
Chapter 1

Differential and Difference
Equations

10 Differential Equation Problems

100 Introduction to differential equations

As essential tools in scientific modelling, differential equations are familiar to
every educated person. In this introductory discussion we do not attempt to
restate what is already known, but rather to express commonly understood
ideas in the style that will be used for the rest of this book.

The aim will always be to understand, as much as possible, what we expect
to happen to a quantity which satisfies a differential equation. At the most
obvious level, this means predicting the value this quantity will have at some
future time. However, we are also interested in more general questions such
as the adherence to possible conservation laws or perhaps stability of the
long-term solution. Since we emphasize numerical methods, we often discuss
problems with known solutions mainly to illustrate qualitative and numerical
behaviour.

Even though we sometimes refer to ‘time’ as the independent variable, that
is, as the variable on which the value of the ‘solution’ depends, there is no
reason for insisting on this interpretation. However, we generally use x to
denote the ‘independent’ or ‘time’ variable and y to denote the ‘dependent
variable’. Hence, differential equations will typically be written in the form

y′(x) = f(x, y(x)), (100a)

where

y′ =
dy

dx
.

Sometimes, for convenience, we omit the x in y(x).
The terminology used in (100a) is misleadingly simple, because y could be

a vector-valued function. Thus, if we are working in R
N, and x is permitted

to take on any real value, then the domain and range of the function f which
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2 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

defines a differential equation and the solution to this equation are given by

f : R × R
N → R

N ,

y : R → R
N .

Since we might be interested in time values that lie only in some interval [a, b], we
sometimes considerproblems inwhichy : [a, b] → RN , andf : [a, b]×RN → RN .
When dealing with specific problems, it is often convenient to focus, not on the
vector-valued functions f and y, but on individual components. Thus, instead
of writing a differential equation system in the form of (100a), we can write
coupled equations for the individual components:

y′
1(x) = f1(x, y1, y2, . . . , yN ),

y′
2(x) = f2(x, y1, y2, . . . , yN ),
...

...
y′

N (x) = fN (x, y1, y2, . . . , yN ).

(100b)

A differential equation for which f is a function not of x, but of y only,
is said to be ‘autonomous’. Some equations arising in physical modelling are
more naturally expressed in one form or the other, but we emphasize that
it is always possible to write a non-autonomous equation in an equivalent
autonomous form. All we need to do to change the formulation is to introduce
an additional component yN+1 into the y vector, and ensure that this can
always maintain the same value as x, by associating it with the differential
equation y′

N+1 = 1. Thus, the modified system is

y′
1(x) = f1(yN+1, y1, y2, . . . , yN ),

y′
2(x) = f2(yN+1, y1, y2, . . . , yN ),
...

...
y′

N (x) = fN (yN+1, y1, y2, . . . , yN ),
y′

N+1(x) = 1.

(100c)

A system of differential equations alone does not generally define a unique
solution, and it is necessary to add to the formulation of the problem a number
of additional conditions. These are either ‘boundary conditions’, if further
information is given at two or more values of x, or ‘initial conditions’, if all
components of y are specified at a single value of x.

If the value of y(x0) = y0 is given, then the pair of equations

y′(x) = f(x, y(x)), y(x0) = y0, (100d)

is known as an ‘initial value problem’. Our main interest in this book is with
exactly this problem, where the aim is to obtain approximate values of y(x)



DIFFERENTIAL AND DIFFERENCE EQUATIONS 3

for specific values of x, usually with x > x0, corresponding to the prediction
of the future states of a differential equation system.

Note that for an N -dimensional system, the individual components of an
initial value vector need to be given specific values. Thus, we might write

y0 = [ η1 η2 · · · ηN ] .

When the problem is formally converted to autonomous form (100c), the value
of ηN+1 must be identical to x0, otherwise the requirement that yN+1(x)
should always equal x would not be satisfied.

For many naturally occurring phenomena, the most appropriate form in
which to express a differential equation is as a high order system. For example,
an equation might be of the form

y(n) = φ
(
x, y, y′, y′′, . . . , y(n−1)

)
, (100e)

with initial values given for y(x0), y′(x0), y′′(x0), . . . , y(n−1)(x0). Especially
important in the modelling of the motion of physical systems subject to forces
are equation systems of the form

y′′
1(x) = f1(y1, y2, . . . , yN ),

y′′
2(x) = f2(y1, y2, . . . , yN ),
...

...
y′′

N (x) = fN (y1, y2, . . . , yN ),

(100f)

where the equations, though second order, do have the advantages of being
autonomous and without y′

1, y
′
2, . . . , y

′
N occurring amongst the arguments of

f1, f2, . . . , fN .
To write (100f) in what will become our standard first order system form,

we can introduce additional components yN+1, yN+2, . . . , y2N . The differential
equation system (100f) can now be written as the first order system

y′
1(x) = yN+1,

y′
2(x) = yN+2,

...
...

y′
N (x) = y2N ,

y′
N+1(x) = f1(y1, y2, . . . , yN ),

y′
N+2(x) = f2(y1, y2, . . . , yN ),

...
...

y′
2N (x) = fN (y1, y2, . . . , yN ).

(100g)
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101 The Kepler problem

The problems discussed in this section are selected from the enormous
range of possible scientific applications. The first example problem describes
the motion of a single planet about a heavy sun. By this we mean that,
although the sun exerts a gravitational attraction on the planet, we regard the
corresponding attraction of the planet on the sun as negligible, and that the
sun will be treated as being stationary. This approximation to the physical
system can be interpreted in another way: even though both bodies are in
motion about their centre of mass, the motion of the planet relative to the
sun can be modelled using the simplification we have described. We also make
a further assumption, that the motion of the planet is confined to a plane.

Let y1(x) and y2(x) denote rectangular coordinates centred at the sun,
specifying at time x the position of the planet. Also let y3(x) and y4(x) denote
the components of velocity in the y1 and y2 directions, respectively. If M
denotes the mass of the sun, γ the gravitational constant and m the mass of
the planet, then the attractive force on the planet will have magnitude

γMm

y2
1 + y2

2

.

Resolving this force in the coordinate directions, we find that the components
of acceleration of the planet, due to this attraction, are −γMy1(y2

1 + y2
2)−3/2

and −γMy2(y2
1 + y2

2)−3/2, where the negative sign denotes the inward
direction of the acceleration.

We can now write the equations of motion:

dy1

dx
= y3,

dy2

dx
= y4,

dy3

dx
= − γMy1

(y2
1 + y2

2)3/2
,

dy4

dx
= − γMy2

(y2
1 + y2

2)3/2
.

By adjusting the scales of the variables, the factor γM can be removed from
the formulation, and we arrive at the equations

dy1

dx
= y3, (101a)

dy2

dx
= y4, (101b)

dy3

dx
= − y1

(y2
1 + y2

2)3/2
, (101c)

dy4

dx
= − y2

(y2
1 + y2

2)3/2
. (101d)
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The solutions of this system are known to be conic sections, that is, ellipses,
parabolas or hyperbolas, if we ignore the possibility that the trajectory is a
straight line directed either towards or away from the sun. We investigate
this further after we have shown that two ‘first integrals’, or invariants, of the
solution exist.

Theorem 101A The quantities

H =
1
2
(
y2
3 + y2

4

)
− (y2

1 + y2
2)−1/2,

A = y1y4 − y2y3

are constant.

Proof. We verify that the values of dH/dx and dA/dx are zero if y satisfies
(101a)–(101d). We have

dH

dx
= y3

dy3

dx
+ y4

dy4

dx
+ y1

dy1

dx
(y2

1 + y2
2)−3/2 + y2

dy2

dx
(y2

1 + y2
2)−3/2

= − y1y3

(y2
1 + y2

2)3/2
− y2y4

(y2
1 + y2

2)3/2
+

y1y3

(y2
1 + y2

2)3/2
+

y2y4

(y2
1 + y2

2)3/2

= 0

and
dA

dx
= y1

dy4

dx
+

dy1

dx
y4 − y2

dy3

dx
− dy2

dx
y3

= − y1y2

(y2
1 + y2

2)3/2
+ y3y4 +

y2y1

(y2
1 + y2

2)3/2
− y4y3

= 0. �
The quantities H and A are the ‘Hamiltonian’ and ‘angular momentum’,

respectively. Note that H = T + V , where T = 1
2

(
y2
3 + y2

4

)
is the kinetic

energy and V = −(y2
1 + y2

2)−1/2 is the potential energy.
A further property of this problem is its invariance under changes of scale

of the variables:

y1 = α−2y1,

y2 = α−2y2,

y3 = αy3,

y4 = αy4,

x = α−3x.

The Hamiltonian and angular momentum get scaled to

H =
1
2
(
y2
3 + y2

4

)
− (y2

1 + y2
2)

−1/2 = α−2H,

A = y1y4 − y2y3 = αA.
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A second type of transformation is based on a two-dimensional orthogonal
transformation (that is, a rotation or a reflection or a composition of these)
Q, where Q−1 = Q . The time variable x is invariant, and the position and
velocity variables get transformed to

y1

y2

y3

y4

 =

[
Q 0
0 Q

]
y1

y2

y3

y4

 .

It is easy to see that A = 0 implies that the trajectory lies entirely in a
subspace defined by cos(θ)y1 = sin(θ)y2, cos(θ)y3 = sin(θ)y4 for some fixed
angle θ. We move on from this simple case and assume that A �= 0. The sign
of H is of crucial importance: if H ≥ 0 then it is possible to obtain arbitrarily
high values of y2

1 + y2
2 without y2

3 + y2
4 vanishing. We exclude this case for the

present discussion and assume that H < 0. Scale H so that it has a value
−1

2 and at the same time A takes on a positive value. This value cannot
exceed 1 because we can easily verify an identity involving the derivative of
r =

√
y2
1 + y2

2 . This identity is(
r
dr

dx

)2

= 2Hr2 + 2r − A2 = −r2 + 2r − A2. (101e)

Since the left-hand side cannot be negative, the quadratic function in r on
the right-hand side must have real roots. This implies that A ≤ 1. Write
A =

√
1 − e2, for e ≥ 0, where we see that e is the eccentricity of an ellipse

on which the orbit lies. The minimum and maximum values of r are found to
be 1 − e and 1 + e, respectively. Rotate axes so that when r = 1 − e, which
we take as the starting point of time, y1 = 1− e and y2 = 0. At this point we
find that y3 = 0 and y4 =

√
(1 + e)/(1 − e).

Change to polar coordinates by writing y1 = r cos(θ), y2 = r sin(θ). It is
found that

y3 =
dy1

dx
=

dr

dx
cos(θ) − r

dθ

dx
sin(θ),

y4 =
dy2

dx
=

dr

dx
sin(θ) + r

dθ

dx
cos(θ),

so that, because y1y4 − y2y3 =
√

1 − e2, we find that

r2 dθ

dx
=
√

1 − e2. (101f)

From (101e) and (101f) we find a differential equation for the path traced out
by the orbit (

dr

dθ

)2

=
1

1 − e2
r2
(
e2 − (1 − r)2

)
,



DIFFERENTIAL AND DIFFERENCE EQUATIONS 7

and we can verify that this is satisfied by

1 − e2

r
= 1 + e cos(θ).

If we change back to Cartesian coordinates, we find that all points on the
trajectory lie on the ellipse

(y1 + e)2 +
y2
2

1 − e2
= 1,

with centre (−e, 0), eccentricity e, and major and minor axis lengths 1 and√
1 − e2 respectively.
As we have seen, a great deal is known about this problem. However, much

less is known about the motion of a many-body gravitational system.
One of the aims of modern numerical analysis is to understand the behaviour

of various geometrical properties. In some cases it is possible to preserve the
value of quantities that are invariant in the exact solution. In other situations,
such as problems where the Hamiltonian is theoretically conserved, it may be
preferable to conserve other properties, such as what is known as ‘symplectic
behaviour’.

We consider further gravitational problems in Subsection 120.

102 A problem arising from the method of lines

The second initial value problem we consider is based on an approximation
to a partial differential equation. Consider the parabolic system

∂u

∂t
=

∂2u

∂x2
, (x, t) ∈ [0, 1] × [0,∞), (102a)

where we have used t to represent time, x to represent distance and u(x, t) to
represent some quantity, such as temperature, which diffuses with time. For
this problem it is necessary to impose conditions on the boundaries x = 0 and
x = 1 as well as at the initial time t = 0. We may interpret the solution as
the distribution of the temperature at points in a conducting rod, given that
the temperature is specified at the ends of the rod. In this case the boundary
conditions would be of the form u(0, t) = α(t) and u(1, t) = β(t). Equation
(102a) is known as the heat or diffusion equation, and the conditions given at
x = 0 and x = 1 are known as Dirichlet boundary values. This is in contrast
to Neumann conditions, in which the values of ∂u/∂x are given at the ends
of the x interval.

To convert this problem into an ordinary differential equation system, which
mimics the behaviour of the parabolic equation, let y1(t), y2(t), . . . , yN (t),
denote the values of u( 1

N+1 , t), u( 2
N+1 , t), . . . , u( N

N+1 , t), respectively. That is,

yj(t) = u

(
j

N + 1
, t

)
, j = 0, 1, 2, . . . , N + 1,
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where we have included y0(t) = u(0, t), yN+1(t) = u(1, t) for convenience.
For j = 1, 2, . . . , N , ∂2u/∂x2, evaluated at x = j/(N +1), is approximately

equal to (N + 1)2(yj−1 − 2yj + yj+1). Hence, the vector of derivatives of
y1, y2, . . . , yN is given by

dy1(t)
dt

= (N + 1)2
(
α(t) − 2y1(t) + y2(t)

)
,

dy2(t)
dt

= (N + 1)2
(
y1(t) − 2y2(t) + y3(t)

)
,

dy3(t)
dt

= (N + 1)2
(
y2(t) − 2y3(t) + y4(t)

)
,

...
...

dyN−1(t)
dt

= (N + 1)2
(
yN−2(t) − 2yN−1(t) + yN (t)

)
,

dyN (t)
dt

= (N + 1)2
(
yN−1(t) − 2yN (t) + β(t)

)
.

This system can be written in vector–matrix form as

y′(t) = Ay(t) + v(t), (102b)

where

A = (N + 1)2



−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2


, v = (N + 1)2



α(t)
0
0
...
0
0

β(t)


.

The original problem is ‘dissipative’ in the sense that, if u and v are each
solutions to the diffusion equation, which have identical boundary values but
different initial values, then

W (t) =
1
2

∫ 1

0

(
u(x, t) − v(x, t)

)2
dx

is non-increasing as t increases. We can verify this by differentiating with
respect to t and by showing, using integration by parts, that the result found
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cannot be positive. We have

dW

dt
=
∫ 1

0

(
u(x, t) − v(x, t)

)(∂u(x, t)
∂t

− ∂v(x, t)
∂t

)
dx

=
∫ 1

0

(
u(x, t) − v(x, t)

)(∂2u(x, t)
∂x2

− ∂2v(x, t)
∂x2

)
dx

=
[(

u(x, t) − v(x, t)
)(∂u(x, t)

∂x
− ∂v(x, t)

∂x

)]1
0

−
∫ 1

0

(
∂u(x, t)

∂x
− ∂v(x, t)

∂x

)2

dx

= −
∫ 1

0

(
∂u(x, t)

∂x
− ∂v(x, t)

∂x

)2

dx

≤ 0.

Even though the approximation of (102a) by (102b) is not exact, it is an
advantage of the discretization we have used, that the qualitative property is
still present. Let y and z be two solutions to the ordinary differential equation
system. Consider the nature of

Ŵ (t) =
1
2

N∑
j=1

(yj − zj)2.

We have

dŴ

dt
=

N∑
i=1

(yj − zj)
(

dyj

dt
− dzj

dt

)

= (N + 1)2
N∑

j=1

(yj − zj) (yj−1 − 2yj + yj+1 − zj−1 + 2zj − zj+1)

= 2(N + 1)2
N−1∑
j=1

(yj − zj)(yj+1 − zj+1) − 2(N + 1)2
N∑

j=1

(yj − zj)2

= −(N + 1)2
N∑

j=0

(yj+1 − yj − zj+1 + zj)2

≤ 0.

Another aspect of the discretization that might be explored is the spectrum
of the matrix A, in comparison with the spectrum of the linear operator
u 
→ d2u

dx2 on the space of C2 functions on [0, 1] for which u(0) = u(1) = 0.
The eigenfunctions for the continuous problem are of the form sin(kπx), for
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k = 1, 2, 3, . . . , and the corresponding eigenvalues are −k2π2. For the discrete
problem, we need to find the solutions to the problem

(A − λI)


v1

v2

...
vN

 = 0, (102c)

where v1, v2, . . . , vN are not all zero. Introducing also v0 = vN+1 = 0, we
find that it is possible to write (102c) in the form

vj−1 − qvj + vj+1 = 0, j = 1, 2, . . . , N, (102d)

where q = 2 + λ/(N + 1)2. The difference equation (102d) has solution of the
form vi = C(µi − µ−i), where µ + µ−1 = q, unless q = ±2 (which is easily
seen to be impossible). Because vN+1 = 0, it follows that λ2N+2 = 2. Because
µ �= ±1, it follows that

µ = exp
(

kπi

N + 1

)
, k = 1, 2, . . . , N,

with i =
√
−1. Hence,

λ = −2(N + 1)2
(

1 − cos
(

kπ

N + 1

))
= −4(N + 1)2 sin2

(
kπ

2N + 2

)
.

For N much larger than k, we can use the approximation sin(ξ) ≈ ξ, for
small ξ, to give eigenvalue number k as λk ≈ −k2π2. On the other hand, for
k small, the eigenvalue number N + 1 − k is λN+1−k ≈ −4(N + 1)2 + k2π2.

103 The simple pendulum

Formulation as a differential-algebraic equation

Consider a small mass m attached to a light inelastic string of length l, with
the other end attached to the origin of coordinates, which can swing back and
forth in a vertical plane. Let X, measured in a rightwards direction, and Y ,
measured in a downward direction, be the coordinates. Because the string is
inelastic, the tension T in the string always matches other forces resolved in
the direction of the string so as to guarantee that the length does not change.

The way these forces act on the mass is shown in Figure 103(i). Also shown
is the angle θ defined by X = l sin(θ), Y = l cos(θ).

We denote by U and V , respectively, the velocity components in the X and
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T

mg

Y

X

l
θ

Figure 103(i) Simple pendulum

Y directions. The motion of the pendulum is governed by the equations

dX

dx
= U, (103a)

dY

dx
= V, (103b)

m
dU

dx
= −TX

l
, (103c)

m
dV

dx
= −TY

l
+ mg, (103d)

X2 + Y 2 = l2, (103e)

where, in addition to four differential equations (103a)–(103d), the constraint
(103e) expresses the constancy of the length of the string. The tension T acts
as a control variable, forcing this constraint to remain satisfied. By rescaling
variables in a suitable way, the ‘differential-algebraic’ equation system (103a)–
(103e) can be rewritten with the constants m, g and l replaced by 1 in each
case. In the rescaled formulation write y1 = X, y2 = Y , y3 = U , y4 = V and
y5 = T , and we arrive at the system

dy1

dx
= y3, (103f)

dy2

dx
= y4, (103g)

dy3

dx
= −y1y5, (103h)

dy4

dx
= −y2y5 + 1, (103i)

y2
1 + y2

2 = 1. (103j)

It will be convenient to choose initial values defined in terms of θ = Θ, with
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the velocity equal to zero. That is,

y1(0) = sin(Θ), y2(0) = cos(Θ), y3(0) = y4(0) = 0, y5(0) = cos(Θ).

The five variables are governed by four differential equations (103f)–(103i),
together with the single algebraic constraint (103j). We will say more about
this below, but first we consider the classical way of simplifying the problem.

Formulation as a single second order equation

Make the substitutions y1 = sin(θ), y2 = cos(θ). Because (103j) is
automatically satisfied, the value of y5 loses its interest and we eliminate this
by taking a linear combination of (103h) and (103i). This gives the equation
system

cos(θ)
dθ

dx
= y3, (103k)

− sin(θ)
dθ

dx
= y4, (103l)

− cos(θ)
dy3

dx
+ sin(θ)

dy4

dx
= sin(θ). (103m)

Differentiate (103k) and (103l) and substitute into (103m) and we obtain the
well-known single-equation formulation of the simple pendulum:

d2θ

dx2
+ sin(θ) = 0, (103n)

with initial values
θ(0) = Θ, θ′(0) = 0.

It can be shown that the period of the pendulum is given by

T = 4
∫ π/2

0

dφ√
1 − sin2 φ sin2 Θ

2

and some values are given in Table 103(I).
The value for 0◦ can be interpreted as the period for small amplitudes. The

fact that T increases slowly as Θ increases is the characteristic property of a
simple pendulum which makes it of practical value in measuring time.

Formulation as a Hamiltonian problem

In the formulation (103n), write the H as the ‘Hamiltonian’

H(p, q) = 1
2p2 − cos(q),
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Table 103(I) Period of simple pendulum for various amplitudes

Θ T

0◦ 6.2831853072
3◦ 6.2842620831
6◦ 6.2874944421
9◦ 6.2928884880

12◦ 6.3004544311
15◦ 6.3102066431
18◦ 6.3221637356
21◦ 6.3363486630
24◦ 6.3527888501
27◦ 6.3715163462
30◦ 6.3925680085

where q = θ and p = dθ/dx. The second order equation (103n) is now
equivalent to the first order system[

p′

q′

]
=

[
0 −1
1 0

][
∂H
∂p
∂H
∂q

]
.

Differential index and index reduction

Carry out three steps, of which the first is to differentiate (103j) and substitute
from (103f) and (103g) to give the result

y1y3 + y2y4 = 0. (103o)

The second step is to differentiate (103o) and to make various substitutions
from (103f)–(103i) to arrive at the equation

y2 + y2
3 + y2

4 − y5 = 0. (103p)

The third and final step is to differentiate (103p) and make various
substitutions to arrive at the result

dy5

dx
=

y2

dx
+ 2y3

dy3
dx

+ 2y4
dy4

dx
= y4 + 2y3(−y1y5) + 2y4(−y2y5 + 1),

which simplifies to
dy5

dx
= 3y4. (103q)
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Given that consistent initial values are used, it seems that the equations
(103f)–(103i) together with any of (103j), (103o), (103p) or (103q) give
identical solutions.

Which of the possible formulations should be used? From the point of
view of physical modelling, it seems to be essential to require that the
length constraint (103j) should hold exactly. On the other hand, when it
comes to numerical approximations to solutions, it is found that the use
of this constraint in the problem description creates serious computational
difficulties. It also seems desirable from a modelling point of view to insist
that (103o) should hold exactly, since this simply states that the direction of
motion is tangential to the arc on which it is constrained to lie.

104 A chemical kinetics problem

We next consider a model of a chemical process consisting of three species,
which we denote by A, B and C. The three reactions are

A → B, (104a)
B + C → A + C, (104b)
B + B → C. (104c)

Let y1, y2 and y3 denote the concentrations of A, B and C, respectively. We
assume these are scaled so that the total of the three concentrations is 1, and
that each of three constituent reactions will add to the concentration of any of
the species exactly at the expense of corresponding amounts of the reactants.
The reaction rate of (104a) will be denoted by k1. This means that the rate
at which y1 decreases, and at which y2 increases, because of this reaction, will
be equal to k1y1. In the second reaction (104b), C acts as a catalyst in the
production of A from B and the reaction rate will be written as k2, meaning
that the increase of y1, and the decrease of y3, in this reaction will have a rate
equal to k2y2y3. Finally, the production of C from B will have a rate constant
equal to k3, meaning that the rate at which this reaction takes place will be
k3y

2
2 . Putting all these elements of the process together, we find the system of

differential equations for the variation with time of the three concentrations
to be

dy1

dx
= −k1y1 + k2y2y3, (104d)

dy2

dx
= k1y1 − k2y2y3 − k3y

2
2 , (104e)

dy3

dx
= k3y

2
2 . (104f)

If the three reaction rates are moderately small numbers, and not greatly
different in magnitude, then this is a straightforward problem. However,
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vastly different magnitudes amongst k1, k2 and k3 can make this problem
complicated to understand as a chemical model. Also, as we shall see,
the problem then becomes difficult to solve numerically. This problem was
popularized by Robertson (1966), who used the reaction rates

k1 = 0.04, k2 = 104, k3 = 3 × 107.

Before looking at the problem further we note that, even though it is written
as a three-dimensional system, it would be a simple matter to rewrite it in
two dimensions, because y1 + y2 + y3 is an invariant and is usually set to a
value of 1, by an appropriate choice of the initial values. We always assume
this value for y1 + y2 + y3. Furthermore, if the initial value has non-negative
values for each of the three components, then this situation is maintained for
all positive times. To see why this is the case, write (104d), (104e) and (104f)
in the forms

d(exp(k1x)y1)
dx

= exp(k1x)k2y2y3,

d
(
exp

(
max(k2, k3)x

)
y2

)
dx

= exp
(
max(k2, k3)x

)
F,

dy3

dx
= k3y

2
2 ,

where

F = k1y1 +max(k2, k3)y1y2 +
(
max(k2, k3)− k2

)
y2y3 +

(
max(k2, k3)− k3

)
y2
2 ,

so that each of exp(k1x)y1, exp(max(k2, k3)x)y2 and y3 is non-decreasing.
An interesting feature of this problem is that a small perturbation that does

not disturb the invariance of y1 + y2 + y3 is damped out rapidly. To see why
this is the case, eliminate y1 so that the differential equation system in the
remaining two components becomes

dy2

dx
= k1(1 − y2 − y3) − k2y2y3 − k3y

2
2 , (104g)

dy3

dx
= k3y

2
2 . (104h)

The Jacobian matrix, the matrix of partial derivatives, is given by

J(x) =

[
−k1 − k2y3 − 2k3y2 −k1 − k2y2

2k3y2 0

]
,

and the characteristic polynomial is

λ2 + (k1 + k2y3 + 2k3y2)λ + 2k3y2(k1 + k2y2). (104i)
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Figure 104(i) Solution and most negative eigenvalue for the Robertson problem

An analysis of the discriminant of (104i) indicates that for y2, y3 ∈ (0, 1], both
zeros are real and negative. Along the actual trajectory, one of the eigenvalues
of J(x), denoted by λ, rapidly jumps to a very negative value, with the second
eigenvalue retaining a small negative value. Consider a small perturbation z to
the solution, so that the solution becomes y + z. Because the two components
of z are small we can approximate f(y + z) by f(y) + (∂f/∂y)z. Hence, the
perturbation itself satisfies the equation dz2

dx
dz3

dx

 = J(x)

[
z2

z3

]

and the negative eigenvalues of J(x) guarantee the decay of the components
of z.

The solution to this problem, together with the value of λ, is shown in
Figure 104(i).

105 The Van der Pol equation and limit cycles

The simple pendulum, which we considered in Subsection 103, is a non-linear
variant of the ‘harmonic oscillator’ problem y′′ = −y. We now consider another
non-linear generalization of this problem, by adding a term µ(1−y2)y′, where
µ is a positive constant, to obtain the ‘Van der Pol equation’

y′′(x) = µ(1 − y(x)2)y′(x) − y(x).

This problem was originally introduced by Van der Pol (1926) in the study
of electronic circuits. If µ is small and the initial values correspond to what
would be oscillations of amplitude less than 1, if µ had in fact been zero, it
might be expected that the values of y(x) would remain small for all time.
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Figure 105(i) Van der Pol problem with µ = 1
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Figure 105(ii) Van der Pol problem with µ = 3

However, the non-linear term has the effect of injecting more ‘energy’ into the
system, as we see by calculating the rate of change of E = 1

2y′(x)2 + 1
2y(x)2.

This is found to be

d

dx

(
1
2
y′(x)2 +

1
2
y(x)2

)
= µ(1 − y(x)2)y′(x)2 > 0,

as long as |y| < 1.
Similarly, if |y| starts with a high value, then E will decrease until |y| = 1.

It is possible to show that the path, traced out in the (y, y′) plane, loops round
the origin in a clockwise direction forever, and that it converges to a ‘limit
cycle’ – a periodic orbit. In Figure 105(i), this is illustrated for µ = 1. The
path traced out in the (y, y′) plane moves rapidly towards the limit cycle and
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Figure 106(i) Phase diagram for Lotka–Volterra solution with (u0, v0) = (2, 2),

together with seven alternative orbits

is soon imperceptibly close to it. In Figure 105(ii), the case µ = 3 is presented.
Of special interest in this problem, especially for large values of µ, is

the fact that numerical methods attempting to solve this problem need to
adjust their behaviour to take account of varying conditions, as the value of
1 − |y(x)|2 changes. The sharp change of direction of the path traced out
near (y, y′) = (±2, 0) for the µ = 3 case, a phenomenon which becomes
more pronounced as µ is further increased, is part of the numerical difficulty
associated with this problem.

106 The Lotka–Volterra problem and periodic orbits

In the modelling of the two-species ‘predator–prey’ problem, differential
equation systems of the following type arise:

u′ = u(2 − v), (106a)
v′ = v(u − 1), (106b)

where the factors 2 − v and u − 1 can be generalized in various ways. This
model was proposed independently by Lotka (1925) and Volterra (1926). The
two variables represent the time-dependent populations, of which v is the
population of predators which feed on prey whose population is denoted by u.
It is assumed that u would have been able to grow exponentially without limit,
if the predator had not been present, and that the factor 2− v represents the
modification to its growth rate because of harvesting by the predator. The
predator in turn, in the absence of prey, would die out exponentially, and
requires at least a prey population of u = 1 to feed upon to be able to grow.
Of the two stationary solutions, (u, v) = (0, 0) and (u, v) = (1, 2), the second
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Table 106(I) Approximations to the period T , given by (106d) for

(u0, v0) = (2, 2)

n Approximate integral
10 4.62974838287860
20 4.61430252126987
40 4.61487057379480
80 4.61487051945097

160 4.61487051945103
320 4.61487051945103

is more interesting because small perturbations from this point will lead to
periodic orbits around the stationary point. By dividing (106a) by (106b), we
obtain a differential equation for the path traced out by (u, v). The solution
is that I(u, v) is constant, where

I(u, v) = log(u) + 2 log(v) − u − v.

It is interesting to try to calculate values of the period T , for a given starting
point (u0, v0). To calculate T , change to polar coordinates centred at the
stationary point

u = 1 + r cos(θ), v = 2 + r sin(θ)

and calculate the integral
∫ 2π

0 φ(θ)dθ, where

φ(θ) =
1

v cos2(θ) + u sin2(θ)
. (106c)

Starting values (u0, v0) = (2, 2) lead to the orbit featured in Figure 106(i).
Orbits with various other starting values are also shown. The period, based on
the integral of (106c), has been calculated with a varying number n of equally
spaced values of θ ∈ [0, 2π], using the trapezoidal rule. It is known that for
certain smooth functions, the error of this type of calculation will behave, not
like a power of n−1, but like exp(−αn), for some problem-specific parameter
α. This super-convergence is evidently realized for the present problem, where
the observed approximations

T =
∫ 2π

0

φ(θ)dθ ≈ 2π

n

n−1∑
k=0

φ

(
2πk

n

)
(106d)

are shown in Table 106(I) for n = 10, 20, 40, . . . , 320. Evidently, to full machine
accuracy, the approximations have converged to T = 4.61487051945103. An
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Algorithm 106α Computation of orbit and period for the Lotka–Volterra

problem

theta = linspace(0,2*pi,n+1);
co = cos(theta);
si = sin(theta);
C = u0*v0 2*exp(-u0-v0);
r = ones(size(theta));
u = 1+r.*co;
v = 2+r.*si;
carryon=1;
while carryon

f = u.*v. 2-C*exp(u+v);
df = -v.*r.*(v.*co. 2+u.*si. 2);
dr = f./df;
r = r-dr;
u = 1+r.*co;
v = 2+r.*si;
carryon = norm(dr,inf) > 0.000000001;

end
phi = 1./(v.*co. 2+u.*si. 2);
period = (2*pi/n)*sum(phi(1:n));

explanation of the phenomenon of rapid convergence of the trapezoidal rule for
periodic functions can be found in Davis and Rabinowitz (1984), and in papers
referenced in that book.

In Algorithm 106α, MATLAB statements are presented to carry out the
computations that were used to generate Figure 106(i) and Table 106(I). To
compute the value of r for each θ, the equation f(r) = 0 is solved, where

f(r) = (exp(I(u, v)) − C) exp(u + v) = uv2 − C exp(u + v),

with C = u0v
2
0 exp(−u0 − v0). Note that the statement u.v. 2-C*exp(u+v)

evaluates a vector with element number i equal to uiv
2
i − C exp(ui + vi),

and that linspace(0,2*pi,n+1) generates a vector with n + 1 components,
equally spaced in [0, 2π].

107 The Euler equations of rigid body rotation

For a rigid body on which no moments are acting, the three components of
angular velocity, in terms of the principal directions of inertia fixed in the



DIFFERENTIAL AND DIFFERENCE EQUATIONS 21

body, satisfy the Euler equations:

I1
dw1

dt
= (I2 − I3)w2w3,

I2
dw2

dt
= (I3 − I1)w3w1,

I3
dw3

dt
= (I1 − I2)w1w2,

(107a)

where the ‘principal moments of inertia’ I1, I2 and I3 are positive. Denote the
kinetic energy by 1

2E and the squared norm of the angular momentum by F .
That is,

E = I1w
2
1 + I2w

2
2 + I3w

2
3, (107b)

F = I2
1w2

1 + I2
2w2

2 + I2
3w2

3. (107c)

Differentiate these expressions and substitute in dwi/dt, i = 1, 2, 3, to obtain
a zero result in each case. Hence, E and F are invariants of the solution to
(107a). This observation provides useful tests on numerical methods for this
problem because there is in general no reason why these invariants should be
maintained in a numerical approximation.

Exercises 10

10.1 You are given the initial value problem

u′′′(x) − 3u′′(x) + 2u(x)u′(x) = 0, u(1) = 2, u′(1) = −1, u′′(1) = 4.

Show how to reformulate this problem in the form

y′(x) = f(y(x)), y(x0) = y0,

where f : R3 → R3.

10.2 You are given the non-autonomous initial value problem

u′ = xu + x2v, u(0) = 3,
v′ = u − v + 2xw, v(0) = 2,

w′ = u +
v

1 + x
, w(0) = 5.

Show how to write this as an autonomous problem.
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10.3 The matrix

A = (N − 1)2



−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1


arises in the numerical solution of the heat equation, but with Neumann
boundary conditions. Find the eigenvalues of A.

10.4 Calculate the period of an orbit of the Lotka–Volterra problem which
passes through the point (3, 2).

11 Differential Equation Theory

110 Existence and uniqueness of solutions

A fundamental question that arises in scientific modelling is whether a given
differential equation, together with initial conditions, can be reliably used
to predict the behaviour of the trajectory at later times. We loosely use the
expression ‘well-posed’ to describe a problem that is acceptable from this point
of view. The three attributes of an initial value problem that have to be taken
into account are whether there actually exists a solution, whether the solution,
if it exists, is unique, and how sensitive the solution is to small perturbations
to the initial information. Even though there are many alternative criteria
for answering these questions in a satisfactory manner, we focus here on
the existence of a Lipschitz condition. This is especially convenient because
the same type of condition can be used to study the behaviour of numerical
approximations.

Definition 110A The function f : [a, b] × RN → RN is said to satisfy
a ‘Lipschitz condition in its second variable’ if there exists a constant L,
known as a ‘Lipschitz constant’, such that for any x ∈ [a, b] and Y, Z ∈ RN ,
‖f(x, Y ) − f(x, Z)‖ ≤ L‖Y − Z‖.

We need a basic lemma on metric spaces known as the ‘contraction mapping
principle’. We present this without proof.

Lemma 110B Let M denote a complete metric space with metric ρ and let
φ : M → M denote a mapping which is a contraction, in the sense that
there exists a number k, satisfying 0 ≤ k < 1, such that, for any η, ζ ∈ M ,
ρ(φ(η), φ(ζ)) ≤ kρ(η, ζ). Then there exists a unique ξ ∈ M such that φ(ξ) = ξ.
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We can now state our main result.

Theorem 110C Consider an initial value problem

y′(x) = f(x, y(x)), (110a)
y(a) = y0, (110b)

where f : [a, b] × RN → RN is continuous in its first variable and satisfies a
Lipschitz condition in its second variable. Then there exists a unique solution
to this problem.

Proof. Let M denote the complete metric space of continuous functions
y : [a, b] → RN , such that y(a) = y0. The metric is defined by

ρ(y, z) = sup
x∈[a,b]

exp(−K(x − a))‖y(x) − z(x)‖,

where K > L. For given y ∈ M , define φ(y) as the solution Y on [a, b] to the
initial value problem

Y ′(x) = f(x, Y (x)),
Y (a) = y0.

This problem is solvable by integration as

φ(y)(x) = y0 +
∫ x

a

f(s, y(s))ds.

This is a contraction because for any two y, z ∈ M , we have

ρ(φ(y), φ(z)) ≤ sup
x∈[a,b]

exp(−K(x − a))
∥∥∥∥∫ x

a

(
f(s, y(s)) − f(s, z(s))

)
ds

∥∥∥∥
≤ sup

x∈[a,b]

exp(−K(x − a))
∫ x

a

‖f(s, y(s))− f(s, z(s))‖ ds

≤ L sup
x∈[a,b]

exp(−K(x − a))
∫ x

a

‖y(s) − z(s)‖ ds

≤ Lρ(y, z) sup
x∈[a,b]

exp(−K(x − a))
∫ x

a

exp(K(s − a))ds

≤ L

K
ρ(y, z).

The unique function y that therefore exists satisfying φ(y) = y, is evidently
the unique solution to the initial value problem given by (110a), (110b). �

The third requirement for being well-posed, that the solution is not overly
sensitive to the initial condition, can be readily assessed for problems satisfying
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a Lipschitz condition. If y and z each satisfy (110a) with y(a) = y0 and
z(a) = z0, then

d

dx
‖y(x) − z(x)‖ ≤ L‖y(x) − z(x)‖.

Multiply both sides by exp(−Lx) and deduce that

d

dx

(
exp(−Lx)‖y(x) − z(x)‖

)
≤ 0,

implying that

‖y(x) − z(x)‖ ≤ ‖y0 − z0‖ exp
(
L(x − a)

)
. (110c)

This bound on the growth of initial perturbations may be too pessimistic in
particular circumstances. Sometimes it can be improved upon by the use of
‘one-sided Lipschitz conditions’. This will be discussed in Subsection 112.

111 Linear systems of differential equations

Linear differential equations are important because of the availability of a
superposition principle. That is, it is possible for a linear differential equation
system to combine known solutions to construct new solutions. The standard
form of a linear system is

dy

dx
= A(x)y + φ(x), (111a)

where A(x) is a possibly time-dependent linear operator. The corresponding
‘homogeneous’ system is

dy

dx
= A(x)y. (111b)

The superposition principle, which is trivial to verify, states that:

Theorem 111A If ŷ is a solution to (111a) and y1, y2, . . . , yk are solutions
to (111b), then for any constants α1, α2, . . . , αk, the function y given by

y(x) = ŷ(x) +
k∑

i=1

αiyi(x),

is a solution to (111a).

The way this result is used is to attempt to find the solution which matches
a given initial value, by combining known solutions.

Many linear problems are naturally formulated in the form of a single high
order differential equation

Y (m)(x) − C1(x)Y (m−1)(x) − C2(x)Y (m−2)(x) − · · · − Cm(x)Y (x) = g(x).
(111c)
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By identifying Y (x) = y1(x), Y ′(x) = y2(x), . . . , Y (m−1) = ym(x), we can
rewrite the system in the form

d

dx


y1(x)
y2(x)

...
ym(x)

 = A(x)


y1(x)
y2(x)

...
ym(x)

+ φ(x),

where the ‘companion matrix’ A(x) and the ‘inhomogeneous term’ φ(x) are
given by

A(x) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1

Cm(x) Cm−1(x) Cm−2(x) · · · C1(x)

 , φ(x) =


0
0
0
...
0

g(x)

 .

When A(x) = A in (111b) is constant, then to each eigenvalue λ of A, with
corresponding eigenvector v, there exists a solution given by

y(x) = exp(λx)v. (111d)

When a complete set of eigenvectors does not exist, but corresponding to λ
there is a chain of generalized eigenvectors

Av1 = λv1 + v, Av2 = λv2 + v1, . . . , Avk−1 = λvk−1 + vk−2,

then there is a chain of additional independent solutions to append to (111d):

y1 = x exp(λx)v1, y2 = x2 exp(λx)v2, . . . , yk−1 = xk−1 exp(λx)vk−1.

In the special case in which A is a companion matrix, so that the system is
equivalent to a high order equation in a single variable, as in (111c), with
C1(x) = C1, C2(x) = C2, . . . , Cm(x) = Cm, each a constant, the characteristic
polynomial of A is

P (λ) = λm − C1λ
m−1 − C2λ

m−2 − · · · − Cm = 0.

For this special case, P (λ) is also the minimal polynomial, and repeated
zeros always correspond to incomplete eigenvector spaces and the need
to use generalized eigenvectors. Also, in this special case, the eigenvector
corresponding to λ, together with the generalized eigenvectors if they exist,
are

v =


1
λ
λ2

...
λm−1

, v1 =


0
1
2λ
...

(m − 1)λm−2

, v2 =


0
0
1
...

(m−1)(m−2)
2 λm−3

, . . . .
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112 Stiff differential equations

Many differential equation systems of practical importance in scientific
modelling exhibit a distressing behaviour when solved by classical numerical
methods. This behaviour is distressing because these systems are characterized
by very high stability, which can turn into very high instability when
approximated by standard numerical methods. We have already seen examples
of stiff problems, in Subsections 102 and 104, and of course there are many
more such examples. The concept of the ‘one-sided Lipschitz condition’ was
mentioned in Subsection 110 without any explanation. Stiff problems typically
have large Lipschitz constants, but many have more manageable one-sided
Lipschitz constants, and this can be an aid in obtaining realistic growth
estimates for the effect of perturbations.

We confine ourselves to problems posed on an inner product space. Thus
we assume that there exists an inner product on R

N denoted by 〈u, v〉, and
that the norm is defined by ‖u‖2 = 〈u, u〉.

Definition 112A The function f satisfies a ‘one-sided Lipschitz condition’,
with ‘one-sided Lipschitz constant’ l if for all x ∈ [a, b] and all u, v ∈ RN ,

〈f(x, u) − f(x, v), u − v〉 ≤ l‖u − v‖2.

It is possible that the function f could have a very large Lipschitz constant
but a moderately sized, or even negative, one-sided Lipschitz constant. The
advantage of this is seen in the following result.

Theorem 112B If f satisfies a one-sided Lipschitz condition with constant
l, and y and z are each solutions of

y′(x) = f(x, y(x)),

then for all x ≥ x0,

‖y(x) − z(x)‖ ≤ exp(l(x − x0))‖y(x0) − z(x0)‖.

Proof. We have

d

dx
‖y(x) − z(x)‖2 =

d

dx
〈y(x) − z(x), y(x) − z(x)〉

= 2〈f(x, y(x))− f(x, z(x)), y(x)− z(x)〉
≤ 2l‖y(x) − z(x)‖2.

Multiply by exp
(
− 2l(x − x0)

)
and it follows that

d

dx

(
exp

(
− 2l(x − x0)

)
‖y(x) − z(x)‖2

)
≤ 0,

so that exp
(
− 2l(x − x0)

)
‖y(x) − z(x)‖2 is non-increasing. �
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Note that the problem described in Subsection 102 possesses the one-sided
Lipschitz condition with l = 0.

Even though stiff differential equation systems are typically non-linear,
there is a natural way in which a linear system arises from a given non-linear
system. Since stiffness is associated with the behaviour of perturbations to
a given solution, we suppose that there is a small perturbation εY (x) to a
solution y(x). The parameter ε is small, in the sense that we are interested only
in asymptotic behaviour of the perturbed solution as this quantity approaches
zero. If y(x) is replaced by y(x) + εY (x) in the differential equation

y′(x) = f(x, y(x)), (112a)

and the solution expanded in a series in powers of ε, with ε2 and higher powers
replaced by zero, we obtain the system

y′(x) + εY ′(x) = f(x, y(x)) + ε
∂f

∂y
Y (x). (112b)

Subtract (112a) from (112b) and cancel out ε, and we arrive at the equation
governing the behaviour of the perturbation,

Y ′(x) =
∂f

∂y
Y (x) = J(x)Y (x),

say. The ‘Jacobian matrix’ J(x) has a crucial role in the understanding of
problems of this type; in fact its spectrum is sometimes used to characterize
stiffness. In a time interval ∆x, chosen so that there is a moderate change
in the value of the solution to (112a), and very little change in J(x),
the eigenvalues of J(x) determine the growth rate of components of the
perturbation. The existence of one or more large and negative values of λ∆x,
for λ ∈ σ(J(x)), the spectrum of J(x), is a sign that stiffness is almost
certainly present. If J(x) possesses complex eigenvalues, then we interpret
this test for stiffness as the existence of a λ = Reλ + iImλ ∈ σ(J(x)) such
that Reλ∆x is negative with large magnitude.

Exercises 11

11.1 Show how to modify Theorem 110C so that the Lipschitz condition holds
only in a neighbourhood of y0 and where the solution is only required
to exist on [a, b̃], where b̃ satisfies a < b̃ ≤ b.

11.2 By finding two vectors α and β so that the system

y′(x) =

 0 1 0
1 0 0
0 0 1

 y(x) +

 sin(x)
0

cos(x)

 ,

has a solution of the form ŷ(x) = sin(x)α + cos(x)β, find the general
solution to this problem.
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12 Further Evolutionary Problems

120 Many-body gravitational problems

We consider a more general gravitational problem involving n mutually
attracting masses M1, M2, . . . , Mn at position vectors y1(x), y2(x), . . . , yn(x),
satisfying the 3n-dimensional second order differential equation system

y′′
i (x) = −

∑
j �=i

γMj(yi − yj)
‖yi − yj‖3

, i = 1, 2, . . . , n.

Reformulated as a first order system, the problem is 6n-dimensional because
each of the yi has three components and the velocity vectors y′

i also have three
components.

To reduce this problem to a manageable level in situations of practical
interest, some simplifications can be made. For example, in models of the solar
system, the most massive planets, Jupiter, Uranus, Neptune and Saturn, are
typically regarded as the only bodies capable of influencing the motion of the
sun and of each other. The four small planets closest to the sun, Mercury,
Venus, Earth and Mars, are, in this model, regarded as part of the sun in
the sense that they add to its mass in attracting the heavy outer planets
towards the centre of the solar system. To study the motion of the small
planets or of asteroids, they can be regarded as massless particles, moving in
the gravitation fields of the sun and the four large planets, but not at the
same time influencing their motion.

Another model, involving only three bodies, is useful for studying the
motion of an Earth–Moon satellite or of an asteroid close enough to the Earth
to be strongly influenced by it as well as by the Sun. This system, known as
the restricted three–body problem, regards the two heavy bodies as revolving
in fixed orbits about their common centre of mass and the small body as
attracted by the two larger bodies but not affecting their motion in any way.
If it is possible to approximate the large-body orbits as circles, then a further
simplification can be made by working in a frame of reference that moves with
them. Thus, we would regard the two large bodies as being fixed in space with
their rotation in the original frame of reference translated into a modification
of the equations of gravitational motion.

To simplify this discussion,weuse units scaled to reduce a number of constants
to unit value. We scale the masses of the two larger bodies to 1 − µ and µ and
their positions relative to the moving reference frame by the vectors (µ − 1)e1

and µe1, so that their centre of mass is at the origin of coordinates. Write y1, y2

and y3 as the scalar variables representing the position coordinates of the small
body and y4, y5 and y6 as the corresponding velocity coordinates. Under these
assumptions, the equations of motion become
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0 1

Figure 120(i) A solution to the restricted three-body problem

y′
1 = y4,

y′
2 = y5,

y′
3 = y6,

y′
4 = 2y5 + y1 −

µ(y1 + µ − 1)

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)(y1 + µ)

(y2
2 + y2

3 + (y1 + µ)2)3/2
,

y′
5 = −2y4 + y2 −

µy2

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)y2

(y2
2 + y2

3 + (y1 + µ)2)3/2
,

y′
6 = − µy3

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)y3

(y2
2 + y2

3 + (y1 + µ)2)3/2
.

Planar motion is possible; that is, solutions in which y3 = y6 = 0 at all
times. One of these is shown in Figure 120(i), with the values of (y1, y2)
plotted as the orbit evolves. The heavier mass is at the point (µ, 0) and the
lighter mass is at (1 − µ, 0), where (0, 0) is marked 0 and (1, 0) is marked 1.
For this calculation the value of µ = 1/81.45 was selected, corresponding
to the Earth-Moon system. The initial values for this computation were
(y1, y2, y3, y4, y5, y6) = (0.994, 0, 0, 0,−2.0015851063790825224, 0) and the
period was 17.06521656015796.
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0 1

Figure 120(ii) A second solution to the restricted three-body problem

��

��

�� ��
��
��
��
��

��
����

��

��

��

����
��

��
��
��
��

�� ��

��

Figure 120(iii) A figure-of-eight orbit for three equal masses

A second solution, identical except for the initial value (y1, y2, y3, y4, y5, y6)
= (0.87978, 0, 0, 0,−0.3797, 0) and a period 19.14045706162071, is shown in
Figure 120(ii).

If the three masses are comparable in value, then the restriction to a simpler
system that we have considered is not available. However, in the case of a
number of equal masses, other symmetries are possible. We consider just a
single example, in which three equal, mutually attracting masses move in a
figure-of-eight orbit. This is shown in Figure 120(iii).
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1
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π 2π

A(x)

y(x)
y
=

x

Figure 121(i) Solution to delay differential equation (121b)

121 Delay problems and discontinuous solutions

A functional differential equation is one in which the rate of change of y(x)
depends not just on the values of y for the same time value, but also on time
values less than x. In the simplest case, this has the form

y′(x) = f(x, y(x), y(x − τ )), (121a)

where τ is a constant delay. Note that this cannot be cast as an initial value
problem with the hope of actually defining a unique solution, because at an
initial point x0, the derivative depends on the value of y(x0 − τ ). What we
will need to do in the case of (121a) is to specify the value of y on an initial
interval [x0 − τ, x0].

A linear delay differential equation

We consider the problem given by

y′(x) = −y(x − π
2 ), x > 0, y(x) = x, x ∈ [−π

2 , 0]. (121b)

For x in the interval [0, π
2 ] we find

y(x) = −
∫ x

0

(x − π
2 )dx = 1

2x(π − x),

with y(π
2 ) = 1

8π2. This process can be repeated over the sequence of intervals
[π
2 , π], [π, 3π

2 ], . . . to obtain values of y(x) shown in Figure 121(i) for x ≤ 4π.
It appears that the solution is attempting to approximate sinusoidal

behaviour as time increases. We can verify this by estimating a local amplitude
defined by

A(x) = (y(x)2 + y′(x)2)
1
2 .

This function is also shown in Figure 121(i) and we note the discontinuity
at x = 0, corresponding to the discontinuity in the value of y′(x). Such
discontinuities are to be expected because the right-derivative is given by
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Figure 121(ii) Solution to neutral delay differential equation (121c)

the formula for y′(x) for x positive and the left-derivative is found from
the derivative of the initial function. For each positive integral multiple of
1
2π, there will always be an inherited non-smooth behaviour but this will be
represented by a discontinuity in increasingly higher derivatives.

We will now consider a problem with two delays.

An example with persistent discontinuities

A delay differential equation of ‘neutral type’ is one in which delayed values
of y′ also occur in the formulation. An example of this type of problem is

y′(x) = 1
2y′(x − 1) + ay(x −

√
2), x > 0,

y(x) = 1, x ∈ [−
√

2, 0],
(121c)

where the constant is given by a = exp(
√

2)− 1
2 exp(

√
2−1) and was contrived

to ensure that exp(x) would have been a solution, if the initial information
had been defined in terms of that function.

The solution is shown in Figure 121(ii) and we see that it seems to be
approximating exponential behaviour more and more closely as x increases.
However, there is a discontinuity in y′(x) at every positive integer value of x.
Specifically, for each n there is a jump given by

lim
x→n+

y′(x) − lim
x→n−

y′(x) = 2−na.

122 Problems evolving on a sphere

Given a function H(y), we will explore situations in which solutions to
y′(x) = f(y) preserve the value of H(y(x)). In the special case in which
H(y) = 1

2‖y‖2, this will correspond to motion on a sphere. We recall the
standard notation
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∇(H) =


∂H
∂y1
∂H
∂y2
...

∂H
∂yN


and consider problems of the ‘Poisson’ form

y′ = L(x, y)∇(y), (122a)

where L(x, y) is always a skew-symmetric matrix. For such problems H(y(x))
is invariant. To verify this, calculate

d

dx
H(y(x)) =

N∑
i=1

∂H

∂yi
y′

i(x) = ∇(H) L(x, y)∇(y) = 0,

because of the skew-symmetry of L.
The Euler equations, discussed in Subsection 107, provide two examples of

this. To show that E(w) is invariant write H(w) = 1
2E(w), and to show that

F (w) is invariant write H(w) = 1
2F (w). The problem reverts to the form of

(122a), with y replaced by w, where L(x, w) is given by 0 I3w3
I1I2

− I2w2
I1I3

− I3w3
I1I2

0 I1w1
I2I3

I2w2
I1I3

− I1w1
I2I3

0

 and

 0 − w3
I1I2

w2
I1I3

w3
I1I2

0 − w1
I2I3

− w2
I1I3

w1
I2I3

0

 ,

respectively.
We now revert to the special case H(x) = 1

2y y, for which (122a) becomes

y′ = L(x, y)y. (122b)

An example is the contrived problemy′
1

y′
2

y′
3

 =

 0 −y1 − sin(x)
y1 0 −1

sin(x) 1 0


y1

y2

y3

,

 y1(0)
y2(0)
y3(0)

 =

 1
0
0

, (122c)

with solution y1(x) = cos(x), y2(x) = cos(x) sin(x), y3(x) = sin2(x). The
solution values for x ∈ [0, 1.4π] are shown in Figure 122(i).

Problems of the form (122b) are a special case of

Y ′ = L(x, Y )Y, (122d)

where Y has a number of columns. In this case the inner product of two
specific columns will be invariant. In particular, if Y (x) is a square matrix,



34 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y1

y2

Figure 122(i) Solution to problem (122c) with y3 pointing out of the page

initially orthogonal, and L(x, Y ) is always skew-symmetric, then Y (x) will
remain orthogonal. Denote the elements of Y by yij . An example problem of
this type is

Y ′(x) =

 0 −1 µy21

1 0 −µy11

−µy21 µy11 0

Y, Y (0) = I, (122e)

with µ a real parameter. The solution to (122e) is

Y (x) =

 cos(x) − sin(x) cos(µx) sin(x) sin(µx)
sin(x) cos(x) cos(µx) − cos(x) sin(µx)

0 sin(µx) cos(µx)

 .

123 Further Hamiltonian problems

In the Hamiltonian formulation of classical mechanics, generalized coordinates
q1, q2, . . . , qN and generalized momenta p1, p2, . . . , pN are used to represent
the state of a mechanical system. The equations of motion are defined in terms
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of a ‘Hamiltonian’ function H(p1, p2, . . . , pN , q1, q2, . . . , qN ) by the equations

p′i = −∂H

∂qi
,

q′i =
∂H

∂pi
.

Write y(x) as a vector variable, made up from N momenta followed by the N
coordinates. That is,

yi =

{
pi, 1 ≤ i ≤ N,

qi−N , N + 1 ≤ i ≤ 2N.

With the understanding that H is regarded as a function of y, the differential
equations can be written in the form y′ = f(y), where

f(y) = J∇(H), J =

[
0 −I

I 0

]
,

in which I is the N × N unit matrix.

Theorem 123A H(y(x)) is invariant.

Proof. Calculate ∂H/∂y to obtain the result
∇(H) J∇(H) = 0. �

The Jacobian of this problem is equal to

∂

∂y
f(y) =

∂

∂y
(J∇(H)) = JW (y),

where W is the ‘Wronskian’ matrix defined as the 2N ×2N matrix with (i, j)
element equal to ∂2H/∂yi∂yj .

If the initial value y0 = y(x0) is perturbed by a small number ε multiplied by
a fixed vector v0, then, to within O(ε2), the solution is modified by εv +O(ε2)
where

v′(x) =
∂f

∂y
v(x) = JW (y)v(x).

For two such perturbations u and v, it is interesting to consider the value of
the scalar u Jv.

This satisfies the differential equation

d

dx
u Jv = u JJWv + (JWu) Jv = −u Wv + u Wv = 0.

Hence we have:
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Figure 123(i) Illustration of symplectic behaviour for H(p, q) = p2/2+q2/2 (left)

and H(p, q) = p2/2− cos(q) (right). The underlying image depicts the North Island

brown kiwi, Apteryx mantelli.

Theorem 123B u Jv is invariant with time.

In the special case of a two-dimensional Hamiltonian problem, the value of
(εu) J(εv) can be interpreted as the area of the infinitesimal parallelogram
with sides in the directions u and v. As the solution evolves, u and v might
change, but the area u Jv remains invariant. This is illustrated in Figure
123(i) for the two problems H(p, q) = p2/2+q2/2 and H(p, q) = p2/2−cos(q)
respectively.

124 Further differential-algebraic problems

Consider the initial value problem

y′ = y + z, (124a)

0 = z + z3 − y, (124b)
y(0) = 2, z(0) = 1. (124c)

This is an index 1 problem, because a single differentiation of (124b) and
a substitution from (124a) converts this to a differential equation system
consisting of (124b) together with z′ = (y + z)/(1 + 3z2). However, this
reduction does not do justice to the original formulation in the sense that
a solution with slightly perturbed initial values has little to do with the
original index 1 problem. This emphasizes the fact that initial conditions for
the differential-algebraic equation formulation must be consistent with the
algebraic constraint for it to be well-posed. A more appropriate reduction is
to replace (124a) by y′ = y + φ(y), where φ(y) is the real value of z which
satisfies (124b).
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We next introduce an initial value problem comprising two differential
equations and a single algebraic constraint:

y′
1 = − sin(z), (124d)

y′
2 = 2 cos(z) − y1, (124e)

0 = y2
1 + y2

2 − 1, (124f)
y1(0) = 1, y2(0) = 0, z(0) = 0. (124g)

An attempt to reduce this to an ordinary differential equation system by
differentiating (124f) and substituting from (124d) and (124e), leads to a new
algebraic constraint

−y1 sin(z) + y2(2 cos(z) − y1) = 0, (124h)

and it is clear that this will be satisfied by the solution to the original problem.
However, this so-called ‘hidden constraint’ introduces a new complexity into
this type of problem. That is, for initial values to be consistent, (124h) must
be satisfied at the initial time. If, for example, the initial values y1(0) = 1 and
y2(0) = 0 are retained, but the initial value z(0) is perturbed slightly, (124h)
will not be satisfied and no genuine solution exists. But the hidden constraint,
as the problem has actually been posed, is satisfied, and we can take the
reduction towards an ordinary differential equation system to completion.
Differentiate (124h) and substitute from (124d) and (124e) and we finally
arrive at

z′(cos2(z) + 2 sin2(z)) = sin2(z) + y2 sin(z) + (2 cos(z) − y1)2. (124i)

Because two differentiation steps were required to reach this equation, the
original system is referred to as an index 2 problem. In summary, the original
index 2 problem, comprising (124d), (124e), (124f) has been reduced, first
to an index 1 formulation (124d), (124e), (124h), and then to an ordinary
differential equation system (124d), (124e), (124i).

Exercises 12

12.1 Show that a problem of the form

u′ = −α′(v)γ(u, v),
v′ = β′(u)γ(u, v),

satisfies the assumptions of (122a) with a suitable choice of H(u, v).

12.2 Write the Lotka–Volterra equations (106a), (106b) in the form given in
Exercise 12.1.
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13 Difference Equation Problems

130 Introduction to difference equations

While differential equations deal with functions of a continuous variable,
difference equations deal with functions of a discrete variable. Instead of a
formula for the derivative of a function written in terms of the function
itself, we have to consider sequences for which each member is related in
some specific way to its immediate predecessor or several of its most recent
predecessors. Thus we may write

xn = φn(xn−1, xn−2, . . . , xn−k),

where k is the ‘order’ of this difference equation. This equation, in which
xn depends on k previous values, can be recast in a vector setting in which
members of the sequence lie not in R but in Rk, and depend only on one
previous value. Thus if

Xn =


xn

xn−1

...
xn−k+1

 ,

then

Xn = Φn(Xn−1) =



φn(xn−1, xn−2, . . . , xn−k)
xn−1

xn−2

...
xn−k+1

 .

Just as for differential equations, we can use either formulation as we please.

131 A linear problem

Consider the difference equation

yn = 3yn−1 − 2yn−2 + Cθn, (131a)

where C and θ are constants. We do not specify an initial value, but aim
instead to find the family of all solutions. As a first step, we look at the
special case in which C = 0. In this case, the equation becomes linear in
the sense that known solutions can be combined by linear combinations. The
simplified equation in matrix–vector form is[

yn

yn−1

]
=

[
3 −2
1 0

][
yn−1

yn−2

]
,
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which can be rewritten as[
yn − yn−1

−yn + 2yn−1

]
=

[
2 0
0 1

][
yn−1 − yn−2

−yn−1 + 2yn−2

]
,

with solution defined by

yn − yn−1 = A2n−1,

−yn + 2yn−1 = B,

for constants A and B. By eliminating yn−1, we find

yn = A2n + B

for the general solution. The fact that this combines powers of 2 and 1, the
eigenvalues of the matrix [

3 −2
1 0

]
, (131b)

suggests that we can look for solutions for the original formulation in the
form λn without transforming to the matrix–vector formulation. Substitute
this trial solution into (131a), with C = 0, and we find, apart from a factor
λn−2, that the condition on λ is

λ2 − 3λ + 2 = 0.

This is the characteristic polynomial of the matrix (131b), but it can be read
off immediately from the coefficients in (131a).

To find the general solution to (131a), if C �= 0, it is easy to see that we
only need to find one special solution to which we can add the terms A2n +B
to obtain all possible solutions. A special solution is easily found, if θ �= 1 and
θ �= 2, in the form

yn =
Cθn+2

(θ − 1)(θ − 2)
.

This type of special solution is not available if θ equals either 1 or 2. In these
cases a special solution can be found as a multiple of n or n2n, respectively.
Combining these cases, we write the general solution as

yn =


A2n + B − Cn, θ = 1,

A2n + B + 2Cn2n, θ = 2,

A2n + B + Cθ2

(θ−1)(θ−2) θn, θ �= 1, θ �= 2.
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132 The Fibonacci difference equation

The initial value difference equation

yn = yn−1 + yn−2, y0 = 0, y1 = 1, (132a)

is famous because of the mathematical, biological and even numerological
significance attached to the solution values

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

To find the general solution, solve the polynomial equation

λ2 − λ − 1 = 0,

to find the terms λn
1 and λn

2 , where

λ1 = 1+
√

5
2 , λ2 = 1−

√
5

2 = −λ−1
1 .

To find the coefficients A and B in the general solution

yn = A
(

1+
√

5
2

)n

+ B
(
− 1+

√
5

2

)−n

,

substitute n = 0 and n = 1, to find A = −B = 5−1/2, and therefore the
specific solution to the initial value problem (132a),

yn = 1√
5

((
1+

√
5

2

)n

−
(
− 1+

√
5

2

)−n
)

.

133 Three quadratic problems

We consider the solutions to the problems

yn = y2
n−1, (133a)

yn = y2
n−1 − 2, (133b)

yn = yn−1yn−2. (133c)

If zn = ln(yn) in (133a), then zn = 2zn−1 with solution zn = 2nz0. Hence, the
general solution to (133a) is

yn = y2n

0 .

To solve (133b), substitute yn = zn + z−1
n , so that

zn +
1
zn

= z2
n−1 +

1
z2
n−1

,
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and this is satisfied by any solution to zn = z2
n−1. Hence, using the known

solution of (133a), we find

yn = z2n

0 + z−2n

0 ,

where z0 is one of the solutions to the equation

z0 +
1
z0

= y0.

Finally, to solve (133c), substitute zn = ln(yn), and we find that

zn = zn−1 + zn−2.

The general solution to this is found from the Fibonacci equation, so that
substituting back in terms of yn, we find

yn = A( 1
2 (1+

√
5))n

· B( 1
2 (1−

√
5))n

,

with A and B determined from the initial values.

134 Iterative solutions of a polynomial equation

We discuss the possible solution of the polynomial equation

x2 − 2 = 0.

Of course this is only an example, and a similar discussion would be possible
with other polynomial equations. Consider the difference equations

yn = yn−1 −
1
2
y2

n−1 + 1, y0 = 0, (134a)

yn = yn−1 −
1
2
y2

n−1 + 1, y0 = 4, (134b)

yn = yn−1 − y2
n−1 + 2, y0 =

3
2
, (134c)

yn =
yn−1

2
+

1
yn−1

, y0 = 100, (134d)

yn =
yn−1yn−2 + 2
yn−1 + yn−2

, y0 = 0, y1 = 1. (134e)

Note that each of these difference equations has
√

2 as a stationary point.
That is, each of them is satisfied by yn =

√
2, for every n. Before commenting

further, it is interesting to see what happens if a few values are evaluated
numerically for each sequence. These are shown in Table 134(I).

Note that (134a) seems to be converging to
√

2, whereas (134b) seems
to have no hope of ever doing so. Of course the starting value, y0, is the
distinguishing feature, and we can perhaps investigate which values converge
and which ones do not. It can be shown that the fate of the iterates for various
starting values can be summarized as follows:
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Table 134(I) The first few terms in the solutions of some difference equations

Equation (134a) Equation (134b) Equation (134c) Equation (134d) Equation (134e)

y0 0.0000000000 4.0000000000 1.5000000000 1.000000×102 0.0000000000
y1 1.0000000000 −3.0000000000 1.2500000000 5.001000×10 1.0000000000
y2 1.5000000000 −6.5000000000 1.6875000000 2.502500×10 2.0000000000
y3 1.3750000000 −2.662500×10 0.8398437500 1.255246×10 1.3333333333
y4 1.4296875000 −3.800703×102 2.1345062256 6.3558946949 1.4000000000
y5 1.4076843262 −7.260579×104−0.4216106015 3.3352816093 1.4146341463
y6 1.4168967451 −2.635873×109 1.4006338992 1.9674655622 1.4142114385

y0 ∈ {−
√

2, 2 +
√

2}: Convergence to x = −
√

2
y0 ∈ (−

√
2, 2 +

√
2): Convergence to x =

√
2

y0 �∈ [−
√

2, 2 +
√

2]: Divergence

Note that the starting value y0 = −
√

2, while it is a fixed point of the mapping
given by (134a), is unstable; that is, any small perturbation from this initial
value will send the sequence either into instability or convergence to +

√
2. A

similar remark applies to y0 = 2+
√

2, which maps immediately to y1 = −
√

2.
The difference equation (134c) converges to ±

√
2 in a finite number of

steps for y0 in a certain countable set; otherwise the sequence formed from
this equation diverges.

Equation (134d) is the Newton method and converges quadratically to
√

2
for any positive y0. By quadratic convergence, we mean that |yn−

√
2| divided

by |yn−1 −
√

2|2 is bounded. In fact, in the limit as n → ∞,

yn −
√

2
(yn−1 −

√
2)2

→
√

2
4

.

The iteration scheme given by (134e) is based on the secant method for
solving non-linear equations. To solve φ(y) = 0, yn is found by fitting a
straight line through the two points (yn−2, φ(yn−2)) and (yn−1, φ(yn−1)) and
defining yn as the point where this line crosses the horizontal axis. In the case
φ(y) = y2 − 2, this results in (134e).

It is interesting to ask if there exists an ‘order’ k for this sequence. In other
words, assuming that convergence is actually achieved, does k ≥ 1 exist such
that

|yn −
√

2|
|yn−1 −

√
2|k

has a limiting value as n → ∞? For the secant method k does exist, and has
the value k = 1

2 (
√

5 + 1).
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135 The arithmetic-geometric mean

Let a0 and b0 be real numbers chosen so that 0 < b0 < a0, and define the
sequence of (an, bn) pairs by the formulae

an = 1
2 (an−1 + bn−1),

n = 1, 2, . . . . (135a)
bn =

√
an−1bn−1,

We can verify (i) that bn−1 < bn < an < an−1 for all n ≥ 1 and (ii) that the
sequence a0−b0, a1−b1, a2−b2, . . . converges to zero. The truth of (i) follows
from elementary properties of arithmetic and geometric means. Furthermore,
(ii) can be proved from the identity

an − bn =
(an−1 − bn−1)2

2
(√

an−1 +
√

bn−1

)2 .

The common limit of the an and bn sequences is known as the ‘arithmetic-
geometric mean’ of a0 and b0. We present a single application.

The quantities

F (a, b) =
∫ π/2

0

(
a2 cos2(θ) + b2 sin2(θ)

)−1/2
dθ,

E(a, b) =
∫ π/2

0

(
a2 cos2(θ) + b2 sin2(θ)

)1/2
dθ,

are known as ‘complete elliptic integrals’ of the first and second kind,
respectively. The value of 4E(a, b) is the length of the circumference of the
ellipse

x2

a2
+

y2

b2
= 1.

Use a0 = a and b0 = b as starting values for the computation of the sequences
defined by (135a), and denote by a∞ the arithmetic-geometric mean of a0 and
b0. Then it can be shown that

F (a0, b0) = F (a1, b1),

and therefore that
F (a0, b0) = F (a∞, a∞) =

π

2a∞
.

The value of E(a0, b0) can also be found from the sequences that lead to the
arithmetic-geometric mean. In fact

E(a0, b0) =
π

2a∞

(
a2
0 − 2a1(a0 − a1) − 4a2(a1 − a2) − 8a3(a2 − a3) − · · ·

)
.
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Exercises 13

13.1 Write the difference equation given by (134e) in the form

zn = φ(zn−1),

with z0 a given initial value.

13.2 Write the difference equation system

un = un−1 + vn−1, u0 = 2,

vn = 2un−1 + v2
n−1, v0 = 1,

in the form yn = φ(yn−1, yn−2), with y0 and y1 given initial values.

13.3 Use the formula for the error in linear interpolation together with the
solution to (133c) to verify the order of convergence of (134e).

13.4 Calculate
√

2 by applying the Newton method to the equation

2x−2 − 1 = 0.

13.5 Calculate the value of
√

3 by applying the secant method to

x2 − 3 = 0.

13.6 Calculate the circumference of the ellipse

x2

9
+

y2

4
= 1,

using the arithmetic-geometric mean.

14 Difference Equation Theory

140 Linear difference equations

The standard form for linear difference equation systems is

Xn = AnXn−1 + φn, (140a)

which becomes an initial value problem if the value of the initial vector
X0 is specified. The corresponding system in which φn is omitted is the
‘homogeneous part’.

Many linear difference equations are more naturally formulated as

yn = αn1yn−1 + αn2yn−2 + · · · + αnkyn−k + ψn,
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but these are easily recast in the form (140a) by writing

Xn =


yn

yn−1

...
yn−k+1

 , An =



αn1 αn2 · · · αnk

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0

 , φn =



ψn

0
0
...
0

 .

To solve (140a) as an initial value problem, we need to use products of the
form

n∏
i=m

Ai = AnAn−1 · · ·Am+1Am.

We have:

Theorem 140A The problem (140a), with initial value X0 given, has the
unique solution

yn =
( n∏

i=1

Ai

)
X0 +

( n∏
i=2

Ai

)
φ1 +

( n∏
i=3

Ai

)
φ2 + · · · + Anφn−1 + φn.

Proof. The result holds for n = 0, and the general case follows by induction.
�

141 Constant coefficients

We consider the solution of a linear difference equation with constant
coefficients:

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k + ψn. (141a)

The solution is found in terms of the solution to the canonical problem in
which the initial information is given in the form

y0

y−1

...
y−k+2

y−k+1

 =



1
0
...
0
0

 .

Denote the solution to this problem at step m by

ym = θm, m = 0, 1, 2, . . . , n,
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with θm = 0 for m < 0. Given the difference equation (141a) with initial
values y0, y1, . . . , yk−1, define linear combinations of this data by

ỹk−1

ỹk−2

ỹk−3

...
ỹ1

ỹ0


=



1 θ1 θ2 · · · θk−2 θk−1

0 1 θ1 · · · θk−3 θk−2

0 0 1 · · · θk−4 θk−3

...
...

...
...

...
0 0 0 · · · 1 θ1

0 0 0 · · · 0 1



−1 

yk−1

yk−2

yk−3

...
y1

y0


. (141b)

We are now in a position to write down the solution to (141a).

Theorem 141A Using the notation introduced in this subsection, the
solution to (141a) with given initial values y0, y1, . . . , yk−1 is given by

yn =
k−1∑
i=0

θn−iỹi +
n∑

i=k

θn−iψi. (141c)

Proof. Substitute n = m, for m = 0, 1, 2, . . . , k−1, into (141c), and we obtain
the value

ym = ỹm + θ1ỹm−1 + · · · + θmỹ0, m = 0, 1, 2, . . . , k − 1.

This is equal to ym if (141b) holds. Add the contribution to the solution from
each of m = k, k + 1, . . . , n and the result follows. �

142 Powers of matrices

We are interested in powers of a matrix A in terms of two questions: when
is the sequence of powers bounded, and when does the sequence converge to
the zero matrix? There are various equivalent formulations of the criteria for
these properties of A, and we state the most widely accessible of these.

Definition 142A A square matrix A is ‘stable’ if there exists a constant C
such that for all n = 0, 1, 2, . . . , ‖An‖ ≤ C.

This property is often referred to as ‘power-boundedness’.

Definition 142B A square matrix A is ‘convergent’ if limn→∞ ‖An‖ = 0.

Theorem 142C Let A denote an m × m matrix. The following statements
are equivalent:
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(i) A is stable.
(ii) The minimal polynomial of A has all its zeros in the closed unit disc

and all its multiple zeros in the open unit disc.
(iii) The Jordan canonical form of A has all its eigenvalues in the closed

unit disc with all eigenvalues of magnitude 1 lying in 1 × 1 blocks.
(iv) There exists a non-singular matrix S such that ‖S−1AS‖∞ ≤ 1.

Proof. We prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). If A is stable but
(ii) is not true, then either there exist λ and v �= 0 such that |λ| > 1 and
Av = λv, or there exist λ, u �= 0 and v such that |λ| = 1 and Av = λv + u,
with Au = λu. In the first case, Anv = λnv and therefore ‖An‖ ≥ |λ|n
which is not bounded. In the second case, Anv = λnv +nλn−1u and therefore
‖An‖ ≥ n‖u‖/‖v‖−1, which also is not bounded. Given (ii), it is not possible
that the conditions of (iii) are not satisfied, because the minimal polynomial
of any of the Jordan blocks, and therefore of A itself, would have factors that
contradict (ii). If (iii) is true, then S can be chosen to form J , the Jordan
canonical form of A, with the off-diagonal elements chosen sufficiently small
so that ‖J‖∞ ≤ 1. Finally, if (iv) is true then An = S(S−1AS)nS−1 so that
‖An‖ ≤ ‖S‖ · ‖S−1AS‖n · ‖S−1‖ ≤ ‖S‖ · ‖S−1‖. �

Theorem 142D Let A denote an m × m matrix. The following statements
are equivalent

(i) A is convergent.
(ii) The minimal polynomial of A has all its zeros in the open unit disc.
(iii) The Jordan canonical form of A has all its diagonal elements in the

open unit disc.
(iv) There exists a non-singular matrix S such that ‖S−1AS‖∞ < 1.

Proof. We again prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). If A is convergent
but (ii) is not true, then there exist λ and u �= 0 such that λ ≥ 1 and Au = λu.
Hence, Anu = λnu and therefore ‖An‖ ≥ |λ|n, which does not converge to
zero. Given (ii), it is not possible that the conditions of (iii) are not satisfied,
because the minimal polynomial of any of the Jordan blocks, and therefore
of A itself, would have factors that contradict (ii). If (iii) is true, then S can
be chosen to form J , the Jordan canonical form of A, with the off-diagonal
elements chosen sufficiently small so that ‖J‖∞ < 1. Finally, if (iv) is true then
An = S(S−1AS)nS−1 so that ‖An‖ ≤ ‖S‖ · ‖S−1‖ · ‖S−1AS‖n → 0. �

While the two results we have presented here are related to the convergence
of difference equation solutions, the next is introduced only because of its
application in later chapters.
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Theorem 142E If A is a stable m × m matrix and B an arbitrary m × m
matrix, then there exists a real C such that∥∥∥∥(A +

1
n

B

)n∥∥∥∥ ≤ C,

for n = 1, 2, . . . .

Proof. Without loss of generality, assume that ‖ · ‖ denotes the norm ‖ · ‖∞.
Because S exists so that ‖S−1AS‖ ≤ 1, we have∥∥∥∥(A +

1
n

B

)n∥∥∥∥ ≤ ‖S‖ · ‖S−1‖ ·
∥∥∥∥(S−1AS +

1
n

S−1BS

)n∥∥∥∥
≤ ‖S‖ · ‖S−1‖ ·

(
1 +

1
n
‖S−1BS‖

)n

≤ ‖S‖ · ‖S−1‖ exp(‖S−1BS‖). �
In applying this result to sequences of vectors, the term represented by the

matrix B can be replaced by a non-linear function which satisfies suitable
conditions. To widen the applicability of the result a non-homogeneous term
is included.

Theorem 142F Let A be a stable m × m matrix and φ : Rm → Rm

be such that ‖φ(x)‖ ≤ L‖x‖, for L a positive constant and x ∈ R
m. If

w = (w1, w2, . . . , wn) and v = (v0, v1, . . . , vn) are sequences related by

vi = Avi−1 +
1
n

φ(vi−1) + wi, i = 1, 2, . . . , n, (142a)

then

‖vn‖ ≤ C

(
‖v0‖ +

n∑
i=1

‖wi‖
)

,

where C is independent of n.

Proof. Let S be the matrix introduced in the proof of Theorem 142C. From
(142a), it follows that

(S−1vi) = (S−1AS)(S−1vi−1) +
1
n

(S−1φ(vi−1)) + (S−1wi)

and hence

‖S−1vi‖ ≤ ‖S−1AS‖ · ‖S−1vi−1‖ +
1
n
‖S−1φ(vi−1)‖ + ‖S−1wi‖,

leading to the bound

‖vn‖ ≤ ‖S‖ · ‖S−1‖ exp
(
L‖S‖ · ‖S−1‖

)(
‖v0‖ +

n∑
i=1

‖wi‖
)

. �
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Exercises 14

14.1 Find a constant C such that ‖An‖∞ ≤ C, for all n = 0, 1, . . . , where

A =

[
1
2

1
2

−1
3

4
3

]
.

14.2 For what values of the complex number θ is the matrix A stable, where

A =

[
θ 1
0 1

]
.






