion using Weierstrass elliptic functions. Separately, the case with softening

cubic nonlinearity, corresponding to a symmetrical potential well, and the case

with quadratic nonlinearity, corresponding to an asymmetrical potential well, are

Figure 1.3 The title page of Duffing’s book.
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treated in this way. Further, Duffing studied forced vibrations for a system with

cubic softening nonlinearity. Using previously obtained results, he applied the

method of variation of constants to derive a fifth-order polynomial expression in

one specifically defined parameter. He showed graphically that depending on the

value of the forcing frequency compared to the natural frequency, the number of

its roots can vary from one to three. The multivaluedness of the steady-state

response is also confirmed by developing an iterative method – the method of

successive approximation, which was subsequently called Duffing’s method [22].

This technique is first validated on the linear system by demonstrating that its

solution is equivalent to the sum of the complementary function and particular

integral of the equation of motion. So that he could apply it to the forced

vibrations of a softening system, he showed that the first approximation could

be assumed to be harmonic at the frequency of excitation. As a result, he derived

the frequency–amplitude equation, which is a cubic function of the amplitude.

Graphical interpretation of the result shows that the multivaluedness of the

response is dependent on how the excitation frequency compares with the natural

frequency of the linearised system. Although Duffing was aware that to predict the

response, one must examine the history of the response, i.e., of the hysteretic

behaviour of nonlinear systems, surprisingly there is not a single frequency-

response diagram in his book. To illustrate his findings, he provided the example

of a forced pendulum, approximating the equation of motion to a system with a

softening cubic restoring force. Duffing also analysed forced vibration for a

system with quadratic nonlinearity by applying the method of successive approx-

imation, assuming the first approximation to be the sum of a bias (DC) term and a

harmonic term. After the derivation of the amplitude–frequency equation, it is

solved graphically, and it is demonstrated that there can be multiple values of

the amplitude for each frequency, where the number and the values of solutions

are dependent upon whether or not the natural frequency is greater or less than the

excitation frequency. In addition, the response of a forced system with negative

quadratic and cubic nonlinearity is determined by means of Duffing’s iterative

method. The results are illustrated by investigating a pendulum that is excited by a

constant plus harmonic force, whose equation of motion is transformed appro-

priately. The chapter is concluded with a summary of the main findings, and

includes a table in which the differences between the responses of linear and

nonlinear externally excited systems are highlighted.

Chapter III is devoted entirely to the experimental illustration and analysis of

a system whose general equation of motion covers all the cases of forced vibrations

considered in the previous chapter. The rig consisted of a pendulum which could be

adjusted so that it corresponded to either a symmetrical or asymmetrical system.

Duffing compared his theoretical results with those obtained experimentally and

found satisfactory numerical agreement.

Chapter IV contains only one section, which is concerned with the influence of

damping on the response of a softening cubic systemwith harmonic forced excitation.

Again, the possibility of a multivalued response is shown graphically. Comparing the

case of weak damping with the corresponding diagram for the undamped case,
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Duffing remarked that there is no qualitative difference below and above the natural

frequency.

Stability analysis of the periodic motion of the harmonically excited oscillator

with cubic nonlinearity is investigated in Chapter V. With this aim, a linearised

variational equation of the perturbed solution is considered, but with regard to the

pendulum.

InChapter VI some real systems are considered that are of interest from a practical

point of view and whose governing equations correspond to those considered earlier:

first, an electrical circuit analysed in Martienssen’s paper [14], which is related to a

free oscillating cubic system; then, a synchronous generator whose equation of

motion corresponds to the asymmetric pendulum equation; and finally, a three-phase

generator whose equation of motion corresponds to the symmetric pendulum

equation and for which the multivaluedness of the response is shown analytically

and graphically.

Chapter VII, entitled ‘Generalisations’, is concerned with the application of

Duffing’s method to the study of the systems excited by a sum of several harmonic

forces. The cases of a quadratic and cubic restoring force are dealt with separately.

Duffing also pointed out the necessity to study nonlinear systems with many degrees

of freedom, due to their technical significance.

In Appendix 1 some details about the Weierstrass elliptic functions are given,

while the integration of elliptic differential equations is commented on inAppendix 2.

Appendix 3 contains the algorithm on how to transform a certain differential form to

theWeierstrass normal form. Free vibrations of a pendulum are studied in Appendix 4

by means of elliptic functions. In Appendix 5 the Ritz method is applied to the forced

vibrations with either cubic or quadratic nonlinearity with the aim of obtaining the

amplitude-frequency expression.

1.5.2 Reviews of Duffing’s book

The appearance of Duffing’s book was announced and its contribution recognised

soon after it had been published. Two reviews appeared in scientific journals, both

written by Professor Georg Hamel from Berlin.

The first review was in the Annual Bulletin of Mathematics (‘Jahbrbuch der

Mathematik’ 1916–1918) [23]. According to Professor Hamel, the main aim of the

book was to explain several significant phenomena that appear during oscillatory

motion of an externally excited asymmetric pendulum. The reviewer highlighted the

difference between the number and stability properties of the steady-state solutions of

its approximate equation, in which the restoring force contains quadratic and cubic

nonlinearity, and the linearised equation.

Another review was submitted in 1920 to the ZAMM-Journal of Applied

Mathematics and Mechanics (‘Zeitschrift fur Angewandte Mathematik und

Mechanik’) and published in its very first issue in 1921 [24]. At the beginning of

the review, the main characteristics of the resonance response of a harmonically

excited linear oscillator are listed. Then, stating that “the equations that describe

numerous vibration problems are more complex”, the example of a forced pendulum
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was given as an illustration. It was emphasised that its solution was obtained for free

vibrations by using elliptic functions, but in case of forced vibrations this appeared to

be unattainable. In order to overcome this problem, Duffing approximated the

equation of the pendulum to an equation with softening cubic nonlinearity, assumed

the solution of motion in the form of the first harmonic and applied three methods (the

method of the variation of parameters, the method of successive approximation

and the Ritz method), showing the possibility of a multivalued response. It is also

noted that Duffing succeeded in confirming some results experimentally as well as

discussing the equation of motion with both quadratic and cubic nonlinearity, and

damped vibrations.

It is worth mentioning that the reviewer recognised and supported Duffing’s wish

and intention, writing [24]: “Strange vibration phenomena in relatively simple cases

are enlightened in this study, as a reward for an engineer and as an inspiration for

a mathematician to gain deeper insight.”

1.6 Research inspired by Duffing’s work

1.6.1 1918–1952

Following Duffing’s book, it took some time for his work to become known. This

could have been due to the fact that it was published in German. In what follows, a

potted history of the research work that followed on from Duffing’s book is given. It

will be seen that it took about ten years for the book to be cited in a publication

written in English, and this was in Timoshenko’s book. It is possible that

Timoshenko got to know of Duffing’s work when he was at Westinghouse in the

United States. He went there in 1922, more than a decade after Duffing’s visit which

was in 1910.

Possibly the earliest paper that cites Duffing’s work was written by Hamel [25].

Hamel also wrote reviews of Duffing’s book [23,24]. In this paper, Hamel studied the

pendulum, but did not approximate the restoring force as a linear plus a cubic term as

in Duffing’s book. Rather, using the variational approach, he minimised the action

integral, deriving the amplitude–frequency equation, obtaining a more accurate

result.

R€udenberg considered both mechanical and electrical systems with nonlinear

restoring-force characteristics [26], continuing the work of Martienssen [14],

Biermanns [15] and Duffing [3]. He considered both free and forced oscillations.

For free oscillations, he considered undamped systems and for forced vibrations

he considered both undamped and damped systems using a combination

of analytical and geometrical approaches similar to that taken by Duffing.

He assumed a harmonic response, but considered a generalised restoring force

instead of than one of polynomial form, which permits graphical rather than

closed-form solutions.

In 1924, Appleton studied the softening nonlinear behaviour of a galvanometer

used in the laboratory in CambridgeUniversity [27]. He observed that the output from

the galvanometer could have two different values for certain current inputs. He
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modelled the system as Duffing had done for the pendulum and produced frequency-

response curves that were similar to those observed in the laboratory. He also

considered the stability of his solutions. Remarkably, Appleton did not refer to any

literature, except to note that a paper by Waibal in Annal der Physik had observed

hysteresis behaviour in a galvanometer.

Lachman wrote a paper concerning the solution of the exact equation describing

the forced vibration of a pendulum in 1928 [28]. He usedDuffing’s name in the title of

the paper, demonstrating that he was directly inspired by this equation appearing in

Duffing’s book.

Timoshenko’s classic textbook was published in 1928 [29]. In it he considered

simple mechanical systems with geometric nonlinearity and cites Duffing’s book.

This appears to be the first time that it was cited in a publication written in English,

and is possibly the beginning of international acknowledgement of the importance

of Duffing’s pioneering work.

Five years later, Den Hartog, who was also employed by Westinghouse

(1924–1932), developed a graphical method for solving the forced vibration of a

system with a nonlinear spring, and compares his results directly with the method

developed by Martienssen, the work that inspired Duffing. Duffing’s book is cited in

this paper [30].

In 1938, Rauscher developed an iterative method to determine the response of a

forced nonlinear oscillator with a general nonlinear restoring force characteristic

using the amplitude of free vibration of the oscillator as an initial guess [31]. He cited

Duffing’s book as being the long-established text on the subject.

Von K�arm�an published a paper in the Bulletin of the American Mathematical

Society in 1940 [32], based on the fifteenth Josiah Willard Gibbs lecture that he gave

in 1939. In this paper he described several nonlinear engineering problems, one of

which involved subharmonic resonance due to nonlinear restoring forces. Duffing’s

book was listed in the bibliography.

In the late 1930s and 1940s a group of applied mathematicians worked on

nonlinear problems in New York University. These were led by Richard Courant,

who left Germany in the mid-1930s, where he had been an assistant to Hilbert at

G€ottingen. His group included Kurt Friedrichs, his former student who left Germany

in 1937 to join him, and James Stoker, who subsequently wrote the seminal book on

nonlinear vibrations [22]. In 1942 in a series of lectures given atBrownUniversity [33]

based on a course given by Friedrichs and Stoker at NewYorkUniversity, the equation

of an oscillator in which the restoring force consists of a linear and a cubic term was

described as Duffing’s equation. This was 24 years after Duffing’s book, and the

authors believe this was the first occasion in which the equation was named in such

a way.

In 1949, Levenson published a paper in the Journal of Applied Physics based on

his doctoral work at NewYork University in which the Duffing equation and his name

appears in the title [34]. In this paper, Levenson considered the harmonic and

subharmonic response of the system. It appears that by 1949, some 31 years after

Duffing’s book, the equation describing the oscillator with a linear and cubic

nonlinear restoring force had become known as the Duffing equation.
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Following Stoker’s book in 1950 [22], the Duffing equation sat alongside van der

Pol’s, equation as one of the classic equations in nonlinear vibrations and was being

cited in a wide range of literature from physics, for example [35], to mathematics, for

example [36]. This last paper was a review paper published in 1952; it appears to

signal the end of thework in this area, apart from one paper on the transient behaviour

of a ferroresonance circuit in 1956, for about a decade.

1.6.2 1962 to the present day

Since the 1960s, many journal papers have been published related to the Duffing

equation. A survey has been carried out via SCOPUS to track the journal papers that

used the word ‘Duffing’ in the title, abstract or keywords. The number of such papers

published per year is shown in Figure 1.4. It can be seen that until the 1970s, only a few

papers appeared per year, concerned mainly with finding an approximation for the

displacement of the oscillator. Then, this number dramatically increased, which was

because people started to recognise the Duffing equation as a model for different

systems. Also, digital computers started to be used to solve analytically nonlinear

(a)

(b)

Figure 1.4 Numberof publications referring to theword ‘Duffing’ in the title, abstract

or keywords per year; a) for the period 1950–1974; b) for the period 1975–2009

(Source: Elsevier ScopusTM, accessed 9 August 2008 and updated 30 March 2010).
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ordinary differential equations. This increasing trend continued even further, when in

1976 Holmes and Rand published their paper on bifurcations of Duffing’s equation

and the application of catastrophe theory [37].

In the 1980s Ueda published his work on chaos, initially named ‘randomly

transitional phenomena’ [38] and ‘random phenomena’ [39]. Reference [39] was a

translated version of an earlier paper published in Japanese in the Transactions of the

Institute of Electrical Engineers of Japan, Vol. A98, March 1978. The postscript in

reference [39] sheds some interesting light on the discovery of chaotic behaviour

in the purely cubic Duffing oscillator. Because this is such an important milestone in

the study of the Duffing equation, it is copied in full below.

POSTSCRIPT by YOSHISUKE UEDA

I deem it a great honour to be given the opportunity to translatemy article intoEnglish and I

would like to express my thanks to the members of the editorial board. In the following I

am writing down some comments and fond memories of days past when I was preparing

the manuscript with tremendous difficulty.

It was on November 1961 when I met with chaotic motions in an analogue computer

simulating a forced self-oscillatory system. Since then my interest has been held by the

phenomenon, and I have been fascinated by the problem “what are steady states in non-

linear systems?”After nearly ten years I understood “randomly transitional phenomenon”,

I published my findings in the Transactions of the Institute of Electronics and Commu-

nication Engineers of Japan, Vol. 56, April 1973 [10].My paper then received a number of

unfavorable criticisms from some of my colleagues: such as, “Your results are of no

importance because you have not examined the effects of simulation and/or calculation

errors at all”, “Your paper is of little importance because it is merely an experimental

result”, “Your result is no more than a periodic oscillation. Don’t form a selfish concept of

steady states”, and so forth. Professor Hiromu Momota of the Institute of Plasma Physics

was the first to appreciate the worth of my work. He said “Your results give an important

feature relating to stochastic phenomena” on 3 March 1974. Through his good offices I

joined the Collaborating Research Program at the Institute of Plasma Physics at Nagoya

University. These events gave me such unforgettable impressions that I continued the

research with tenacity. At this moment I yearn for those days with great appreciation for

their criticisms and encouragements.

By the middle of the 1970s, I had obtained many data of strange attractors for some

systems of differential equations; but I had no idea to what journals and/or conferences I

might submit these results. I was then lucky enough to meet with Professor David Ruelle

whowas visiting Japan in the early summer of 1978. He advisedme to submitmy results to

the Journal of Statistical Physics [P1]. Further, he named the strange attractor of Fig. 3

“Japanese Attractor” and introduced it to the whole world [P2–P5]. At the same time

chaotic behavior in deterministic systems began to come under the spotlight in various

fields of natural sciences. I fortunately had several opportunities to present my accumu-

lated results [P6–P11]. It is worthwhile mentioning that, due to the efforts of Professor

David Ruelle and Professor Jean-Michel Kantor, the Japanese Attractor will be displayed

at the National Museum of Sciences, Techniques and Industries which will open in Paris,

1986. In these circumstances this paper is a commemorative for me and I sincerely

appreciate their kindness on these matters.
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In 1979 Holmes’s article ‘A nonlinear oscillator with a strange attractor’

appeared [40]. This is also a highly cited paper. The continuous growing trend

of the published articles has included the development of analytical and numerical

methods to find different solutions for motion and to study the phenomena

associated with the equations of motion. Investigation of the transition between

different regimes has also been widely researched as has identification of the

systems, and different problems of synchronisation and control, etc.

What is also apparent is the diversity of disciplines in which Duffing’s equation

appears. As illustrated in Figure 1.5, the majority of publications in the SCOPUS

survey belongs to Engineering. Around 25%of them are fromPhysics andAstronomy

and 19% from Mathematics. Computer Science encompasses 6%, Material Science

and Multidisciplinary studies 2%, while Chemical Engineering has only 1% of the

publications. The rest of the disciplines, such as Earth Science, Biochemistry or

Biology each have less than 1% of the total, so are given in a cumulative way.

It should be emphasised that it is not the equation of motion with a positive linear

term and cubic nonlinearity that was named after Duffing, but many other homoge-

neous or inhomogeneous second-order ordinary differential equations were also

As the reader will notice in this translation and also in ref. [P1] I was rather nervous of

using the term “strange attractor”, because I had no understanding of its mathematical

definition in those days. Although I do not think I fully understand the definition of it even

today, I begin to use the term “strange attractor” without hesitation because it seems to

agree with reality. However, it seems to me that the term “chaos”, although it is short and

simple, is a little bit exaggerated. In the universe one does have a lot more complicated,

mysterious and incomprehensible phenomena! I should be interested in readers’ views of

my opinion.

(Reprinted from [39], Copyright 2010, with permission from Elsevier)
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called the Duffing equation(s) and formed the basis of many mathematical models of

different systems. Some of the practical examples of the systems whose dynamic

behaviour is described by these equations are given in Chapter 2 of this book.

Subsequent chapters are concerned with different forms of the Duffing equation(s)

each contains some references that can help the reader to track themost important and

the most influential publications associated with each form of the equation studied.

1.7 Some other books on nonlinear dynamics

As mentioned previously, Stoker’s book [22] was a key publication in the field of

nonlinear vibrations in the 1950s. From the 1960s there have been many books

published in this area, demonstrating the rapid development of the topic and growing

interest by various communities. Several books are listed in this chapter, so that the

reader can probe more deeply into the topics of their choice. The books are grouped

together as follows; mathematical treatment of equations of motion [41–48], nonlin-

ear phenomena, with a focus on chaos [49–54], and finally those which have more of

an engineering bias [55–59]. The books by Hayashi [42] and Nayfeh and Mook [43]

are considered to be of particular importance as they give the concepts and analytical

methods for the study of nonlinear oscillators. In addition, the former provides

experimental results and the latter includes an extensive bibliography.

1.8 Overview of this book

This book has been created with the aim of enabling the reader to gradually gain

insight into the equations associated with Duffing’s name, the oscillators that

Figure 1.5 Percentage of publications referring to the word ‘Duffing’ in the title,

abstract or keywords for the period 1950–2009 per disciplines (Source: Elsevier

ScopusTM, accessed 9 August 2008 and updated 30 March 2010).
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they describe, methods that are used to study their response and related phenom-

ena. Following the historical background given in Chapter 1, Chapter 2 shows

how some real dynamic systems can be modelled approximately by the Duffing

equation. Chapters 3 and 4 are concerned primarily with qualitative and quanti-

tative analysis of free vibration problems (Chapter 4 does, however, contain some

quantitative analysis of forced vibrations). These two chapters set the scene for

the remaining four chapters, which are concerned with different forced vibration

problems. More details about each book chapter, as well as the Appendix and the

Glossary, are given below.

As mentioned above, Chapter 2 gives practical examples of systems whose

dynamic behaviour is described by different forms of the Duffing equation. Various

physical systems are chosen to illustrate the physical phenomena that result in

different forms of this equation. These equations are subsequently nondimensiona-

lised to link with the other chapters in the book. In addition, several basic types of

geometric nonlinearity are described: hardening (with positive linear stiffness and

positive cubic stiffness), softening (with positive linear stiffness and negative cubic

stiffness), systems with negative linear-positive nonlinear stiffness (i.e., with a

double/two/twin-well potential) and, finally, a system that is purely nonlinear (no

linear term). The equations that describe the systems with these types of nonlinearity

are subsequently investigated in more detail in later chapters for the case of free and

forced vibrations and different damping mechanisms.

Chapter 3 is concerned with free vibrations of a system with viscous damping.

Qualitative analysis is conducted to demonstrate that the system undergoes local

bifurcations when the linear stiffness and damping are changed. It is shown that

negative linear stiffness and negative linear damping can produce buckling and

self-excited oscillation, respectively. It is also shown that nonlinear stiffness

characterises the postbuckling behaviour, i.e., the existence of nontrivial fixed

points and their stability. The effect of nonlinear damping on the existence and

magnitude of the steady-state response for the self-excited system is demonstrated.

Furthermore, more global aspects of the bifurcation are investigated. By using a

Hamiltonian structure, some of the qualitative characteristics of nonlinear dynamics

are also studied.

Some quantitative methods for obtaining the solutions of various forms of the

Duffing equation with hardening, softening, negative linear-positive nonlinear

stiffness and pure cubic nonlinearity are presented in Chapter 4. Two groups of

analytical methods are shown: nonperturbation and perturbation techniques.

The following asymptotic methods are considered: the straightforward expansion

method, the parameter-expanding method (the elliptic Lindstedt–Poincar�e
method), the generalised averaging method, the parameter perturbation method

(elliptic Krylov–Bogolubov method), the elliptic harmonic balance method, the

elliptic Galerkin method (the weighted residual method), the homotopy pertur-

bation method and the homotopy analysis method. For all the methods discussed,

the common factor is the generating solutions of the differential equations that

describe the free or harmonically forced oscillations of the Duffing oscillator.

These are based on Jacobi elliptic functions. To illustrate the use of these
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methods, several examples are given. To assess the accuracy of the approximate

analytical solutions, they are compared with numerical solutions. It is shown that

the analytical results obtained are in good agreement with the solutions from

numerical integration even for the cases when the nonlinearity and/or the

excitation force are not small.

In Chapter 5, forced harmonic oscillations of the Duffing oscillator with linear

viscous damping are explored. For weak nonlinearities and weak damping, the

perturbation method is used to obtain an analytical approximation for the primary

resonance response. In order to study the stability of periodic responses of the forced

Duffing oscillator, local stability analysis is carried out on the equations describing the

slow timescale evolution. In addition, secondary resonance corresponding to strong

(hard) excitation is also discussed. The combination of analytical and numerical

investigations presented in this chapter is used to illustrate the jump phenomenon and

the rich variety of nonlinear phenomena possible in the system with a hardening,

softening and pure cubic nonlinearity.

Chapter 6 contains the study of a harmonically excited Duffing oscillator with

different damping mechanisms, focusing on the effects of these damping mechan-

isms on the response of a system with a hardening, softening, negative linear-

positive nonlinear stiffness and pure cubic nonlinearity. All velocity-dependent

damping mechanisms are treated by using the concept of equivalent viscous

damping. The break-loose frequency is introduced in the case ofCoulomb damping.

The stability analysis of the harmonic solution, period-doubling bifurcation and

Melnikov criterion are obtained for linear and cubic damping. Some experimental

and numerical results are included to investigate some typical trends in the response.

Forced harmonic vibration in a Duffing oscillator with negative linear stiffness

and linear viscous damping are examined in Chapter 7. Various aspects of the

dynamical behaviour of the Duffing oscillator with a twin-well potential are

investigated by the combined use of analytical and numerical tools. Nonlinear

periodic oscillations are discussed first, and the classical nonlinear resonance is

studied in detail by the method of multiple scales. Then, transition to a complex

response is investigated by using bifurcation diagrams, basins of attractions, and

stable and unstable invariant manifolds, by summarising the regions of different

dynamical response in a comprehensive behaviour chart. Analytical prediction of

the transition to chaos via the Melnikov criterion is then presented. Finally,

nonclassical issues such as control of homoclinic bifurcation and chaos, and

dynamical integrity are discussed in detail with the aim of highlighting the most

important ideas and objectives.

In the last chapter, the forced harmonic vibrations of an asymmetric nonlinear

system are investigated. Two nonlinear asymmetric systems are described. The first is

a pure cubic nonlinear oscillator with a constant and a harmonic force acting on it,

and the second is a harmonically excited oscillator with both quadratic and cubic

nonlinearity. Both of these systems have a single-well potential. Different analytical

and numerical approaches are used to study and illustrate the rich dynamics of the

systems, which include multiple jumps in the hysteretic behaviour and different

routes to chaos.
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This book also has an Appendix, which contains various sections of Duffing’s

book that have been tranlsated into English. His book has been cited many times

since 1918, the year it was published, but to the editors’ knowledge, it has never

been translated into English. The sections have been chosen to give a flavour of

the book, reflecting aspects of Duffing’s work closely related to the content of this

book.

This book ends with a Glossary, containing a list of some definitions and terms

used. The aim of providing such a list is to enable the reader to go through the book

smoothly, without any need to look elsewhere for background information, and to

make this book appropriate for a wide-range of readers interested in the content. The

terms in bold in the Glossary are written in italics in the main text, when they appear

for the first time in each chapter.
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