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Introduction

Collecting, analysing and drawing inferences from data are central to research in
the medical and social sciences. Unfortunately, for any number of reasons, it is
rarely possible to collect all the intended data. The ubiquity of missing data, and
the problems this poses for both analysis and inference, has spawned a substantial
statistical literature dating from 1950s. At that time, when statistical computing
was in its infancy, many analyses were only feasible because of the carefully
planned balance in the dataset (for example, the same number of observations
on each unit). Missing data meant the available data for analysis were unbal-
anced, thus complicating the planned analysis and in some instances rendering it
unfeasible. Early work on the problem was therefore largely computational (e.g.
Healy and Westmacott, 1956; Afifi and Elashoff, 1966; Orchard and Woodbury,
1972; Dempster et al., 1977).

The wider question of the consequences of nontrivial proportions of missing
data for inference was neglected until a seminal paper by Rubin (1976). This set
out a typology for assumptions about the reasons for missing data, and sketched
their implications for analysis and inference. It marked the beginning of a broad
stream of research about the analysis of partially observed data. The literature is
now huge, and continues to grow, both as methods are developed for large and
complex data structures, and as increasing computer power and suitable software
enable researchers to apply these methods.

For a broad overview of the literature, a good place to start is one of the recent
excellent textbooks. Little and Rubin (2002) write for applied statisticians. They
give a good overview of likelihood methods, and give an introduction to multiple
imputation. Allison (2002) presents a less technical overview. Schafer (1997) is
more algorithmic, focusing on the EM algorithm and imputation using the mul-
tivatiate normal and general location model. Molenberghs and Kenward (2007)
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4 MULTIPLE IMPUTATION AND ITS APPLICATION

focus on clinical studies, while Daniels and Hogan (2008) focus on longitudinal
studies with a Bayesian emphasis.

The above books concentrate on parametric approaches. However, there is
also a growing literature based around using inverse probability weighting, in the
spirit of Horvitz and Thompson (1952), and associated doubly robust methods.
In particular, we refer to the work of Robins and colleagues (e.g. Robins et
al., 1995; Scharfstein et al., 1999). Vansteelandt et al. (2009) give an accessible
introduction to these developments. A comparison with multiple imputation in a
simple setting is given by Carpenter et al. (2006). The pros and cons are debated
in Kang and Schafer (2007) and the theory is brought together by Tsiatis (2006).

This book is concerned with a particular statistical method for analysing
and drawing inferences from incomplete data, called Multiple Imputation (MI).
Initially proposed by Rubin (1987) in the context of surveys, increasing awareness
among researchers about the possible effects of missing data (e.g. Klebanoff and
Cole, 2008) has led to an upsurge of interest (e.g. Sterne et al., 2009; Kenward
and Carpenter, 2007; Schafer, 1999a; Rubin, 1996).

Multiple imputation (MI) is attractive because it is both practical and widely
applicable. Recently developed statistical software (see, for example, issue 45
of the Journal of Statistical Software) has placed it within the reach of most
researchers in the medical and social sciences, whether or not they have under-
taken advanced training in statistics. However, the increasing use of MI in a
range of settings beyond that originally envisaged has led to a bewildering pro-
liferation of algorithms and software. Further, the implication of the underlying
assumptions in the context of the data at hand is often unclear.

We are writing for researchers in the medical and social sciences with the
aim of clarifying the issues raised by missing data, outlining the rationale for MI,
explaining the motivation and relationship between the various imputation algo-
rithms, and describing and illustrating its application to increasingly complex
data structures.

Central to the analysis of partially observed data is an understanding of why
the data are missing and the implications of this for the analysis. This is the
focus of the remainder of this chapter. Introducing some of the examples that
run through the book, we show how Rubin’s typology (Rubin, 1976) provides
the foundational framework for understanding the implications of missing data.

1.1 Reasons for missing data

In this section we consider possible reasons for missing data, illustrate these
with examples, and draw some preliminary implications for inference. We use
the word ‘possible’ advisedly, since with partially observed data we can rarely
be sure of the mechanism giving rise to missing data. Instead, a range of possible
mechanisms are consistent with the observed data. In practice, we therefore wish
to analyse the data under different mechanisms, to establish the robustness of our
inference in the face of uncertainty about the missingness mechanism.
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All datasets consist of a series of units each of which provides information
on a series of items . For example, in a cross-sectional questionnaire survey,
the units would be individuals and the items their answers to the questions. In
a household survey, the units would be households, and the items information
about the household and members of the household. In longitudinal studies,
units would typically be individuals while items would be longitudinal data from
those individuals. In this book, units therefore correspond to the highest level in
multilevel (i.e., hierarchical) data, and unless stated otherwise data from different
units are statistically independent.

Within this framework, it is useful to distinguish between units where all the
information is missing, termed unit nonresponse and units who contribute partial
information, termed item nonresponse. The statistical issues are the same in both
cases, and both can in principle be handled by MI. However, the main focus of
this book is the latter.

Example 1.1 Mandarin tableau

Figure 1.1, which is also shown on the cover, shows part of the frontage of a
senior mandarin’s house in the New Territories, Hong Kong. We suppose interest
focuses on characteristics of the figurines, for example their number, height, facial
characteristics and dress. Unit nonresponse then corresponds to missing figurines,
and item nonresponse to damaged – hence partially observed – figurines. �

Figure 1.1 Detail from a senior mandarin’s house front in New Territories, Hong
Kong. Photograph by H. Goldstein.
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1.2 Examples

We now introduce two key examples, which we return to throughout the book.

Example 1.2 Youth Cohort Study (YCS)

The Youth Cohort Study of England and Wales (YCS) is an ongoing UK gov-
ernment funded representative survey of pupils in England and Wales at school-
leaving age (School year 11, age 16–17) (UK Data Archive, 2007). Each year
that a new cohort is surveyed, detailed information is collected on each young
person’s experience of education and their qualifications as well as information
on employment and training. A limited amount of information is collected on
their personal characteristics, family, home circumstances, and aspirations.

Over the life-cycle of the YCS, different organisations have had responsibility
for the structure and timings of data collection. Unfortunately, the documenta-
tion of older cohorts is poor. Croxford et al. (2007) have recently deposited a
harmonised dataset that comprises YCS cohorts from 1984 to 2002 (UK Data
Archive Study Number 5765). We consider data from pupils attending compre-
hensive schools from five YCS cohorts; these pupils reached the end of Year 11
in 1990, 1993, 1995, 1997 and 1999.

We explore relationships between Year 11 educational attainment (the General
Certificate of Secondary Education) and key measures of social stratification. The
units are pupils and the items are measurements on these pupils, and a nontrivial
number of items are partially observed. �

Example 1.3 Randomised controlled trial of patients with chronic asthma

We consider data from a 5-arm asthma clinical trial to assess the efficacy and
safety of budesonide, a second-generation glucocorticosteroid, on patients with
chronic asthma. 473 patients with chronic asthma were enrolled in the 12-week
randomised, double-blind, multi-centre parallel-group trial, which compared the
effect of a daily dose of 200, 400, 800 or 1600 mcg of budesonide with placebo.

Key outcomes of clinical interest include patients’ peak expiratory flow
rate (their maximum speed of expiration in litres/minute) and their Forced
Expiratory Volume, FEV1, (the volume of air, in litres, the patient with fully
inflated lungs can breathe out in one second). In summary, the trial found a
statistically significant dose-response effect for the mean change from baseline
over the study for both morning peak expiratory flow, evening peak expiratory
flow and FEV1, at the 5% level.

Budesonide treated patients also showed reduced asthma symptoms and
bronchodilator use compared with placebo, while there were no clinically
significant differences in treatment related adverse experiences between the
treatment groups. Further details about the conduct of the trial, its conclusions
and the variables collected can be found elsewhere (Busse et al., 1998). Here,
we focus on FEV1 and confine our attention to the placebo and lowest active
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dose arms. FEV1 was collected at baseline, then 2, 4, 8 and 12 weeks after
randomisation. The intention was to compare FEV1 across treatment arms at
12 weeks. However, excluding 3 patients whose participation in the study was
intermittent, only 37 out of 90 patients in the placebo arm, and 71 out of 90
patients in the lowest active dose arm, still remained in the trial at twelve
weeks. �

1.3 Patterns of missing data

It is very important to investigate the patterns of missing data before embarking
on a formal analysis. This can throw up vital information that might otherwise
be overlooked, and may even allow the missing data to be traced. For example,
when analysing the new wave of a longitudinal survey, a colleague’s careful
examination of missing data patterns established that many of the missing ques-
tionnaires could be traced to a set of cardboard boxes. These turned out to have
been left behind in a move. They were recovered and the data entered.

Most statistical software now has tools for describing the pattern of miss-
ing data. Key questions concern the extent and patterns of missing values, and
whether the pattern is monotone (as described in the next paragraph), as if it is,
this can considerably speed up and simplify the analysis.

Missing data in a set of p variables are said to follow a monotone missingness
pattern if the variables can be re-ordered such that, for every unit i and variable j ,

1. if unit i is observed on variable j , where j = 2, . . . , p, it is observed on
all variables j ′ < j , and

2. if unit i is missing on variable j , where j = 2, . . . , p, it is missing on all
variables j ′ > j .

A natural setting for the occurrence of monotone missing data is a longitudinal
study, where units are observed either until they are lost to follow-up, or the
study concludes. A monotone pattern is thus inconsistent with interim missing
data, where units are observed for a period, missing for the subsequent period,
but then observed. Questionnaires may also give rise to monotone missing data
patterns when individuals systematically answer each question in turn from the
beginning till they either stop or complete the questionnaire. In other settings it
may be possible to re-order items to achieve a monotone pattern.

Example 1.2 Youth Cohort Study (ctd)

Table 1.1 shows the covariates we consider from the YCS. There are no missing
data in the variables cohort and boy . The missingness pattern for GCSE score
and the remaining two variables is shown in Table 1.2. In this example it is not
possible to re-order the variables (items) to obtain a monotone pattern, due for
example, to pattern 3 (N = 697). �
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Table 1.1 YCS variables for exploring the relationship between Year 11
attainment and social stratification.

Variable name Description

cohort year of data collection: 1990, 93, 95, 97, 99
boy indicator variable for boys
occupation parental occupation, categorised as managerial,

intermediate or working
ethnicity categorised as Bangladeshi, Black, Indian,

other Asian, Other, Pakistani or White

Table 1.2 Pattern of missing values in the YCS data.

Pattern GCSE score Occupation Ethnicity No. % of total

1 � � � 55145 87%
2 � · � 6821 11%
3 · � � 697 1%
4 � · · 592 1%

Example 1.3 Asthma study (ctd)

Table 1.3 shows the withdrawal pattern for the placebo and lowest active dose
arms (all the patients are receiving their randomised medication). We have
removed three patients with unusual interim missing data from Table 1.3 and all
our analyses. The remaining missingness pattern is monotone in both treatment
arms. �

Table 1.3 Asthma study: withdrawal pattern by treatment arm.

Dropout pattern Placebo arm

Mean FEV1 (litres) measured at week Number Percent

0 2 4 8 12

1 � � � � � 37 41
2 � � � � · 15 17
3 � � � · · 22 24
4 � � · · · 16 18

Lowest Active arm
1 � � � � � 71 79
2 � � � � · 8 9
3 � � � · · 8 9
4 � � · · · 3 3
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1.3.1 Consequences of missing data

Our focus is the practical implications of missing data for both parameter esti-
mation and inference. Unfortunately, the two are often conflated, so that a
computational method for parameter estimation when data are missing is said
to have ‘solved’ or ‘handled’ the missing data issue. Since, with missing data,
computational methods only lead to valid inference under specific assumptions,
this attitude is likely to lead to misleading inferences.

In this context, it may be helpful to draw an analogy with the sampling
process used to collect the data. If an analyst is presented with a spreadsheet
containing columns of numerical data, they can analyse the data (calculate means
of variables, regress variables on each other and so forth). However, they cannot
draw any inferences unless they are told how and from whom the data were
collected. This information is external to the numerical values of the variables.

We may think of the missing data mechanism as a second stage in the sam-
pling process, but one that is not under our control. It acts on the data we intended
to collect and leaves us with a partially observed dataset. Once again, the missing
data mechanism cannot usually be definitively identified from the observed data,
although the observed data may indicate plausible mechanisms (e.g. response
may be negatively correlated with age). Thus we will need to make an assump-
tion about the missingness mechanism in order to draw inference. The process
of making this assumption is quite separate from the statistical methods we use
for parameter estimation etc. Further, to the extent that the missing data mecha-
nism cannot be definitively identified from the data, we will often wish to check
the robustness of our inferences to a range of missingness mechanisms that are
consistent with the observed data. The reason this book focuses on the statisti-
cal method of MI is that it provides a computationally feasible approach to the
analysis for a wide range of problems under a range of missingness mechanisms.

We therefore begin with a typology for the mechanisms causing, or gener-
ating, the missing data. Later in this chapter we will see that consideration of
these mechanisms in the context of the analysis at hand clarifies the assumptions
under which a simple analysis, such as restriction to complete records, will be
valid. It also clarifies when more sophisticated computational approaches such as
MI will be valid and informs the way they are conducted. We stress again that
the mechanism causing the missing data can rarely be definitively established.
Thus we will often wish to explore the robustness of our inferences to a range
of plausible missingness mechanisms – a process we call sensitivity analysis .

From a general standpoint, missing data may cause two problems: loss of
efficiency and bias.

First, loss of efficiency, or information, is an inevitable consequence of miss-
ing data. Unfortunately, the extent of information loss is not directly linked to the
proportion of incomplete records. Instead it is intrinsically linked to the analysis
question. When crossing the road, the rear of the oncoming traffic is hidden from
view – the data are missing. However, these missing data do not bear on the
question at hand – will I make it across the road safely? While the proportion
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of missing data about each oncoming vehicle is substantial, information loss is
negligible. Conversely, when estimating the prevalence of a rare disease, a small
proportion of missing observations could have a disproportionate impact on the
resulting estimate.

Faced with an incomplete dataset, most software automatically restricts anal-
ysis to complete records. As we illustrate below, the consequence of this for loss
of information is not always easy to predict. Nevertheless, in many settings it
will be important to include the information from partially complete records. Not
least of the reasons for this is the time and money it has taken to collect even
the partially complete records. Under certain assumptions about the missingness
mechanism, we shall see that MI provides a natural way to do this.

Second, and perhaps more fundamentally, the subset of complete records may
not be representative of the population under study. Restricting analysis to com-
plete records may then lead to biased inference. The extent of such bias depends
on the statistical behaviour of the missing data. A formal framework to describe
this behaviour is thus fundamental. Such a framework was first elucidated in a
seminal paper by Rubin (1976). To describe this, we need some definitions.

1.4 Inferential framework and notation

For clarity we take a frequentist approach to inference. This is not essential
or necessarily desirable; indeed we will see that MI is essentially a Bayesian
method, with good frequentist properties. Often, as Chapter 2 shows, formally
showing these frequentist properties is most difficult theoretically.

We suppose we have a sample of n units, which will often be individuals, from
a population that for practical inferential purposes can be considered infinite. Let
Yi = (Yi,1, Yi,2, . . . , Yi,p)T denote the p variables we intended to collect from
the ith unit, i = 1 . . . , n. We wish to use these data to make inferences about a
set of p population parameters θ = (θ1, . . . , θp)T .

For each unit i = 1, . . . , n let Yi,O denote the subset of p variables that
are observed, and Yi,M denote the subset that are missing. Thus, for different
individuals, Yi,O and Yi,M may well be different subsets of the p variables. If
no data are missing, Yi,M will be empty.

Next, again for each individual i = 1, . . . , n and variable j = 1, . . . , p,
let Ri,j = 1 if Yi,j is observed and Ri,j = 0 if Yi,j is missing. Let
Ri = (Ri,1, . . . , Ri,p)T . Consistent with the definition of monotone missingness
patterns on p. 10, the pattern is monotone if the p variables can be re-ordered
so that for each unit i,

Ri,j = 0 �⇒ Ri,j ′ = 0 for j ′ = j + 1, . . . , p. (1.1)

The missing value mechanism is then formally defined as

Pr(Ri |Yi ), (1.2)
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that is to say the probability of observing unit i’s data given their potentially
unseen values Yi . It is important to note that, in what follows, we assume that
unit i’s data exist (or at least existed). In other words, if it had been possible for
us to be in the right place at the right time, we would have been able to observe
the complete data. What (1.2) describes therefore, is the probability that the data
collection we were able to undertake on unit i yielded values of Yi,0. Thus, (at
least until we consider sensitivity analysis for clinical trials in Chapter 10) the
missing data are not counter-factual, in the sense of what might have happened
if a patient had taken a different drug from the one they actually took, or a child
had gone to a different school from the one they actually attended.

Example 1.1 Mandarin tableau (ctd)

Here, Yi take the form of observations on the n = 4 figurines, describing for
example their size and dress. Ri,j indicates those observations that are miss-
ing on figurine i because its head is missing. Originally, of course, all the
heads were present, so we can refer to the underlying values of the unobserved
variables. �

Example 1.2 Youth Cohort Study (YCS) (ctd)

Here, underlying values of missing GCSE score, parental occupation and ethnicity
exist, and given sufficient time and money we would be able to discover many
of them. �

Example 1.3 Asthma study (ctd)

Were resources not limited, researchers could have visited each patient in their
home at each of the scheduled follow-up times to record their data. �

We now come to the three classes of missing data mechanism. These describe
how the probability of seeing the data depends on the observed, and unobserved
(but potentially observable, or underlying) values. In general, depending on the
context, we will think of the same mechanism applying either to all i = 1, . . . , n

units in the data set, or to an independent subset of them.

1.4.1 Missing Completely At Random (MCAR)

We say data are Missing Completely At Random (MCAR) if the probability of
a value being missing is unrelated to the observed and unobserved data on that
unit. Algebraically,

Pr(Ri |Yi ) = Pr(Ri ). (1.3)

Since, when data are MCAR, the chance of the data being missing is unrelated
to the values, the observed data are therefore representative of the population.
However, relative to the data we intended to collect, information has been lost.
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Example 1.1 Mandarin tableau (ctd)

Suppose we wish to summarise facial characteristics of the figurines, e.g. average
head circumference. If the missing heads are MCAR, a valid estimate is obtained
from the observed heads. Although valid, it is imprecise relative to an estimate
based on all the heads.

Before moving on, note that the MCAR assumption is made for a specific
analysis. It is not a property of the tableau. It may be plausible to assume that
headgear is MCAR, while heads may systematically be missing because of racial
characteristics. Further, if we step back from the tableau, we may see that missing
heads correspond to missing, or recently replaced, roof tiles. If so, the mechanism
causing the missing data is clear: however the assumption of MCAR is still likely
to be appropriate, because the mechanism causing the missing data is unlikely
to bear on (i.e., is likely statistically independent of) the analysis question.

Similarly, in certain settings we may find that the variables predictive of
missing data are independent of the substantive analysis at hand. This is consistent
with the MCAR assumption: analysis of the complete records will be unbiased,
but some precision is lost. �

Example 1.2 Youth Cohort Study (ctd)

If data are MCAR in the YCS study, valid inference would be obtained from
the 55145 complete records (Table 1.2). However, omitting the 8110 indi-
viduals with partial information means inferences are less precise than they
could be. �

Example 1.3 Asthma study (ctd)

Assuming data are MCAR, a valid estimate of the overall mean in each group
at 12 weeks is obtained by simply averaging the 37 available observations in the
placebo group and the 71 available observations in the active group. This gives,
respectively 2.05 l (s.e. 0.09) and 2.23 l (s.e. 0.10). �

1.4.2 Missing At Random (MAR)

We say data are Missing At Random (MAR) if given, or conditional on, the
observed data the probability distribution of Ri is independent of the unob-
served data. Recalling that for individual i we can partition Yi as (Yi,O, Yi,M)

we can express this mathematically as

Pr(Ri |Yi ) = Pr(Ri |Yi,O). (1.4)

This does not mean – as is sometimes supposed – that the probability of observ-
ing a variable on an individual is independent of the value of that variable. Quite
the contrary: under MAR the chance of observing a variable will depend on
its value. Crucially though, given the observed data this dependence is broken.
Consider the following example.
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Figure 1.2 Plot of 200 hypothetical incomes against job type.

Example 1.4 Income and job type

Suppose we survey 100 employees of job type A and B for their income. Only
157 reveal their income, as shown in Figure 1.2. The figure shows that employees
with higher incomes are less likely to divulge them: the probability of observing
a variable depends on its value. However, if within job type A the probability
of observing income does not depend on income, and within job type B the
probability of observing income does not depend on income, then income is
missing at random dependent on job type. �
The immediate consequence of this is that the mean of the observed incomes,
marginal to (or aggregating over) job type is biased downwards. The data were
generated with a mean income of £60,000 in job type A and £30,000 in job
type B, so that the true mean income is £45,000. Contrast the observed mean
income of

(68 × 60927 + 89 × 29566)/157 = £43,149.

We note three further points. First, if within job type the probability of observing
income does not depend on income, it follows that:

1. To say ‘income is MAR’ is incomplete; we need instead to specify the
variable which we assume makes income conditionally independent of job
type. We could say

‘income is MAR, dependent on job type’
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or, perhaps more explicitly,

‘within categories of job type, income is MCAR.’

2. If income is MAR, dependent on job type,

• in job type A the distribution of unobserved and observed incomes is
the same, and

• in job type B the distribution of unobserved and observed incomes is
the same.

Formally, let variable Yi,1 be income and Yi,2 be job type. Job type is
always observed so Ri,2 = 1 for all individuals i. The statement ‘income
is MAR, dependent on job type’ is expressed

Pr(Ri,1 = 1|Yi,1, Yi,2) = Pr(Ri,1 = 1|Yi,2). (1.5)

Now consider what this implies for the distribution of income given job
type. By repeatedly using the definition of conditional probability

Pr(Yi,1|Yi,2, Ri,1 = 1) = Pr(Yi,1, Yi,2, Ri,1 = 1)

Pr(Yi,2, Ri,1 = 1)

= Pr(Ri,1 = 1|Yi,1, Yi,2) Pr(Yi,1, Yi,2)

Pr(Ri,1 = 1|Yi,2) Pr(Yi,2)

= Pr(Yi,1|Yi,2), (1.6)

where the last step follows from MAR, i.e., (1.5). The argument (1.6) holds
if income is not observed, Ri,1 = 0. Thus under MAR the distribution of
income within job type is the same in the observed data, the unobserved
data, and the population.
In this case, to estimate the marginal income we average the observed
income in each job type and then scale up:

(100 × 60927 + 100 × 29566)/200 = £45,247. (1.7)

Notice that to obtain this estimate we did not need to explicitly specify
how the probability of observing income depends on job type; merely that
given job type it does not depend on income.

3. The statement ‘income is MAR, dependent on job type’ is an untestable
assumption. The data we would need to test it (represented by the triangles
in Figure 1.2) is missing!
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Of course, were it observed, we could ‘test the MAR assumption’ in two ways:
first a logistic regression, for example:

logit Pr{(Ri,1 = 1)} = α0 + α1Yi,1 + α2Yi,2 + α3Yi,1Yi,2;
if MAR is true then the hypothesis α1 = α3 = 0 is true. Or, we could fit a
corresponding regression:

E(Yi,1) = β0 + β1Yi,2 + β2Ri,1 + β3Yi,2Ri,1;
If MAR is true then the hypothesis β2 = β3 = 0 is true.

This simple example draws out the following general points:

1. statements relating the probability of observing data to the values of data
have direct consequences for conditional distributions of the data, and

2. under the MAR assumption, the precise missing data mechanism need
not be specified; indeed the precise form can be different for different
individuals.

These two points together mean that the MAR mechanism is much more subtle
than might at first appear; these subtleties can manifest themselves unexpectedly.

Example 1.4 Income and job type (ctd)

Suppose the mechanism causing the missing income differed for each of the 200
individuals, that is

logit Pr(Ri,1 = 1) = α0,i + α1,iYi,2.

Then missing data are still MAR, and (1.7) is still a valid estimate. �

Of course, it may be as contrived to think each individual has their own MAR
mechanism as to think that the same mechanism holds for all. In a simple example
this is not important, but in real applications a blanket assumption of MAR may
be very contrived.

Example 1.5 Subtlety of MAR assumption

Suppose we have three variables, Yi,1, Yi,2, Yi,3, and we are unfortunate, so that
our dataset contains nontrivial numbers of all possible missingness patterns, as
shown in Table 1.4.

If the same missingness mechanism applies to all the units, and it is either
MAR or MCAR, then it must be MCAR. If we wish to assume data are MAR, we
are forced to split the data into groups among which different MAR mechanisms
are operating. These groups need not necessarily be defined by the missing data
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Table 1.4 Three variables: all
possible missing value patterns.

Pattern Y1 Y2 Y3

1 � � �
2 � � ·
3 � · �
4 · � �
5 � · ·
6 · � ·
7 · · �

patterns; they could be defined by characteristics of the units. Settings like this
are considered by Harel and Schafer (2009). To illustrate, though, we define
groups by the missing data patterns.

For a MAR mechanism, we might assume the following:

• in patterns (1, 2) Yi,3 is MAR given Yi,1, Yi,2;
• in patterns (3, 4, 7) Yi,1 and/or Yi,2 is MAR given Yi,3, and

• in patterns (5, 6) data are MCAR.

In practice, often a relatively small number of the possible missingness patterns
predominate, and it is assumptions about these that are important for any analysis.
The remaining – relatively infrequent – patterns can often be assumed MCAR,
with little risk to the final inference if this assumption is in fact wrong. �

Faced with complex data, there is a temptation to invoke the MAR assumption
too readily, especially as this simplifies any analysis using MI. To guard against
this, analysts need to be satisfied that any associations assumed to justify
the MAR assumption are at least consistent with the observed data. Since
consideration of selection mechanisms may not be as straightforward as might
first appear, it can also be worth considering the plausibility of MAR from
the point of view of the joint and conditional distribution of the data. As (1.6)
illustrates, for MAR we need to be satisfied

1. that conditional distributions of partially observed variables given fully
observed variables do not differ depending on whether the data are
observed, and

2. in consequence the joint distribution of the data can be validly estimated
by piecing together the marginal distributions of the observed patterns.

The above discussion explains why we do not regard the MAR assumption
as a panacea, but nevertheless often both a plausible and practical starting
point for the analysis of partially observed data. In particular, the points drawn
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out of Example 1.4 are not specific to either the number or type of variables
(categorical or quantitative).

Example 1.1 Mandarin tableau (ctd)

Here the MAR assumption says that the distribution of head characteristics given
body characteristics (i.e., dress, height, etc.) does not depend on whether the head
is present. Thus, under MAR we can estimate the distribution of characteristics
of figurines with missing heads from figurines with similar body characteristics.

Notice the two rightmost figurines in Figure 1.1 share the same necktie.
Assuming headdress is MAR given necktie, the missing headdress on the
rightmost figurine is similar to that on the second rightmost figurine.

Clearly this assumption cannot be checked from the tableau (data) at hand.
However it might be possible to explore it using other tableaux (i.e., other
datasets). If MAR is plausible for headdress given necktie, it does not mean it
is plausible for skin colour given necktie. In other words MAR is an assumption
we make for the analysis, not a characteristic of the dataset. For some analyses
of partially observed data it may be plausible; for others not. �

1.4.3 Missing Not At Random (MNAR)

If the mechanism causing missing data is neither MCAR nor MAR, we say it
is Missing Not At Random (MNAR). Under a MNAR mechanism, the probabil-
ity of an observation being missing depends on the underlying value, and this
dependence remains even given the observed data. Mathematically,

Pr(Ri |Yi ) �= Pr(Ri |Yi,O). (1.8)

While in some settings MNAR may be more plausible than MAR, analysis
under MNAR is considerably harder. This is because under MAR, equation (1.6)
showed that conditional distributions of partially observed variables given fully
observed variables are the same in units who do, and do not, have the data
observed. However (1.6) does not hold if (1.8) holds.

It follows that inference under MNAR involves an explicit specification of
either the selection mechanism, or how conditional distributions of partially
observed variables given fully observed variables differ between units who do,
and do not, have the data observed.

Formally, we can write the joint distribution of unit i’s variables, Yi , and the
indicator for observing those variables, Ri as

Pr(Ri |Yi ) Pr(Yi ) = Pr(Ri , Yi ) = Pr(Yi |Ri ) Pr(Ri ). (1.9)

In the centre is the joint distribution, and this can be written either as

1. a selection model – the LHS of (1.9), i.e., a product of (i) the condi-
tional probability of observing the variables, given their values and (ii)
the marginal distribution of the data, OR
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2. a pattern mixture model – the RHS of (1.9), i.e., a product of (i) the
probability distribution of the data within each missingness pattern and
(ii) the marginal probability of the missingness pattern.

Thus we can specify a MNAR mechanism either by specifying the selection
model (which implies the pattern mixture model) or by specifying a pattern
mixture model (which implies a selection model). Depending on the context, both
approaches may be helpful. Unfortunately, even in apparently simple settings,
explicitly calculating the selection implication of a pattern mixture model, or
vice versa, can be awkward. We shall see in Chapter 10 that an advantage of
multiple imputation is that, given a pattern mixture model, we can estimate the
selection model implications quite easily.

Once again, as the example below shows, MNAR is an assumption for the
analysis, not a characteristic of the data.

Example 1.1 Mandarin tableau (ctd)

It may be that the figurines with missing heads were wearing a head dress that
identified them as a member of a class, or group, that subsequently became very
unpopular – causing the heads to be smashed. This MNAR selection mechanism
means that we cannot say anything about the typical characteristics of head dress
without making untestable assumptions about the characteristics of the missing
head dresses. Further, the MNAR assumption implies that the distribution of head
dress given body dress is different for figurines with missing and observed heads.

We reiterate, under MNAR any summary statistics, or analyses, require either
explicit assumptions about the form of the distribution of the missing data given
the observed or explicit specification of the selection mechanism and the marginal
distribution of the full (including unobserved) data. Contrast this with analyses
assuming MAR, where these assumptions are made implicitly.

We repeat a point from the tableau: if head dress was the trigger for missing
heads, but the type of head dress worn is not related to physical characteristics
of the heads, analyses concerning their physical characteristics could be validly
performed under MAR. Just because the heads are MNAR does not mean all
analyses require the MNAR assumption. This underlines that, in applications, it
is crucial to think carefully about the selection mechanism, and how it affects
the analysis question. �

Example 1.6 Income MNAR

To illustrate (1.9), consider a simplified version of the income example above.
Suppose that of the 100 people surveyed, 50 have the same income θL, and 50
have the same higher income, θU . Suppose further that all those with income θL

disclose it, but only a fraction π of those with income θU disclose it.
This is an example of pattern mixture model, i.e., the RHS of (1.9). Let 1[ . ]

be 1 if the statement in brackets is true and 0 otherwise. Then, in this simple
example, it is clear what the the selection counterpart is:
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Pr(income observed) = 1 + (π − 1) × 1[income = θU ], and

mean income = (θL + θU )/2.

The pattern mixture model implies a selection model.
We now illustrate the same point with a bivariate normal model. Let Y denote

income; to keep the algebra simple suppose Y ∼ N(0, 1), and we drop the index
i. Let R = 1 if Y is observed, but now let X ∼ N(μx, 1) be a normally distributed
variable, correlated with Y , which is positive if Y is observed, that is when R = 1.
We specify the selection model, and derive the pattern mixture model.

Let �( . ) be the cumulative distribution of the standard normal, and suppose
we choose the selection model as

Pr(R = 1|Y ) = Pr(X > 0|Y ) = �(α0 + α1Y ). (1.10)

Equation (1.10) thus assumes a specific MNAR mechanism, for α0 and α1 cannot
be estimated from the observed values of Y .

Given (1.10) and the marginal standard normal distribution of Y , the joint
distribution of (Y, X) is bivariate normal:(

Y

X

)
∼ N

[(
1
μx

)
,

(
1 ρ

ρ 1

)]
, (1.11)

where ρ = corr(Y, X). Thus we have the central term in (1.9). It follows that

Pr(Xi |yi) ∼ N{μx + ρYi, (1 − ρ2)}.
Thus

Pr(X > 0|Y ) = �

(
μx + ρY√

1 − ρ2

)
= �

(
μx√

1 − ρ2
+ ρ√

1 − ρ2
Y

)
.

Comparing with (1.10) we see ρ = g(α1) and μx = h(α0, α1). Hence (α0, α1)

define μx , which in turn defines the marginal probability, Pr(X > 0), of observ-
ing Y .

From the bivariate normal (1.11) the distribution of observed income, Y given
R = 1 is Y |x > 0 which is

φ(Y )

�(μx)
�

(
μx + ρY√

1 − ρ2

)
= φ(Y )

�{h(α0, α1)}
�(α0 + α1Y ).

A similar result follows for the distribution of unobserved income. Putting
this together, we have arrived at the pattern mixture model, the RHS of (1.9).
Specification of the selection mechanism, through α0, α1, together with the
marginal distribution of income, fixes both the marginal probability of observing
income and the distribution of the two ‘patterns’ of data: the seen and unseen
incomes.
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This is a simple example of the Heckman selection model, which is
further discussed in Little and Rubin (1987), Ch. 11. More recently, it has also
been used as a model for publication bias in meta analysis (Copas and Shi,
2000a). �

The example above illustrates that when data are MNAR, instead of thinking
about the selection mechanism, it is equally appropriate to consider differences
between conditional distributions of partially observed given fully observed vari-
ables. Under MAR such distributions do not differ depending on whether data
is missing or not; under MNAR they do. Considering the conditional distribu-
tion of the observed data, and then exploring the robustness of inference as it is
allowed to differ in the unobserved data, is therefore a natural way to explore
the robustness of inference to an assumption of MAR. From our perspective
it has two further advantages: (i) the differences can be expressed simply and
pictorially, and (ii) MI provides a natural route for inference. Unfortunately, the
selection counterparts, or implications, of pattern mixture models are rarely easy
to calculate directly, but again MI can help: after imputing missing data under
a pattern mixture model, it is straightforward to explore implications for the
implied selection model.

Example 1.3 Asthma study (ctd)

We illustrate the above using the 12 week data from the asthma study. Sup-
pose first that 12 week response is MAR given treatment group. Then, in each
treatment group the mean of unobserved and observed data are the same, so the
treatment effect is 2.23 − 2.05 = 0.18 litres. Suppose we have a MNAR mech-
anism and we express this as a pattern mixture model. Let μP , μA be the mean
response under placebo and active treatment. Then

μP = 37 × 2.05 + (90 − 37) × (2.05 + 	P ), and

μA = 71 × 2.23 + (90 − 71) × (2.23 + 	A),

where 	P , 	A are respectively the mean differences between observed and unob-
served response in the placebo and active group.

Figure 1.3 shows how the estimated treatment effect varies as we move away
from the assumption of MAR, i.e., that 	p = 	A = 0. Since many more patients
are missing in the placebo group, the treatment estimate is much more sensitive
to departures from MAR in this group.

Notice the inherently arbitrary nature of MNAR: because we cannot estimate
	A,	P from the data at hand, all possible values are – in general – equally
plausible. This issue is the motivation for our proposed approach to sensitivity
analysis in clinical trials of this type in Section 10.4. �
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Figure 1.3 Contour plot of the difference in average FEV1 (litres) between active
and placebo groups, as 	P , 	A, vary. Under MAR, 	P = 	A = 0, and the dif-
ference is 0.18 litres.

1.4.4 Ignorability

If, under a specific assumption about the missingness mechanism, we can con-
struct a valid analysis that does not require us to explicitly include the model for
that missing value mechanism, we term the mechanism, in the context of this
analysis, ignorable.

A common example of this is a likelihood based analysis assuming MAR.
However, as we see below there are other settings, where we do not assume

MAR, that do not require us to explicitly include the model for the missing-
ness mechanism yet still result in valid inference. For example, as discussed in
Section 1.6.2, a complete records regression analysis is valid if data are MNAR
dependent only on the covariates.

1.5 Using observed data to inform assumptions
about the missingness mechanism

We have already noted that, given the observed data, we cannot definitively
identify the missingness mechanism. Nevertheless, the observed data can help
frame plausible assumptions about this – in other words assumptions which
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are consistent with the observed data. Exploratory analyses of this nature
are important for (i) assessing whether a complete records analysis is likely
to be biased and (ii) framing appropriate imputation models. Two key tools
for this are summaries (tabular or graphical) of fully observed, or near-fully
observed variables by missingness pattern and logistic regression of missingness
indicators on observed, or near-fully observed variables.

Example 1.3 Asthma study (ctd)

Table 1.5 shows the mean FEV1 by dropout pattern. In the placebo arm, patterns
3 and 4 have lower FEV1 at baseline, and for patterns 2–4 FEV1 declines from
baseline to last visit. In the active arm, patterns 1, 2 show a similar increase of
about 0.20 ml, while pattern 3 starts higher and shows little change, while pattern
4 shows marked decline. Notice also the increase in variance in the active arm
over time which is different from the treatment arm. This is a common feature
of such data, and should be reflected in the analysis.

MAR mechanisms that are dependent on treatment and response are consis-
tent with these data. However, there is a suspicion that further decline between
the last observed and first missing visit triggered withdrawal, probably followed
in the placebo arm by switching to an active treatment. Thus it would be use-
ful to explore sensitivity of treatment inferences to MNAR, which we do in
Chapter 10. �

Table 1.5 Asthma study: mean FEV1 (litres) at each visit, by dropout pattern
and intervention arm.

Dropout pattern Placebo arm

Mean FEV1 (litres) measured at week No. %

0 2 4 8 12

1 2.11 2.14 2.07 2.01 2.06 37 40
2 2.31 2.18 1.95 2.13 – 15 16
3 1.96 1.73 1.84 – – 22 24
4 1.84 1.72 – – – 16 17

All patients (Mean) 2.06 1.97 1.98 2.04 2.06 90 100
All patients (Std.) 0.57 0.67 0.56 0.58 0.55

Lowest Active arm
1 2.03 2.22 2.23 2.24 2.23 71 78
2 1.93 1.91 2.01 2.14 – 8 9
3 2.28 2.10 2.29 – – 8 9
4 2.24 1.84 – – – 3 3

All patients (Mean) 2.03 2.17 2.22 2.23 2.23 90 100
All patients (Std.) 0.65 0.75 0.80 0.85 0.81
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Example 1.2 Youth Cohort Study (ctd)

In Table 1.2, we saw that the principal missing data pattern has missing parental
occupation. Let Ri = 1 if parental occupation is observed, and zero otherwise.
Table 1.6 shows the results of various logistic regressions of R on the remaining
fully, or near fully observed, variables: GCSE score, ethnicity, gender and cohort.
The Receiver Operating Characteristic (ROC) is an assessment of how well a
model discriminates between the missing and observed parental occupation, with
a minimum value of 0.5 (no discrimination) and a maximum of 1. Of course, even
if the model discriminated perfectly, this would say nothing about differences
between observed and unobserved data, that is, whether the data are MNAR.

We see that GCSE score is the strongest predictor of missing parental occu-
pation (ROC of 0.68), followed by ethnicity (here simplified to white/non-white)
and cohort. Gender is a relatively weak predictor. Nevertheless, due to the size
of the cohort, all are significant at the 5% level in model 4, which has reasonable
discrimination (ROC = 0.74).

Figure 1.4 confirms that GCSE score is substantially higher among those
whose parental occupation is observed (mean of 39 vs 28 points respectively).
Further, 10% of children with missing parental occupation have no GCSEs
(score 0) compared with 3% who have parental occupation observed.

We conclude the data are consistent with parental occupation missing at ran-
dom, dependent strongly on GCSE score and ethnic group, but also associated

Table 1.6 Coefficients (standard errors), and receiver operating characteristic
(ROC), from logistic models for the probability of observing parental
occupation.

Variable Models

1 2 3 4 5

cohort ’93 −0.085 −0.168
(0.036) (0.039)

cohort ’95 0.044 −0.212
(0.038) (0.042)

cohort ’97 0.178 −0.032
(0.040) (0.043)

cohort ’99 0.135 −0.165
(0.040) (0.046)

boy −0.053 0.079
(0.024) (0.026)

GCSE score 0.037 0.038
(0.001) (0.001)

non-white −1.723 −1.698
(0.0288) (0.031)

ROC 0.53 0.51 0.68 0.62 0.74
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Figure 1.4 Boxplot of GCSE points by whether parental occupation is observed.

with cohort and weakly with gender. A relatively small number of values are
missing for the other variables. It is plausible to assume these are either MCAR
or perhaps MAR given observations on other variables; unless they are strongly
MNAR this will have a negligible impact on subsequent inferences. �

1.6 Implications of missing data mechanisms
for regression analyses

Usually, we will wish to fit some form of regression model to address our sub-
stantive questions. Here, we look at the implications, in terms of bias and loss
of information, of missing data in the response and/or covariates under differ-
ent missingness mechanisms. We first focus on linear regression; our findings
there hold for most other regression models, including relative risk regression
and survival analysis. Logistic regression is more subtle; we discuss this in
Section 1.6.4.

1.6.1 Partially observed response

Suppose we wish to fit the model

Yi = β0 + β1xi + ei, ei

i.i.d.∼ N(0, σ 2), i = 1, . . . , n, (1.12)

but Y is partially observed. Let Ri indicate whether Yi is observed. For now
assume that the xi are known without error; for example it may be a design
variable. Then the contribution to the likelihood for β = (β0, β1) from unit i,
conditional on xi , is

Li = Pr(Ri, Yi |xi) = Pr(Ri |Yi, xi) Pr(Yi |xi). (1.13)
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Assume, as will typically be the case, that the parameters of Pr(Yi |xi), β, are
distinct from the parameters of Pr(Ri |Yi, xi).

Figure 1.2 suggests that, provided Y is MAR given the covariates in the
model, units with missing response have no information about β. To see this
formally, first observe that as Yi is MAR given xi , only the second term on the
RHS of (1.13) involves Y .

The contribution to the likelihood for an individual with missing response is
obtained by integrating (for discrete variables summing) over all possible values
of the missing response variable Yi , given xi . This is∫

Pr(Yi |xi)dYi = 1,

because we are integrating (summing) over all possible values of Yi given β, xi

so the total probability is 1. Conditional on x, all individuals with missing Y

thus contribute 1 to likelihood for β, and so have no effect on, or information
about, the maximum likelihood estimate of β.

This may feel counterintuitive, especially if we have a large number of units
with Y missing but X observed. Do they really have no information on the
regression?

For linear regression, the answer is yes (there is no information), because the
parameter space of the conditional distribution of Y given X is separate from
that of the marginal distribution for X. In other words, the mean and variance
of X have no information on, and place no restriction on, the parameters of the
distribution of Y |X. Equivalently, the conditional distribution of Pr(Y |X) has no
information on, and places no restriction on, the marginal distribution of X.

Example 1.3 Asthma study (ctd)

To illustrate the above, consider estimating the effect of treatment on the 12
week response, adjusting for baseline, setting aside the measurements at 2, 4 and
8 weeks. If we assume that the 12 week response is MAR given treatment, then
from the above argument it follows that fitting the regression model,

Yi = β0 + β11[treatment = activei] + ei, ei

i.i.d.∼ N(0, σ 2), (1.14)

using the complete records gives a valid estimate of the treatment effect
(Table 1.7).

Now suppose, as Table 1.5 suggests, that baseline is also predictive of miss-
ing 12 week FEV1; it is also strongly predictive of the actual 12 week FEV1.
Assuming 12 week FEV1 is MAR given baseline and treatment, we can include
baseline in the regression model (1.14). Again, the argument above shows that
fitting this model to the observed data is valid and efficient; the results are in
Table 1.7. Note that
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Table 1.7 Asthma study: estimated treatment effect fitting treatment, and
treatment and baseline. Inference is valid and fully efficient if assumption that
data are MAR, dependent on the covariates in the model, is correct.

Covariates n Treatment estimate (s.e.) p-value

Treat 108 0.172 L (0.149) 0.251
Treat & baseline 108 0.247 L (0.100) 0.016

(a) if baseline were predictive of underlying 12 week response, but given
treatment not predictive of observing that response, we would still wish
to include it, and

(b) in the unlikely case that baseline were predictive of missing 12 week
response, but not related to the actual 12 week response value, there would
be no benefit of including it.

We explore this study further, taking into account the longitudinal observations,
in Chapters 3 and 7. �

The above argument extends naturally to partially observed multivariate re-
sponses. Suppose we have up to J observations on individual i, denoted Yi =
(Yi,1, . . . , Yi,j ). Suppose they are MAR given Xi , and – whatever the pattern
of missing data – we partition Yi into Yi,O and Yi,M . Then the contribution of
individual i to the likelihood for the regression of Y on X is∫

Pr(Yi |β, Xi) dYi,M,

in other words, the marginal likelihood of the observed data. For the multivariate
normal distribution, this is readily calculated; in fact most software fits the model
to the observed pattern of data by default. Once again, in this setting there is no
advantage to, or gain from, using multiple imputation.

The last setting we consider in this subsection is when we have missing
response data, but these data are MNAR given the variables we wish to include
in the model of interest. For a direct exposition we return to univariate Yi; the
extension to multivariate Yi is immediate.

Consider (1.13) and let the parameters of Pr(Ri |Yi, Xi) be η and distinct from
those of Pr(Yi |Xi), i.e., β. The contribution to the likelihood from individual i is∫

Pr(Ri, Yi, Xi) dYi = Pr(Xi)

∫ {
Pr(Ri |η, Yi, Xi) Pr(Yi |β, Xi)

}
dYi. (1.15)

We see the likelihood contribution for β is now caught up with the selection
mechanism; we have to evaluate the integral on the RHS of (1.15) to obtain the
contribution of individual i to the likelihood. Failure to do this leads to biased
inference for β.
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Example 1.7 Linear regression

To illustrate this, we generate a sample of 200 observations from the regression
model

Yi = β0 + β1Xi + ei, ei

i.i.d.∼ N(0, σ 2), i = 1, . . . , n (1.16)

with (α, β, σ 2) = (5, 1, 42). These data, together with the fitted regression, are
shown in Figure 1.5(a), together with the least squares fitted line, which has
estimated parameters (α̂, β̂) = (5.14, 1.01).

Now suppose that some of the Y values are MNAR, and Ri = 1 if Yi is
observed and 0 otherwise. Suppose

Pr(Ri = 1) =
{

0.8 if Yi > 18 and

0 otherwise
(1.17)

Starting from the 200 observations shown in the left panel of Figure 1.5, the right
panel plots a typical example of the complete records that remain under this mech-
anism. Fitting a regression line to the observed data gives (β̂0, β̂1) = (5.75, 0.85).
Because high values of Y , which correspond to high values of X, are likely to
be missing, the intercept is biased slightly up and the slope down. �

Next, suppose that in addition to X, Y we have the fully observed variable Z.
We suppose that Y is partially observed, we are interested in the regression of
Y on X, that

logit Pr(Ri = 1) = α0 + α1Xi + α2Zi, (1.18)

and that Z is correlated with Y . Then, following from the discussion above, the
regression of complete records Yi on Xi will be biased, because setting Z aside

0 5 10 15 20

0
5

10
15

20
25

30

X
0 5 10 15 20

X

Y

0
5

10
15

20
25

30
Y

Fitted line: original data
Fitted line: original data
Fitted line: complete pairs only

(a) Fitted regression line from the full data.

(a, b ) = (5.14, 1.01)

(b) Y missing with probability 0.8 when Y > 18.

(a, b ) = (5.75, 0.85)

Figure 1.5 Regression lines for synthetic data. Left panel: fitted regression line
to the full data, n = 200. Right panel, original and fitted line when Y is MNAR.
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Yi is MNAR. However, the regression of complete records Yi on Xi, Zi will be
unbiased, and efficient, because given X and Z, Y is MAR.

1.6.2 Missing covariates

We now consider the regression of Y on X, when Y is fully observed and X is
partially observed.

Let Ri = 1 if Xi is observed and Ri = 0 otherwise. Consider the regression
of Y on X estimated from the complete records, i.e., given Ri = 1. Following
(1.6), for each individual pair,

Pr(Yi |Xi, Ri = 1) = Pr(Yi, Xi, Ri = 1)

Pr(Xi, Ri = 1)

Pr(Ri = 1|Yi, Xi) Pr(Yi, Xi)

Pr(Ri = 1|Xi) Pr(Xi){
Pr(Ri = 1|Yi,Xi)

Pr(Ri = 1|Xi)

}
Pr(Yi |Xi). (1.19)

Thus, when the missingness mechanism for X, Pr(Ri = 1|Yi, Xi), involves the
response Y , restricting the analysis to the complete records gives biased point
estimators and invalid inference. This holds whether the missingness mechanism
only depends on Y , i.e., MAR, or whether it includes X as well, i.e., MNAR.

Example 1.6 Income (ctd)

Consider again the income example, but now suppose we wish to estimate the
probability of job type given income, i.e., Pr(Y2,i |Y1,i ). As this is artificial data,
we know the data generating mechanism:

Y1 ∼ N(60, 5) for job type A , and Y1 ∼ N(30, 5) for job type B,

with Pr(job type A) = Pr(Z2 = A) = 0.5.
Thus

Pr(Y2 = A|y1) = Pr(Y1 = y1|Y2 = A)

Pr(Y1 = y1|Y2 = A) + Pr(Y1 = y1|Y2 = B)
.

Thus if Y1 = 45, the probability Y2 = A is 0.5. In the original data (Figure 1.2)
there is no overlap between the groups so again Pr(Y2 = A|Y1 = 45) = 0.5. How-
ever, from the observed data, we estimate this as 68/(89 + 68) = 0.43. This
illustrates the general point above: in regression when covariates are MAR and
the mechanism includes the response, complete records analysis is biased. �

From (1.19), we see that when the missingness mechanism for the covariate does
not depend on the response Yi the probability of Y |X among the complete records
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is the same as that in the population. In other words, although the covariate is
MNAR, estimating the regression using complete records is unbiased and gives
valid inference, although a full likelihood analysis with the correctly specified
selection mechanism would be more efficient. Again, we note that the precise
form of selection mechanism can vary between units or individuals; its precise
form is not relevant to the argument.

Example 1.7 Linear regression (ctd)

Continuing with this example, suppose we take the original 100 pairs and set
all X values greater than 12 to missing. This is a strong MNAR mechanism,
but given the (possibly unobserved) X value, the probability of X being missing
does not depend on Y . Figure 1.6(a) shows the regression of Y on X fitted to
the remaining points and the fitted line to the original data. They are virtually
indistinguishable. Indeed using the observed points, (β̂0, β̂1) = (5.16, 1.00).

Thus, as (1.19) implies, there is no bias, but some information is lost. It is
also important to note that (i) in this situation an analysis under MAR would be
biased but (ii) given the observed data, we cannot conclude that X is MNAR
dependent only on X; indeed it would be plausible to have X MAR, or MNAR
dependent on Y and X. �

Now consider the setting where the covariate, X, is MNAR depending on both
X and Y . In this setting, (1.19) implies regression using the complete records
will be biased.
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Figure 1.6 Missing covariates: effect of different mechanisms.
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Example 1.7 Linear regression (ctd)

Continuing this example, suppose that

Pr(X missing) =
{

0.8 if Y < 15 & X < 10

0.4 if Y ≥ 15 & X ≥ 10

Figure 1.6(b) shows the results; the bias is clear. �

Lastly, consider the case where we have three variables (or sets of variables)
X, Y,Z and we are interested in the regression of Y on X. Suppose X is MNAR
given X, Z but that if we omit Z there is residual dependence of the missing
mechanism on Y so that X is MNAR given X, Y .

In this setting, (1.19) shows us that using the complete records to regress
Y on X will be biased; however, using the complete records to regress Y on
X, Z will be unbiased for the latter, adjusted relationship. Unfortunately, unless
Z is independent of X, so that including Z in the regression does not change
the coefficient for X, it is not possible to use this to obtain a valid estimate of
the regression of Y on X alone without making additional assumptions. Indeed,
even if X is truly independent of Z, under a MNAR mechanism in the observed
data they will typically be correlated.

1.6.3 Missing covariates and response

In our final, setting first suppose we have three variables, X, Y,Z and that Y and
X are MAR given Z. Consider the linear regression of Y on X, Z. Units with
X, Y missing contribute ∫

Pr(Y |β; X, Z) dY = 1

to the likelihood Pr(Y |β; X, Z). Thus, (1.19) implies the complete records anal-
ysis will be unbiased.

When we have additional variables predictive of Y and/or X then these may
be used to recover information on the missing values and hence β.

1.6.4 Subtle issues I: The odds ratio

This and the next two subsections consider some more subtle implications of the
missingness mechanism for complete records analysis; some readers may prefer
to skip to the summary on p. 35.

Harel and Carpenter (2012) consider the further complication that arises
because some estimators possess a symmetry, which means they can be validly
estimated from the complete records under a greater range of missing value
mechanisms. The principal example is the odds ratio. Consider Table 1.8. We
can either model A, C as binomial random variables with denominator a + b,
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Table 1.8 Typical two-by-two table of
counts relating outcome to exposure.

Unexposed Exposed

Good outcome a b
Poor outcome c d

c + d, or we can model A, B as binomial random variables with denominator
a + c, b + d. In both cases estimates and inference for the odds ratio are identical.
The first case corresponds to a case-control study, the latter to a cohort study.

Now suppose that the probability of outcome is MNAR dependent on only
outcome. Consider the model

logit Pr(good outcome) = β0 + β1 × 1[exposed].

The preceding discussion would lead us to suppose that both β0 and β1 will be
biased. In fact, β1 will be unbiased. Symmetry of the odds ratio means inference
for this is the same as if we performed a logistic regression of exposure on
outcome where outcome was MNAR dependent only on outcome. However this
is an example of a covariate MNAR, and (1.19) shows that inference using the
complete records is valid in this case. The same argument applies if exposure is
MAR given outcome. Bias will only occur when estimating β1 if data are MNAR
dependent on both the outcome and covariate.

More generally, we will wish to estimate the log-odds ratio relating outcome,
Y , to X for various possible confounders, say Z. Applying the above argument, Y

may be MNAR dependent on itself and Z, yet the OR relating X to Y will still be
validly estimated from the complete records. Or, Y may be MNAR dependent on
itself and X, and then the OR relating Z to Y estimated using the complete records
is still valid. However, if the MNAR mechanism depends on Y, X, Z, inference
from the complete records is generally biased. This argument extends naturally
to log-linear models for multi-category, rather than just binary, classifications.

Example 1.8 Odds ratio

Consider synthetic data relating binary outcome, Y , to binary X and a continuous
Z. We generate 1 = 1, . . . , 20, 000 observations as follows:

xi =
{

1 for i = 1, . . . , 10000

0 for i = 10001, . . . , 20000
,

Z ∼ N(0.5 × (xi − 0.5), 1) and

logit Pr(Yi = 1) = β0 + β1Xi + β2Zi. (1.20)

where (β0, β1, β2) = (0, 1, 1).
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Table 1.9 Missing data mechanisms, and bias of coefficient estimates with
typical regression and logistic regression.

Mechanism Biased estimation of parameters using complete records
depends on

Typical regression Logistic regression

constant coeff. of X coeff. of Z constant coeff. of X coeff. of Z

Y Yes Yes Yes Yes No No
X No No No No No No
Z No No No No No No
X, Z No No No No No No
Y, X Yes Yes Yes Yes Yes No
Y, Z Yes Yes Yes Yes No Yes
Y, X, Z Yes Yes Yes Yes Yes Yes

We may consider either Z or X as the exposure. The relationship is con-
founded, so the unadjusted odds ratios are both biased.

Table 1.9 shows the mechanisms we consider, the bias we expect from a
complete records analysis in a typical regression setting, and what we expect
when using logistic regression (i.e., when we estimate log-odds ratios).

Notice that the bias does not depend on which variable has missing data, but
instead on the mechanism that differentiates, or selects, the complete records from
the rest of the sample. However, the appropriate approach for handling the bias
(e.g. multiple imputation) will depend on the variable that is actually missing.
For example, if the mechanism depends on Y and X is partially observed, data
are MAR.

The results of fitting the logistic regression (1.20) for the seven scenarios in
Table 1.9 are shown in Table 1.10. We see that when missing data depends on
Y , odds ratios for coefficients are only biased if, in addition, the missingness
mechanism depends on the covariates associated with those coefficients. This is
a consequence of the symmetry of the logistic link. �

1.6.5 Implication for linear regression

Harel and Carpenter (2012) further show that, to first order approximation, the
results for the odds ratio hold for linear and probit regression. In the case of linear
regression of Y on X, Z, if missingness depends on Y and Z and the correlation
between Y and X is moderate (|ρ| < 0.75), then when we estimate the regression
using the complete records (i) the largest bias occurs for the coefficient for Z,
but (ii) the coefficient for X is markedly less (but not completely) unbiased. As
above, this applies even if the actual missing values occur in the variable Z.
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Table 1.10 Empirical illustration of Table 1.9 using logistic regression.

Mechanism Probability of complete record Estimated coefficients of
depends on

constant X Z

– 1 −0.03 1.03 1.03
Y [1 + exp(−y)]−1 0.34 0.99 1.01
X [1 + exp(−x)]−1 −0.04 1.02 1.00
Z [1 + exp(−z)]−1 −0.03 0.96 1.03
X, Z [1 + exp{−(0.5(x − 0.5) + z)}]−1 −0.04 0.98 1.03
Y, X [1 + exp{−(y + 2(x − 0.5))}]−1 0.58 0.58 0.99
Y, Z [1 + exp{−(y + z)}]−1 0.38 0.96 0.82
Y, X, Z [1 + exp{−(y + 2(x − 0.5) + z)}]−1 0.63 0.58 0.81

This gives an informal guide to the difference between the coefficient esti-
mates we might expect from a complete records analysis and those from an MAR
analysis (typically obtained using MI). Because analysis under MAR, whether
by MI or another route, is relatively complex – and thus relatively more prone
to error – this provides a useful check on the plausibility of the results.

Related to this, Daniel et al. (2012) show how causal diagrams can be used
to explore where bias due to missing data may arise. This can be a useful prac-
tical guide, both to whether it is worth using MI and to whether the results are
consistent with the assumed missingness mechanisms.

Example 1.2 Youth Cohort Study (ctd)

Table 1.6 suggests that missing parental occupation depends on GCSE score and
ethnicity. The above argument suggests that it is the coefficient for ethnicity
that is most likely to be biased in the complete records analysis. After we have
described MI for a range of data types, we return to this example at the end of
Chapter 5. �

1.6.6 Subtle issues II: Subsample ignorability

Little and Zhang (2011) describe the related idea of subsample ignorable likeli-
hood. Suppose we have four (sets of) variables, and the pattern of missing data
shown in Table 1.11. We now make the subsample ignorability , that is:

1. within pattern 2, missing values of X and Y are MAR, and

2. within pattern 3, W is MNAR, with a mechanism that does not depend
on Y .
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Table 1.11 Missing data patterns for subsample ignorable likelihood.
As before, ‘�’ denotes observed, ‘·’ missing, and now ‘�/·’ denotes some
observed and some missing.

Pattern Variables Number of
observations

Z W X Y

1 � � � � n1
2 � � �/· �/· n2
3 � · �/· �/· n3

Consider regression of Y on X, W, Z. Using the arguments developed earlier
in this chapter, we see a complete records analysis will be invalid, because for
observations in pattern 2 the missingness mechanism includes the response. Also,
an analysis assuming MAR using observations from all three patterns will also
be invalid, because data are MNAR in pattern 3. However, using only data from
patterns 1 and 2, the missingness mechanism is MAR; therefore an appropriate
analysis (e.g. using multiple imputation) in this setting gives valid inference.
In essence this is a partial likelihood analysis, where the MNAR component is
set aside.

Thus, by careful consideration of the reasons for missing data, we may be
able to get valid inference via MI without recourse to a full MNAR analysis,
even if a portion of the data are MNAR. A more formal justification of this
approach is given by Little and Zhang (2011), who also present some simulations
confirming the validity of inference when the subsample ignorability assumption
holds, together with an example.

1.6.7 Summary: When restricting to complete records is valid

We have considered above the impact of various missing data mechanisms on
regression analyses restricted to complete records. We note that restricting the
regression analyses to complete records is generally invalid when the missing-
ness mechanism includes the response. In establishing this, notice that what is
important is the variables in the missingness mechanism, rather than variables
with the missing data.

Consideration of the variables with missing data is important when deciding
how to proceed beyond a complete records analysis. For instance, suppose the
missingness mechanism depends on a covariate X and response Y but not on a
third covariate, Z. Two possibilities are

1. Y partially observed, and

2. Z partially observed
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In case (1) data are MNAR, so an analysis under the MAR assumption (e.g. using
multiple imputation) will not be strictly valid. In case (2) we have a covariate
MAR, so an analysis under MAR (e.g. using multiple imputation) will be valid.

In case (1), analysis under MAR may nevertheless be less biased, and the
sensitivity to MNAR can be readily explored using multiple imputation, as we
discuss in Chapter 10.

1.7 Summary

This chapter has introduced the central concepts involved in the analysis of
partially observed data. These revolve around the ‘reason for the data being
missing’ – more formally the missingness mechanism, and how this relates to
the inferential question at hand. We have described Rubin’s typology of missing
data mechanisms (Rubin, 1976) and discussed these in the context of regression
analysis.

We have stressed the importance of preliminary analysis of the data to identify
the principal missingness patterns and elucidate plausible missingness mecha-
nisms. Under particular missingness mechanisms, we have further explored when
a regression restricted to complete records analysis is likely to give valid (if
inefficient) inference.

The remainder of this book is concerned with using MI to obtain valid
inference from partially observed data, predominantly the under assumption of
MAR but also under the assumption of MNAR. However, there are a number of
other methods that could be used to do this, for instance, the EM algorithm
or a full Bayesian analysis (Clayton et al., 1998). Why MI? The answer is
because it is practical for applied researchers in a wide range of settings. The
EM algorithm for parameter estimates is not computationally straightforward in
general. Further it does not yield standard errors; a further step is required for
this. A full Bayesian analysis usually requires specialist programming and will
often be computationally demanding, particularly if a range of models have to
be fitted.

By contrast, using multiple imputation, the researcher has to specify an appro-
priate imputation model. Robust software exists in many packages to fit (or
approximately fit) this model, from which a series of say K imputed data sets
are created. Assuming this has been done properly, the researcher can then fit
their model of interest to each of the K imputed data sets in turn, obtaining K

point estimates and standard errors. These are combined for final inference using
Rubin’s rules (Little and Rubin, 1987). These rules are relatively straightforward
and perform remarkably well in a wide range of settings.

Thus, once the imputations have been created, inference proceeds using the
usual software for fitting the model of interest to the complete records. It is
therefore rapid. Further, analysis is not restricted to a single model: a range
of models compatible with the imputation model can be explored. In addition,



36 MULTIPLE IMPUTATION AND ITS APPLICATION

variables that the researcher does not wish to include in the model of interest (e.g.
because they are on the causal path) can be included in the imputation model,
improving both the plausibility of the MAR assumption and the imputation of
the missing values.

The next chapter therefore introduces MI and sketches out its theoretical
basis, illustrating this using linear regression. Subsequent chapters describe both
algorithms for and application of MI to a broad range of social and medical data.




