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Introduction to Probability

Since financial markets are very volatile, in order to model financial variables we need to char-
acterize randomness. Therefore, to study financial phenomena, we have to use probabilities.

Once defined, we will see how to use probabilities to describe the evolution of random
parameters that we later call random processes. The key step here is the quantitative construc-
tion of the events’ probabilities. First, one must define the events and then the probabilities
associated to these events. This is the objective of this first chapter.

1.1 INTUITIVE EXPLANATION

1.1.1 Frequencies

Here is an example to illustrate the notion of relative frequency. We toss a dice N times and
observe the outcomes. We suppose that the 6 faces are identified by letters A, B, C, D, E and F.
We are interested in the probability of obtaining face A. For that purpose, we count the number
of times that face A appears and denote it by n(A). This number represents the frequency of
appearance of face A.

Intuitively, we see that the division of the number of times that face A appears, n(A), by the
total number N of throws, n(A)

N , is a fraction that represents the probability of obtaining face
A each time that we toss the dice. In the first series of experiments when we toss the dice N
times we get n1(A) and if we repeat this series of experiments another time by tossing it again
N times, we obtain n2(A) of outcomes A.

It is likely that n1(A) and n2(A) are different. The fractions n1(A)
N and n2(A)

N are then different.
Therefore, how can we say that this fraction quantifies the probability of obtaining face A? To
find an answer, we need to continue the experiment. Even if the fractions are different, when
the number N of throws becomes very large, we observe that these two fractions converge to
the same value of 1

6 .
Intuitively, this fraction measures the probability of obtaining face A, and when N is large,

this fraction goes to 1
6 . Thus, each time we toss the dice, it is natural to take 1

6 as the probability
of obtaining face A.

Later, we will see that from the law of large numbers these fractions converge to this limit.
This limit, 1

6 , corresponds to the concept of the ratio of the number of favorable cases over the
total number of cases.

1.1.2 Number of Favorable Cases Over The Total Number of Cases

When we toss a dice, there is a total of 6 possible outcomes, {1, 2, 3, 4, 5, 6}, corresponding
to the letters on faces {A, B, C, D, E, F}. If we wish to obtain face A and we have only one
such case, then the probability of getting face A is quantified by the fraction 1

6 . However, we
may be interested in the event {“the observed face is even”}. What does this mean? The even
face can be 2, 4 or 6. Each time that one of these three faces appears, we have a realization of
the event {“the observed face is even”}. This means that when we toss a dice, the total number
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of possible cases is always 6 and the number of favorable cases associated to even events is 3.
Therefore, the probability of obtaining an even face is simply 3

6 and intuitively this appears to
be correct.

From this consideration, in the following section we construct in an axiomatic way the
mechanics of what is happening. However, we must first establish what is an event, and then
we must define the probabilities associated with an event.

1.2 AXIOMATIC DEFINITION

Let’s define an universe in which we can embed all these intuitive considerations in an
axiomatic way.

1.2.1 Random Experiment

A random experiment is an experiment in which we cannot precisely predict the outcome.
Each result obtained from this experiment is random a priori (before the realization of the
experiment). Each of these results is called a simple event. This means that each time that we
realize this experiment we can obtain only one simple event. Further we say that all simple
events are exclusive.

Example 2.1 Tossing a dice is a random experiment because before the toss, we cannot
exactly predict the future result. The face that is shown can be 1, 2, 3, 4, 5 or 6. Each of
these results is thus a simple event. All these 6 simple events are mutually exclusive.

We denote by Ω the set of all simple events. The number of elements in Ω can be finite,
countably infinite, uncountably infinite, etc. The example with the dice corresponds to the first
case (the case of a “finite number of results”, Ω = {1, 2, 3, 4, 5, 6}).

Example 2.2 We count the number of phone calls to one center during one hour. The
number of calls can be 0, 1, 2, 3, etc. up to infinity. An infinite number of calls is evidently
an event that will never occur. However, to consider it in the theoretical development
allows us to build useful models in a relatively simple fashion. This phone calls example
corresponds to the countably infinite case (Ω = { 0, 1, 2, 3, . . ., ∞}).

Example 2.3 When we throw a marble on the floor of a room, the position on which the
marble will stop is a simple event of the experiment. However, the number of simple events
is infinite and uncountable. It corresponds to the set of all points on the floor.

Building a probability theory for the case of finite experiments is relatively easy, the gener-
alization to the countably infinite case is straightforward. However, the uncountably infinite
case is different. We will point out these differences and technicalities but we will not dwell
on the complex mathematical aspects.

1.2.2 Event

We consider the experiment of a dice toss. We want to study the “even face” event. This event
happens when the face shown is even, that is, one of 2, 4, or 6.
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Thus, we can say that this event “even face” contains three simple events {2, 4, 6}. This
brings us to the definition:

Definition 2.4 Let Ω be the set of simple events of a given random experiment. Ω is called
the sample space or the universe. An event is simply a sub-set of Ω.

Is any subset of Ω an event? This question will be answered below. We must not forget that
an event occurs if the realized simple event belongs to this event.

1.2.3 Algebra of Events

We saw that an event is a subset of Ω. We would like to construct events from Ω. Let Ω be the
universe and let ξ be the set of events we are interested in. We consider the set of all events. ξ

is an algebra of events if the following axioms are satisfied:

A1: Ω ∈ ξ ,
A2: ∀A ∈ ξ , Ac = Ω\A ∈ ξ (where Ω\A, called the complementary of A, is the set of all

elements of Ω which do not belong to A),
A3: ∀A1, A2, . . ., An ∈ ξ , A1 ∪ A2 ∪ . . . ∪ An ∈ ξ .

Axiom A1 says that the universe is an event. This event is certain since it happens each time
that we undertake the experiment. Axiom A1 and axiom A2 imply that the empty set, denoted
by ∅, is also an event but it is impossible since it never happens. Axiom A3 says that the union
of a finite number of events is also an event. To be able to build an algebra of events associated
with a random experiment encompassing a countable infinity of simple events, axiom A3 will
be replaced by:

A3’: ∪∞
n=1 An = A1 ∪ A2 ∪ . . . ∪ An ∪ . . . ∈ ξ .

This algebra of events plays a very important role in the construction of the probability of
events. The probabilities that we derive should follow the intuition developed previously.

1.2.4 Probability Axioms

Let Ω be the universe associated with a given random experiment on which we build the
algebra of events ξ . We associate to each event A ∈ ξ a probability noted Prob(A), representing
the probability of event A occurring when we realize the experiment. From our intuitive setup,
this probability must satisfy the following axioms:

P1: Prob(Ω) = 1,
P2: ∀A ∈ ξ , 0 ≤ Prob(A) ≤ 1,
P3: if A1, A2, . . ., An, . . . is a series of mutually exclusive events, that is: ∀i �= j, Ai∩Aj = ∅,

then

Prob(∪∞
n=1 An) =

∞∑

n=1

Prob(An). (1.1)
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Axiom P3 is called σ−additivity of probabilities. This axiom allows us to consider random
experiments with an infinity of possible outcomes. From these axioms, we can see that

Prob(∅) = 0 and Prob(Ac) = 1 − Prob(A) (1.2)

which are intuitively true.
A very important property easy to derive is presented below.

Property 2.5 Consider two events A and B, then

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(A ∩ B). (1.3)

The mathematical proof is immediate.

Proof: Let A \ C be the event built from elements of A that do not belong to C.

A = (A \ C) ∪ C where C = A ∩ B. (1.4)

Since A \ C and C are disjoint, from axiom P3,

Prob(A) = Prob(A \ C) + Prob(C). (1.5)

Similarly

Prob(B) = Prob(B \ C) + Prob(C). (1.6)

Adding these two equations yields:

Prob(A \ C) + Prob(B \ C) + Prob(C) = Prob(A) + Prob(B) − Prob(C). (1.7)

Moreover,

A ∪ B = (A \ C) ∪ (B \ C) ∪ C, (1.8)

and since A \ C, B \ C and C are disjoint, we have

Prob(A ∪ B) = Prob(A \ C) + Prob(B \ C) + Prob(C), (1.9)

thus,

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(C). (1.10)

Example 2.6 Let’s go back to the dice toss experiment with

� = {1, 2, 3, 4, 5, 6}
and consider the events:

(a) A = {“face smaller than 5”} = {1, 2, 3, 4}.
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Since events {1}, {2}, {3}, and {4} are mutually exclusive, we know from axiom
P3 that:

Prob(A) = Prob({1}) + Prob({2}) + Prob({3}) + Prob({4}) = 4

6
.

(b) B = {“even faces”} = {2, 4, 6}.

Thus, A ∪ B = {1, 2, 3, 4, 6} and A ∩ B = {2, 4}. We also have, Prob(A) = 4
6 ,

Prob(B) = 3
6 , Prob(A ∩ B) = Prob({2, 4}) = 2

6 , which implies

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(A ∩ B) = 4

6
+ 3

6
− 2

6
= 5

6
.

Next, we discuss events that may be considered as independent. To present this, we must
first discuss the concept of conditional probability, i.e., the probability of an event occurring
given that another event already happened.

1.2.5 Conditional Probabilities

Let A and B be any two events belonging to the same algebra of events. We suppose that B has
occurred. We are interested in the probability of getting event A. To define it, we must look
back to the construction of the algebras of events.

Within the universe Ω in which A and B are two well-defined events, if B has already
happened, the elementary event associated with the result of this random experiment must be
an element belonging to event B. This means that given B has already happened, the result of
the experiment is an element of event B.

Intuitively, the probability of A occurring is simply the probability that this result is also an
event of B. If B has already happened, the probability of getting A knowing B is the probability
of A ∩ B divided by the probability of B. Therefore, we obtain

Prob(A|B) = Prob(A ∩ B)

Prob(B)
. (1.11)

This definition of the conditional probability is called Bayes’ rule.
This probability satisfies the set of axioms for probabilities introduced at the beginning of

the section:

Prob(�|B) = 1, (1.12)

0 ≤ Prob(A|B) ≤ 1, (1.13)

Prob(Ac|B) = 1 − Prob(A|B), (1.14)

and

Prob(∪∞
n=1 An|B) =

∞∑

n=1

Prob(An|B), ∀i �= j, Ai ∩ A j = ∅. (1.15)

This definition is illustrated next by way of examples.
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Example 2.7 Consider the dice toss experiment with event

A = {“face smaller than 5"} = {1, 2, 3, 4}
and event

B = {“even face"} = {2, 4, 6}.
We know that

Prob(B) = Prob({2, 4, 6}) = 3

6

and

Prob(A) = Prob({1, 2, 3, 4}) = 4

6
.

However, we want to know what is the probability of obtaining an even face knowing that
the face is smaller than 5 (in other words, A has already happened). From Bayes’ rule:

Prob(B|A) = Prob(A ∩ B)

Prob(A)

= Prob({2, 4})
Prob({1, 2, 3, 4})

= 2/6

4/6

= 1

2
.

Example 2.8 From a population of N persons, we observe ns smokers and nc people
with cancer. From these ns smokers we observe ns,c individuals suffering from cancer. For
this population, we can say that the probability that a person is a smoker is ns

N and the
probability that a person has cancer is nc

N . The probability that a person has cancer given
that he is already a smoker is:

Prob(cancer|smoker) = Prob(smoker and cancer)

Prob(smoker)
= ns,c

ns
.

From this experiment, we note that the conditional probability can be smaller or greater than
the probability considered a priori. Following this definition of the conditional probability, we
examine next the independence of two events.

1.2.6 Independent Events

Two events are said to be statistically independent when the occurrence of one of them doesn’t
affect the probability of getting the other. A and B are said to be statistically independent if

Prob(A|B) = Prob(A). (1.16)
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From Bayes’ rule, if A and B are two independent events then

Prob(A ∩ B) = Prob(A)Prob(B). (1.17)

Example 2.9 Consider the experiment of tossing a dice twice. Intuitively, we hope that
the result of the first toss would be independent of the second one. From our preceding
exposition, we can establish this independence as follows. Indeed, the universe of this
experiment contains 36 simple events denoted by (R1, R2) where R1 and R2 are respectively
the results of the first and second tosses, with (R1, R2) taking values (n, m) in

� = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.
The probability the first element R1 equals n is

Prob(R1 = n) = 1

6
, ∀n ∈ {1, 2, 3, 4, 5, 6}

and the probability the second element R2 equals m is

Prob(R2 = m) = 1

6
, ∀m ∈ {1, 2, 3, 4, 5, 6}.

Since Prob(R1 = n, R2 = m) = 1
36 , then the conditional probability

Prob(R2 = m|R1 = n) = Prob(R1 = n, R2 = m)

Prob(R1 = n)

=
1
36
1
6

= 1

6
,

which gives us Prob(R2 = m|R1 = n) = Prob(R2 = m) = 1
6 . Hence, we conclude that R2

and R1 are independent.

Notes and Complementary Readings

The concepts presented in this chapter are fundamentals of the theory of probabilities. The
reader could refer to the books written by Ross (2002 a and b) for example.
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