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1
Introduction

1.1 Stability and Control of a Dynamic System

In engineering, a system is understood to be a set of physical elements acting together and realizing
a common goal. An important role in the analysis of the system is played by its mathematical
model. It is created using the system structure and fundamental physical laws governing the system
elements. In the case of complicated systems, mathematical models usually do not have a univer-
sal character but rather reflect some characteristic phenomena which are of interest. Because of
mathematical complications, practically used system models are usually a compromise between a
required accuracy of modelling and a degree of complication.

When formulating a system model, important terms are the system state and the state variables.
The system state describes the system’s operating conditions. The state variables are the minimum set
of variables x1, x2, . . . , xn uniquely defining the system state. State variables written as a vector x =
[x1, x2, . . . , xn ]T are referred to as the state vector. A normalized space of coordinates corresponding
to the state variables is referred to as the state space. In the state space, each system state corresponds
to a point defined by the state vector. Hence, a term ‘system state’ often refers also to a point in the
state space.

A system may be static, when its state variables x1, x2, . . . , xn are time invariant, or dynamic,
when they are functions of time, that is x1(t), x2(t), . . . , xn(t).

This book is devoted to the analysis of dynamic systems modelled by ordinary differential
equations of the form

ẋ = F (x) or ẋ = A x, (1.1)

where the first of the equations above describes a nonlinear system and the second describes a linear
system. F(x) is just a vector of nonlinear functions and A is a square matrix.

A curve x(t) in the state space containing system states (points) in consecutive time instants is
referred to as the system trajectory. A trivial one-point trajectory x(t) = x̂ = constant is referred to
as the equilibrium point (state), if in that point all the partial derivatives are zero (no movement), that
is ẋ = 0. According to Equation (1.1), the coordinates of the point satisfy the following equations:

F (x̂) = 0 or A x̂ = 0. (1.2)

A nonlinear system may have more than one equilibrium point because nonlinear equations
may have generally more than one solution. In the case of linear systems, according to the Cramer
theorem concerning linear equations, there exists only one uniquely specified equilibrium point
x̂ = 0 if and only if the matrix A is non-singular (det A �= 0).

Power System Dynamics: Stability and Control, Second Edition Jan Machowski, Janusz W. Bialek and James R. Bumby
C© 2008 John Wiley & Sons, Ltd

3



P1: OTA/XYZ P2: ABC
c01 JWBK257/Machowski September 22, 2008 21:29 Printer Name: Yet to Come

4 Power System Dynamics

x

t

(a) (b)

ε
ε

ε
ε

ε

η η

stable

stable

asymptotically

unstable

^x

x t1 ( )
x t0 ( )

x t2 ( )

t0

Figure 1.1 Illustration of the definition of stability: (a) when the initial conditions are different
but close; (b) in a vicinity of the equilibrium point.

All the states of a dynamic system, apart from equilibrium states, are dynamic states because
the derivatives ẋ �= 0 for those states are non-zero, which means a movement. Disturbance means a
random (usually unintentional) event affecting the system. Disturbances affecting dynamic systems
are modelled by changes in their coefficients (parameters) or by non-zero initial conditions of
differential equations.

Let x1(t) be a trajectory of a dynamic system, see Figure 1.1a, corresponding to some initial
conditions. The system is considered stable in a Lyapunov sense if for any t0 it is possible to choose a
number η such that for all the other initial conditions satisfying the constraint ‖x2(t0) − x1(t0)‖ < η,
the expression ‖x2(t) − x1(t)‖ < ε holds for t0 ≤ t < ∞. In other words, stability means that if the
trajectory x2(t) starts close enough (as defined by η) to the trajectory x1(t) then it remains close to
it (number ε). Moreover, if the trajectory x2(t) tends with time towards the trajectory x1(t), that is
limt→∞ ‖x2(t) − x1(t)‖ = 0, then the dynamic system is asymptotically stable.

The above definition concerns any trajectory of a dynamic system. Hence it must also be valid
for a trivial trajectory such as the equilibrium point x̂. In this particular case, see Figure 1.1b, the
trajectory x1(t) is a point x̂ and the initial condition x2(t0) of trajectory x2(t) lies in the vicinity of
the point defined by η. The dynamic system is stable in the equilibrium point x̂ if for t0 ≤ t < ∞
the trajectory x2(t) does not leave an area defined by the number ε. Moreover, if the trajectory x2(t)
tends with time towards the equilibrium point x̂, that is limt→∞ ‖x2(t) − x̂‖ = 0, then the system
is said to be asymptotically stable at the equilibrium point x̂. On the other hand, if the trajectory
x2(t) tends with time to leave the area defined by ε, then the dynamic system is said to be unstable
at the equilibrium point x̂.

It can be shown that stability of a linear system does not depend on the size of a disturbance.
Hence if a linear system is stable for a small disturbance then it is also globally stable for any large
disturbance.

The situation is different with nonlinear systems as their stability generally depends on the size
of a disturbance. A nonlinear system may be stable for a small disturbance but unstable for a large
disturbance. The largest disturbance for which a nonlinear system is still stable is referred to as a
critical disturbance.

Dynamic systems are designed and constructed with a particular task in mind and assuming
that they will behave in a particular way following a disturbance. A purposeful action affecting
a dynamic system which aims to achieve a particular behaviour is referred to as a control. The
definition of control is illustrated in Figure 1.2. The following signals have been defined:

� u(t) – a control signal which affects the system to achieve a desired behaviour;
� y(t) – an output signal which serves to assess whether or not the control achieved the desired goal;
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Figure 1.2 Illustration of the definition of: (a) open-loop control; (b) closed-loop control.

� x(t) – system state variables;
� z(t) – disturbances.

Control can be open loop or closed loop. In the case of open-loop control, see Figure 1.2a,
control signals are created by a control device which tries to achieve a desired system behaviour
without obtaining any information about the output signals. Such control makes sense only when
it is possible to predict the shape of output signals from the control signals. However, if there are
additional disturbances which are not a part of the control, then their action may lead to the control
objective not being achieved.

In the case of closed-loop control, see Figure 1.2b, control signals are chosen based on the
control task and knowledge of the system output signals describing whether the control task has
been achieved. Hence the control is a function of its effects and acts until the control task has been
achieved.

Closed-loop control is referred to as feedback control or regulation. The control device is then
called a regulator and the path connecting the output signals with the control device (regulator) is
called the feedback loop.

A nonlinear dynamic system with its control can be generally described by the following set of
algebraic and differential equations:

ẋ = F (x, u) and y = G(x, u), (1.3)

while a linear dynamic system model is

ẋ = A x + B u and y = C x + D u. (1.4)

It is easy to show that, for small changes in state variables and output and control signals, Equations
(1.4) are linear approximations of nonlinear equations (1.3). In other words, linearization of (1.3)
leads to the equations

�ẋ = A�x + B � u and �y = C �x + D�u, (1.5)

where A, B, C, D are the matrices of derivatives of functions F, G with respect to x and u.

1.2 Classification of Power System Dynamics

An electrical power system consists of many individual elements connected together to form a
large, complex and dynamic system capable of generating, transmitting and distributing electrical
energy over a large geographical area. Because of this interconnection of elements, a large variety
of dynamic interactions are possible, some of which will only affect some of the elements, others
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are fragments of the system, while others may affect the system as a whole. As each dynamic effect
displays certain unique features. Power system dynamics can be conveniently divided into groups
characterized by their cause, consequence, time frame, physical character or the place in the system
where they occur.

Of prime concern is the way the power system will respond to both a changing power demand and
to various types of disturbance, the two main causes of power system dynamics. A changing power
demand introduces a wide spectrum of dynamic changes into the system each of which occurs on
a different time scale. In this context the fastest dynamics are due to sudden changes in demand
and are associated with the transfer of energy between the rotating masses in the generators and
the loads. Slightly slower are the voltage and frequency control actions needed to maintain system
operating conditions until finally the very slow dynamics corresponding to the way in which the
generation is adjusted to meet the slow daily demand variations take effect. Similarly, the way in
which the system responds to disturbances also covers a wide spectrum of dynamics and associated
time frames. In this case the fastest dynamics are those associated with the very fast wave phenomena
that occur in high-voltage transmission lines. These are followed by fast electromagnetic changes
in the electrical machines themselves before the relatively slow electromechanical rotor oscillations
occur. Finally the very slow prime mover and automatic generation control actions take effect.

Based on their physical character, the different power system dynamics may be divided into four
groups defined as: wave, electromagnetic, electromechanical and thermodynamic. This classification
also corresponds to the time frame involved and is shown in Figure 1.3. Although this broad
classification is convenient, it is by no means absolute, with some of the dynamics belonging to two or
more groups while others lie on the boundary between groups. Figure 1.3 shows the fastest dynamics
to be the wave effects, or surges, in high-voltage transmission lines and correspond to the propagation
of electromagnetic waves caused by lightning strikes or switching operations. The time frame of
these dynamics is from microseconds to milliseconds. Much slower are the electromagnetic dynamics
that take place in the machine windings following a disturbance, operation of the protection system
or the interaction between the electrical machines and the network. Their time frame is from
milliseconds to a second. Slower still are the electromechanical dynamics due to the oscillation of
the rotating masses of the generators and motors that occur following a disturbance, operation
of the protection system and voltage and prime mover control. The time frame of these dynamics
is from seconds to several seconds. The slowest dynamics are the thermodynamic changes which
result from boiler control action in steam power plants as the demands of the automatic generation
control are implemented.

Careful inspection of Figure 1.3 shows the classification of power system dynamics with respect
to time frame to be closely related to where the dynamics occur within the system. For example,
moving from the left to right along the time scale in Figure 1.3 corresponds to moving through the
power system from the electrical RLC circuits of the transmission network, through the generator

hoursminutessecondsmillisecondsmicroseconds

wave phenomena

electromagnetic
phenomena

electromechanical
phenomena

thermodynamic
phenomena

10–7 10–6 10–5 10–4 10–3 10–2 10–1 102 103 104 1051 10

Figure 1.3 Time frame of the basic power system dynamic phenomena.
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armature windings to the field and damper winding, then along the generator rotor to the turbine
until finally the boiler is reached.

The fast wave phenomena, due to lightning and switching overvoltages, occur almost exclusively in
the network and basically do not propagate beyond the transformer windings. The electromagnetic
phenomena mainly involve the generator armature and damper windings and partly the network.
These electromechanical phenomena, namely the rotor oscillations and accompanying network
power swings, mainly involve the rotor field and damper windings and the rotor inertia. As the
power system network connects the generators together, this enables interactions between swinging
generator rotors to take place. An important role is played here by the automatic voltage control and
the prime mover control. Slightly slower than the electromechanical phenomena are the frequency
oscillations, in which the rotor dynamics still play an important part, but are influenced to a much
greater extent by the action of the turbine governing systems and the automatic generation control.
Automatic generation control also influences the thermodynamic changes due to boiler control
action in steam power plants.

The fact that the time frame of the dynamic phenomena is closely related to where it occurs
within the power system has important consequences for the modelling of the system elements. In
particular, moving from left to right along Figure 1.3 corresponds to a reduction in the accuracy
required in the models used to represent the network elements, but an increase in the accuracy in the
models used first to represent the electrical components of the generating unit and then, further to
the right, the mechanical and thermal parts of the unit. This important fact is taken into account in
the general structure of this book when later chapters describe the different power system dynamic
phenomena.

1.3 Two Pairs of Important Quantities: Reactive Power/Voltage
and Real Power/Frequency

This book is devoted to the analysis of electromechanical phenomena and control processes in power
systems. The main elements of electrical power networks are transmission lines and transformers
which are usually modelled by four-terminal (two-port) RLC elements. Those models are connected
together according to the network configuration to form a network diagram.

For further use in this book, some general relationships will be derived below for a two-port
π -equivalent circuit in which the series branch consists of only an inductance and the shunt branch
is completely neglected. The equivalent circuit and the phasor diagram of such an element are
shown in Figure 1.4a. The voltages V and E are phase voltages while P and Q are single-phase
powers. The phasor E has been obtained by adding voltage drop jXI, perpendicular to I, to the
voltage V. The triangles OAD and BAC are similar. Analysing triangles BAC and OBC gives

|BC| = XI cos ϕ = E sin δ hence I cos ϕ = E
X

sin δ, (1.6)

|AC| = XI sin ϕ = E cos δ − V hence I sin ϕ = E
X

cos δ − V
X

. (1.7)

Real power leaving the element is expressed as P = VI cos ϕ. Substituting (1.6) into that equation
gives

P = EV
X

sin δ. (1.8)

This equation shows that real power P depends on the product of phase voltages and the sine of the
angle δ between their phasors. In power networks, node voltages must be within a small percentage
of their nominal values. Hence such small variations cannot influence the value of real power.
The conclusion is that large changes of real power, from negative to positive values, correspond to
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Figure 1.4 A simplified model of a network element: (a) equivalent diagram and phasor diagram;
(b) real power and reactive power characteristics.

changes in the sine of the angle δ. The characteristic P(δ) is therefore sinusoidal1 and is referred to
as the power–angle characteristic, while the angle δ is referred to as the power angle or the load angle.
Because of the stability considerations discussed in Chapter 5, the system can operate only in that
part of the characteristic which is shown by a solid line in Figure 1.4b. The smaller the reactance
X , the higher the amplitude of the characteristic.

The per-phase reactive power leaving the element is expressed as Q = VI sin ϕ. Substituting (1.7)
into that equation gives

Q = EV
X

cos δ − V2

X
. (1.9)

The term cos δ is determined by the value of real power because the relationship between the sine
and cosine is cos δ = √

1 − sin2 δ. Using that equation and (1.8) gives

Q =
√(

EV
X

)2

− P2 − V2

X
. (1.10)

The characteristic Q(V ) corresponds to an inverted parabola (Figure 1.4b). Because of the stability
considerations discussed in Chapter 8, the system can operate only in that part of the characteristic
which is shown by a solid line.

The smaller the reactance X , the steeper the parabola, and even small changes in V cause large
changes in reactive power. Obviously the inverse relationship also takes place: a change in reactive
power causes a change in voltage.

The above analysis points out that Q, V and P, δ form two pairs of strongly connected variables.
Hence one should always remember that voltage control strongly influences reactive power flows
and vice versa. Similarly, when talking about real power P one should remember that it is connected
with angle δ. That angle is also strongly connected with system frequency f , as discussed later in
the book. Hence the pair P, f is also strongly connected and important for understanding power
system operation.

1 For a real transmission line or transformer the characteristic will be approximately sinusoidal as discussed
in Chapter 3.
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Figure 1.5 Classification of power system stability (based on CIGRE Report No. 325). Reproduced
by permission of CIGRE

1.4 Stability of a Power System

Power system stability is understood as the ability to regain an equilibrium state after being subjected
to a physical disturbance. Section 1.3 showed that three quantities are important for power system
operation: (i) angles of nodal voltages δ, also called power or load angles; (ii) frequency f ; and (iii)
nodal voltage magnitudes V . These quantities are especially important from the point of view of
defining and classifying power system stability. Hence power system stability can be divided (Figure
1.5) into: (i) rotor (or power) angle stability; (ii) frequency stability; and (iii) voltage stability.

As power systems are nonlinear, their stability depends on both the initial conditions and the
size of a disturbance. Consequently, angle and voltage stability can be divided into small- and
large-disturbance stability.

Power system stability is mainly connected with electromechanical phenomena – see Figure
1.3. However, it is also affected by fast electromagnetic phenomena and slow thermodynamic
phenomena. Hence, depending on the type of phenomena, one can refer to short-term stability and
long-term stability. All of them will be discussed in detail in this book.

1.5 Security of a Power System

A set of imminent disturbances is referred to as contingencies. Power system security is understood as
the ability of the power system to survive plausible contingencies without interruption to customer
service. Power system security and power system stability are related terms. Stability is an important
factor of power system security, but security is a wider term than stability. Security not only includes
stability, but also encompasses the integrity of a power system and assessment of the equilibrium
state from the point of view of overloads, under- or overvoltages and underfrequency.

From the point of view of power system security, the operating states may be classified as in
Figure 1.6. Most authors credit Dy Liacco (1968) for defining and classifying these states.

Restorative Alert

Normal

In extremis Emergency

Figure 1.6 Classification of power system operating states (based on CIGRE Report No. 325).
Reproduced by permission of CIGRE
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In the normal state, a power system satisfies the power demand of all the customers, all the
quantities important for power system operation assume values within their technical constraints,
and the system is able to withstand any plausible contingencies.

The alert state arises when some quantities that are important for power system operation (e.g.
line currents or nodal voltages) exceed their technical constraints due to an unexpected rise in
demand or a severe contingency, but the power system is still intact and supplies its customers.
In that state a further increase in demand or another contingency may threaten power system
operation and preventive actions must be undertaken to restore the system to its normal state.

In the emergency state the power system is still intact and supplies its customers, but the violation
of constraints is more severe. The emergency state usually follows the alert state when preventive
actions have not been undertaken or have not been successful. A power system may assume the
emergency state directly from the normal state following unusually severe contingencies like multiple
faults. When a system is in the emergency state, it is necessary to undertake effective corrective
actions leading first to the alert state and then to the normal state.

A power system can transpose to the in extremis state from the emergency state if no corrective
actions have been undertaken and the system is already not intact due to a reduction of power
supply following load shedding or when generators were tripped because of a lack of synchronism.
The extreme variant of that state is a partial or complete blackout.

To return a power system from an in extremis state to an alert or normal state, a restorative state
is necessary in which power system operators perform control actions in order to reconnect all the
facilities and restore all system loads.

Assessment of power system security can be divided into static and dynamic security. Static
security assessment (SSA) includes the following computational methods:

� for the pre-contingency states, determine the available transfer capability of transmission links
and identify network congestion;

� for the post-contingency states, verify the bus voltages and line power flow limits.

Those tasks of SSA have always been the subject of great interest for power dispatching centres.
However, when the industry was still vertically integrated (see Chapter 2), security management
was relatively easy to execute because any decisions affecting the outputs or control settings of
power plants could be implemented internally within a utility controlling both generation and
transmission. Security management is not that easy to execute in the unbundled industry structure
when the system operator has no direct control of generation. Any decisions affecting outputs or
control settings of power plants have to be implemented using commercial agreements with power
plants or enforced through the Grid Code. Especially, the analysis of available transfer capacity and
congestion management have important implications for power plants as they directly affect their
outputs, and therefore revenues.

SSA methods assume that every transition from the pre- to post-contingency state takes place
without suffering any instability phenomena. Dynamic security assessment (DSA) includes methods
to evaluate stability and quality of the transition from the pre- to post-contingency state. Typical
criteria for DSA include:

(i) rotor (power) angle stability, voltage stability, frequency stability;
(ii) frequency excursion during the dynamic state (dip or rise) beyond specified threshold levels;

(iii) voltage excursion during the dynamic state (dip or rise) beyond specified threshold levels;
(iv) damping of power swings inside subsystems and between subsystems on an interconnected

network.
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Figure 1.7 Components of DSA according to CIGRE Report No. 325. Reproduced by permission
of CIGRE

Criteria (i) and (ii) are assessed using computer programs executing transient security assessment
(TSA). Criteria (iii) are assessed by programs executing voltage security assessment (VSA), and
criteria (iv) are assessed using programs executing small-signal stability assessment (SSSA).

Recent years have seen a number of total and partial blackouts in many countries of the world.
These events have spurred a renewed interest among system operators in the tools for SSA and
DSA. There are a variety of online DSA architectures. Figure 1.7 shows an example of the DSA
architecture. The main components are denoted by boxes drawn with dashed lines.

The task of the component ‘measurement’ is online data acquisition and taking a snapshot
of power system conditions. Supervisory control and data acquisition (SCADA) systems usually
collect measurements of real and reactive power in network branches, busbar voltages, frequency at
a few locations in the system, status of switchgear and the position of tap changers of transformers.
As will be shown in Section 2.6, new SCADA systems are often augmented by phasor measurement
units (PMUs) collecting synchronized voltage phasor measurements.

The ‘modelling’ component uses online data from the ‘measurement’ component and augments
them with offline data, obtained from a database, describing the parameters of power system el-
ements and contingencies to be analysed. The task of the ‘modelling’ component is to create an
online power system model using the identification of the power system configuration and state
estimation. That component may also contain computer programs for the creation of equivalent
models of neighbouring systems. Contingencies vary according to the type of security being ex-
amined and in general need to be able to cater for a variety of events like short circuits at any
location, opening any line or transformer, loss of the largest generating unit or largest load in a
region, multiple faults (when considered to be credible) and so on.

The next important component is ‘computation’. Its task is system model validation and security
assessment. The accuracy of the security assessment depends on the quality of the system model.
Offline data delivered to the ‘modelling’ component are validated through field testing of devices.
Online data of the network configuration and system state obtained from the ‘measuring’ compo-
nent are validated using bad measurement data identification and removal which is made possible
by redundancy of measurements. The best methodology for power system model validation is via
a comparison of simulation results of the dynamic response of the power system with recorded
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responses following some disturbances. To achieve this, the ‘measurement’ component sends data
from disturbance recorders to the ‘computation’ component. The tools for the security assessment
consist of a number of computer programs executing voltage stability analysis, small-signal stability
analysis, transient stability analysis by hybrid methods combining system simulation, and the Lya-
punov direct method described in the textbook by Pavella, Ernst and Ruiz-Vega (2000). Intelligent
systems are also used, employing learning from the situations previously seen.

The ‘reporting and visualization’ component is very important for a system operator employing
the described architecture. Computer programs of the ‘computation’ component process a huge
amount of data and analyse a large number of variants. On the other hand, the operator must
receive a minimum number of results displayed in the most synthetic, preferably graphic, way. Some
DSA displays have been shown in CIGRE Report No. 325. If the power system is in a normal
state, the synthetic results should report how close the system is to an insecure state to give the
operator an idea of what might happen. If the system moves to an alert state or to an emergency
state, the displayed result should also contain information about preventive or corrective action.
This information is passed on to the ‘control’ component. This component assists the operator
in preventive and corrective actions that are executed to improve power system operation. Some
information produced by security assessment programs may be used to produce remedial control
actions, which can be automatically executed by real-time control.

The description of the current state of the art in DSA can be found in CIGRE Report No. 325.

1.6 Brief Historical Overview

The first articles on power systems dynamics began to appear in conference proceedings and
technical journals at about the same time as the first interconnected power systems were constructed.
As power systems developed, interest in their behaviour grew until power system dynamics became
a scientific discipline in its own right.

Perhaps the greatest contribution in developing the theoretical foundations of power system
dynamics was made by research workers in those countries whose power systems cover large
geographical areas, most notably the United States, Canada and the former Soviet Union. However,
much excellent work has also been contributed by research workers in many other countries. With
the mountain of research papers and books now available it is difficult to attempt to give a short
historical overview of all the literature on power system dynamics, so, out of necessity, the following
overview is restricted to what the authors regard as some of the most important books dealing with
power system dynamics.

Some of the first monographs on power system dynamics published in English were the books by
Dahl (1938), a two-volume textbook by Crary (1945, 1947) and a large, three-volume, monograph
by Kimbark (1948, 1950, 1956; reprinted 1995). In all these books the main emphasis was on
electromechanical phenomena. At the same time a Russian text was published by Zdanov (1948)
also dealing mainly with electromechanical phenomena. Zdanov’s work was later continued by
Venikov, who published about a dozen books in Russian between 1958 and 1985 and one of
these books, again dealing mainly with electromechanical phenomena, was published in English by
Pergamon Press (Venikov, 1964). An extended and modified version of this book was published in
Russian in 1978 (Venikov, 1978a) and then later in the same year translated into English (Venikov,
1978b). The main feature of Venikov’s books is the emphasis placed on the physical interpretation
of the dynamic phenomena.

One of the first books devoted to the general description of power system dynamics was written in
Germany by Rüdenberg (1923). This book was later translated into many languages with an English
edition appearing in 1950. Other important books that have dealt generally with power system
dynamics have been written by Yao-nan Yu (1983), Racz and Bokay (1988) and Kundur (1994). The
comprehensive text by Kundur contains an excellent overview of modelling and analysis of power
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systems and constitutes the basic monograph on power system dynamics. Fast electromagnetic
phenomena, like wave and switching transients, are described by Greenwood (1971).

From the 1940s until the 1960s power system dynamics were generally studied using physical (ana-
logue) models of the system. However, rapid developments in computer technology brought about
an ever-increasing interest in mathematical modelling of power systems with the main monographs
on this topics being written by Anderson and Fouad (1977, 2003), Arrillaga, Arnold and Harker
(1983), Arrillaga and Arnold (1990), Kundur (1994), Ilić and Zaborszky (2000) and Saccomanno
(2003).

Another category of books uses the Lyapunov direct method to analyse the electromechanical
stability of power systems. The main texts here are those written by Pai (1981, 1989), Fouad
and Vittal (1992), Pavella and Murthy (1994) and Pavella, Ernst and Ruiz-Vega (2000). It is worth
stressing that a large number of excellent books on the Lyapunov direct method have been published
in Russia (Lyapunov’s homeland) but were not translated into English.

A brief overview of the large number of papers published over the last 20–30 years shows the main
emphasis of power system research to have been on the effective use of computers in power system
analysis. Given the rapid developments in computer technology, and its fundamental importance
in power system analysis, this is perhaps to be expected and understood. However, there is a danger
that young engineers and researchers become more concerned with the computer technology than in
understanding the difficult underlying physical principles of the power system dynamics themselves.
In time this may endanger progress in the field. To try and combat this problem, this book first
describes the underlying physical process of the particular power system dynamic phenomena and
only after a thorough understanding has been reached is a more rigorous mathematical treatment
attempted. Once the mathematical treatment has been completed, computers can then be used to
obtain the necessary quantitative results. For these reasons this book concentrates on developing a
basic analysis of the different problem areas and often refers to more specialized publications.
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