
1
JPEG 2000 Core Coding System
(Part 1)

Majid Rabbani, Rajan L. Joshi, and Paul W. Jones

1.1 Introduction

The Joint Photographic Experts Group (JPEG) committee was formed in 1986 under the
joint auspices of ISO and ITU-T1 and was chartered with the ‘digital compression and
coding of continuous-tone still images.’ In 1993, the committee published an International
Standard known as JPEG Part 1 (ISO/IEC, 1993; Pennebaker and Mitchell, 1993), which
provides a toolkit of compression techniques from which applications can select various
elements to satisfy particular requirements. This toolkit includes: (i) the JPEG baseline
system, which is a discrete cosine transform (DCT)-based lossy compression algorithm
that uses Huffman coding and is restricted to 8 bits/pixel input; (ii) an extended system,
which provides enhancements to the baseline algorithm, such as 12 bits/pixel input and
arithmetic coding, to satisfy a broader set of applications; and (iii) a lossless mode,
which uses a predictive coding method that is independent of the DCT. Of these various
components, only the JPEG baseline system has seen widespread adoption. While the
JPEG baseline system offers good compression efficiency with modest computational
complexity, its success as an image compression standard can really be attributed to
the availability of a free software implementation that was released by the Independent
JPEG Group (IJG).2 The IJG code allowed developers to build efficient and robust JPEG
applications quickly.

Despite the phenomenal success of the JPEG baseline system, it has various limitations
that hinder its use in applications such as medical diagnostic imaging, mobile communi-
cations, digital cinema, enhanced internet browsing, and multimedia. The extended JPEG

1 Formerly known as the Consultative Committee for International Telephone and Telegraph (CCITT).
2 Independent JPEG Group, JPEG Library (Version 6b), available from http://www.ijg.org/ or ftp://ftp.uu.net/
graphics/jpeg/ (tar.gz format archive).

The JPEG 2000 Suite Edited by Peter Schelkens, Athanassios Skodras and Touradj Ebrahimi
© 2009 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L

4 The JPEG 2000 Suite

system addresses only some of these limitations, while also being subject to intellectual
property rights (IPR) issues for certain technology components. The desire to provide
a broad range of features for numerous applications in a single compressed bit-stream
prompted the JPEG committee in 1996 to investigate possibilities for a new compression
standard that was subsequently named JPEG 2000. In March 1997, a call for propos-
als was issued (ISO/IEC, (1997a, 1997b)), seeking to produce a standard to ‘address
areas where current standards failed to produce the best quality or performance,’ ‘pro-
vide capabilities to markets that currently do not use compression,’ and ‘provide an open
system approach to imaging applications.’ After evaluating more than 20 algorithms and
performing hundreds of technical studies known as ‘core experiments,’ the JPEG com-
mittee issued JPEG 2000 Part 1 as an International Standard in December 2000 (ISO/IEC
International Standard 15444-1, ITU Recommendation T.800).

In the same vein as the JPEG baseline system, Part 1 of JPEG 2000 defines a core cod-
ing system that provides high coding efficiency with minimal complexity, and is aimed
at satisfying 80% of potential applications (ISO/IEC International Standard 15444-1, ITU
Recommendation T.800). In addition, it defines an optional file format that includes essen-
tial information for the proper rendering of the image. To help drive the adoption of Part 1,
the JPEG 2000 committee worked diligently to ensure that it could be made available on
a royalty- and fee-free basis. Most of the technologies that were excluded from Part 1
of the JPEG 2000 standard because of IPR or complexity issues were included in Part 2
(ISO/IEC International Standard 15444-2, ITU Recommendation T.801). The division of
the JPEG 2000 standard into various parts allows an application to minimize complexity
by using only those parts that are needed to satisfy its requirements.

The incentive behind the development of the JPEG 2000 system was not just to provide
higher compression efficiency than the baseline JPEG system. Instead, it was to provide
a new image representation with a rich set of features, all supported within the same
compressed bit-stream, that can address a variety of existing and emerging compression
applications. In particular, Part 1 of the JPEG 2000 standard addresses some of the
shortcomings of baseline JPEG by providing the following features:

• Improved compression efficiency
• Lossy to lossless compression
• Multiple resolution representation
• Embedded bit-stream, including progressive decoding and signal-to-noise ratio (SNR)

scalability
• Tiling
• Region-of-interest (ROI) coding
• Error resilience
• Random code-stream access and processing
• Improved performance to multiple compression/decompression cycles
• Flexible file format

The JPEG 2000 standard makes use of several advances in compression technology
in order to achieve these features. The block-based DCT of JPEG has been replaced by
the full-frame discrete wavelet transform (DWT). The DWT inherently provides a mul-
tiresolution image representation, and it also improves compression efficiency because of
good energy compaction and the ability to decorrelate the image across a larger scale.

JPEG 2000 Core Coding System (Part 1) 5

Furthermore, integer DWT filters can be used to provide both lossless and lossy com-
pression within a single compressed bit-stream. Embedded coding is achieved by using a
uniform quantizer with a central dead zone (with twice the step size). When the output
index of this quantizer is represented as a series of binary symbols, a partial decoding
of the index is equivalent to coarser quantization, where the effective quantizer step size
is equivalent to the scaling of the original step size by a power of two. To encode the
binary bit-planes of the quantizer index, JPEG 2000 has replaced the Huffman encoder of
baseline JPEG with a context-based adaptive binary arithmetic encoder that is known as
the MQ-coder. The embedded bit-stream that results from bit-plane coding provides SNR
scalability in addition to the capability of compressing to a target file size. Furthermore,
the bit-planes in each subband are encoded in independent rectangular blocks and in three
fractional bit-plane passes to provide an optimal embedded bit-stream, improved error
resilience, partial spatial random access, ease of certain geometric manipulations, and an
extremely flexible code-stream syntax. Finally, the introduction of a canvas coordinate
system facilitates certain operations in the compressed domain such as cropping, rota-
tions by multiples of 90◦, flipping, etc., in addition to improved performance to multiple
compression/decompression cycles.

Several excellent review papers on JPEG 2000 Part 1 have appeared in the literature
(Adams et al., 2000; Christopoulos, Skodras, and Ebrahimi, 2000; Ebrahimi et al., 2000;
Gormish, Lee, and Marcellin, 2000; Marcellin et al., 2000; Rabbani and Joshi, 2000;
Santa-Cruz and Ebrahimi, 2000; Taubman and Marcellin, 2002). Two comprehensive
books describing the technical aspects of the standard have been published (Acharya and
Tsai, 2005; Taubman and Marcellin, 2001) and a Special Journal Issue was dedicated to
JPEG 2000 (SPIC, 2002). The goal of this chapter is to provide a technical description of
the fundamental building blocks of JPEG 2000 Part 1 and to explain the rationale behind
the selected technologies. Emphasis is placed on general encoder and decoder technology
issues to provide a better understanding of the standard in various applications, and
many specific implementation issues have been omitted. As a result, readers who plan
on implementing the standard are encouraged to refer to the actual standard (ISO/IEC
International Standard 15444-1, ITU Recommendation T.800). It is worth noting that the
standard document is written from the standpoint of the decoder, while the focus of this
chapter is mainly from the standpoint of the encoder.

This chapter is organized as follows. In Section 1.2, the fundamental building blocks of
the JPEG 2000 Part 1 standard, such as preprocessing, DWT, quantization, and entropy
coding, are described. In Section 1.3, the syntax and organization of the compressed
bit-stream is explained. In Section 1.4, various rate control strategies that can be used
by the JPEG 2000 encoder for achieving an optimal SNR or visual quality for a given
bit-rate are discussed. In Section 1.5, the tradeoffs between the various choices of encoder
parameters are illustrated through an extensive set of examples. Finally, Section 1.6 con-
tains a brief description of some additional JPEG 2000 Part 1 features such as ROI, error
resilience, and file format.

1.2 JPEG 2000 Fundamental Building Blocks

The fundamental building blocks of a JPEG 2000 encoder are shown in Figure 1.1. These
components include preprocessing, DWT, quantization, arithmetic coding (tier-1 coding),

6 The JPEG 2000 Suite

Original
Image Data

Compressed
Image DataDiscrete Wavelet

Transform (DWT)
Uniform Qantizer

with Deadzone

Adaptive Binary
Arithmetic Coder
(Tier-1 Coding)

Pre-
Processing

Bit-stream
Organization

(Tier-2 Coding)

Figure 1.1 JPEG 2000 fundamental building blocks

and bit-stream organization (tier-2 coding). In the following, each of these components is
discussed in more detail.

The input image to JPEG 2000 may contain one or more components. Although a
typical color image would have three components (e.g. RGB or YCbCr), up to 16 384 (214)

components can be specified for an input image to accommodate multispectral or other
types of imagery. The sample values for each component can be either signed or unsigned
integers with a bit-depth in the range of 1 to 38 bits. Given a sample with a bit-depth of
B bits, the unsigned representation would correspond to the range [0, 2B − 1], while the
signed representation would correspond to the range [−2B−1, 2B−1 − 1]. The bit-depth,
resolution, and signed versus unsigned specification can vary for each component. If the
components have different bit-depths, the most significant bits of the components should
be aligned when estimating the distortion at the encoder.

1.2.1 Preprocessing

The first step in preprocessing is to partition the input image into rectangular and nonover-
lapping tiles of equal size (except possibly for those tiles at the image borders). The tile
size is arbitrary and can be as large as the original image itself (i.e. only one tile) or
as small as a single pixel. Each tile is compressed independently using its own set of
specified compression parameters. Tiling is particularly useful for applications where the
amount of available memory is limited compared to the image size.

Next, unsigned sample values in each component are level shifted (DC offset) by
subtracting a fixed value of 2B−1 from each sample to make its value symmetric around
zero. Signed sample values are not level shifted. Similar to the level shifting performed in
the JPEG standard, this operation simplifies certain implementation issues (e.g. numerical
overflow, arithmetic coding context specification, etc.), but has no effect on the coding
efficiency. Part 2 of the JPEG 2000 standard allows for a generalized DC offset, where a
user-defined offset value can be signaled in a marker segment.

Finally, the level-shifted values can be subjected to a forward point-wise intercomponent
transformation to decorrelate the color data. One restriction on applying the intercompo-
nent transformation is that the components must have identical bit-depths and dimensions.
Two transform choices are allowed in Part 1, where both transforms operate on the first
three components of an image tile with the implicit assumption that these components
correspond to RGB. One transform is the irreversible color transform (ICT), which is
identical to the traditional RGB to YCbCr color transformation and can only be used for
lossy coding. The forward ICT is defined as

⎛
⎝ Y

Cb

Cr

⎞
⎠ =

⎛
⎝ 0.299 0.587 0.114

−0.16875 −0.33126 0.500
0.500 −0.41869 −0.08131

⎞
⎠ ×

⎛
⎝ R

G

B

⎞
⎠ . (1.1)

JPEG 2000 Core Coding System (Part 1) 7

This can alternatively be written as

Y = 0.299(R − G) + G + 0.114(B − G), Cb = 0.564(B − Y), Cr = 0.713(R − Y),

while the inverse ICT is given by

⎛
⎝ R

G

B

⎞
⎠ =

⎛
⎝ 1.0 0 1.402

1.0 −0.34413 −0.71414
1.0 1.772 0

⎞
⎠ ×

⎛
⎝ Y

Cb

Cr

⎞
⎠ . (1.2)

The other transform is the reversible color transform (RCT), which is a reversible
integer-to-integer transform that approximates the ICT for color decorrelation and can be
used for both lossless and lossy coding. The forward RCT is defined as

Ỹ =
⌊

R + 2G + B

4

⌋
, Db = B − G, Dr = R − G, (1.3)

where �w� denotes the largest integer that is smaller than or equal to w. The Ỹ component
has the same bit-depth as the RGB components while the color difference components
Db and Dr have one extra bit of precision. The inverse RCT, which is capable of exactly
recovering the original RGB data, is given by

G = Ỹ −
⌊

Db + Dr

4

⌋
, B = Db + G, R = Dr + G. (1.4)

At the decoder, the decompressed image is subjected to the corresponding inverse color
transform if necessary, followed by the removal of the DC level shift.

Because each component of each tile is treated independently, the basic compression
engine for JPEG 2000 will only be discussed with reference to a single tile component,
after the application of an intercomponent transform if one is used.

1.2.2 The Discrete Wavelet Transform (DWT)

The block DCT transformation in baseline JPEG has been replaced with the full-frame
DWT in JPEG 2000. The DWT has several characteristics that make it suitable for
fulfilling some of the requirements set forth by the JPEG 2000 committee. For example, a
multiresolution image representation is inherent to the DWT. Furthermore, the full-frame
nature of the transform decorrelates the image across a larger scale and eliminates blocking
artifacts at high compression ratios. Finally, the use of integer DWT filters allows for both
lossless and lossy compression within a single compressed bit-stream. In the following, we
first consider a one-dimensional (1-D) DWT for simplicity, and then extend the concepts
to two dimensions.

1.2.2.1 The 1-D DWT

The forward 1-D DWT at the encoder is best understood as successive applications of
a pair of lowpass and highpass filters, followed by downsampling by a factor of two

8 The JPEG 2000 Suite

2

2

Analysis filter bank Synthesis filter bank

2

2h1(n)

h0(n)

g1(n)

g0(n)

x(n) x(n)
+

Highpass

LowpassLowpass

Highpass

Downsample Upsample

^

Figure 1.2 1-D, two-band wavelet analysis and synthesis filter banks

(e.g. discarding odd indexed samples) after each filtering operation, as shown in Figure 1.2.
The lowpass and highpass filter pair is known as an analysis filter bank . The lowpass
filter preserves the low frequencies of a signal while attenuating or eliminating the high
frequencies, and the result is a blurred version of the original signal. Conversely, the
highpass filter preserves the high frequencies in a signal such as edges, texture, and
detail, while removing or attenuating the low frequencies.

Consider a 1-D signal x(n) (such as the pixel values in a row of an image) and a pair
of lowpass and highpass filters designated by h0(n) and h1(n), respectively. An example
of a lowpass filter is h0(n) = (−1 2 6 2 −1)/8, which is symmetric and has five integer
coefficients (or taps). An example of a highpass filter is h1(n) = (−1 2 −1)/2, which is
symmetric and has three integer taps. The analysis filter bank used in this example was
first proposed in LeGall and Tabatabai (1988) and is often referred to as the (5, 3) filter
bank, indicating a lowpass filter of length five and a highpass filter of length three. To
ensure that the filtering operation is defined at the signal boundaries, the 1-D signal must
be extended in both directions. When using odd-tap filters, the signal is symmetrically and
periodically extended as shown in Figure 1.3. The extension for even-tap filters (allowed
in Part 2 of the standard) is more complicated and is explained in JPEG 2000 Part 2 (ISO
International Standard 15444-2, ITU Recommendation T.801).

The filtered samples that are outputted from the forward DWT are referred to as wavelet
coefficients . Because of the downsampling process, the total number of wavelet coeffi-
cients is the same as the number of original signal samples. When the DWT decomposition
is applied to sequences with an odd number of samples, either the lowpass or the highpass
sequence will have one additional sample to maintain the same number of coefficients
as original samples. In JPEG 2000, this choice is dictated by the positioning of the

Original signal samples

Figure 1.3 Symmetric and periodic extension of the input signal at boundaries

JPEG 2000 Core Coding System (Part 1) 9

input signal with respect to the canvas coordinate system, which will be discussed in
Section 1.3.1. The (h0, h1) filter pair is designed in such a manner that after downsam-
pling the output of each filter by a factor of two, the original signal can still be completely
recovered from the remaining samples in the absence of any quantization errors. This is
referred to as the perfect reconstruction (PR) property.

Reconstruction of a signal from the wavelet coefficients at the decoder is performed
with another pair of lowpass and highpass filters (g0, g1), known as the synthesis filter
bank . Referring to Figure 1.2, the downsampled output of the lowpass filter h0(n) is first
upsampled by a factor of two by inserting zeroes in between every two samples. The
result is then filtered with the synthesis lowpass filter g0(n). The downsampled output
of the highpass filter h1(n) is also upsampled and filtered with the synthesis highpass
filter g1(n). The results are added together to produce a reconstructed signal x̂(n), which,
assuming sufficient precision, will be identical to x(n) because of the PR property.

For perfect reconstruction, the analysis and synthesis filters have to satisfy the following
two conditions:

H0(z)G0(z) + H1(z)G1(z) = 2, (1.5)

H0(−z)G0(z) + H1(−z)G1(z) = 0, (1.6)

where H0(z) is the Z-transform of h0(n), G0(z) is the Z-transform of g0(n), etc. The
condition in Equation (1.6) can be satisfied by choosing

G0(z) = −cz−lH1(−z) and G1(z) = cz−lH0(−z), (1.7)

where l is an integer constant and c is a scaling factor. Combining this result with
Equation (1.5) indicates that the analysis filter pair (h0, h1) has to be chosen to satisfy

−cz−lH0(z)H1(−z) + cz−lH1(z)H0(−z) = 2. (1.8)

The constant l represents a delay term that imposes a restriction on the spatial alignment
of the analysis and synthesis filters, while the constant c affects the filter normalization.
The filter bank that satisfies these conditions is known as the biorthogonal filter bank.
This name stems from the fact that h0 and g1 are orthogonal to each other and h1 and
g0 are orthogonal to each other. A particular class of biorthogonal filters is one where
the analysis and synthesis filters are finite impulse response (FIR) and linear phase (i.e.
they satisfy certain symmetry conditions) (Vetterli and Kovacevic, 1995). Then, it can be
shown that in order to satisfy Equation (1.8), the analysis filters h0 and h1 have to be of
unequal lengths. If the filters have an odd number of taps, their length can differ only by
an odd multiple of two, while for even-tap filters the length difference can only be an
even multiple of two.

While the (5, 3) filter bank is a prime example of a biorthogonal filter bank with
integer taps, the filter banks that result in the highest compression efficiency often have
floating-point taps (Villasenor, Belzer, and Liao, 1995). The most well-known filter bank
in this category is the Daubechies (9, 7) filter bank, introduced in Antonini et al. (1992)
and characterized by the filter taps given in Table 1.1. For comparison, the analysis and
synthesis filter taps for the integer (5, 3) filter bank are specified in Table 1.2. It can be
easily verified that these filters satisfy Equations (1.7) and (1.8) with l = 1 and c = 1.0. As

10 The JPEG 2000 Suite

Table 1.1 Analysis and synthesis filter taps for the floating-point Daubechies (9, 7)
filter bank

n Lowpass, h0(n) Lowpass, g0(n)

0 +0.602949018236360 +1.115087052457000

±1 +0.266864118442875 +0.591271763114250

±2 −0.078223266528990 −0.057543526228500

±3 −0.016864118442875 −0.091271763114250

±4 +0.026748757410810

n Highpass, h1(n) n Highpass, g1(n)

−1 +1.115087052457000 1 +0.602949018236360

−2, 0 −0.591271763114250 0, 2 −0.266864118442875

−3, 1 −0.057543526228500 −1, 3 −0.078223266528990

−4, 2 +0.091271763114250 −2, 4 +0.016864118442875

−3, 5 +0.026748757410810

Table 1.2 Analysis and synthesis filter taps for the integer (5, 3)
filter bank

n h1(n) n g1(n)

−1 1 +3/4
−2, 0

+1
−1/2 0, 2 −1/4

−1, 3 −1/8

n h0(n) g0(n)

0 3/4 +1
±1 1/4 +1/2
±2 −1/8

is evident from Tables 1.1 and 1.2, the filter h0 is centered at zero while h1 is centered at
−1. As a result, the downsampling operation effectively retains the even-indexed samples
from the lowpass output and the odd-indexed samples from the highpass output sequence,
where the indices are defined relative to the reference grid (Section 1.3.1).

The frequency responses of the (9, 7) and (5, 3) analysis filter pairs are shown in
Figure 1.4. For convenience, the filter amplitudes have been normalized to approximately

(9,7) Filter Pair

0
0.2
0.4

0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.4 0.5
Spatial Frequency (cycles/sample) Spatial Frequency (cycles/sample)

Fi
lte

r
R

es
po

ns
e

0
0.2
0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.4 0.5

Fi
lte

r
R

es
po

ns
e

(5,3) Filter Pair

Figure 1.4 Frequency responses of (9, 7) and (5, 3) filter pairs with (1, 1) normalization

JPEG 2000 Core Coding System (Part 1) 11

the same range (refer to Section 1.2.2.4 for the actual normalizations). It is easy to see
the lowpass and highpass nature of the filter pairs, with the (9, 7) filter pair having
better frequency discrimination than the (5, 3) filter pair. However, even the (9, 7) filter
pair has substantial overlap between the lowpass and highpass filters. For either filter
pair, the frequency content that is above a normalized frequency of 0.25 cycles/sample
for the lowpass filter and below 0.25 cycles/sample for the highpass filter will alias when
the filtered outputs are decimated by a factor of two. While it may seem surprising,
the perfect reconstruction property guarantees that the aliased content will be canceled
during reconstruction in the absence of any errors in the wavelet coefficients.

After the 1-D signal has been decomposed into two frequency bands, the lowpass output
is still highly correlated and can be subjected to another stage of two-band decomposition
to achieve additional decorrelation. In comparison, there is generally little to be gained by
further decomposing the highpass output. In most DWT decompositions, only the lowpass
output is further decomposed to produce what is known as a dyadic or octave decom-
position. Part 1 of the JPEG 2000 standard supports only dyadic decompositions, while
Part 2 also allows for the further splitting of the high-frequency bands. Figure 1.5 shows
an example of the effective filter responses that are produced by recursive filtering of the
lowpass output in a dyadic decomposition. This example uses the (9, 7) filter pair and
illustrates a five-level decomposition, which produces six frequency bands (i.e. resolution
levels). The frequency discrimination of the frequency bands becomes increasingly tighter
as one moves from the highest frequency band to the lowest frequency band.

1.2.2.2 The 2-D DWT

The 1-D DWT can be easily extended to two dimensions (2-D) by applying the filter
bank in a separable manner. At each level of the wavelet decomposition, each row of a
2-D image is first transformed using a 1-D horizontal analysis filter bank (h0, h1). The
same filter bank is then applied vertically to each column of the filtered and subsampled
data. Given the linear nature of the filtering process, the order in which the horizontal
and the vertical filters are applied does not affect the final values of the 2-D subbands in
an ideal implementation.

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.1 0.2 0.3 0.4 0.5

Spatial Frequency (cycles/sample)

Fi
lte

r
R

es
po

ns
e

Figure 1.5 Frequency responses for a five-level dyadic decomposition (six frequency bands) using
the (9, 7) filter pair (see Plate 1)

12 The JPEG 2000 Suite

This separable filtering with a lowpass/highpass pair creates four frequency bands, and
correspondingly there are four sets of wavelet coefficients. The sets of wavelet coeffi-
cients represent filtered and subsampled versions of the input image, which are referred
to as subband images, or simply subbands . Thus, one-level, 2-D wavelet decomposition
produces four subbands. In a 2-D dyadic decomposition, the lowest frequency subband
(denoted as the LL band to indicate lowpass filtering in both directions) is further decom-
posed into four smaller subbands, and this process may be repeated as desired to achieve
gains in compression efficiency and/or for easy access to lower resolution versions of the
image. Figure 1.6 shows a three-level, 2-D dyadic decomposition and the corresponding
labeling for each subband. For example, the subband label kHL indicates that a horizontal
highpass (H) filter has been applied to the rows, followed by a vertical lowpass (L) filter
applied to the columns during the kth level of the DWT decomposition. As a conven-
tion, the subband 0LL refers to the original image (or image tile). Figure 1.7 shows a
three-level, 2-D DWT decomposition of the ‘Lena’ image using the (9, 7) filter bank as
specified in Table 1.1, and it clearly demonstrates the energy compaction property of the
DWT (i.e. most of the image energy is found in the lower frequency subbands). To visu-
alize the subband energies better, the AC subbands (i.e. all the subbands except for LL)
have been scaled up by a factor of four. However, as will be explained in Section 1.2.2.4,
in order to show the actual contribution of each subband to the overall image energy, the
wavelet coefficients in each subband should be scaled by the weights given in the last
column of Table 1.3.

The DWT decomposition provides a natural solution for the multiresolution require-
ment of the JPEG 2000 standard. The lowest resolution at which the image can be
reconstructed is referred to as resolution zero. For example, referring to Figure 1.6, the
3LL subband would correspond to resolution zero for a three-level decomposition. For
an NL-level3 DWT decomposition, the image can be reconstructed at NL + 1 resolutions.
In general, to reconstruct an image at resolution r(r > 0), subbands (NL − r + 1)HL,
(NL − r + 1)LH, and (NL − r + 1)HH need to be combined with the image at resolution

1HL

1HH1LH

2HL

2HH2LH

3HL

3HH

3LL

3LH

Figure 1.6 Labeling of subbands produced by a three-level, 2-D wavelet decomposition

3 N L is the notation that is used in the JPEG 2000 document to indicate the number of resolution levels, although
the subscript L might be somewhat confusing, as it would seem to indicate a variable.

JPEG 2000 Core Coding System (Part 1) 13

(9,7) Filter with (1,2) normalization, DC scale = 1, AC scale = 4

Figure 1.7 Subbands for a three-level, 2-D wavelet decomposition of Lena using the (9, 7) filter
bank

Table 1.3 L2-norms of the DWT subbands after a 2-D, three-level wavelet decomposition

(
√

2,
√

2) Normalization (1, 2) Normalization

Subband (5, 3) filter (9, 7) filter (5, 3) filter (9, 7) filter

3LL 0.67188 1.05209 5.37500 8.41675
3HL 0.72992 1.04584 2.91966 4.18337
3LH 0.72992 1.04584 2.91966 4.18337
3HH 0.79297 1.03963 1.58594 2.07926
2HL 0.79611 0.99841 1.59222 1.99681
2LH 0.79611 0.99841 1.59222 1.99681
2HH 0.92188 0.96722 0.92188 0.96722
1HL 1.03833 1.01129 1.03833 1.01129
1LH 1.03833 1.01129 1.03833 1.01129
1HH 1.43750 1.04044 0.71875 0.52022

(r − 1). These subbands (excluding the lower-resolution image) are referred to as belong-
ing to resolution r . Resolution zero consists of only the NLLL band. Because the subbands
are encoded independently, the image can be reconstructed at any resolution level by sim-
ply decoding those portions of the code-stream that contain the subbands corresponding
to that resolution and all the previous resolutions. For example, referring to Figure 1.6,
the image can be reconstructed at resolution two by combining the resolution one image
and the three subbands labeled 2HL, 2LH, and 2HH.

14 The JPEG 2000 Suite

1.2.2.3 The DWT as a Basis Function Decomposition

The DWT can also be viewed as a basis function decomposition. The basis functions
are simply the impulse responses of the spatial filters that comprise the wavelet filter
bank. In a dyadic decomposition, the low-frequency filters have large basis functions
(corresponding to a narrow range of frequencies) while the high-frequency filters have
small basis functions (corresponding to a wide range of frequencies). Because the analysis
and synthesis filter banks are different, the corresponding analysis and synthesis basis
functions will also be different.

The basis function viewpoint is most useful when considering the reconstruction pro-
cess that occurs with the inverse DWT during decompression. The basis functions are the
fundamental building blocks that are used to reconstruct an image, and the wavelet coef-
ficients indicate how much of each basis function is needed at a given point in the image.
Wavelet coefficient errors that are introduced during compression will result in artifacts
in the decompressed image that have the appearance of either isolated basis functions or
combinations of basis functions. Figure 1.8 shows the 2-D synthesis basis functions that
are used to reconstruct images with the (9, 7) filter pair and a three-level dyadic decom-
position. It can be seen that the basis functions vary in size (corresponding to the various
resolution levels) and also in orientation (corresponding to the various lowpass/highpass
filtering combinations in the horizontal and vertical directions).

Figure 1.8 Wavelet basis functions for reconstructing an image from a three-level decomposition
using the (9, 7) synthesis filters

JPEG 2000 Core Coding System (Part 1) 15

A key aspect of the DWT is that adjacent basis functions overlap each other during
image reconstruction. This overlap results in compression artifacts that are much smoother
than the blocky artifacts that are produced by the nonoverlapping basis functions of the
block-based DCT that is used in JPEG and MPEG compression. This is one reason
why wavelet-based compression techniques can often yield superior quality at low bit
rates as compared to DCT-based techniques. Figure 1.9 illustrates the smooth nature of

(a)

(b)

Wavelet basis functions used:

Wavelet basis functions used:

Figure 1.9 Reconstruction of the Lena image using wavelet basis functions from a three-level
decomposition: (a) single lowest frequency basis function and (b) four lowest frequency basis
functions

16 The JPEG 2000 Suite

images that are reconstructed with wavelet basis functions. In Figure 1.9(a), the Lena
image is reconstructed with only the lowest frequency basis function of the three-level
decomposition; in Figure 1.9(b), the four lowest frequency basis functions are used for
the reconstruction.

1.2.2.4 Wavelet Filter Normalization

The output of an invertible forward transform can generally have any arbitrary normaliza-
tion (scaling) as long as it is undone by the inverse transform. In the case of DWT filters,
the analysis filters h0 and h1 can be normalized arbitrarily. Referring to Equation (1.8),
the normalization chosen for the analysis filters will influence the value of c, which in
turn determines the normalization of the synthesis filters, g0 and g1. The normalization of
the DWT filters is often expressed in terms of the DC gain of the lowpass analysis filter
h0 and the Nyquist gain of the highpass analysis filter h1. The DC gain and the Nyquist
gain of a filter h(n), denoted by GDC and GNyquist , respectively, are defined as

GDC =
∣∣∣∑

n
h(n)

∣∣∣ , GNyquist =
∣∣∣∑

n
(−1)nh(n)

∣∣∣ . (1.9)

The (9, 7) and the (5, 3) analysis filter banks as defined in Tables 1.1 and 1.2 have been
normalized so that the lowpass filter has a DC gain of 1 and the highpass filter has a
Nyquist gain of 2. This is referred to as the (1, 2) normalization and is the one adopted by
Part 1 of the JPEG 2000 standard. Other common normalizations that have appeared in the
literature are (

√
2,

√
2) and (1, 1). Once the normalization of the analysis filter bank has

been specified, the normalization of the synthesis filter bank is automatically determined
by reversing the order and multiplying by the scalar constant c of Equation (1.8).

In the baseline JPEG standard, the scaling of the forward DCT is defined to create
an orthonormal transform, which has the property that the sum of the squares of the
image samples is equal to the sum of the squares of the transform coefficients (Parseval’s
theorem). Furthermore, the orthonormal normalization of the DCT has the useful property
of the mean squared error (MSE) of the quantized DCT coefficients being equal to the
MSE of the reconstructed image. This provides a simple means for quantifying the impact
of coefficient quantization on the reconstructed image MSE. Unfortunately, this property
does not hold for a DWT decomposition.

If we consider a 1-D DWT, the reconstructed signal x̂(n) can be expressed as a weighted
sum of the 1-D basis functions, where the weights are the wavelet coefficients (either quan-
tized or unquantized). Let ψb

m(n) denote the basis function corresponding to a coefficient
yb(m), the mth wavelet coefficient from subband b. Then,

x̂(n) =
∑

b

∑
m

yb(m)ψb
m(n). (1.10)

In general, the basis functions of a DWT decomposition are not orthogonal; hence, Par-
seval’s theorem does not apply. Woods and Naveen (1992) have shown that for quantized
wavelet coefficients under certain assumptions on the quantization noise, the MSE of the

JPEG 2000 Core Coding System (Part 1) 17

reconstructed image can be approximately expressed as a weighted sum of the MSE of
the wavelet coefficients, where the weight for subband b is

α2
b =

∑
n

∣∣ψb(n)
∣∣2

. (1.11)

The coefficient αb is referred to as the L2-norm4 for subband b. For an orthonormal
transform, all the αb values would be unity. The knowledge of the L2-norms is essential
for the encoder, because they represent the contribution of the quantization noise of each
subband to the overall MSE and are a key factor in designing quantizers or prioritizing
the quantized data for coding.

The DWT filter normalization impacts both the L2-norm and the dynamic range of each
subband. Given the normalization of the 1-D analysis filter bank, the nominal dynamic
range of the 2-D subbands can be easily determined in terms of the bit-depth of the
tile component RI (after application of an intercomponent transform, if one is used). In
particular, for the (1, 2) normalization, the kLL subband will have a nominal dynamic
range of RI bits. However, the actual dynamic range might be slightly larger. In JPEG
2000, this situation is handled by using guard bits to avoid the overflow of the subband
value. For the (1, 2) normalization, the nominal dynamic ranges of the kLH and kHL
subbands are RI + 1, while that of the kHH subband is RI + 2.

Table 1.3 shows the L2-norms of the DWT subbands after a three-level decomposition
with either the (9, 7) or the (5, 3) filter bank and using either the (

√
2,

√
2) or the

(1, 2) filter normalization. Clearly, the (
√

2,
√

2) normalization results in a DWT that is
closer to an orthonormal transform (especially for the (9, 7) filter bank), while the (1, 2)
normalization avoids the dynamic range expansion at each level of the decomposition.

1.2.2.5 DWT Implementation Issues and the Lifting Scheme

In the development of the existing DCT-based JPEG standard, great emphasis was placed
on the implementation complexity of the encoder and decoder, which included such issues
as memory requirements, number of operations per sample, and amenability to hardware
or software implementation, e.g. transform precision, parallel processing, etc. The choice
of the 8 × 8 block size for the DCT was greatly influenced by these considerations.

In contrast to the limited buffering required for the 8 × 8 DCT, a straightforward
implementation of the 2-D DWT decomposition requires the storage of the entire image
in memory. The use of small tiles reduces the memory requirements without significantly
affecting the compression efficiency (see Section 1.5.1.1). In addition, some clever designs
for line-based processing of the DWT have been published that substantially reduce the
memory requirements depending on the size of the filter kernels (Chrysafis and Ortega,
2000). An alternative implementation of the DWT has also been developed, known as the
lifting scheme (Daubechies and Sweldens, 1998; Sweldens, 1995, 1996, 1998). In addition
to providing a significant reduction in the memory and the computational complexity of the

4 We have ignored the fact that, in general, the L2-norm for the coefficients near the subband boundaries are slightly
different from the rest of the coefficients in the subband.

18 The JPEG 2000 Suite

DWT, lifting provides in-place computation of the wavelet coefficients by overwriting the
memory locations that contain the input sample values. The wavelet coefficients computed
with lifting are identical to those computed by a direct filter bank convolution, in much the
same manner as a fast Fourier transform results in the same DFT coefficients as a brute
force approach. Because of these advantages, the specification of the DWT kernels in
JPEG 2000 is only provided in terms of the lifting coefficients and not the convolutional
filters.

The lifting operation consists of several steps. The basic idea is to first compute a
trivial wavelet transform, also referred to as the lazy wavelet transform, by splitting the
original 1-D signal into odd and even indexed subsequences, and then modifying these
values using alternating prediction and updating steps. Figure 1.10 depicts an example of
the lifting steps corresponding to the integer (5, 3) filter bank. The sequences {s0

i } and
{d0

i } denote the even and odd sequences, respectively, resulting from the application of
the lazy wavelet transform to the input sequence.

In JPEG 2000, a prediction step consists of predicting each odd sample as a linear
combination of the even samples and subtracting it from the odd sample to form the
prediction error {d1

i }. Referring to Figure 1.10, for the (5, 3) filter bank, the prediction
step consists of averaging the two neighboring even sequence pixels and subtracting the
average from the odd sample value, i.e.

d1
i = d0

i − 1

2

(
s0
i + s0

i+1

)
. (1.12)

Because of the simple structure of the (5, 3) filter bank, the output of this stage, {d1
i },

is actually the highpass output of the DWT filter. In general, the number of even pixels
employed in the prediction and the actual weights applied to the samples depend on the
specific DWT filter bank.

An update step consists of updating the even samples by adding to them a linear
combination of the already modified odd samples, {d1

i }, to form the updated sequence
{s1

i }. Referring to Figure 1.10, for the (5, 3) filter bank, the update step consists of the
following:

s1
i = s0

i + 1

4

(
d1

i−1 + d1
i

)
. (1.13)

s0
0 d0

0 s1
0 s2

0 s3
0d1

0 d2
0

d0
1 d1

1 d2
1

s0
1 s1

1 s2
1 s3

1

Input sequence

Highpass output

Lowpass output

4
1

1 1 1 1

1 1 1

4
1

4
1

4
1

4
1

4
1

2
1−

2
1−

2
1−

2
1−

2
1−

2
1−

Figure 1.10 Lifting prediction/update steps for the (5, 3) filter bank

JPEG 2000 Core Coding System (Part 1) 19

For the (5, 3) filter bank, the output of this stage, {s1
i }, is actually the lowpass output of

the DWT filter. Again, the number of odd pixels employed in the update and the actual
weights applied to each sample depend on the specific DWT filter bank. The prediction
and update steps are generally iterated N times, with different weights used at each
iteration. This can be summarized as

dn
i = dn−1

i +
∑

k

Pn(k)sn−1
k , n ∈ [1, 2, . . . , N], (1.14)

sn
i = sn−1

i +
∑

k

Un(k)dn
k , n ∈ [1, 2, . . . , N], (1.15)

where Pn(k) and Un(k) are, respectively, the prediction and update weights at the nth
iteration. For the (5, 3) filter bank, N = 1, while for the Daubechies (9, 7) filter bank,
N = 2. The output of the final prediction step will be the highpass coefficients up to a
scaling factor K1, while the output of the final update step will be the lowpass coefficients
up to a scaling constant K0. For the (5, 3) filter bank, K0 = K1 = 1. The lifting steps
corresponding to the (9, 7) filter bank (as specified in Table 1.1) are shown in Figure 1.11.
The general block diagram of the lifting process is shown in Figure 1.12.

A nice feature of the lifting scheme is that it makes the construction of the inverse
transform straightforward. Referring to Figure 1.12 and working from right to left, first
the lowpass and highpass wavelet coefficients are scaled by 1/K0 and 1/K1 to produce
{sN

i } and {dN
i }. Next, {dN

i } is taken through the update stage UN(z) and subtracted from
{sN

i } to produce {sN−1
i }. This process continues, where each stage of the prediction and

Input sequence

Highpass

Intermediate
stages

p1 p1 p1 p1 p1 p1 p1 p1

p2 p2 p2 p2 p2 p2 p2 p2

u1 u1 u1 u1 u1 u1u1 u1

u2 u2 u2 u2 u2 u2u2 u2

Lowpass
K0

K1

p1 −1.586134342059924

u1 −0.052980118572961

p2 +0.882911075530934

u2 +0.443506852043971

K1 = 1/ K0 +1.230174104914001

Figure 1.11 Lifting steps for the (9, 7) filter bank

20 The JPEG 2000 Suite

Lowpass

Highpass

xi

si
0

di
0 di

N−1 di
N

si
Nsi

N−1

K0

K1

Lazy
Transform

+

+

+

+

+

+

+

+

P1(z) U1(z) PN(z) UN(z)

Figure 1.12 General block diagram of the lifting process

update is undone in the reverse order that it was constructed at the encoder until the image
samples have been reconstructed.

1.2.2.6 Integer-to-Integer Transforms

Although the input image samples to JPEG 2000 are integers, the output wavelet coef-
ficients are floating point when using floating-point DWT filters. Even when dealing
with integer filters such as the (5, 3) filter bank, the precision required for achiev-
ing mathematically lossless performance increases significantly with every level of the
wavelet decomposition and can quickly become unmanageable. An important advantage
of the lifting approach is that it can provide a convenient framework for constructing
integer-to-integer DWT filters from any general filter specification (Adams and Kossentini,
2000; Calderbank et al., 1998).

This can be best understood by referring to Figure 1.13, where quantizers are inserted
immediately after the calculation of the prediction and the update terms but before modify-
ing the odd or the even sample value. The quantizer typically performs an operation such
as truncation or rounding to the nearest integer, thus creating an integer-valued output. If
the values of K0 and K1 are approximated by rational numbers, it is easy to verify that
the resulting system is mathematically invertible despite the inclusion of the quantizer.
If the underlying floating-point filter uses the (1, 2) normalization and K0 = K1 = 1, as
is the case for the (5, 3) filter bank, the final lowpass output will have roughly the same
bit precision as that of the input sample, while the highpass output will have an extra
bit of precision. This is because, for input samples with a large enough dynamic range

Lowpass

Highpass

Lazy
Transform

xi

si
0

di
0

si
N−1 si

N

di
N−1 di

N

K1

K0

P1(z)

+

+

+

+

+

QUN

+

+

+

QP1

QU1

QPNU1(z) UN(z)

PN(z)

Figure 1.13 General block diagram of a forward integer-to-integer transform using lifting

JPEG 2000 Core Coding System (Part 1) 21

(e.g. 8 bits or higher), rounding at each lifting step has a negligible effect on the nominal
dynamic range of the output.

As described in the previous section, the inverse transformation is simply performed by
undoing all the prediction and update steps in the reverse order that they were performed
at the encoder. However, the resulting integer-to-integer transform is nonlinear and hence,
when extended to two dimensions, the order in which the transformation is applied to the
rows or the columns will impact the final output. To recover the original sample values
losslessly, the inverse transform must be applied in exactly the reverse row–column order
of the forward transform. In a JPEG 2000 encoder, the columns are processed first with
the integer-to-integer wavelet transform, followed by the rows. Hence, in a JPEG 2000
decoder, the order of the 2-D reversible wavelet transform is rows, followed by columns.
An extensive performance evaluation and analysis of reversible integer-to-integer DWT
for image compression has been published in Adams and Kossentini (2000).

As an example, consider the conversion of the (5, 3) filter bank into an integer-to-integer
transform by adding the two quantizers QP 1 (w) = −�−w� and QU1 (w) = �w + 1/2� to
the prediction and update steps, respectively, in the lifting diagram of Figure 1.10. The
resulting forward transform is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(2n + 1) = x(2n + 1) −
⌊

x(2n) + x(2n + 2)

2

⌋

y(2n) = x(2n) +
⌊

y(2n − 1) + y(2n + 1) + 2

4

⌋ . (1.16)

The required precision of the lowpass band stays roughly the same as the original sample,
while the precision of the highpass band grows by one bit. The inverse transform, which
losslessly recovers the original sample values, is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(2n) = y(2n) −
⌊

y(2n − 1) + y(2n + 1) + 2

4

⌋

x(2n + 1) = y(2n + 1) −
⌊

x(2n) + x(2n + 2)

2

⌋ . (1.17)

1.2.2.7 DWT Filter Choices in JPEG 2000 Part 1

Part 1 of the JPEG 2000 standard has adopted only two choices for the DWT filters.
One is the Daubechies (9, 7) floating-point filter bank (as specified in Table 1.1), which
has been chosen for its superior lossy compression performance. The other is the lifted
integer-to-integer (5, 3) filter bank, also referred to as the reversible (5, 3) filter bank ,
as specified in Equations (1.16) and (1.17). This choice was driven by requirements for
low implementation complexity and lossless capability. The performance of these filters
is compared in Section 1.5.1.3. The mathematical properties of the (5, 3) and (9, 7) filters,
such as Riesz bounds, order of approximation, and regularity, have been studied in great
detail (Unser and Blu, 2003), but are beyond the scope of this chapter. Part 2 of the JPEG
2000 standard allows for arbitrary filter specifications in the code-stream, including filters
with an even number of taps.

22 The JPEG 2000 Suite

1.2.3 Quantization

The JPEG baseline system employs a uniform quantizer and an inverse quantization
process that reconstructs the quantized coefficient to the midpoint of the quantization
interval. A different step size is allowed for each DCT coefficient to take advantage of
the sensitivity of the human visual system (HVS), and these step sizes are conveyed
to the decoder via an 8 × 8 quantization table (q-table) using one byte per element. The
quantization strategy employed in JPEG 2000 Part 1 is similar in principle to that of JPEG,
but it has a few important differences to satisfy some of the JPEG 2000 requirements.

One difference is in the incorporation of a central dead zone in the quantizer. It was
shown in Sullivan (1996) that the rate-distortion (R-D) optimal quantizer for a continuous
signal with Laplacian probability density (such as DCT or wavelet coefficients) is a
uniform quantizer with a central dead zone. The size of the optimal dead zone as a
fraction of the step size increases as the variance of the Laplacian distribution decreases;
however, it always stays less than two and is typically closer to one. In Part 1, the dead
zone has twice the quantizer step size, as depicted in Figure 1.14, while in Part 2, the
size of the dead zone can be parameterized to have a different value for each subband.

Part 1 adopted the dead zone with twice the step size due to its optimal embedded
structure (Marcellin et al., 2002). Briefly, this means that if an Mb-bit quantizer index
resulting from a step size of �b is transmitted progressively, starting with the most
significant bit (MSB) and proceeding to the least significant bit (LSB), the resulting index
after decoding only Nb bits is identical to that obtained by using a similar quantizer
with a step size of �b2Mb−Nb . This property allows for SNR scalability , which in its
optimal sense means that the decoder can cease decoding at any truncation point in the
code-stream and still produce exactly the same image that would have been encoded at
the bit-rate corresponding to the truncated code-stream. This property also allows a target
bit-rate or a target distortion to be achieved exactly, while the baseline JPEG standard
generally requires multiple encoding cycles to achieve the same goal. This allows an
original image to be compressed with JPEG 2000 to the highest quality required by a
given set of clients (through the proper choice of the quantization step sizes) and then
disseminated to each client according to the specific image quality (or target file size)
requirement without the need to decompress and recompress the existing code-stream.
Importantly, the code-stream can also be reorganized in other ways to meet the various
requirements of the JPEG 2000 standard, as will be described in Section 1.3.

Another difference is that the inverse quantization of JPEG 2000 explicitly allows for a
reconstruction bias from the quantizer midpoint for nonzero indices to accommodate the

Δb Δb Δb 2Δb Δb Δb Δb

−3 −2 −1 0 +1 +2 +3

y
b
(u,v)

qb(u,v)

Figure 1.14 Uniform quantizer with a central dead zone with step size �b

JPEG 2000 Core Coding System (Part 1) 23

skewed probability distribution of the wavelet coefficients. In the JPEG baseline, a simple
biased reconstruction strategy has been shown to improve the decoded image PSNR by
approximately 0.25 dB (Price and Rabbani, 1999). Similar gains can be expected with the
biased reconstruction of wavelet coefficients in JPEG 2000. The exact operation of the
quantization and inverse quantization is explained in more detail in the following sections.

1.2.3.1 Quantization at the Encoder

For each subband b, a quantizer step size �b is selected by the user and is used to
quantize all the coefficients in that subband. The choice of �b can be driven by the
perceptual importance of each subband based on HVS data (Albanesi and Bertoluzza,
1995; Jones, 2007; Jones et al., 1995; O’Rourke and Stevenson, 1995; Watson et al.,
1997) or it can be driven by other considerations such as rate control. The quantizer maps
a wavelet coefficient yb(u, v) in subband b to a quantized index value qb(u, v), as shown
in Figure 1.14. The quantization operation is an encoder issue and can be implemented
in any desired manner. However, it is most efficiently performed according to

qb(u, v) = sign(yb(u, v))

⌊ |yb(u, v)|
�b

⌋
. (1.18)

The step size �b is represented with a total of two bytes, an 11-bit mantissa μb and a
5-bit exponent εb, according to the relationship:

�b = 2Rb−εb

(
1 + μb

211

)
, (1.19)

where Rb is the number of bits representing the nominal dynamic range of the subband b,
which is explained in Section 1.2.2.4. This limits the largest possible step size to approxi-
mately twice the dynamic range of the input sample (when μb has its maximum value and
εb = 0), which is sufficient for all practical cases of interest. When the reversible (5, 3)
filter bank is used, �b is set to one by choosing μb = 0 and εb = Rb. The quantizer index
qb(u, v) will have Mb bits if fully decoded, where Mb = G + εb − 1. The parameter G

is the number of guard bits signaled to the decoder and is typically one or two.
For the irreversible (9, 7) wavelet transform, two modes of signaling the value of �b to

the decoder are possible. In one mode, which is similar to the q-table specification used
in the current JPEG, the (εb, μb) value for every subband is explicitly transmitted. This
is referred to as expounded quantization . The values can be chosen to take into account
the HVS properties (Zheng, Daly, and Lei, 2002) and/or the L2-norm of each subband in
order to align the bit-planes of the quantizer indices according to their true contribution to
the MSE. In another mode, referred to as derived quantization, a single value (ε0, μ0) is
sent for the LL subband and the (εb, μb) values for each subband are derived by scaling
the �0 value by some power of two, depending on the level of decomposition associated
with that subband. In particular,

(εb, μb) = (ε0 − NL + nb, μ0), (1.20)

where NL is the total number of decomposition levels and nb is the decomposition level
corresponding to subband b. It is easy to show that Equation (20) scales the step sizes

24 The JPEG 2000 Suite

for each subband according to a power of two that best approximates the L2-norm of a
subband relative to the LL band (refer to Table 1.3). This procedure approximately aligns
the quantized subband bit-planes according to their proper MSE contribution.

1.2.3.2 Inverse Quantization at the Decoder

When the irreversible (9, 7) filter bank is used, the reconstructed transform coefficient,
Rqb(u, v), for a quantizer step size of �b is given by

Rqb(u, v) =
⎧⎨
⎩

(qb(u, v) + γ)�b, if qb(u, v)> 0,

(qb(u, v) − γ)�b, if qb(u, v) < 0,

0, otherwise,
(1.21)

where 0 ≤ γ < 1 is a reconstruction parameter arbitrarily chosen by the decoder. A value
of γ = 0.50 results in midpoint reconstruction as in the existing JPEG standard. A value
of γ < 0.50 creates a reconstruction bias toward zero, which can result in improved
reconstruction PSNR (peak SNR) when the probability distribution of the wavelet coef-
ficients falls off rapidly away from zero (e.g. a Laplacian distribution). A popular choice
for biased reconstruction is γ = 0.375. If all of the Mb bits for a quantizer index are
fully decoded, the step size is equal to �b. However, when only Nb bits are decoded,
the step size in Equation (1.21) is equivalent to �b2Mb−Nb . The reversible (5, 3) filter
bank is treated in the same way (with �b = 1), except when the index is fully decoded
to achieve lossless reconstruction, in which case Rqb(u, v) = qb(u, v).

1.2.4 Entropy Coding

The quantizer indices corresponding to the quantized wavelet coefficients in each sub-
band are entropy encoded to create the compressed bit-stream. The choice of the entropy
encoder in JPEG 2000 is motivated by several factors. One is the requirement to create
an embedded bit-stream, which is made possible by bit-plane encoding of the quantizer
indices. Bit-plane encoding of wavelet coefficients has been used by several well-known
embedded wavelet encoders such as EZW (Shapiro, 1993) and SPIHT (Said and Pearl-
man, 1996). However, these encoders use coding models that exploit the correlation
between subbands to improve coding efficiency. This adversely impacts error resilience
and severely limits the flexibility of an encoder to arrange the bit-stream in an arbitrary
progression order. In JPEG 2000, each subband is encoded independently of the other
subbands. In addition, JPEG 2000 uses a block coding paradigm in the wavelet domain as
in the embedded block coding with optimized truncation (EBCOT) algorithm (Taubman
and Marcellin, 2001), where each subband is partitioned into small rectangular blocks,
referred to as code-blocks , and each code-block is independently encoded. The nominal
dimensions of a code-block are free parameters specified by the encoder, but are subject
to the following constraints: they must be an integer power of two; the total number of
coefficients in a code-block cannot exceed 4096; and neither the height nor the width of
the code-block can be less than four.

The independent encoding of the code-blocks has many advantages including localized
random access into the image, parallelization, improved cropping and rotation functional-
ity, improved error resilience, efficient rate control, and maximum flexibility in arranging

JPEG 2000 Core Coding System (Part 1) 25

progression orders (see Section 1.3.6). It may seem that failing to exploit inter-subband
redundancies would have a sizable adverse effect on coding efficiency. However, this is
more than compensated for by the finer scalability that results from multiple-pass encoding
of the code-block bit-planes. By using an efficient rate control strategy that independently
optimizes the contribution of each code-block to the final bit-stream (see Section 1.4.2),
the JPEG 2000 Part 1 encoder achieves a compression efficiency that is superior to other
existing approaches (Taubman et al., 2002).

Figure 1.15 shows a schematic of the multiple bit-planes that are associated with the
quantized wavelet coefficients. The symbols that represent the quantized coefficients are
encoded one bit at a time, starting with the MSB and proceeding to the LSB. During this
progressive bit-plane encoding, a quantized wavelet coefficient is called insignificant if the
quantizer index is still zero (e.g. the example coefficient in Figure 1.15 is still insignificant
after encoding its first two MSBs). Once the first nonzero bit is encoded, the coefficient
becomes significant and its sign is encoded. Once a coefficient becomes significant, all
subsequent bits are referred to as refinement bits. Because the DWT packs most of the
energy in the low-frequency subbands, the majority of the wavelet coefficients will have
low amplitudes. Consequently, many quantized indices will be insignificant in the earlier
bit-planes, leading to a very low information content for those bit-planes. JPEG 2000
uses an efficient coding method for exploiting the redundancy of the bit-planes known as
context-based adaptive binary arithmetic coding.

1.2.4.1 Arithmetic Coding and the MQ-Coder

Arithmetic coding uses a fundamentally different approach from Huffman coding in that
the entire sequence of source symbols is mapped into a single codeword (albeit a very
long codeword). This codeword is developed by recursive interval partitioning using the
symbol probabilities and the final codeword represents a binary fraction that points to the
subinterval determined by the sequence.

An adaptive binary arithmetic encoder can be viewed as an encoding device that accepts
the binary symbols in a source sequence, along with their corresponding probability
estimates, and produces a code-stream with a length at most two bits greater than the
combined ideal code-lengths of the input symbols (Pennebaker et al., 1988). Adaptivity

2Mb−1

2Mb−2

2Mb−3

2Mb−Nb

 1

 0

 0

 0

Figure 1.15 Bit-plane coding of quantized wavelet coefficients

26 The JPEG 2000 Suite

is provided by updating the probability estimate of a symbol based upon its present value
and history. In essence, arithmetic coding provides the compression efficiency that comes
with Huffman coding of large blocks, but only a single symbol is encoded at a time.
This single-symbol encoding structure greatly simplifies probability estimation because
only individual symbol probabilities are needed at each subinterval iteration (not the joint
probability estimates that are necessary in block coding). Furthermore, unlike Huffman
coding, arithmetic coding does not require the development of new codewords each time
the symbol probabilities change. This makes it easy to adapt to the changing symbol
probabilities within a code-block of quantized wavelet coefficient bit-planes.

Practical implementations of arithmetic coding are always less efficient than an ideal
one. Finite-length registers limit the smallest probability that can be maintained, and com-
putational speed requires approximations such as replacing multiplies with adds and shifts.
Moreover, symbol probabilities are typically chosen from a finite set of allowed values,
so the true symbol probabilities must often be approximated. Overall, these restrictions
result in a coding inefficiency of approximately 6% compared to the ideal code-length
of the symbols encoded (Pennebaker and Mitchell, 1993). It should be noted that even
the most computationally efficient implementations of arithmetic coding are significantly
more complex than Huffman coding in both software and hardware.

One of the early practical implementations of adaptive binary arithmetic coding was
the Q-coder developed by IBM (Pennebaker et al., 1988). Later, a modified version of
the Q-coder, known as the QM-coder, was chosen as the entropy encoder for the JBIG
standard and the extended JPEG mode (Pennebaker and Mitchell, 1993). However, IPR
issues have hindered the use of the QM-coder in the JPEG standard. As a result, the JPEG
2000 committee adopted another modification of the Q-coder, named the MQ-coder.
The MQ-coder was also adopted for use in the JBIG2 standard (ISO/IEC, 2000). The
companies that own the IPR on the MQ-coder have made it available on a license-fee-free
and royalty-free basis for use in the JPEG 2000 standard. Differences between the MQ- and
the QM-coders include ‘bit stuffing’ versus ‘byte stuffing,’ decoder versus encoder carry
resolution, hardware versus software coding convention, and the number of probability
states. The specific details of these coders are beyond the scope of this chapter and
the reader is referred to (Slattery and Mitchell, 1998) and the MQ-coder flowcharts in
the standard document (ISO/IEC International Standard 15444-1, ITU Recommendation
T.800). We mention in passing that the specific realization of the ‘bit stuffing’ procedure in
the MQ-coder (which costs approximately 0.5% in coding efficiency) creates a redundancy
such that any two consecutive bytes of encoded data are always forced to lie in the range
of hexadecimal ‘0000’ through ‘FF8F’ (Taubman and Marcellin, 2001). This leaves the
range of ‘FF 90’ through ‘FFFF’ unattainable by encoded data, and the JPEG 2000 syntax
uses this range to represent unique marker codes that facilitate the organization and parsing
of the bit-stream as well as improve error resilience.

In general, the probability distribution of each binary symbol in a quantized wavelet
coefficient is influenced by all the previously encoded bits corresponding to that coeffi-
cient, as well as by the value of its immediate neighbors. In JPEG 2000, the probability
of a binary symbol is estimated from a context formed from its current significance as
well as the significance information of its immediate eight neighbors as determined from
the previous bit-plane and the current bit-plane, based on encoded information up to that
point. In context-based arithmetic coding, separate probability estimates are maintained

JPEG 2000 Core Coding System (Part 1) 27

for each context, which is updated according to a finite-state machine every time a symbol
is encoded in that context.5 For each context, the MQ-coder can choose from a total of
46 probability states (estimates), where states 0–13 correspond to start-up states (also
referred to as fast-attack) and are used for rapid convergence to a stable probability esti-
mate. States 14–45 correspond to steady-state probability estimates, and once this range
of states has been entered from a start-up state, it can never be left by the finite-state
machine. There is also an additional nonadaptive state (state 46), which is used to encode
symbols with equal probability distribution, and can neither be entered nor exited from
any other probability state.

1.2.4.2 Bit-Plane Coding Passes

The quantized coefficients in a code-block are bit-plane-encoded independently from all
other code-blocks when creating an embedded bit-stream. Instead of encoding the entire
bit-plane in one coding pass, each bit-plane is encoded in three sub-bit-plane passes
with the provision of truncating the bit-stream at the end of each coding pass. A main
advantage of this approach is near-optimal embedding, where the information that results
in the largest reduction in distortion for the smallest increase in file size is encoded first.
Moreover, the large number of potential truncation points facilitates the implementation
of an optimal rate control strategy where a target bit-rate is achieved by including those
coding passes that minimize the total distortion.

Referring to Figure 1.16, consider the encoding of a single bit-plane from a code-block
in three coding passes (labeled A, B, and C), where a fraction of the bits are encoded
at each pass. Let the distortion and bit-rate associated with the reconstructed image prior
and subsequent to the encoding of the entire bit-plane be given by (D1, R1) and (D2, R2),
respectively. The two coding paths ABC and CBA correspond to coding the same data in
a different order, and they both start and end at the same rate-distortion points. However,
their embedded performances are significantly different. In particular, if the encoded
bit-stream is truncated at any intermediate point during the encoding of the bit-plane,
the path ABC would have less distortion for the same rate, and hence would possess a
superior embedding property. In optimal embedding, the data with the highest distortion

R
at

e

Distortion

R2

R1

D2 D1

A

B

C

C

B

A

Figure 1.16 R-D path for optimal embedding

5 In the MQ-coder implementation, a symbol’s probability estimate is actually updated only when at least one bit
of coded output is generated.

28 The JPEG 2000 Suite

reduction per average bit of compressed representation should be encoded first (Li and
Lei, 1999).

For a coefficient that is still insignificant, it can be shown that given reasonable assump-
tions regarding its probability distribution, the distortion reduction per average bit of
compressed representation increases with increasing probability of becoming significant,
ps (Li and Lei, 1999; Ordentlich, Weinberger, and Seroussi, 1998). For a coefficient that
is being refined, the distortion reduction per average bit is smaller than an insignificant
coefficient, unless ps for that coefficient is less than 1%. As a result, optimal embedding
can theoretically be achieved by first encoding the insignificant coefficients starting with
the highest ps until that probability reaches about 1%. At that point, all the refinement
bits should be encoded, followed by all the remaining coefficients in the order of their
decreasing ps . However, the calculation of the ps values for each coefficient is a tedious
and approximate task, so the JPEG 2000 encoder instead divides the bit-plane data into
three groups and encodes each group during a fractional bit-plane pass. Each coefficient in
a block is assigned a binary state variable called its significance state, which is initialized
to zero (insignificant) at the start of the encoding. The significance state changes from
zero to one (significant) when the first nonzero magnitude bit is found. The context vector
for a given coefficient is the binary vector consisting of the significance states of its eight
immediate neighbor coefficients, as shown in Figure 1.17. During the first pass, referred
to as the significance propagation pass, the insignificant coefficients that have the highest
probability of becoming significant, as determined by their immediate eight neighbors,
are encoded. In the second pass, known as the refinement pass, the significant coefficients
are refined by their bit representation in the current bit-plane. Finally, during the cleanup
pass, all the remaining coefficients in the bit-plane, which have the lowest probability of
becoming significant, are encoded. The order in which the coefficients in each pass are
visited is data dependent and follows a deterministic stripe-scan order with a height of
four pixels, as shown in Figure 1.18. This stripe-based scan has been shown to facilitate
software and hardware implementations (Marcellin et al., 1999). In the following, each
coding pass is described in more detail.

Significance Propagation Pass
During this pass, the insignificant coefficients that have the highest probability of becom-
ing significant in the current bit-plane are encoded. The data are scanned in the stripe order
shown in Figure 1.18. Every sample that is currently insignificant but has at least one sig-
nificant immediate neighbor, based on encoded information up to that point, is encoded.
As soon as a coefficient is encoded, its significance state is updated so that it can effect
the inclusion of subsequent coefficients in that coding pass. The significance state of the

d v d

h h

d v d

Figure 1.17 Neighboring pixels used in context selection

JPEG 2000 Core Coding System (Part 1) 29

Figure 1.18 Scan order within a code-block

coefficient is arithmetic encoded using contexts that are based on the significance states
of its immediate neighbors. In general, the significance states of the eight neighbors can
create 256 different contexts.6 However, many of these contexts have similar probability
estimates and can be merged together. A context-reduction mapping reduces the total
number of contexts to only nine to improve the efficiency of the MQ-coder probabil-
ity estimation for each context. Because the code-blocks are encoded independently, if a
sample is located at the code-block boundary, only its immediate neighbors that belong to
the current code-block are considered and the significance states of the missing neighbors
are assumed to be zero. Finally, if a coefficient becomes significant in this coding pass, its
sign needs to be encoded. The sign value is also arithmetic encoded using five contexts
that are determined from the significance and the sign of the coefficient’s four horizontal
and vertical neighbors.

Refinement Pass
During this pass, the magnitude bit of a coefficient that has already become significant in
a previous bit-plane is arithmetic encoded using three contexts. In general, the refinement
bits have an even distribution unless the coefficient has just become significant in the
previous bit-plane (i.e. the magnitude bit to be encoded is the first refinement bit). This
condition is first tested and if it is satisfied, the magnitude bit is encoded using two
coding contexts based on the significance of the eight immediate neighbors. Otherwise,
it is encoded with a single context regardless of the neighboring values.

Cleanup Pass
All the remaining coefficients in the code-block are encoded during the cleanup pass.
Generally, the coefficients that are encoded in this pass have a very small ps value and
are expected to remain insignificant. As a result, a special mode, referred to as the run

6 Technically, the combination where all the neighbors are insignificant cannot happen in this pass. However, this
combination is given its own context (labeled zero) and is used during the cleanup pass.

30 The JPEG 2000 Suite

mode, is used to aggregate the coefficients that have the highest probability of remaining
insignificant. More specifically, a run mode is entered if all of the four samples in a vertical
column of the stripe have insignificant neighbors. In the run mode, a binary symbol is
arithmetic encoded in a single context to specify whether all of the four samples in the
vertical column remain insignificant. An encoded value of zero implies insignificance
for all four samples, while an encoded value of one implies that at least one of the four
samples becomes significant in the current bit-plane. An encoded value of one is followed
by two additional arithmetic-encoded bits that specify the location of the first nonzero
coefficient in the vertical column. Because the probabilities of these additional two bits
are nearly evenly distributed, they are encoded with a uniform context, which uses state
46 of the MQ-coder as its probability estimate. It should be noted that the run mode
has a negligible impact on the coding efficiency and is primarily used to improve the
throughput of the arithmetic encoder through symbol aggregation.

After the position of the first nonzero coefficient in the run is specified, the remaining
samples in the vertical column are encoded in the same manner as in the significance
propagation pass and use the same nine coding contexts. Similarly, if at least one of
the four coefficients in the vertical column has a significant neighbor, the run mode is
disabled and all the coefficients in that column are encoded according to the procedure
employed for the significance propagation pass.

For each code-block, the MSB planes that are entirely zero are skipped, and the number
of such planes is signaled in the bit-stream. Because the significance state of all the
coefficients in the first nonzero MSB is zero, only the cleanup pass is applied to the first
nonzero bit-plane. Subsequent bit-planes employ all three coding passes (significance
propagation, magnitude refinement, and cleanup).

1.2.4.3 Entropy Coding Options

The coding models used by the JPEG 2000 entropy coder employ 18 coding contexts,
in addition to a uniform context, according to the following assignment. Contexts 0–8
are used for significance coding during the significance propagation and cleanup passes,
contexts 9–13 are used for sign coding, contexts 14–16 are used during the refinement
pass, and an additional context is used for run coding during the cleanup pass. Each
code-block employs its own MQ-coder to generate an arithmetic code-stream for the entire
code-block. In the default mode, the coding contexts for each code-block are initialized
at the start of the coding process and are not reset at any time during the encoding
process. Furthermore, the resulting codeword can only be truncated at the coding pass
boundaries to include a different number of coding passes from each code-block in the
final code-stream. All contexts are initialized to uniform probabilities except for the zero
context (all insignificant neighbors) and the run context, where the initial less probable
symbol (LPS) probabilities are set to 0.030053 and 0.063012, respectively.

In order to facilitate the parallel encoding or decoding of the sub-bit-plane passes
of a single code-block, it is necessary to decouple the arithmetic encoding of the
sub-bit-plane passes from one another. Hence, JPEG 2000 allows for the termination
of the arithmetic-encoded bit-stream as well as the reinitialization of the context
probabilities at each coding pass boundary. If any of these two options is flagged in
the code-stream, it must be executed at every coding pass boundary. The JPEG 2000
also provides for another coding option known as vertically stripe-causal contexts. This

JPEG 2000 Core Coding System (Part 1) 31

option is aimed at enabling the parallel decoding of the coding passes as well as reducing
the external memory utilization. In this mode, during the encoding of a certain stripe of
a code-block, the significances of the samples in future stripes within that code-block are
ignored. Because the height of the vertical columns is four pixels, this mode only affects
the pixels in the last row of each stripe. The combination of these three options, namely
arithmetic encoder termination, reinitialization at each coding pass boundary, and the
vertically stripe-causal context, is often referred to as the parallel mode.

Another entropy coding option, aimed at reducing computational complexity, is the
selective arithmetic coding bypass mode, where the arithmetic encoder is entirely bypassed
in certain coding passes. It is common to refer to this as the ‘lazy’ coding mode. More
specifically, after the encoding of the fourth most significant bit-plane of a code-block, the
arithmetic encoder is bypassed during the encoding of the first and second sub-bit-plane
coding passes (i.e. significance propagation and refinement) of subsequent bit-planes.
Instead, their content is included in the code-stream as raw data. In order to implement
this mode, it is necessary to terminate the arithmetic encoder at the end of the cleanup
pass preceding each raw coding pass and to pad the raw coding pass data to align it
with the byte boundary. However, it is not necessary to reinitialize the MQ-coder context
models. The lazy mode can also be combined with the parallel mode in the lazy–parallel
mode. The impact of the lazy, parallel, and lazy–parallel modes on the coding efficiency
is studied in Section 1.5.1.5.

1.2.4.4 Tier-1 and Tier-2 Coding

The arithmetic coding of the bit-plane data is referred to as tier-1 coding. Figure 1.19
illustrates a simple example of the compressed data generated at the end of tier-1 encoding.

BP 3

BP 4

BP 5

LL2

BP 2

HH2 HH1

Significance
Refinement
Clean-up

Code blocks

BP 6

BP 1
MSB

HL2 LH2 HL1 LH1

Figure 1.19 Example of compressed data associated with various sub-bit-plane coding passes

32 The JPEG 2000 Suite

The example image (whose wavelet-transformed subbands are shown at the top right of
Figure 1.19) is of size 256 × 256 with two levels of decomposition, and the code-block
size is 64 × 64. Each square box in the figure represents the compressed data associated
with a single coding pass of a single code-block. Because the code-blocks are indepen-
dently encoded, the compressed data corresponding to the various coding passes can be
arranged in different configurations to create a rich set of progression orders to serve dif-
ferent applications. The only restriction is that the sub-bit-plane coding passes for a given
code-block must appear in a causal order starting from the most significant bit-plane. The
compressed sub-bit-plane coding passes can be aggregated into larger units called pack-
ets . This process of packetization along with its supporting syntax, as will be explained
in Section 1.3, is often referred to as tier-2 coding.

1.3 JPEG 2000 Bit-Stream Organization

JPEG 2000 offers significant flexibility in the organization of the compressed bit-stream
to enable such features as random access, region of interest coding, and scalability.
This flexibility is achieved partly through the various structures of components, tiles,
subbands, resolution levels, and code-blocks that are discussed in Section 1.2. These struc-
tures partition the image data into: (1) color channels (through components); (2) spatial
regions (through tiles); (3) frequency regions (through subbands and resolution levels);
and (4) space-frequency regions (through code-blocks). Tiling provides access to the
image data over large spatial regions, while the independent coding of the code-blocks
provides access to smaller units. Code-blocks can be viewed as a tiling of the coefficients
in the wavelet domain. JPEG 2000 also provides an intermediate space-frequency struc-
ture known as a precinct . A precinct is a collection of spatially contiguous code-blocks
from all subbands at a particular resolution level.

In addition to these structures, JPEG 2000 organizes the compressed data from the
code-blocks into units known as packets and layers during the tier-2 coding step. For
each precinct, the compressed data for the code-blocks is first organized into one or more
packets. A packet is simply a continuous segment in the compressed code-stream that
consists of a number of bit-plane coding passes for each code-block in the precinct. The
number of coding passes can vary from code-block to code-block (including zero coding
passes). Packets from each precinct at all resolution levels in a tile are then combined
to form layers. In order to discuss packetization of the compressed data, it is first neces-
sary to introduce the concepts of resolution grids and precinct partitions . Throughout the
following discussion, it will be assumed that the image has a single tile and a single com-
ponent. The extension to multiple tiles and components (which are possibly sub-sampled)
is straightforward, but tedious, and it is not necessary for understanding the basic con-
cepts. Section B.4 of the JPEG 2000 Part 1 standard (ISO/IEC International Standard
15444-1, ITU Recommendation T.800) provides a detailed description and examples for
the more general case.

1.3.1 Canvas Coordinate System

During the application of the DWT to the input image, successively lower resolution
versions of the input image are created. The input image can be thought of as the

JPEG 2000 Core Coding System (Part 1) 33

highest resolution version. The pixels of the input image are referenced with respect
to a high-resolution grid, known as the reference grid . The reference grid is a rectangular
grid of points with indices from (0, 0) to (Xsiz -1, Ysiz−1).7 If the image has only one
component, each image pixel corresponds to a high-resolution grid. In case of multiple
components with differing sampling rates, the samples of each component are at integer
multiples of the sampling factor on the high-resolution grid. An image area is defined
by the parameters (XOsiz, YOsiz), which specify the upper left corner of the image, and
extends to (Xsize−1, Ysiz−1), as shown in Figure 1.20.

The spatial positioning of each resolution level, as well as each subband, is specified
with respect to its own coordinate system. We will refer to each coordinate system as a
resolution grid . The collection of these coordinate systems is known as the canvas coor-
dinate system . The relative positioning of the different coordinate systems corresponding
to the resolution levels and subbands is defined in Section B.5 of the JPEG 2000 stan-
dard (ISO/IEC International Standard 15444-1, ITU Recommendation T.800), and is also
specified later in this section. The advantage of the canvas coordinate system is that it
facilitates the compressed domain implementation of certain spatial operations, such as
cropping and rotation by multiples of 90◦. As will be described in Section 1.5.1.6, proper
use of the canvas coordinate system improves the performance of the JPEG 2000 encoder
in the case of multiple compression cycles when the image is being cropped between
compression cycles.

1.3.2 Resolution Grids

Consider a single component image that is wavelet transformed with NL decomposition
levels, creating NL + 1 distinct resolution levels. An image at resolution level r (0 ≤
r ≤ NL) is represented by the subband (NL − r)LL. Recall from Section 1.2.2.2 that the
image at resolution r (r > 0) is formed by combining the image at resolution (r − 1)
with the subbands at resolution r , i.e. subbands (NL − r + 1)HL, (NL − r + 1)LH, and
(NL − r + 1)HH. The image area on the high-resolution reference grid as specified by
(Xsiz, Ysiz) and (XOsiz, YOsiz) is propagated to lower resolution levels as follows. For

Image

(Xsiz-1,Ysiz-1)

(XOsiz,YOsiz)
(0,0)

Figure 1.20 The reference grid

7 The coordinates are specified as (x, y), where x refers to the column index and y refers to the row index.

34 The JPEG 2000 Suite

the image area at resolution level r (0 ≤ r ≤ NL), the upper left-hand corner is (xr0, yr0)

and the lower right-hand corner is (xr1 − 1, yr1 − 1), where

xr0 =
⌈

XOsiz

2NL−r

⌉
, yr0 =

⌈
YOsiz

2NL−r

⌉
, xr1 =

⌈
Xsiz

2NL−r

⌉
and yr1 =

⌈
Y siz

2NL−r

⌉
, (1.22)

and �w� denotes the smallest integer that is greater than or equal to w.
The high-resolution reference grid is also propagated to each subband as follows. The

positioning of the subband nbLL is the same as that of the image at a resolution of
(NL − nb). The positioning of subbands nbHL, nbLH, and nbHH is specified as

(xb0, yb0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⌈
XOsiz − 2nb−1

2nb

⌉
,

⌈
YOsiz

2nb

⌉)
for nb HL band,

(⌈
XOsiz

2nb

⌉
,

⌈
YOsiz − 2nb−1

2nb

⌉)
for nb LH band,

(⌈
XOsiz − 2nb−1

2nb

⌉
,

⌈
YOsiz − 2nb−1

2nb

⌉)
for nb HH band.

(1.23)

The coordinates (xb1, yb1) can be obtained from Equation (1.23) by substituting XOsiz
by Xsiz and YOsiz by Ysiz . The extent of subband b is from (xb0, yb0) to (xb1 − 1,
yb1 − 1). These concepts are best illustrated by a simple example. Consider a three-level
wavelet decomposition of an original image of size 768 (columns) × 512 (rows). Let the
upper left reference grid point (XOsiz, YOsiz) be (7, 9) for the image area. Then (Xsiz,
Ysiz) is (775, 521). Resolution one extends from (2, 3) to (193, 130) while subband 3HL,
which belongs to resolution one, extends from (1, 2) to (96, 65).

1.3.3 Precinct and Code-Block Partitioning

Precincts represent a coarser partition of the wavelet coefficients than code-blocks, and
they provide an efficient way to access spatial regions of an image. A precinct is defined
as a group of code-blocks from all of the subbands at a specific resolution, such that the
group nominally corresponds to the same spatial region in the original image. Figure 1.21
shows an example of precinct and code-block partitions for a three-level decomposition of
a 768 × 512 image (single tile-component). In this example, there are six precincts at each
resolution level and each precinct corresponds to a 256 × 256 region in the original image.

In Figure 1.21, the highlighted precincts in resolutions 0–3 correspond roughly to the
same 256 × 256 region in the original image.8 For the subbands at resolution 1, i.e.
subbands 3HL, 3LH, and 3HH, a 32 × 32 region nominally corresponds to a 256 × 256
region in the original image. Hence, the precinct size in the subbands 3HL, 3LH, and
3HH is 32 × 32. However, in JPEG 2000, the size of the precinct partition is actually
defined at the resolution level, instead of the subband level. With this convention, the
precinct size at resolution 1 is 64 × 64, which nominally corresponds to a 256 × 256
region in the original image. Note that the precinct size in the subbands at resolution 1 is
half (32 × 32) that of the precinct size in the image at resolution 1 (64 × 64). In general,

8 Here we have neglected expansion of the region due to the support of the wavelet filters.

JPEG 2000 Core Coding System (Part 1) 35

768

512

Precinct
boundaries

Code-block
boundaries

Figure 1.21 Examples of precincts and code-blocks

the precinct partition at a resolution r(r > 0) induces an effective precinct partitioning of
the subbands at the same resolution level . Except for resolution 0, the size of the induced
precinct partition in the subbands is half (in each dimension) of the precinct size at the
corresponding resolution. For resolution 0, the size of the induced precinct partition in the
subband matches the precinct size at image resolution 0 because the image resolution 0
is the same as subband NLLL. For the example in Figure 1.21, the precinct sizes at
resolutions 0–3 are 32 × 32, 64 × 64, 128 × 128, and 256 × 256, respectively, and the
induced subband precinct sizes for resolutions 0–3 are 32 × 32, 32 × 32, 64 × 64, and
128 × 128, respectively.

While the precinct size can vary from resolution to resolution, it is always restricted to
be a power of two. Recall that each subband is also divided into rectangular code-blocks
with dimensions that are a power of two. The precinct and code-block partitions are both
anchored at (0, 0). Each precinct boundary coincides with a code-block boundary, but the
reverse is not necessarily true because a precinct may consist of multiple code-blocks.
The induced subband precinct size also imposes some constraints on the code-block
size at a given resolution level. Code-blocks from all resolution levels are constrained to
have the same size, except when constrained by the induced subband precinct size. For
example, in Figure 1.21, the nominal code-block size is chosen to be 64 × 64, but the
induced subband precinct size for subbands 3LL, 3HL, 3LH, and 3HH (i.e. the subbands
that correspond to resolutions 0 and 1) is 32 × 32. This restricts the code-block size for
resolutions 0 and 1 to be 32 × 32.

The precinct size can be chosen so that an entire subband belongs to a single precinct
or the induced precinct size matches the code-block size. In the former case, the amount
of overhead due to the introduction of precincts is very small, but the spatial accessibility
is very poor. In the latter case, the amount of overhead is high due to the large number
of code-blocks, but spatial accessibility is very precise.

1.3.4 Layers and Packets

The compressed bit-stream for each code-block is distributed across one or more layers
in the code-stream. All of the code-blocks from all subbands and components of a tile

36 The JPEG 2000 Suite

contribute compressed data to each layer. For each code-block, a number of consecutive
coding passes (possibly including zero) are included in a layer. Each layer represents a
quality increment. The number of coding passes included in a specific layer can vary
from one code-block to another and is typically determined by the encoder as a result of
postcompression rate-distortion optimization, as will be explained in Section 1.4.2. This
feature offers great flexibility in ordering the code-stream. It also enables spatially adaptive
quantization. Recall that all the code-blocks in a subband must use the same quantizer
step size. However, the layers can be formed in such a manner that certain code-blocks,
which are deemed perceptually more significant, contribute a greater number of coding
passes to a given layer. As discussed in Section 1.2.3, this reduces the effective quantizer
step size for those code-blocks by a power of two compared to other code-blocks with
less coding passes in that layer.

The compressed data belonging to a specific tile, component, resolution, layer, and
precinct is aggregated into a packet. The compressed data in a packet needs to be con-
tiguous in the code-stream. If a precinct contains data from more than one subband,
it appears in the order HL, LH, and HH. Within each subband, the contributions from
code-blocks appear in the raster order. Figure 1.21 shows an example of code-blocks
belonging to a precinct. The numbering of the code-blocks represents the order in which
the encoded data from the code-blocks will appear in a packet.

1.3.5 Packet Header

A packet is the fundamental building block in a JPEG 2000 code-stream. Each packet
starts with a packet header . The packet header contains information regarding the number
of coding passes for each code-block in the packet. It also contains the length of the
compressed data for each code-block. The first bit of a packet header indicates whether
the packet contains data or is empty. If the packet is nonempty, code-block inclusion
information is signaled for each code-block in the packet. This information indicates
whether any compressed data from a code-block is included in the packet. If compressed
code-block data has already been included in a previous packet, a single bit is used to
signal this information. Otherwise, it is signaled with a separate tag tree for each subband
of the corresponding precinct. The tag tree is a hierarchical data structure that is capable of
exploiting spatial redundancy. If code-block data are being included for the first time, the
number of most significant bit-planes that are entirely zero is also signaled with another
set of tag trees for the precinct. After this, the number of coding passes for the code-block
and the length of the corresponding compressed data are signaled.

1.3.5.1 Tag Trees

The concept of tag tree encoding, which is a particular type of quadtree structure, is
best illustrated by an example. Consider a 2-D array of nonnegative integers consisting
of two rows and three columns, as shown at the top of Figure 1.22. The array values
may represent the layer number in which a code-block is included for the first time.
Alternatively, the array values may represent the number of most significant bit-planes
that are entirely zero. The values of the original array are the leaf nodes of the tag tree
structure. The node value at the next level in the tag tree is the minimum of the values
of the child nodes. Nominally, there are four child nodes, but there may be less than

JPEG 2000 Core Coding System (Part 1) 37

q0(0,0)

2
Level 0

(root node)

q1(0,0) q1(0,1)

2 3
Level 1

q2(0,0)

2

q2(0,1) q2(0,2)

q2(1,0) q2(1,1) q2(1,2)

2 3

2 2 4

Level 2
(leaf nodes)

Figure 1.22 Example of a tag tree

four at the right and bottom edges, as shown in Figure 1.22. This process of forming a
parent node from the minimum of the child nodes is repeated until only a single root node
remains. The value of a particular tag tree node is denoted by qz(i, j), where z is the
level within the quadtree, with leaf nodes at the highest level and the root of the quadtree
at level 0, and the row and column indices are represented by i and j , respectively. We
will use qz(i, j) to refer to the tag tree node as well as the actual value of the tag tree
node. The exact meaning should be clear from the context.

To encode a specific leaf node from the tag tree, all of the ancestors of the leaf node
are encoded, starting with root node at level 0 and proceeding to the higher levels. Any
ancestor that has previously been encoded is skipped. As a first example of tag tree
encoding, consider the encoding of the 2-D array values of Figure 1.22 in a raster scan
order, starting with q2(0, 0). The ancestor nodes of q2(0, 0) are q1(0, 0) and q0(0, 0). The
root node, q0(0, 0), is encoded first, using a very simple code where a node value of B ≥ 0
is represented by B zeros followed by a one. Thus, q0(0, 0) = 2 is encoded as ‘001.’ The
next node to be encoded is q1(0, 0). For nodes at level 1 or higher, only the difference
between the current node and the parent node is encoded using the code described above.
This difference is always nonnegative because of the way the tag tree is constructed using
the minimum value for the parent node. The difference between q1(0, 0) and q0(0, 0) is 0,
which is encoded as ‘1.’ Similarly, q2(0, 0) is encoded as ‘1.’ For q2(0, 1), its ancestors,
q0(0, 0) and q1(0, 0), have already been encoded. Thus, q2(0, 1) is encoded as ‘1.’ To
encode q2(0, 2), it is necessary to encode q1(0, 1) first. The nodes q1(0, 1) and q2(0, 2)

are encoded as ‘011.’ The remaining nodes, q2(1, 0), q2(1, 1), and q2(1, 2), are encoded
as ‘1101.’ Thus the entire array is encoded as ‘0011110111101.’

As a second example of tag tree encoding, suppose that each entry in the 2-D array
represents the number of zero MSB bit-planes for each code-block belonging to a

38 The JPEG 2000 Suite

particular subband and precinct. As described previously, this information is included in
the packet header immediately after the first time a code-block makes a contribution to a
layer. As a result, the order of tag tree encoding may not follow a raster scan order. As
an example, suppose that code-blocks corresponding to q2(0, 2) and q2(1, 2) are included
for the first time in layer 0 and the remaining code-blocks are included for the first time in
layer 1 . Then, the order in which the leaf nodes get encoded is q2(0, 2), q2(1, 2), q2(0, 0),

q2(0, 1), q2(1, 0), and q2(1, 1). The encoding order including the ancestor nodes is
q0(0, 0), q1(0, 1), q2(0, 2), q2(1, 2), q1(0, 0), q2(0, 0), q2(0, 1), q2(1, 0), and q2(1, 1).
Following the method described in the previous paragraph, the tag tree encoding is
‘0010110111111.’ This encoding has exactly 13 bits as before. Thus, the number
of bits produced by a tag tree encoding does not depend on the order in which the leaf
nodes are encoded.

The method that was just described is suitable for encoding the tag tree containing
zero MSB bit-planes information. However, it is not suitable for encoding the code-block
inclusion tag tree. This is because it is only necessary to indicate whether a code-block
contributes to the current layer if it has not contributed to any previous layer. It is not
necessary to specify the exact layer number in which it gets included for the first time.
Following the encoding method described above would mean that inclusion information
for all the layers is aggregated upfront, which leads to a suboptimal embedding. To rectify
this shortcoming, the tag tree encoding method can be modified to make it hierarchical.

To illustrate hierarchical encoding of a tag tree, assume that the values of the 2-D array
in Figure 1.22 represent the layers in which the code-blocks are included for the first
time. Instead of coding the exact layer number in which the code-block is included for
the first time, the only information included for packet w (corresponding to layer w) is
whether the code-block is included in layer w for the first time. This is accomplished by
hierarchical encoding of the tag tree. It is necessary to keep track of two more variables
for each node in the tag tree, the current value cv and the state S. A state value of 1
indicates that the exact value for a tag tree node can be deduced from the information
already encoded. The tag tree decoder mimics the encoding steps.

At the beginning of the tag tree encoding procedure, the current value and state for
each node is initialized to zero. The interpretation of the current value for a tag tree node
is as follows. If the state S is 0, qz(i, j) ≥ cvz(i, j). Let the total number of layers be
W and let the leaf nodes in the tag tree be at level Z. A leaf node qZ(i, j) has ancestors
qz(iz, jz), 0 ≤ z < Z, where iz = ⌊

i/2(Z−z)
⌋

and jz = ⌊
j/2(Z−z)

⌋
.

Encode:
for each layer w, w = 0 : (W − 1)

for each leaf node qZ(i, j)

for each qz(iz, jz), 0 ≤ z ≤ Z

if (Sz(iz, jz) == 0)
if (z > 0) and cvz(iz, jz) < cv(z−1)(iz−1, jz−1)

cvz(iz, jz) = cv(z−1)(iz−1, jz−1 // Due to tag tree
construction
if (cvz(iz, jz) ≤ w)

if (qz(iz, jz) ≤ w) Emit ‘1,’ set Sz(iz, jz) = 1
else emit ‘0,’ increment cvz(iz, jz) by 1.

JPEG 2000 Core Coding System (Part 1) 39

Decode:
for each layer w, w = 0 : (W − 1)

for each leaf node qZ(i, j)

for each qz(iz, jz), 0 ≤ z ≤ Z

if (Sz(iz, jz) = 0)
if (z > 0) and cvz(iz, jz) < cv(z−1)(iz−1, jz−1)

cvz(iz, jz) = cv(z−1)(iz−1, jz−1) // Due to tag tree
construction
if (cvz(iz, jz) ≤ w)

if next bit is ‘1,’ set Sz(iz, jz) = 1 and
qz(iz, jz) = cvz(iz, jz)

else increment cvz(iz, jz) by 1.

Referring to the tag tree of Figure 1.22, we will now illustrate the hierarchical encod-
ing process. All the state and current value variables are initialized to 0. For w =
0, cv0(0, 0) ≤ w and q0(0, 0) >w. Hence, a ‘0’ bit is emitted and cv0(0, 0) is incre-
mented to 1. From the interpretation of cv, this implies that q0(0, 0) ≥ cv0(0, 0) = 1.
As a result of the manner in which the tag tree is constructed, qz(iz, jz) ≥ 1, 0 ≤ z < Z.
Thus, all the remaining states are incremented by 1 and no further bits are emitted for
layer 0. Then for w = 1, cv0(0, 0) ≤ w and q0(0, 0) >w. Hence a ‘0’ bit is emitted and
cv0(0, 0) is incremented to 2. As before, all the remaining states are incremented to 2
and no further bits are emitted for layer 1. For w = 2, cv0(0, 0) ≤ w and q0(0, 0) ≤ w.
Hence a ‘1’ is emitted and S0(0, 0) is set to 1. Now proceeding to q1(0, 0), q2(0, 0), and
q2(0, 1), a ‘1’ is emitted for each, and the corresponding states are set to 1. Proceed-
ing to q1(0, 1), cv1(0, 1) ≤ w and q1(0, 1) > w. Hence a ‘0’ bit is emitted and cv1(0, 1)

is incremented to 3. Then cv2(0, 1) is set to 3 and no further bits are emitted. For
q2(1, 0) and q2(1, 1), a ‘1’ is emitted for each and their states are set to 1. Proceed-
ing to q2(1, 2), cv2(1, 2) is incremented to 3 to equal cv1(0, 1) and no bits are emitted.
For w = 3, a ‘1’ is emitted for q1(0, 1) as well as q2(0, 2), and their states are set
to 1. Proceeding to q2(1, 2), a ‘0’ bit is emitted and cv2(1, 2) is incremented to 4.
Finally, for w = 4, a ‘1’ is emitted for q2(1, 2) and its state is set to 1. Thus, the
encoded tag tree bit-stream is ‘0 0 1111011 110 1.’ The extra spaces indicate layer
separation.

Note that the encoded tag tree also consists of 13 bits for this hierarchical encoding
method. Furthermore, the number of 1’s and the number of 0’s are also exactly the
same as in the case of nonhierarchical encoding. Because of its general applicability, the
hierarchical encoding method is used for encoding all tag trees in JPEG 2000.

1.3.6 Progression Order

The arithmetic encoding of the bit-planes is referred to as tier-1 coding, whereas the
packetization of the compressed data and encoding of the packet header information is
known as tier-2 coding. In order to change the sequence in which the packets appear in
the code-stream, it is necessary to decode the packet header information, but it is not
necessary to perform arithmetic decoding. This allows the code-stream to be reorganized
with minimal computational complexity.

40 The JPEG 2000 Suite

The order in which packets appear in the code-stream is called the progression order
and is controlled by specific markers. Regardless of the ordering, it is necessary that
coding passes for each code-block appear in the code-stream in causal order from the most
significant bit to the least significant bit. For a given tile, four parameters are needed to
uniquely identify a packet. These are component, resolution, layer, and position (precinct).
The packets for a particular component, resolution, and layer are generated by scanning
the precincts in a raster order. All the packets for a tile can be ordered by using nested ‘for
loops’ where each ‘for loop’ varies one parameter from the above list. By changing the
nesting order of the ‘for loops,’ a number of different progression orders can be generated.
JPEG 2000 Part 1 allows only five progression orders, which have been chosen to address
specific applications. They are: (i) layer–resolution–component–position progression,
(ii) resolution–layer–component–position progression, (iii) resolution–position–
component–layer progression, (iv) position–component–resolution–layer progression,
and (v) component–position–resolution–layer progression. These progression orders
share some similarities with the different modes of the extended DCT-based JPEG
standard, as will be pointed out in the subsequent subsections.

To illustrate these different orderings, consider a three-component color image of size
768 × 512 with two layers and three decomposition levels (corresponding to four resolu-
tion levels). The precinct partition is as shown in Figure 1.21. The component, resolution,
layer, and position are indexed by c, r, l, and k, respectively. It is possible that the com-
ponents of an image have different numbers of resolution levels. In that case, the LL
subbands of different components are aligned.

1.3.6.1 Layer–Resolution–Component–Position Progression (LRCP)

This type of progression is obtained by arranging the packets in the following order:

for each l = 0, 1
for each r = 0, 1, 2, 3

for each c = 0, 1, 2
for each k = 0, 1, 2, 3, 4, 5

packet for component c, resolution r , layer l, and position k.

This type of progression order is useful in an image database-browsing application, where
progressively refining the quality of an image may be desirable. This mode has no exact
counterpart in the existing JPEG. However, the ‘sequential progressive’ mode of extended
JPEG (component noninterleaved format) provides similar functionality for a single res-
olution image.

1.3.6.2 Resolution–Layer–Component–Position Progression (RLCP)

This type of progression order is obtained by interleaving the ‘for loops’ in the order r, l, c,
and k, starting with the outermost ‘for loop.’ It is useful in a client–server application,
where different clients might demand images at different resolutions. This progression
order is similar to the ‘hierarchical progressive’ mode of extended JPEG where each
resolution is further encoded with the ‘sequential progressive’ mode (component nonin-
terleaved format).

JPEG 2000 Core Coding System (Part 1) 41

1.3.6.3 Resolution–Position–Component–Layer Progression (RPCL)

This type of progression order is obtained by interleaving the ‘for loops’ in the order
r, k, c, and l, starting with the outermost ‘for loop.’ It can be used when resolution scal-
ability is needed, but within each resolution it is desirable that all packets corresponding
to a precinct appear contiguously in the compressed bit-stream. For JPEG systems, the
‘resolution–position–component’ order for a single layer can be obtained using the hier-
archical progressive mode of extended JPEG with each resolution encoded with baseline
JPEG (component interleaved format).

1.3.6.4 Position–Component–Resolution–Layer Progression (PCRL)

This type of progression order is obtained by arranging the ‘for loops’ in the order k, c, r ,
and l, starting with the outermost ‘for loop.’ It should be used if it is desirable to refine the
image quality at a particular spatial location. The ‘position–component’ order is similar
to the JPEG baseline where the image is sequentially compressed by compressing the
component interleaved 8 × 8 blocks in a raster order fashion.

1.3.6.5 Component–Position–Resolution–Layer Progression (CPRL)

This type of progression order is obtained by arranging the ‘for loops’ in the order
c, k, r , and l, starting with the outermost ‘for loop.’ It should be used if it is desirable to
obtain the highest quality image for a particular spatial location only for a specific image
component. The ‘component–position’ order is similar to the JPEG baseline where the
image is sequentially compressed by compressing each color component separately in a
raster order fashion.

In the last three progression orders, the ‘for loop’ corresponding to the variable k,
which determines the order in which the precincts appear in the code-stream, can become
complicated if different components have different precinct sizes, as explained in the stan-
dard document (ISO/IEC International Standard 15444-1, ITU Recommendation T.800).
The JPEG 2000 syntax offers the flexibility of changing from one progression order to
another in the middle of the codestream. For example, a digital camera image might start
out in the RLCP order to provide a thumbnail. The order then may be switched to LRCP
to facilitate rate control and truncation after the image has been captured.

Figures 1.23 to 1.25 illustrate some of these progression orders for the ‘Boy’ image
(768 × 512, monochrome). In these examples, the DWT has three decomposition lev-
els, the (9, 7) filter bank is used, and the precinct sizes at resolutions 0, 1, 2, and 3
are 32 × 32, 64 × 64, 128 × 128, and 256 × 256, respectively. The code-block size is
64 × 64, except for resolutions 0 and 1, where the code-block size is constrained to
the subband precinct size of 32 × 32. Thus, there are four resolutions, six precincts per
resolution, and two layers, resulting in 48 packets. Figure 1.23 shows the LRCP pro-
gression order (Section 1.3.6.1). The image has been reconstructed at the two quality
levels of 0.125 bits/pixel and 0.5 bits/pixel by decoding 24 and 48 packets, respectively.
Figure 1.24 illustrates the RLCP ordering (Section 1.3.6.2). The figure shows images
reconstructed after decoding resolutions 0, 1, 2, and 3 (12, 24, 36, and 48 packets),
respectively. Figure 1.25 illustrates the PCRL ordering (Section 1.3.6.4). The image has
been reconstructed after decoding 32 packets corresponding to the first four precincts.

42 The JPEG 2000 Suite

Figure 1.23 Example of layer progressive bit-stream ordering: (left) 0.125 bpp; (right) 0.50 bpp

Figure 1.24 Example of resolution progressive bit-stream ordering

Figure 1.25 Example of spatially progressive bit-stream ordering (four precincts decoded)

JPEG 2000 Core Coding System (Part 1) 43

It should be noted that because of the prediction step in the hierarchical progressive
mode of the extended JPEG, before decoding any data at a given resolution it is necessary
to fully decode all the data corresponding to the lower resolution versions of the image.
This interresolution dependency makes it impossible to achieve certain progression orders,
e.g. LRCP. Also, rearranging the JPEG compressed data from one progression mode to
another generally requires an inverse DCT, e.g. when converting from the hierarchical
progressive to the sequential progressive mode. With JPEG 2000, a given progression
order can be converted into another without the need for arithmetic decoding or inverse
wavelet transform by simply rearranging the packets. This only requires decoding of
the packet headers to determine the length of each packet. However, the decoding of
packet headers can be avoided by inclusion of PLT (or PLM) marker segments, which
are described in the next subsection.

1.3.7 Code-Stream Organization and Syntax

A JPEG 2000 code-stream consists of two fundamental types of data: (1) compressed data
in the form of packets and (2) syntactical data in the form of markers and marker segments
that define the characteristics of the image and delimit the code-stream. Certain markers
and marker segments are combined to form headers, and the JPEG 2000 standard defines
two kinds of headers, a main header and a tile-part header. At the highest structural level,
a JPEG 2000 code-stream consists of a main header, one or more tile parts, and an end
of code-stream (EOC) marker. Multiple tile parts are formed, if desired, by breaking the
compressed data for a tile at any packet boundary. Each tile part consists of a tile-part
header and compressed data for the tile part as a sequence of packets. Tile parts from
different tiles can be interleaved in the code-stream. Figure 1.26 shows an example of
a JPEG 2000 code-stream consisting of two tiles, where tile 0 has a single tile part and
tile 1 has two tile parts.

1.3.7.1 Markers and Marker Segments

A marker is always two bytes, and the first byte is always 0xFF.9 The second byte denotes
the specific marker, with a value in the range 0x01 to 0xFE. The use of the 0xFF byte as
a prefix allows the markers to be located easily when a code-stream is parsed. Typically,
a marker is followed by a parameter list, and together the marker and the parameter list
form a marker segment. The marker occupies the first two bytes of a marker segment.
The marker is followed by a two-byte length parameter, which is an unsigned integer in
the big-endian format that specifies the length of the marker segment. The length of the
marker segment includes the two bytes for the length parameter itself but does not include
the two bytes for the marker. The marker segments are always multiples of 8 bits and all
multibyte parameter values in a marker segment are big endian. There are six types of
marker and marker segments:

• delimiting markers and marker segments: start of code-stream (SOC), start of tile part
(SOT), start of data (SOD), and end of code-stream (EOC);

• fixed information marker segments: image and tile size (SIZ);

9 The prefix 0x indicates that the number following the prefix is in hexadecimal notation.

44 The JPEG 2000 Suite

SOC

SOT

Main Header

T0, TP0

packets

SOD

T1, TP0

SOT

SOD

EOC

packets

T1, TP1

SOT

SOD

packets

Tile-part
header

Tile-part
header

Tile-part
header

Main
header Main header

marker segments

Tile 0, tile-part 0
marker segments

Tile 1, tile-part 0
marker segments

Tile 1, tile-part 1
marker segments

Tile-part compressed
bit-stream

Tile-part compressed
bit-stream

Tile-part compressed
bit-stream

Figure 1.26 JPEG 2000 code-stream organization

• functional marker segments: coding style default (COD), coding style component
(COC), region of interest (RGN), quantization default (QCD), quantization component
(QCC), and progression order change (POC);

• pointer marker segments: tile-part lengths (TLM), packet length, main header (PLM),
packet length, tile-part header (PLT), packed packet headers, main header (PPM), and
packed packet headers, tile-part header (PPT);

• in bit-stream markers and marker segments: start of packet (SOP) and end of packet
header (EPH);

• informational marker segments: component registration (CRG) and comment (COM).

The delimiting and fixed information markers and marker segments must be present in
specific locations in all JPEG 2000 compliant code-streams. The code-stream must begin
with the SOC marker, followed by the SIZ marker in the main header. Each tile-part

JPEG 2000 Core Coding System (Part 1) 45

header must contain the SOT marker as its first marker segment. The SOD marker must
be present after each tile-part header. Finally, a valid JPEG 2000 code-stream must end
with the EOC marker.

The SIZ marker segment as well as the functional marker segments contain information
concerning the image and the code-stream. The SIZ marker segment contains information
regarding the image and tile sizes, and their positioning with respect to the reference grid,
as well as component subsampling factors and bit-depths. The COD marker segment
contains information related to coding parameters such as precinct and code-block sizes,
entropy-coding mode, number of layers, progression order, etc. The COC marker segment
contains the same type of information as the COD marker, but it applies to a specific
component. The QCD and QCC marker segments contain quantizer step size information
for all components and for a specific component, respectively. The RGN marker segment
can be used to specify a region of interest and the POC marker is used to signify a change
in the progression order.

The pointer marker segments provide length information or pointers into the code-
stream. They are useful for providing random access to certain parts of the code-stream
without having to parse the whole code-stream. The SOP marker segment may appear
before each packet and the EPH marker may appear immediately after a packet header.
The SOP and EPH markers are useful for error detection and synchronization. Finally,
CRG and COM are informational marker segments. They are not necessary for correct
decoding of the JPEG 2000 code-stream. The CRG marker specifies the specific
registration of different components, which may be helpful for rendering purposes. The
COM marker segment allows storage of unstructured comment information.

1.3.7.2 Allowable Marker Segments and Scope

The markers and marker segments that can be present in the main header are SOC, SIZ,
COD, COC, QCD, QCC, RGN, POC, PPM, TLM, PLM, CRG, and COM. The SOC,
SIZ, COD, and QCD are required in the main header, while the rest of the markers are
optional. The SOC and SIZ markers must be the first two markers in the main header.
The rest of the marker segments can appear in an arbitrary order within the main header.

For each tile-part header, SOT must be the first marker segment and SOD must be
the last marker. Each tile-part header may optionally contain POC, PPT, PLT, or COM
marker segments. If the tile-part header is the first for a given tile, it can optionally contain
COD, COC, QCD, QCC, or RGN marker segments.

The scope of a marker segment depends on its type. The scope of a marker segment
in the main header extends to the whole image, while the scope of a marker segment
in a tile-part header extends only to the corresponding tile part. If a marker segment is
component specific, its scope is restricted accordingly. For example, if a COC marker
segment is present in a tile-part header, its scope extends to the specific component
in that tile part. When there are multiple marker segments with overlapping scopes,
the following precedence rules apply. Within a tile-part header, a component-specific
marker segment takes precedence over a general tile-part header marker segment for the
specific component. Similarly, within the main header, a component-specific segment
takes precedence over a general main header marker segment for that specific component.
Furthermore, a marker segment appearing in a tile-part header takes precedence over a
marker segment appearing in the main header for the specific tile. As an example, consider

46 The JPEG 2000 Suite

a code-stream with the main header containing COD and COC marker segments and a
tile-part header also containing COD and COC marker segments. For this example, the
marker segments in decreasing order of precedence are: tile-part COC, tile-part COD,
main COC, and main COD.

1.4 JPEG 2000 Rate Control

Rate control refers to the process of allocating bits to an image and is strictly an encoder
issue. In constant bit-rate (CBR) systems, the goal is to achieve a target file size with
the highest possible image quality. In variable bit-rate (VBR) systems, the goal is to
achieve a target image quality with the smallest possible file size. Depending upon the
application, either CBR or VBR may be preferable. The metric that is used to assess
image quality is typically the mean squared error between the original and reconstructed
image. However, the use of MSE is primarily motivated by mathematical convenience,
and it is well known that MSE does not always correlate well with perceived quality. As
a result, visually weighted MSE or more sophisticated visual distortion metrics can also
be used (Liu, Karam, and Watson, 2006: Marziliano et al., 2004).

The structure of the JPEG 2000 encoding process provides new opportunities for rate
control that are not available in conventional JPEG encoding. In the existing JPEG stan-
dard, the user only has control over the quantization and Huffman tables, and there is
no easy mechanism for compressing an image to a desired bit-rate. A typical JPEG rate
control algorithm for CBR encoding starts with a basic q-table and iteratively modi-
fies the q-table elements (e.g. by a scale factor) until the desired file size (bit-rate) is
achieved. In contrast, the embedded block encoding scheme of the JPEG 2000 and its
flexible code-stream syntax allow for the noniterative generation of an R-D optimized
code-stream for a given file size or a given image quality level. Each JPEG 2000 encoder
can perform its own optimization (based on the distortion metric used) to generate a
code-stream that conforms to the standardized syntax. In the following, a brief discussion
of several possible approaches to JPEG 2000 rate control is provided.

1.4.1 Rate Control Using an Explicit q-Table

One approach to rate control is to use an explicit q-table (or q-tables when encoding color
images) in a manner similar to JPEG, where a quantizer step size is specified for each
subband and signaled explicitly as header information. However, for CBR encoding, this
approach suffers from the same drawback as JPEG in that the q-table needs to be modified
(e.g. scaled or otherwise adjusted) iteratively to achieve the desired bit-rate. Although
there is no need to perform the wavelet transform at each iteration, the quantization and
encoding processes still need to be performed repeatedly.

The use of explicit q-tables is more applicable to VBR systems, where the goal is con-
stant image quality and the bit-rate will fluctuate with the image content. Because human
observers are the ultimate judges of image quality in most applications, it is necessary to
consider the properties of the HVS when designing a q-table (Albanesi and Bertoluzza,
1995; Jones, 2007; Jones et al., 1995; O’Rourke and Stevenson, 1995; Watson et al.,
1997; Zeng, Daly, and Lei, 2002). The general approach to perceptually based q-table
design is to take advantage of the sensitivity variations of the HVS to different spatial

JPEG 2000 Core Coding System (Part 1) 47

frequencies. The DWT in JPEG 2000 conveniently provides a frequency decomposition
of the input image, and the HVS response can be mapped on to the wavelet subbands.
Although visually based q-tables can be designed through actual observer experiments,
as was done in developing the example q-tables specified in the existing JPEG standard,
such experiments are laborious and must be repeated each time the viewing conditions are
changed. A more efficient approach is to use a computational model of the contrast sensi-
tivity function (CSF) as described in Jones et al. (1995). The CSF quantifies the detection
threshold of an observer to different spatial frequencies, and the goal in applying the CSF
to image compression is to ensure that all compression errors are kept below the detection
threshold for specified viewing conditions. If this goal is achieved, the compressed image
quality is referred to as visually lossless for the specified viewing conditions. The viewing
conditions include such parameters as the viewing distance, displayed pixel size, display
noise, and light adaptation level. The type of analysis that is needed to determine visually
lossless q-tables for JPEG 2000 is described in Jones (2007). It is noted that the use of
explicit q-tables can also be combined with the rate-distortion optimization method of
the next section if the visually based VBR encoding is subject to a maximum file size
constraint.

1.4.2 Rate Control Using the EBCOT Algorithm (PCRD-opt)

In 2000, Taubman proposed an efficient rate control method for the EBCOT compression
algorithm that achieves a desired rate in a single iteration with minimum distortion. This
method can also be used by a JPEG 2000 encoder, with several possible variations,
including achieving a desired distortion with the minimum bit-rate.

In the basic approach, each subband is first quantized using a very fine step size, and
the bit-planes of the resulting code-blocks are entropy encoded. This typically generates
more coding passes for each code-block than will be eventually included in the final
code-stream. This situation is known as overcoding , and it represents a computational
inefficiency that is necessary to achieve the desired rate control benefits with this method.
Heuristics can be used to reduce the amount of overcoding, but they require stable image
statistics to perform well. If the quantizer step size is chosen to be small enough, the
R-D performance of the algorithm is independent of the initial choice of the step size.
Next, a Lagrangian R-D optimization is performed to determine the number of coding
passes from each code-block that should be included in the final compressed bit-stream
to achieve the desired bit-rate. If more than a single layer is desired, this process can be
repeated at the end of each layer to determine the additional number of coding passes
from each code-block that need to be included in the next layer.

The Lagrangian R-D optimization works in the following manner. The compressed
bit-stream from each code-block contains a large number of potential truncation points
that can occur at the end of each sub-bit-plane pass. The wavelet coefficients y(u, v)

contained in a code-block of subband b are initially quantized with a step size of �b,
resulting in an Mb-bit quantizer index for each coefficient. If the code-block bit-stream
is truncated so that only Nb bits are decoded, the effective quantizer step size for the
coefficients is �b2Mb−Nb . The inclusion of each additional bit-plane in the compressed
bit-stream will decrease the effective quantizer step size by a factor of two. However,
the effective quantizer step size might not be the same for every coefficient in a given

48 The JPEG 2000 Suite

code-block due to the inclusion of some coefficients in the sub-bit-plane at which the
truncation occurs. For each sub-bit-plane, the increase in bit-rate and the reduction in
distortion resulting from the inclusion of that sub-bit-plane in the bit-stream are calculated.
The distortion measure selected is usually MSE or visually weighted MSE, although any
general distortion measure that is additive across code-blocks can be used. Let the total
number of code-blocks for the entire image be P and let the code-blocks in the image be
denoted by Bi, 1 ≤ i ≤ P . For a given truncation point t in code-block Bi , the associated
weighted MSE distortion Dt

i is given by

Dt
i = α2

b

∑
u,v

wi(u, v)
[
yi(u, v) − yt

i (u, v)
]2

, (1.24)

where u and v represent the coefficient row and column indices within the code-block
Bi, yi(u, v) is the original coefficient value, yt

i (u, v) is the quantized coefficient value
for truncation point t, wi(u, v) is a weighting factor for coefficient yi(u, v), and αb is
the L2-norm for subband b. Under certain assumptions for the quantization noise, this
distortion is additive across code-blocks. At the given truncation point t , the size of the
associated compressed bit-stream (i.e. the rate) for the code-block Bi is determined and
denoted by Rt

i .
Given a total bit budget of R bytes for the compressed bit-stream, the EBCOT rate

control algorithm finds the truncation point for each code-block that minimizes the
total distortion D. This is equivalent to finding the optimal bit allocation for all of the
code-blocks, R∗

i , 1 ≤ i ≤ P , such that

D =
∑

i

D∗
i is minimized subject to

∑
i

R∗
i ≤ R. (1.25)

In the JPEG 2000 literature, this rate control algorithm is also referred to as the postcom-
pression R-D optimization (PCRD-opt) algorithm. If the weighting factor wi(u, v) is set
to unity for all subband coefficients, the distortion metric reduces to the MSE. A visual
weighting strategy can also be used in conjunction with the EBCOT rate control algorithm,
as will be discussed next.

1.4.2.1 Fixed Visual Weighting

The CSF model used to design the q-tables for explicit quantization of the wavelet coef-
ficients can also be used to derive the weighting factors wi(u, v). For example, once
the CSF-based quantization step sizes have been computed for a given viewing condi-
tion (Section 1.4.1), the weighting factor for all the coefficients in a subband can be
set equal to the square of the reciprocal of these step sizes. Table J-24 from Part 1 of
the JPEG 2000 standard (ISO/IEC International Standard 15444-1, ITU Recommendation
T.800) lists recommended frequency weightings for three different viewing conditions.
This approach is known as fixed visual weighting .

1.4.2.2 Bit-Stream Truncation and Layer Construction

In the EBCOT rate control algorithm, an image is compressed in such a way that the
minimum distortion is achieved at the desired bit-rate. However, it is sometimes desirable

JPEG 2000 Core Coding System (Part 1) 49

to truncate an existing JPEG 2000 code-stream to achieve a smaller bit-rate. For example,
this scenario could take place in a digital camera where the already captured and com-
pressed images have to be truncated to enable storage of a newly captured image. The
question that arises is whether the truncated bit-stream also achieves the minimum distor-
tion for the smaller bit-rate. In other words, we want the visual quality of the image from
the truncated code-stream to be as close as possible to the visual quality of the image that
would be produced by compressing directly to that bit-rate.

This property can be achieved only if the image was initially encoded with a number
of layers using the LRCP ordering of the packets as described in Section 1.3.6.1. The
layers can be designed using R-D optimization so that the minimum distortion for the
resulting bit-rate is achieved at each layer boundary. However, the quality of the resulting
truncated image might not be optimal if the truncation point for the desired bit-rate does
not fall on a layer boundary. This is because the nonboundary truncation of a layer in
LCRP ordering will result in a number of packets being discarded. If the desired bit-rates
or quality levels are known in advance for a given application, it is recommended that the
layers be constructed accordingly. If the exact target bit-rates are not known a priori , it is
recommended that a large number of layers (e.g. 50) be formed. This provides the ability to
approximate a desired bit-rate while still truncating at a layer boundary. As demonstrated
in Section 1.5.2.2, the impact of the resulting overhead on PSNR is quite small.

1.4.2.3 Progressive Visual Weighting

In fixed visual weighting, the visual weights are chosen according to a single viewing
condition. However, if the bit-stream is truncated, this viewing condition may be inappro-
priate for the reduced quality image. Consider a case where the compressed bit-stream has
a number of layers, each corresponding to a potential truncation point. If the bit-stream
is truncated at a layer boundary with a very low bit-rate, the resulting image quality
would be poor and the image might be viewed at a larger viewing distance than the one
intended for the original compressed bit-stream. As a result, in some applications it might
be desirable to have each layer correspond to a different viewing condition. In an embed-
ded encoder such as JPEG 2000, it is not possible to change the subband quantization
step sizes for each layer. However, if a nominal viewing condition can be associated with
each layer, a corresponding set of visual weighting factors wi(u, v) can be used during
the R-D optimization process for that layer (Li, 1999). This is known as progressive visual
weighting .

1.5 Performance Comparison of the JPEG 2000 Encoder Options

The JPEG 2000 standard offers a number of encoder options that directly affect the coding
efficiency, speed, and implementation complexity. In this section, we primarily compare
the effects of various coding options on the coding efficiency for lossless compression and
on the rate-distortion performance for lossy compression. It is more difficult to compare
the speed and implementation complexity of different coding options accurately, so we
only point out the relative speed/complexity advantages of certain options.

To obtain the reported results, the three test images shown in Figure 1.27, ‘Bike,’
‘Café,’ and ‘Woman’ of size 2048 (columns) × 2560 (rows) were chosen from the JPEG

50 The JPEG 2000 Suite

ISO 400ISO 400ISO 400

Figure 1.27 Test images (from left to right) Bike, Café, Woman

2000 test set. All three images are grayscale and have a bit-depth of 8 bits/sample. For
lossy compression, distortion was characterized by the peak signal-to-noise ratio (PSNR),
which for an 8-bit decompressed image is defined as

PSNR = 10 log10

(
2552

MSE

)
, (1.26)

where MSE is the mean squared error between the original image and the reconstructed
image. In most cases, the results are presented as the average PSNR of the three images.
We use the average PSNR instead of the PSNR corresponding to the average MSE in
accordance to the practice of JPEG 2000 core experiments.

During the development of the JPEG 2000 standard, the committee maintained a
software implementation of an encoder and decoder that contained all the technologies
considered for the inclusion in the standard as of that time. This was also accompanied
by a textual description of the technologies. Both the software and the textual descrip-
tion were referred to as the Verification Model (VM). After each meeting of the JPEG
committee, the VM was updated to reflect any approved modifications. For the results in
this section, we used the JPEG 2000 Verification Model Version 8.6 (VM8.6) (ISO/IEC,
2000). During each simulation, only one parameter was varied while the others were kept
constant in order to study the effect of a single parameter on compression performance.

As a reference implementation, we used the following set of compression parameters:
single tile; five levels of wavelet decomposition; 64 × 64 code-blocks; and a single layer.
The subbands at each resolution were treated as a single precinct. In the case of irreversible
(9, 7) lossy compression, the reciprocal of the L2-norm was used as the fundamental
quantization step size for each subband. In the case of reversible (5, 3) lossless and
lossy compression, the quantizer step size was set to unity for all subbands as required
by the JPEG 2000 standard. Hence, when using the reversible (5, 3) filter bank for lossy
compression, rate control is possible only by discarding bits from the integer representation
of the index for the quantized wavelet coefficient.

The results for lossy coding are reported for bit-rates of 0.0625, 0.125, 0.25, 0.5, 1.0,
and 2.0 bits/pixel (bpp). To achieve a target bit-rate, the compressed code-block bit-streams

JPEG 2000 Core Coding System (Part 1) 51

were truncated to form a single layer. The truncation points are determined using the
EBCOT postcompression R-D optimization procedure as described in Section 1.4.2. We
chose this alternative instead of varying the quantizer step size for the following reason.
Suppose that a particular step size is used to achieve a target bit-rate without any truncation
of the compressed bit-stream. Then, varying a single coding parameter, while keeping the
step size the same, results in a different distortion as well as a different rate. In that case,
the only meaningful way to compare results is by plotting the rate-distortion curves (as
opposed to single R-D points). Hence, it is more effective to present the comparisons in
a tabular form by comparing the PSNRs of different encoding options for fixed bit-rates
by using the EBCOT rate control algorithm.

1.5.1 Lossy Results

1.5.1.1 Tile Size

JPEG 2000 allows spatial partitioning of the image into tiles. Each tile is wavelet trans-
formed and encoded independently. In fact, a different number of decomposition levels can
be specified for each component of each tile. Smaller tile sizes are particularly desirable
in memory-constrained applications or when access to only a small portion of the image is
desired (e.g. remotely roaming over a large image) without the extra complexity of small
precincts. Table 1.4 compares the R-D performance of the JPEG 2000 encoder for various
tile sizes with the (9, 7) filter. It is evident that the compression performance decreases
with decreasing tile size, particularly at low bit-rates. Furthermore, at low bit-rates where
the tile boundaries are visible in the reconstructed image, the perceived quality of the
image might be lower than that indicated by the PSNR. The impact of the boundary
artifacts can be reduced by using post-processing techniques, such as those employed in
reducing the blocking artifacts in low bit-rate DCT-based JPEG and MPEG images. Part
2 of the JPEG 2000 standard offers the option of using a single-sample overlap DWT
(SSO-DWT), which reduces edge artifacts at the tile boundaries.

1.5.1.2 Code-Block Size

The code-blocks in JPEG 2000 are rectangular with user-defined dimensions that are
identical for all subbands. Each dimension has to be a power of two and the total number
of samples in a code-block cannot exceed 4096. Furthermore, when the induced subband

Table 1.4 Comparison of R-D performance for different tile sizes with the (9, 7) filter bank

Average PSNR in dB
Rate
(bits/pixel) No tiling 512 × 512 256 × 256 192 × 192 128 × 128

0.0625 22.82 22.73 (−0.09) 22.50 (−0.32) 22.22 (−0.60) 21.79 (−1.03)
0.125 24.84 24.77 (−0.07) 24.59 (−0.25) 24.38 (−0.46) 24.06 (−0.78)
0.25 27.61 27.55 (−0.06) 27.41 (−0.20) 27.20 (−0.41) 26.96 (−0.65)
0.5 31.35 31.30 (−0.05) 31.19 (−0.16) 30.99 (−0.36) 30.82 (−0.53)
1.0 36.22 36.19 (−0.03) 36.11 (−0.11) 35.96 (−0.26) 35.85 (−0.37)
2.0 42.42 42.40 (−0.02) 42.34 (−0.08) 42.22 (−0.20) 42.16 (−0.26)

52 The JPEG 2000 Suite

Table 1.5 Comparison of R-D performance for various code-block sizes with the (9, 7) filter
bank

Average PSNR in dB
Rate
(bits/pixel) 64 × 64 32 × 32 16 × 16 8 × 8

0.0625 22.82 22.78 (−0.04) 22.62 (−0.20) 22.27 (−0.55)
0.125 24.84 24.78 (−0.06) 24.57 (−0.27) 24.13 (−0.71)
0.25 27.61 27.52 (−0.09) 27.23 (−0.38) 26.63 (−0.98)
0.5 31.35 31.22 (−0.13) 30.84 (−0.51) 30.04 (−1.31)
1.0 36.22 36.09 (−0.13) 35.68 (−0.54) 34.70 (−1.52)
2.0 42.42 42.28 (−0.14) 41.83 (−0.59) 40.70 (−1.72)

precinct size for a particular subband is less than the code-block size, the code-block size
is set equal to the induced subband precinct size.

Table 1.5 compares the effect of varying the code-block size on R-D performance
with the (9, 7) filter. There is very little loss of PSNR (maximum of 0.14 dB) in going
from a code-block size of 64 × 64 to a code-block size of 32 × 32. However, code-block
sizes smaller than 32 × 32 result in a significant drop in PSNR. There are several factors
that contribute to this phenomenon. One factor is the overhead information contained
in the packet header. The packet header contains information regarding the number of
coding passes and the length of compressed data for each code-block, so the total size
of the header information increases with an increasing number of code-blocks. Another
factor is the independent encoding of each code-block that requires the reinitialization of
the arithmetic encoding models. As the code-block size becomes smaller, the number of
samples required to adapt to the underlying probability models constitutes a greater portion
of the total number of samples encoded. In addition, the pixels that lie on the boundary
of a code-block have an incomplete context because pixels from neighboring code-blocks
cannot be used in forming the coding contexts. As the code-block size decreases, the
percentage of boundary pixels with incomplete contexts increases.

It can also be concluded from Table 1.5 that the loss in compression performance with
decreasing code-block size is more pronounced at higher bit-rates. This can be explained as
follows. When the bit-rate is high, more coding passes are encoded, and the inefficiencies
that are attributable to model mismatch and incomplete contexts add up. In comparison,
at low bit-rates, many code-blocks from the higher frequency subbands contribute no
compressed data to the compressed bit-stream. The JPEG 2000 bit-stream syntax has
provisions to signal this information very efficiently, so for these code-blocks, a smaller
size has almost no impact on the coding efficiency. Moreover, these high frequency
subbands represent a large percentage of the total number of code-blocks.

1.5.1.3 DWT Filters

Part 1 of JPEG 2000 offers a choice of either the (9, 7) or the (5, 3) filter bank for
lossy compression. Figure 1.28 compares the energy compaction of the (9, 7) and the
(5, 3) filter banks graphically. Each subband has been scaled with its L2-norm to reflect
its proper contribution to the overall energy. Moreover, for better visualization of the

JPEG 2000 Core Coding System (Part 1) 53

(5,3) scaled by L2-norm, DC scale = 1/8, AC scale = 2 (9,7) scaled by L2-norm, DC scale = 1/8, AC scale = 2

Figure 1.28 Energy compaction comparison between the irreversible (5, 3) and (9, 7) filter banks

subband energies, the AC subbands of both images have been scaled up by a factor
of two, while the LL subbands have been scaled down by a factor of eight. It can be
seen that the LL subband of the (9, 7) filter bank has a higher contrast, which implies
superior energy compaction. However, it is worth noting that the (5, 3) filter has much
less computational complexity than the (9, 7) filter.

Table 1.6 compares the R-D performance of the two filter banks in the lossy compression
mode. The (9, 7) filter bank consistently outperforms the (5, 3) filter bank with the
performance gap increasing with increasing bit-rate. However, it should be noted that the
(5, 3) filter bank is also capable of performing lossless compression. When the target
lossy bit-rate equals the lossless bit-rate for a particular image, the (5, 3) filter bank can
produce zero MSE (or infinite PSNR) in the lossless mode, whereas the (9, 7) filter bank
always produces a nonzero MSE. Lossless compression ratios are typically around 2:1
and thus, for bit-rates in the range of 4.0 bits/pixel or higher (with 8-bit images), lossless
compression with the (5, 3) filter bank will outperform lossy compression with the (9, 7)

Table 1.6 Comparison of R-D performance of the
irreversible (9, 7) and the reversible (5, 3) filter banks

Average PSNR in dB
Rate
(bits/pixel) Irreversible (9, 7) Reversible (5, 3)

0.0625 22.82 22.37 (−0.45)
0.125 24.84 24.37 (−0.47)
0.25 27.61 27.04 (−0.57)
0.5 31.35 30.74 (−0.61)
1.0 36.22 35.48 (−0.74)
2.0 42.42 41.33 (−1.09)

54 The JPEG 2000 Suite

filter bank. Specific lossless compression results for the (5, 3) filter bank are presented in
Section 1.5.2.

1.5.1.4 Wavelet Decomposition Levels

The number of decomposition levels affects the coding efficiency of a JPEG 2000 encoder
as well as the number of resolutions at which an image can be decompressed. In gen-
eral, the number of decomposition levels does not impact the computational complexity
significantly because only the LL band is further split at each level. Table 1.7 compares
the R-D performance of the JPEG 2000 encoder for different numbers of decomposition
levels with the (9, 7) filter. Our simulations show that the PSNRs resulting from five and
eight levels of decomposition are practically indistinguishable. The use of fewer than five
levels results in a loss in coding efficiency, with increasing loss as the number of levels is
reduced. The loss is greatest at lower bit-rates and tapers off with increasing bit-rate. We
can conclude that a five-level decomposition is adequate in terms of coding efficiency,
although it still may be desirable to use more than five levels to provide easy access to
lower resolution versions of high-resolution images.

1.5.1.5 Lazy, Parallel, and Lazy–Parallel Modes

As mentioned in Section 1.2.4, JPEG 2000 provides several entropy-coding options that
facilitate the parallel processing of the quantized coefficient bit-planes. The collection
of these encoding options is termed the parallel mode. Another option that reduces the
computational complexity of the entropy encoder (especially at high bit-rates) is the lazy
(i.e. selective arithmetic coding bypass) mode, where only the cleanup pass is arithmetic
encoded after the fourth most significant bit-plane. Table 1.8 shows the R-D performance
of the parallel, lazy, and lazy–parallel modes relative to the reference implementation. It
can be seen that the loss in PSNR is generally small (0.01–0.3 dB) and increases with
increasing bit-rate.

1.5.1.6 Effect of Multiple Compression Cycles

Table 1.9 examines the effect of multiple compression cycles on PSNR where an image
is compressed and reconstructed multiple times to the same bit-rate. Our reference

Table 1.7 Comparison of R-D performance for various levels of decomposition with the (9, 7)
filter bank

Average PSNR in dB
Rate
(bits/pixel) 5 levels 4 levels 3 levels 2 levels 1 level

0.0625 22.82 22.77 (−0.05) 22.47 (−0.35) 21.50 (−1.30) 17.68 (−5.12)
0.125 24.84 24.80 (−0.04) 24.62 (−0.22) 23.91 (−0.93) 21.67 (−3.17)
0.25 27.61 27.57 (−0.04) 27.45 (−0.16) 26.94 (−0.67) 25.54 (−2.07)
0.5 31.35 31.33 (−0.02) 31.24 (−0.11) 30.87 (−0.48) 29.71 (−1.64)
1.0 36.22 36.21 (−0.01) 36.15 (−0.07) 35.91 (−0.31) 35.15 (−1.07)
2.0 42.42 42.42 (−0.01) 42.37 (−0.05) 42.26 (−0.16) 41.71 (−0.71)

JPEG 2000 Core Coding System (Part 1) 55

Table 1.8 R-D performance of lazy, parallel, and lazy–parallel modes with the (9, 7) filter bank

Average PSNR in dB
Rate
(bits/pixel) Reference Lazy Parallel Lazy–parallel

0.0625 22.82 22.81 (−0.01) 22.76 (−0.06) 22.75 (−0.07)
0.125 24.84 24.82 (−0.02) 24.76 (−0.08) 24.74 (−0.10)
0.25 27.61 27.57 (−0.04) 27.49 (−0.12) 27.46 (−0.15)
0.5 31.35 31.28 (−0.07) 31.19 (−0.16) 31.14 (−0.21)
1.0 36.22 36.10 (−0.12) 36.03 (−0.19) 35.94 (−0.28)
2.0 42.42 42.28 (−0.14) 42.22 (−0.20) 42.12 (−0.30)

Table 1.9 R-D performance of multiple compression cycles with the (9, 7) filter bank

Average PSNR in dB
Rate
(bits/pixel) 1 iteration 4 iterations 8 iterations 16 iterations

0.0625 22.82 22.78 (−0.04) 22.77 (−0.05) 22.76 (−0.06)
0.125 24.84 24.80 (−0.04) 24.78 (−0.06) 24.76 (−0.08)
0.25 27.61 27.57 (−0.04) 27.56 (−0.05) 27.54 (−0.07)
0.5 31.35 31.32 (−0.03) 31.30 (−0.05) 31.28 (−0.07)
1.0 36.22 36.19 (−0.03) 36.17 (−0.05) 36.16 (−0.06)
2.0 42.42 42.39 (−0.03) 42.37 (−0.05) 42.36 (−0.06)

Table 1.10 R-D performance of multiple compression cycles with cropping with the (9, 7) filter
bank

Average PSNR in dB

No canvas coordinate system Canvas coordinate system
Rate
(bits/pixel) Reference 4 iterations 16 iterations 4 iterations 16 iterations

0.0625 22.82 21.14 (−1.68) 18.58 (−4.24) 22.78 (−0.04) 22.76 (−0.06)
0.125 24.84 22.74 (−2.10) 20.30 (−4.54) 24.80 (−0.04) 24.76 (−0.08)
0.25 27.61 25.16 (−2.45) 22.75 (−4.86) 27.57 (−0.04) 27.54 (−0.07)
0.5 31.35 28.61 (−2.74) 26.40 (−4.95) 31.32 (−0.03) 31.28 (−0.07)
1.0 36.22 33.30 (−2.92) 31.29 (−4.93) 36.19 (−0.03) 36.16 (−0.06)
2.0 42.42 39.26 (−3.16) 37.08 (−5.34) 42.39 (−0.03) 42.36 (−0.06)

implementation with the (9, 7) filter was used in all cases. The postcompression R-D
optimization engine is used to achieve the desired bit-rate at each iteration. It can be
seen from Table 1.9 that multiple compression cycles cause very little degradation
(0.03–0.08 dB) in compression performance when the compression parameters are held
constant.

Table 1.10 examines the effect of multiple compression cycles when one image column
is cropped from the left side in between compression cycles. Two scenarios are explored.

56 The JPEG 2000 Suite

In one case, the image is always anchored at (0, 0) so that the canvas coordinate system
shifts by one column as the image is cropped in between compression cycles. This changes
the alignment of the code-blocks. Furthermore, the column index for the samples changes
from odd to even and even to odd, which results in a completely different set of wavelet
coefficients. In the other case, the anchoring point is shifted to preserve the code-block
alignment using the canvas coordinate system. In this case, only the wavelet coefficients
near the boundary of the image are affected by cropping. From Table 1.10, it can be seen
that maintaining the code-block alignment leads to superior compression performance.
More performance comparisons can be found in Joshi, Rabbani, and Lepley (2000).

1.5.1.7 JPEG 2000 versus JPEG Baseline

Table 1.11 compares the R-D performance of JPEG 2000 with JPEG baseline at equivalent
bit-rates for the reference test set. Our reference implementation with the (9, 7) filter bank
was used. The JPEG baseline PNSR results were generated by iteratively compressing
with JPEG baseline to within 1% of the file size of the JPEG 2000 compressed image
(including the file headers). The IJG code with the example luminance q-table and a local
Huffman table was used for this purpose.10 For at least one image from our test set, rates
of 0.0625 and 0.125 bits/pixel were not achievable even when using a q-table with all
the entries set to the highest possible value of 255; hence JPEG baseline results for those
rates are not listed in Table 1.11. It can be seen that the use of JPEG 2000 results in
approximately 2–4 dB higher PSNR than JPEG baseline depending on the bit-rate.

1.5.2 Lossless Results

1.5.2.1 Reversible Color Transform (RCT)

It is well known that decorrelating the components of an image by applying a color trans-
form improves the coding efficiency. For example, RGB images are routinely transformed
into YCbCr before applying JPEG compression. In a similar fashion, a lossless component
transform can be beneficial when used in conjunction with lossless coding. Table 1.12

Table 1.11 R-D performance of JPEG 2000 and
JPEG baseline for the Lena image

Average PSNR in dB
Rate
(bits/pixel) JPEG 2000 JPEG baseline

0.0625 22.82 –
0.125 24.84 –
0.25 27.61 25.65
0.5 31.35 28.65
1.0 36.22 32.56
2.0 42.42 38.24

10 Independent JPEG Group, JPEG Library (Version 6b), available from http://www.ijg.org/ or ftp://ftp.uu.net/
graphics/jpeg/ (tar.gz format archive).

JPEG 2000 Core Coding System (Part 1) 57

Table 1.12 Comparison of lossless bit-rates for
color images with and without RCT

Bit-rate in bits/pixel

Image No RCT RCT

Lena 13.789 13.622
Baboon 18.759 18.103
Bike 13.937 11.962
Woman 13.892 11.502

compares the performance of the JPEG 2000 algorithm for lossless coding, with and
without applying the RCT transform. The results are based on using the reversible (5, 3)
filter bank with the reference set of compression parameters. Instead of using our refer-
ence 8-bit test images, we used the 24-bit color (i.e. 8 bits per component) version of
Lena and ‘Baboon’ images (of size 512 × 512), in addition to 24-bit versions of the Bike
and Woman images. From the table, it can be seen that applying the RCT transform prior
to lossless compression results in savings of 0.16–2.39 bpp, which is quite significant in
the context of lossless coding.

1.5.2.2 Lossless Encoder Options

Tables 1.13 to 1.16 summarize the lossless compression performance of Part 1 of the
JPEG 2000 standard as a function of tile size, number of decomposition levels, code-block
size, and lazy–parallel modes. The bit-rates have been averaged over the three test images
(Café, Bike, and Woman) and the reversible (5, 3) filter bank has been used. A rather

Table 1.13 Comparison of average lossless bit-rates (bits/pixel) for
different tile sizes

No tiling 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32

4.797 4.801 4.811 4.850 5.015 5.551

Table 1.14 Comparison of average lossless bit-rates (bits/pixel) for
different numbers of decomposition levels

5 levels 4 levels 3 levels 2 levels 1 level 0 levels

4.797 4.798 4.802 4.818 4.887 5.350

Table 1.15 Comparison of average lossless
bit-rates (bits/pixel) for different code-block sizes

64 × 64 32 × 32 16 × 16 8 × 8

4.797 4.846 5.005 5.442

58 The JPEG 2000 Suite

Table 1.16 Comparison of average lossless bit-rates
(bits/pixel) for ‘lazy,’ ‘parallel,’ and ‘lazy–parallel’ modes

Reference Lazy Parallel Lazy–parallel

4.797 4.799 4.863 4.844

surprising finding is that the average lossless performance difference between the one-level
and five-level decompositions is very small (<0.1 bpp). This suggests that the three-pass
bit-plane entropy-coding scheme and the associated contexts efficiently exploit the redun-
dancy of correlated samples. There is a small (although significant) performance penalty
when using a code-block size of 16 × 16 or smaller, or a tile size of 64 × 64 or smaller.
Finally, there is only a slight decrease in coding efficiency when using the lazy, parallel,
or lazy–parallel modes.

Table 1.17 compares the effect of multiple layers on the lossless coding efficiency. As
mentioned in Section 1.4.2.2, in order to facilitate bit-stream truncation, it is desirable to
construct as many layers as possible. However, the number of packets increases linearly
with the number of layers, which also increases the overhead associated with the packet
headers. As can be seen from the table, the performance penalty for using 50 layers is
small for lossless compression. However, this penalty is expected to increase at lower
bit-rates (Marziliano et al., 2004), whereas increasing the number of layers from 7 to
50 does not linearly increase the lossless bit-rate because the header information for the
increased number of packets is encoded more efficiently. In particular, the percentage of
code-blocks that do not contribute to a given packet increases with the number of layers,
and the packet header syntax allows this information to be encoded very efficiently using
a single bit.

1.5.2.3 Lossless JPEG 2000 versus JPEG-LS

Table 1.18 compares the lossless performance of JPEG 2000 with JPEG-LS (ISO/IEC,
1999). Although the JPEG-LS has only a small performance advantage (3.4%) over JPEG
2000 for the images considered in this study, it has been shown that for certain classes

Table 1.17 Comparison of average lossless
bit-rates (bits/pixel) for different numbers of layers

1 layer 7 layers 50 layers

4.797 4.809 4.829

Table 1.18 Comparison of average lossless
bit-rates (bits/pixel) for JPEG 2000 and JPEG-LS

JPEG 2000 JPEG-LS

4.797 4.633

JPEG 2000 Core Coding System (Part 1) 59

of imagery (e.g. the ‘cmpnd 1’ compound document from the JPEG 2000 test set), the
JPEG-LS bit-rate is only 60% of that of JPEG 2000 (Marziliano et al., 2004).

1.5.3 Bit-Plane Entropy Coding Results

In this section, we examine the redundancy contained in the various bit-planes of the
quantized wavelet coefficients. These results were obtained by quantizing the wavelet
coefficients of the Lena image with the default quantization step size for VM8.6 (‘step
1/128.0’). Because Lena is an 8-bit image, the actual step size used for each band was 2.0
divided by the L2-norm of that band. This had the effect that equal quantization errors in
each subband had roughly the same contribution to the reconstructed image MSE. Hence,
the bit-planes in different subbands were aligned by their LSBs. Eleven of the resulting
bit-planes were encoded, starting with the most significant bit-plane.

One way to characterize the redundancy is to count the number of bytes that are
generated by each sub-bit-plane coding pass. The number of bytes generated from each
sub-bit-plane coding pass is not readily available unless each coding pass is terminated.
However, during postcompression R-D optimization, VM8.6 computes the number of
additional bytes needed to uniquely decode each coding pass using a ‘near optimal length
calculation’ algorithm (ISO/IEC, 2000). It is not guaranteed that the near optimal length
calculation algorithm will determine the minimum number of bytes needed for unique
decoding. This means that the estimated bytes for a coding pass contain some data from
the next coding pass, which can lead to some unexpected results. With this caveat in
mind, Table 1.19 contains the number of bytes generated from each sub-bit-plane coding
pass. The estimated bytes for each coding pass were summed across all the code-blocks
in the image to generate these entries.

During the encoding of the first bit-plane, there is only a cleanup pass and 36 coef-
ficients turn significant. All of these significant coefficients belong to the 5LL subband.
In the refinement pass of the next bit-plane, only these 36 coefficients are refined. Sur-
prisingly, the first refinement bit for all of these 36 coefficients are zero. Due to the
fast model adaptation of the MQ-coder, very few refinement bits are generated for the

Table 1.19 Encoded bytes resulting for sub-bit-plane passes of the Lena image

Bit-plane Significance Refinement Cleanup Total for Total for
Number bytes bytes bytes current BP all BPs

1 0 0 21 21 21
2 18 0 24 42 63
3 38 13 57 108 171
4 78 37 156 271 442
5 224 73 383 680 1122
6 551 180 748 1479 2601
7 1243 418 1349 3010 5611
8 2315 932 2570 5817 11428
9 4593 1925 5465 11983 23411
10 10720 3917 12779 27416 50827
11 25421 8808 5438 39667 90494

60 The JPEG 2000 Suite

second bit-plane. This, in conjunction with the possibility of overestimating the number
of bytes in the cleanup pass of the first bit-plane, leads to the rather strange result that
the refinement pass for the second bit-plane requires zero bytes. It is also interesting that
the number of bytes needed to encode a given bit-plane is usually greater than the total
number of bytes used to encode all of the bit-planes prior to it (except for bit-plane 11).

Figure 1.29 shows images reconstructed from the first nine bit-planes and Table 1.20
provides the corresponding PSNRs. Table 1.20 also shows the percentage of the coeffi-
cients that are refined at each bit-plane, the percentage of the coefficients that are found
to be significant at each bit-plane, and the percentage of the coefficients that remain
insignificant after completion of the encoding of a bit-plane. It is interesting to note that
approximately 72% of the coefficients still remain insignificant after encoding the tenth
bit-plane.

Figure 1.29 Reconstructed Lena image after decoding bit-planes 1–9 (from left to right and top
to bottom)

JPEG 2000 Core Coding System (Part 1) 61

Table 1.20 Coding statistics resulting from encoding the first eleven wavelet coefficient
bit-planes of the Lena image

Compression Rate PSNR Percent Percent Percent
BP ratio (bits/pixel) (dB) refined significant insignificant

1 12483 0.000641 16.16 0.00 0.01 99.99
2 4161 0.00192 18.85 0.01 0.04 99.95
3 1533 0.00522 21.45 0.05 0.06 99.89
4 593 0.0135 23.74 0.11 0.12 99.77
5 233 0.0343 26.47 0.23 0.32 99.43
6 101 0.0792 29.39 0.57 0.75 98.68
7 47 0.170 32.54 1.32 1.59 97.09
8 23 0.348 35.70 2.91 3.10 93.99
9 11.2 0.714 38.87 6.01 6.33 87.66
10 5.16 1.55 43.12 12.34 15.78 71.88
11 2.90 2.76 49.00 28.12 25.08 46.80

Figure 1.30 provides a graphic representation of the data that is contained in Table 1.20
for bit-planes 4, 6, 8, and 11. For each bit-plane, the green pixels denote the location
of the wavelet coefficients that become significant during the significance propagation
pass for that bit-plane, the red pixels denote the location of those coefficients that turn
significant during the cleanup pass, the black pixels denote the location of the coefficients
that get refined, and the white pixels denote coefficients that still remain insignificant after
the encoding of that bit-plane.

1.6 Additional Features of JPEG 2000 Part 1

1.6.1 Region-of-Interest (ROI) Coding

In some applications, it might be desirable to encode certain portions of the image (called
the region of interest , or ROI) at a higher level of quality relative to the rest of the
image (called the background). Alternatively, one might want to prioritize the compressed
data corresponding to the ROI relative to the background so that it appears earlier in
the code-stream. This feature is desirable in progressive transmission in case of early
termination of the code-stream.

ROI coding can be accomplished by encoding the quantized wavelet coefficients cor-
responding to the ROI with a higher precision relative to the background, e.g. by scaling
up the ROI coefficients or scaling down the background coefficients. A scaling-based
ROI encoding method would generally proceed as follows (Atsumi and Farvardin, 1998).
First, the ROI(s) are identified in the image domain. Next, a binary mask in the wavelet
domain, known as the ROI mask , is generated. The ROI mask has a value of one at
those coefficients that contribute to the reconstruction of the ROI and has a value of
zero elsewhere. The shape of the ROI mask is determined by the image domain ROI as
well as the wavelet filter bank, and it can be computed in an efficient manner for most
regular ROI shapes (Marziliano et al., 2004). Prior to entropy coding, the bit-planes of
the coefficients belonging to the ROI mask are shifted up (or the background bit-planes

62 The JPEG 2000 Suite

Figure 1.30 From left to right and top to bottom are shown bit-planes 4, 6, 8, and 11 of the JPEG
2000 encoded Lena image as described in Table 1.20. Green pixels denote the location of the wavelet
coefficients that become significant during the significance propagation pass in that bit-plane, red
pixels denote the coefficients that turn significant during the cleanup pass in that bit-plane, black pix-
els denote coefficients that are refined, and white pixels denote coefficients that remain insignificant
after completion of the three coding passes (see Plate 2)

are shifted down11 by a desired amount that can vary from one ROI to another within
the same image. The ROI shape information (in the image domain) and the scaling fac-
tor used for each ROI is also encoded and included in the code-stream. In general, the
overhead associated with the encoding of an arbitrary-shaped ROI might be large unless
the ROI has a regular shape, e.g. a rectangle or a circle, which can be described with a

11 The main idea is to store the magnitude bits of the quantized coefficients in the most significant part of the
implementation register so that any potential precision overflow would only impact the LSB of the background
coefficients.

JPEG 2000 Core Coding System (Part 1) 63

small set of parameters. At the decoder, the ROI shape and scaling factors are decoded
and the quantized wavelet coefficients within each ROI (or background) coefficient are
scaled to their original values.

The procedure described above requires the generation of an ROI mask at both the
encoder and decoder, as well as the encoding and decoding of the ROI shape infor-
mation. This increased complexity is balanced by the flexibility to encode ROIs with
multiple qualities and to control the quality differential between the ROI and the back-
ground. To minimize decoder complexity while still providing ROI capability, JPEG
2000 Part 1 has adopted a specific implementation of the scaling-based ROI approach
known as the Max-shift method (Christopoulos, Askelof, and Larsson, 2000; Nister and
Christopoulos, 1999).

In the Max-shift method, the ROI mask is generated in the wavelet domain, and all
wavelet coefficients that belong to the background are examined and the coefficient with
the largest magnitude is identified. Next, a value s is determined such that 2s is larger
than the largest magnitude background coefficient. To ensure that the smallest nonzero
ROI coefficient is still larger than the largest background coefficient, s LSBs are added
to each wavelet coefficient and all bit-planes of the background coefficients are shifted
down by s bits, as shown in Figure 1.31. The presence of ROI is signaled to the decoder
by a marker segment and the value of s is included in the code-stream. At the decoder,
those wavelet coefficients whose values are more than 2s belong to the foreground and
are scaled down to their original value. In the Max-shift method, the decoder is not
required to generate an ROI mask or to decode any ROI shape information. Furthermore,
the encoder can encode any arbitrary shape ROI within each subband, and it does not
need to encode the ROI shape information (although it may still need to generate an ROI
mask). The main disadvantage of the Max-shift method is that ROIs with multiple quality
differentials cannot be encoded.

In the Max-shift method, the ROI coefficients are prioritized in the code-stream so that
they are received (decoded) before the background. However, if the entire code-stream
is decoded, the background pixels will eventually be reconstructed to the same level of
quality as that of the ROI. In certain applications, it may be desirable to encode the ROI to
a higher level of quality than the background, even after the entire code-stream has been

C
oe

ff
ic

ie
nt

 V
al

ue

ROI Coefficients

Figure 1.31 Max-shift method of ROI coding in JPEG 2000 Part 1

64 The JPEG 2000 Suite

decoded. The complete separation of the ROI and background bit-planes in the Max-shift
method can be used to achieve this purpose. For example, all the wavelet coefficients
are quantized to the precision desired for the ROI. The ROI coefficients are encoded
first, followed by the encoding of the background coefficients in one or more layers. By
discarding a number of layers corresponding to the background coefficients, any desired
level of quality can be achieved for the background.

Given that the encoding of the ROI and the background coefficients in the Max-shift
method are completely disjoint processes, it might seem that the ROI needs to be com-
pletely decoded before any background information is reconstructed. However, this lim-
itation can be circumvented to some extent. For example, if the data are organized in
the resolution progressive mode, the ROI data are decoded first followed by the back-
ground data for each resolution. As a result, at the start of decoding for each resolution,
the reconstructed image will contain all the background data corresponding to the lower
resolutions. Alternatively, because of the flexibility in defining the ROI shape for each
subband, the ROI mask at each resolution or subband can be modified to include some
background information. For example, the entire LL subband can be included in the ROI
mask to provide low-resolution information regarding the background in the reconstructed
image.

Experiments show that for the lossless coding of images with ROIs, the Max-shift
method increases the bit rate by 1–8% (depending on image size and ROI size and shape)
compared to the lossless coding of the images without ROI (Christopoulos, Askelof, and
Larsson, 2000). This is a relatively small cost for achieving the ROI functionality.

1.6.2 Error Resilience

Many emerging applications of the JPEG 2000 standard require the delivery of the
compressed data over communications channels with different error characteristics. For
example, wireless communication channels are susceptible to random and burst channel
errors, while Internet communication is prone to data loss due to traffic congestion. To
improve the transmission performance of JPEG 2000 in error-prone environments, Part 1
of the standard provides several options for error resilience. The error resilience tools are
based on different approaches such as compressed data partitioning and resynchroniza-
tion, error detection, and quality of service (QoS) transmission based on priority. The
error resilience bit-stream syntax and tools are provided both at the entropy-coding level
and the packet level (Liang and Talluri, 1999; Moccagata et al., 2000).

As discussed before, one of the main differences between the JPEG 2000 coder and
previous embedded wavelet coders is in the independent encoding of the code-blocks.
Among the many advantages of this approach is improved error resilience, because any
errors in the bit-stream, corresponding to a code-block, will be contained within that
code-block. In addition, certain entropy-coding options described in Section 1.2.4.3 can
be used to improve error resilience. For example, the arithmetic coder can be terminated
at the end of each coding pass and the context probability models can be reset. The
optional lazy mode allows the bypassing of the arithmetic coder for the first two coding
passes of each bit-plane after the fourth most significant bit-plane and can help protect
against catastrophic error propagation that is characteristic of all variable-length coding
schemes. Finally, JPEG 2000 provides for the insertion of error resilience segmentation

JPEG 2000 Core Coding System (Part 1) 65

symbols at the end of the cleanup pass of each bit-plane that can serve in error detection.
The segmentation symbol is a binary ‘ 1010’ symbol whose presence is signaled in the
marker segments. It is encoded with the uniform arithmetic coding context, and its correct
decoding at the end of each bit-plane confirms the correctness of the decompressed data
corresponding to that bit-plane. If the segmentation symbol is not decoded correctly, the
data for that bit-plane and all the subsequent bit-planes corresponding to that code-block
should be discarded. This is because the data encoded in the subsequent coding passes of
that code-block depend on the previously encoded data.

Error resilience at the packet level can be achieved by using the SOP marker, which
provides for spatial partitioning and resynchronization. This marker is placed in front
of each packet in a tile and numbers the packets sequentially starting at zero. Also, the
packet headers can be moved to either the main header (for all tiles, using PPM markers)
or the tile header (using PPT markers), to create what is known as short packets . In a
QoS transmission environment, these headers can be protected more heavily than the rest
of the data. If there are errors present in the packet compressed data, the packet headers
can still be associated with the correct packet by using the sequence number included in
the resynchronization marker. The combination of these error resilience tools can often
provide adequate protection in some of the most demanding error-prone environments.

1.6.3 File Format

Most digital imaging standards provide a file format structure to encapsulate the
encoded-image data. While the code-stream specifies the compressed image, the file
format serves to provide useful information regarding the characteristics of the image and
its proper use and display. Sometimes the file format includes redundant information that
is also included in the code-stream, but such information is useful in that it allows trivial
manipulation of the file without any knowledge of the code-stream syntax. A minimal file
format, such as the one used in the JPEG baseline system, includes general information
regarding the number of image components, their corresponding resolutions and bit
depths, etc. However, two important components of a more comprehensive file format
are color space and metadata . Without this information, an application might not know
how to use or display an image properly. The color space defines how the decoded
component values relate to real-world spectral information (e.g. sRGB or YCbCr),
while the metadata provides additional information regarding the image. For example,
metadata can be used to describe how the image was created (e.g. the camera type or
photographer’s name) as well as to describe how the image should be used (e.g. IPRs
related to the image, default display resolution, etc.). It also provides the opportunity to
extract information regarding an image without the need to decode it, which enables a
fast text-based search in databases. The SPIFF file format defined in Part 3 extensions
of the existing JPEG standard (ISO/IEC, 1995) was targeted at 8-bit-per-component
sRGB and YCbCr images, and there was limited capability for metadata. The file format
defined by the JPEG 2000 standard is much more flexible with respect to both the color
space specification and the metadata embedding.

Part 1 of the JPEG 2000 standard defines a file format referred to as JP2 . Although
this file format is an optional part of the standard, it is expected to be used by many
applications. It provides a flexible, but restricted, set of data structures to describe the

66 The JPEG 2000 Suite

encoded-image data. In order to balance flexibility with interoperability, the JP2 format
defines two methods of color space specification. One method (known as the enumer-
ated method) limits flexibility, but provides a high degree of interoperability by directly
specifying only three color spaces, sRGB, gray scale, and sYCC. Another method known
as the restricted ICC (International Color Consortium) (ICC, 1998) method, allows for
the specification of a color space using a subset of standard ICC profiles, referred to
in the ICC specification as ‘three-channel matrix-based and monochrome input profiles.’
These profiles, which specify a transformation from the reconstructed code values to the
profile connection space (PCS), contain at most three 1-D look-up tables followed by a
3 × 3 matrix. These profile types were chosen because of their simplicity. The restricted
ICC method can simply be thought of as a data structure that specifies a set of color space
transformation equations. Finally, the JP2 file format also allows for displaying palletized
images, i.e. single component images where the value of the single component represents
an index into a palette of colors.

The JP2 file format also provides two mechanisms for defining and embedding metadata
in a compressed file. The first method uses a universal unique identifier (UUID) while
the second method uses XML (W3C, 2006). For both methods, the individual blocks
of metadata can be embedded almost anywhere in the file. Although very few metadata
fields have been defined in the JP2 file format, its basic architecture provides a strong
foundation for extension.

Part 2 of the standard defines extensions to the JP2 file format, encapsulated in an
extended file format called JPX . These extensions increase the color space flexibility by
providing more enumerated color spaces (and also allow vendors to register additional
values for color spaces) as well as providing support for all ICC profiles. They also
add the capability for specifying a combination of multiple images using composition or
animation, and add a large number of metadata fields to specify image history, content,
characterization, and IPR.

Acknowledgments

The authors would like to thank Brian Banister for generating the bit-plane results in
Section 1.5.3 and Roddy Shuler for reviewing this chapter for technical accuracy.

References
Acharya, T. and Tsai, P.-S. (2005) JPEG 2000 Standard for Image Compression – Concepts, Algo-

rithms and VLSI Architectures , John Wiley & Sons, Inc., Hoboken, NJ.
Adams, M. D. and Kossentini, F. (2000) Reversible integer-to-integer wavelet transforms for image

compression: performance evaluation and analysis, IEEE Transactions on Image Processing , 9(6),
June, 1010–1024.

Adams, M. D., Man, H., Kossentini, F. and Ebrahimi, T. (2000) JPEG 2000: The Next Generation
Still Image Compression Standard, ISO/IEC JTC1/SC29/WG1N1734, June 2000.

Albanesi, M. and Bertoluzza, S. (1995) Human vision model and wavelets for high-quality image
compression, in Proceedings of the 5th International Conference on Image Processing and Its Appli-
cations , vol. 410, Edinburgh, UK, July 1995, pp. 311–315.

Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I. (1992) Image coding using wavelet trans-
form, IEEE Transactions on Image Processing , 1(2), April, 205–220.

JPEG 2000 Core Coding System (Part 1) 67

Atsumi, E. and Farvardin, N. (1998) Lossy/lossless region-of-interest image coding based on set
partitioning in hierarchical trees, in Proceedings of the IEEE International Conference on Image
Processing , Chicago, IL, October 1998, pp. 87–91.

Calderbank, R. C., Daubechies, I., Sweldens, W. and Yeo, B.-L. (1998) Wavelet transforms that
map integers to integers, Applied and Computational Harmonic Analysis , 5(3), July, 332–
369.

Christopoulos, C., Askelof, J. and Larsson, M. (2000) Efficient methods for encoding regions of
interest in the upcoming JPEG 2000 Still Image Coding Standard, IEEE Signal Processing Letters ,
7(9), September, 247–249.

Christopoulos, C., Skodras, A. and Ebrahimi, T. (2000) The JPEG 2000 still image coding system:
an overview, IEEE Transactions on Consumer Electronics , 46(4), November, 1103–1127.

Chrysafis, C. and Ortega, A. (2000) Line-based, reduced memory, wavelet image compression, IEEE
Transactions on Image Processing , 9(3), March, 378–389.

Daubechies, I. and Sweldens, W. (1998) Factoring wavelet transforms into lifting steps, Journal of
Fourier Analysis Applications , 4(3), 247–269.

Ebrahimi, T., Santa-Cruz, D., Askelöf, J., Larsson, M. and Christopoulos, C. (2000) JPEG 2000 still
image coding versus other standards, in Proceedings of SPIE , vol. 4115, San Diego, CA, July/August
2000, pp. 446–454.

Gormish, M. J., Lee, D. and Marcellin, M. W. (2000) JPEG 2000: overview, architecture, and appli-
cations, in Proceedings of the IEEE International Conference on Image Processing , Vancouver,
Canada, September 2000.

ICC (International Color Consortium) (1998) ICC Profile Format Specification, ICC.1: 1998-09.
ISO/IEC (1993) Information Technology – Digital Compression and Coding of Continuous-Tone Still

Images – Part 1: Requirements and Guidelines, ISO/IEC International Standard 10918-1, ITU-T
Recommendation T.81.

ISO/IEC (1995) Information Technology – Digital Compression and Coding of Continuous-Tone Still
Images – Part 3: Extensions, ISO/IEC International Standard 10918-3, ITU-T Recommendation
T.84.

ISO/IEC (1997a) Call for Contributions for JPEG 2000 (JTC 1.29.14, 15444): Image Coding System,
ISO/IEC JTC1/SC29/WG1N505, March 1997.

ISO/IEC (1997b) New Work Item: JPEG 2000 Image Coding System, ISO/IEC JTC1/SC29/
WG1N390R, March 1997.

ISO/IEC (1999) Information Technology – Lossless and Near Lossless Compression of
Continuous-Tone Still Images, ISO/IEC International Standard 14495-1, ITU Recommendation
T.87.

ISO/IEC (2000) JPEG 2000 Verification Model 8.6 (Software), ISO/IEC JTC1/SC29/WG1N1894,
December 2000.

Jones, P. W. (2007) Efficient JPEG 2000 VBR compression with true constant quality, SMPTE Journal
on Motion Imaging , 7/8, July/August.

Jones, P., Daly, S., Gaborski, R. and Rabbani, M. (1995) Comparative study of wavelet and DCT
decompositions with equivalent quantization and encoding strategies for medical images, in Pro-
ceedings of SPIE , vol. 2431, San Diego, CA, February 1995, pp. 571–582.

Joshi, R. L., Rabbani, M. and Lepley, M. (2000) Comparison of multiple compression cycle perfor-
mance for JPEG and JPEG 2000, in Proceedings of SPIE , vol. 4115, San Diego, CA, July/August
2000, pp. 492–501.

LeGall, D. and Tabatabai, A. (1988) Subband coding of digital images using symmetric kernel filters
and arithmetic coding techniques, in Proceedings of International Conference on Acoustic Speech
and Signal Processing , New York, April 1988, pp. 761–764.

Li, J. (1999) Visual progressive coding, in Proceedings of SPIE , vol. 3653, San Jose, CA, January
1999.

Li, J. and Lei, S. (1999) An embedded still image coder with rate-distortion optimization, IEEE
Transactions on Image Processing , 8(7), July, 913–924.

Liang, J. and Talluri, R. (1999) Tools for robust image and video coding in JPEG 2000 and MPEG-4
standards, in Proceedings of SPIE , vol. 3653, San Jose, CA, January 1999, pp. 40–51.

68 The JPEG 2000 Suite

Liu, Z., Karam, L. J. and Watson, A. B. (2006) JPEG 2000 encoding with perceptual distortion control,
IEEE Transactions on Image Processing , 15(7), July, 1763–1778.

Marcellin, M., Flohr, T., Bilgin, A., Taubman, D., Ordentlich, E., Weinberger, M., Seroussi, G.,
Chrysafis, C., Fischer, T., Banister, B., Rabbani, M. and Joshi, R. (1999) Reduced Complexity
Entropy Coding, ISO/IEC JTC1/SC29/WG1 Document N1312, June 1999.

Marcellin, M. W., Gormish, M. J., Bilgin, A. and Boliek, M. P. (2000) An overview of JPEG-2000,
in Proceedings of the Data Compression Conference, Snowbird, UT, March 2000, pp. 523–541.

Marcellin, M. W., Lepley, M. A., Bilgin, A., Flohr, T. J., Chinen, T. T. and Kasner, J. H. (2002) An
overview of quantization in JPEG 2000, Signal Processing: Image Communications , 17(1), January,
73–84.

Marziliano, P., Dufaux, F., Winkler, S. and Ebrahimi, T. (2004) Perceptual blur and ringing metrics:
application to JPEG 2000, Signal Processing: Image Communication , 19(2), February, 163–172.

Moccagata., I., Sodagar, S., Liang, J. and Chen, H. (2000) Error resilient coding in JPEG-2000 and
MPEG-4, IEEE Journal of Selected Areas in Communications , 18(6), June, 899–914.

Nister, D. and Christopoulos, C. (1999) Lossless region of interest with embedded wavelet image
coding, Signal Processing , 78(1), October, 1–17.

Ordentlich, E., Weinberger, M. J. and Seroussi, G. (1998) A low complexity modeling approach for
embedded coding of wavelet coefficients, in Proceedings of the Data Compression Conference,
Snowbird, UT, March 1998, pp. 408–417.

O’Rourke, T. and Stevenson, R. (1995) Human visual system based wavelet decomposition for image
compression, Journal of Visual Communications and Image Representation, 6(2), June, 109–121.

Pennebaker, W. B. and Mitchell, J. L. (1993) JPEG Still Image Data Compression Standard , Van
Nostrand Reinhold, New York.

Pennebaker, W. B., Mitchell, J. L., Langdon Jr, G. G. and Arps, R. B. (1988) An overview of the basic
principles of the Q-coder adaptive binary arithmetic coder, IBM Journal of Research Development ,
32(6), November, 717–726.

Price, J. R. and Rabbani, M. (1999) Biased reconstruction for JPEG decoding, Signal Processing
Letters , 6(12), December, 297–299.

Rabbani, M. and Joshi, R. L. (2000) An overview of the JPEG 2000 still image compression standard,
Signal Processing: Image Communications , 17(1), January, 3–48.

Said, A. and Pearlman, W. A. (1996) A new fast and efficient image codec based on set partitioning in
hierarchical trees, IEEE Transactions on Circuits System Video Technology , 6(3), June, 243–250.

Santa-Cruz, D. and Ebrahimi, T. (2000) An analytical study of JPEG 2000 functionalities, in Pro-
ceedings of IEEE International Conference on Image Processing , Vancouver, Canada, September
2000.

Shapiro, J. M. (1993) Embedded image coding using zero trees of wavelet coefficients, IEEE Trans-
actions on Signal Processing , 41(12), December, 3445–3462.

Slattery, M. J. and Mitchell, J. L. (1998) The Qx-coder, IBM Journal of Research Development , 42(6),
November, 767–784.

SPIC (2002) Special Issue on JPEG 2000 still image compression standard, Signal Processing: Image
Communication , 17(1), January.

Sullivan, G. (1996) Efficient scalar quantization of exponential and Laplacian variables, IEEE Trans-
actions on Information Theory , 42(5), September, 1365–1374.

Sweldens, W. (1995) The lifting scheme: a new philosophy in biorthogonal wavelet constructions, in
Proceedings of SPIE , vol. 2569, September 1995, pp. 68–79.

Sweldens, W. (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets,
Applied and Computational Harmonic Analysis , 3(2), April, 186–200.

Sweldens, W. (1998) The lifting scheme: a construction of second generation wavelets, Siam Journal
of Mathematical Analysis , 29(2), March, 511–546.

Taubman, D. (2000) High performance scalable image compression with EBCOT, IEEE Transactions
on Image Processing , 9(7), July, 1158–1170.

Taubman, D. and Marcellin, M. W. (2001) JPEG 2000: Image Compression Fundamentals, Practice
and Standards , Kluwer Academic Publishers, Boston, MA.

Taubman, D. S. and Marcellin, M. W. (2002) JPEG 2000: standard for interactive imaging, Proceedings
of the IEEE , 90(8), August, 1336–1357.

JPEG 2000 Core Coding System (Part 1) 69

Taubman, D., Ordentlich, E., Weinberger, M. J. and Seroussi, G. (2002) Embedded block coding in
JPEG 2000, Signal Processing: Image Communications , 17(1), January, 49–72.

Unser, M. and Blu, T. (2003) Mathematical properties of the JPEG 2000 wavelet filters, IEEE Trans-
actions on Image Processing , 12(9), September, 1080–1090.

Vetterli, M. and Kovacevic, J. (1995) Wavelet and Subband Coding , Prentice Hall, Englewood Cliffs,
NJ.

Villasenor, J. D., Belzer, B. and Liao, J. (1995) Wavelet filter evaluation for image compression, IEEE
Transactions on Image Processing , 4(8), August, 1053–1060.

W3C (2006) W3C, Extensible Markup Language (XML) 1.0, 4th edition, September 2006. Available
at: http://www.w3.org/TR/Rec-xml.

Watson, A. B., Yang, G. Y., Solomon, J. A. and Villasenor, J. (1997) Visibility of wavelet quantization
noise, IEEE Transactions on Image Processing , 6(8), August, 1164–1175.

Woods, J. W. and Naveen, T. (1992) A filter based bit allocation scheme for subband compression of
HDTV, IEEE Transactions on Image Processing , 1(3), July, 436–440.

Zeng, W., Daly, S. and Lei, S. (2002) An overview of visual optimization tools in JPEG 2000, Signal
Processing: Image Communications , 17(1), January, 85–105.

