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Autonomy is replacing the human operator in many applications. Examples
involve military systems where there is some element of danger to the human
operator, civilian systems when handling hazardous materials, as well as
monotonous operations such as surveillance, reconnaissance and dull, dirty
and dangerous missions, such as operations in chemical and biological envi-
ronments (Blyenburgh 1999; NMAB and ASEB 2000) and in environmental
monitoring (Roberts et al. 2008). The replacement of the human operator
in such systems necessitates the development of autonomous systems tech-
niques. Such autonomous systems operate in many environments, such as in
the air, in and under water, in space or on the land.

In this book, unmanned aerial vehicles (UAVs) are studied, operating
as a group. The large range of potential applications of UAVs in military
and civilian sectors have generated a lot of academic as well as commercial
research (OSD 2005; Wilson 2007). Inspired by examples in nature, such as
flocks of birds, shoals of fish, swarms of bees, and colonies of ants, cooperative
control (Rabbath et al. 2004; Uny Cao et al. 1997) has become one of the active
research areas in autonomous systems. Employing a group of UAVs rather
than a single UAV can result in cost-effective and fault-tolerant systems.
Advances in avionics, navigation based on GPS (Global Positioning System),
flight control techniques and low-cost electronics have further fuelled the
use of UAVs in commercial and military applications. Future UAVs will
be more autonomous than the remotely piloted reconnaissance platforms in
use today.
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One of the open issues in the development of autonomous systems is
that of path planning. A path planning algorithm produces one or more
safe flyable paths for the UAVs. The path has to be of a specified (usually
minimal) length, and, as the UAV has limited range, the time spent surveying
specific areas should be minimised. In addition, when surveying an area or a
location, it is beneficial to be able to approach from specific directions in order
to minimise obscuration as well as to aid identification. Hence the path length
and direction will always be major factors in any path planning algorithm.

The UAVs should be capable of following any resulting path. This implies
that the trajectory must comply with the speed and manoeuvre constraints of
the UAVs. The path planning algorithms must also allow for the deployment
of several UAVs in a coordinated manner, which will involve collision
avoidance and simultaneous arrival at one or more locations. Finally, path
planning algorithms are required to be coded in software that runs on a
processor carried on-board the UAVs. Thus, they must be computationally
efficient, take up a small amount of memory and operate in real time, enabling
the UAV to re-plan its trajectory if needed, with no significant delay.

1.1 Path Planning Formulation

The primary aim of path planning is to provide structured mobility, that is,
to facilitate moving or flying multiple UAVs from one location to another.
There may be several locations to visit before reaching the final destination,
and hence several consecutive paths may be required. Generally, there will
be several predefined points of interest (POls) on a known or partially
known map/area. The UAV will have a specific attitude, which is combined
with its location to give the UAV pose P(x,y,z,0,¥), where (x,y,z) is the
UAYV location or waypoint and (0, ¥) are the horizontal and vertical angles,
respectively. Consider a UAV moving from one pose, Ps, to another, P,
where Ps and P; are labelled the start and finish poses, respectively. Path
planning involves producing one or more flight paths r(g) connecting Ps and
P¢. Mathematically, this can be represented as

p, % p, (1.1)

where r(q) is the resulting path, and g is defined as a path parameter. This
parameter can be a length variable (0 < g < s) for a straight-line path or an
angle variable (0 < g < 0) for a curved path. The choice of path variable
depends on the path formulation.
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Equation (1.1) is in a very simple form. For a single UAV flying from
a location with start pose Ps(xs, s, Zs, 65, ¥s) to a location with finish pose
Pe(x¢, y, zg, 05, Y¢), equation (1.1) can be written in the form

()
Py (xs, Ys, Zs, Os, Vs) 1> Pe(xs, Y, 25, 0, Vg). (1.2)

Extending equation (1.2) for N UAVs, where each pair of poses are connected
by paths ri(q), gives

ri(q) )
Psi(xsi, Ysis Zsiy Osi, Vsi) — Pri(Xei, Yei, Zsi, Osi, Vi), i=1,...,N. (1.3)

Equation (1.3) connects a pair of points by a path. This problem is well known
as route planning in the fields of operations research, communications,
computational geometry and graphics, where a route is generated between
one or more nodes of a network. However, applying the route planning
concept from these fields to flying vehicles becomes challenging. The route is
usually defined by a set of waypoints joined by straight-line segments, which
connect the start and finish waypoints, and hence may not be flyable because
the UAV cannot turn instantaneously through each waypoint. For a flyable
path, each segment must have a common tangent to produce a continuous
path. Hence it is important to specify the orientations at each waypoint that
each segment must match. This implies that some segments must be curved
rather than straight in order that each end of the segment meets the common
tangent condition. Also, some missions — such as target acquisition, search
and track, and disaster area surveying — require the sensors to be pointed in
specific directions for effective detection and identification.

1.2 Path Planning Constraints

Producing a path between the start and finish poses is straightforward in the
absence of any constraints. In practice, there are various constraints involved
in path planning, most being UAV-specific and the remainder arising from
obstacles in the environment. Sometimes the violation of constraints, for
example, communication failure, may lead to the complete loss of the UAV
in extreme circumstances and to the loss of the UAV as a sensor platform in
less extreme cases. Hence, safety of the UAVs is important throughout the
mission. Other constraints such as the minimum turn radius will also dictate
which paths are flyable and which are not.
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Hence, the two most important constraints for path planning of a UAV
are that the path must be flyable and safe. Flyable paths meet kinematic or
motion constraints and dictate the manoeuvrability of the UAVs. The safety
of the UAV is achieved by avoiding obstacles, either fixed or moving, that
intersect the path. The obstacles may be UAVs, aircraft and buildings, which
are common in airspace and in urban environments. Other constraints, such
as maintaining communication range, as well as minimising time and/or
path length, can be added into the system where necessary. We use the
symbol [ | to represent the constraints. Hence the constrained path planning
can be written in the form

L 7i(9)
Psi(xsi, Ysis Zsis Osiy Wsi) —> Pri(Xei, Ysi, Zsi, Osi, Vi) (1.4)

From equation (1.4), we can make an analogy that the path planner acts
like a black box, which produces the flyable path from given inputs as
shown in Figure 1.1. The inputs are the poses, with additional constraints,
uncertainties and measurements. The feedback loop senses the measured
states of the UAV and also feeds back the success in terms of meeting the
constraints to the path planner.

1.2.1 Flyable Paths: Capturing Kinematics

As the properties of the path influence the motion of the UAV and vice versa,
it is important to understand the characteristics of the path. The UAV needs
a path in order to move from one location to another. However, the path
has to meet the dynamic constraints of the UAV. In order to understand

Constraints
Uncertainties,
Measurements

Set of poses/ Feasible
waypoints path

Path planner

| Feedback

Figure 1.1 A block diagram approach to path planning
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Figure 1.2 Autopilot and guidance control loops

the dynamic constraints of the UAV and hence the kinematic constraints
of the path, consider the UAV as a control system. Two control loops are
present in the UAV system, as shown in Figure 1.2. The inner loop is known
as the autopilot and the outer loop is known as the guidance system. The
guidance system provides lateral acceleration commands to keep the UAV
following the path, whereas the autopilot controls the UAV elevator, ailerons
and rudder to achieve the required lateral acceleration.

The UAV dynamics include the aerodynamics, which produces forces and
torques on the airframe. From Newton’s third law of motion, the forces
and torques produce lateral, longitudinal and rotational accelerations. The
accelerations are usually expressed in UAV body axes and these provide
the link to the kinematics. The kinematics is produced by integrating the
UAV lateral and rotational acceleration vectors to obtain the UAV velocity
vector. The attitude angles and the current UAV position in the inertial
frame give the UAV’s translational and rotational velocity. For example, the
two-dimensional (2D) path planner uses the kinematic model in equation
(1.5). The kinematics and hence the current state of the UAV in 2D are thus

X = |v| cos(0), (1.5a)
¥ = |v|sin(), (1.5b)

where v is the UAV velocity and 6 is the horizontal heading angle.

Whether a given path is flyable or not is determined by the curvature of
the path. The path planner has to produce a path r(g) that meets the dynamic
turn rate constraint of the UAV, which is translated into the kinematic
curvature constraint—in 3D, it is determined by both the curvature and
torsion (Lipschutz 1969). By satisfying this constraint, the motion of the UAV
stays within its maximum-curvature (acceleration) bounds. The curvature is
proportional to the lateral acceleration. Thus the curvature at any point on
the path must be less than the maximum-curvature constraint of the UAV.
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A curve segment of zero curvature is a straight line and a curve segment
of constant curvature is an arc of a circle. At a given speed v, the lateral
acceleration a is proportional to the curvature « such that

la| = vk ok, (1.6)

where a is the lateral acceleration vector, « is the curvature and v is the
velocity vector. Note that, for a constant speed, the acceleration vector a is
normal to the velocity vector v. This ensures that the velocity vector rotates
without changing its magnitude. This is illustrated in Figure 1.3, where the
velocity vector is aligned with the tangent vector ¢ and the acceleration vector
is aligned with the normal vector n.

1.2.2 UAV Inertial Manoeuvre Coordinates

All manoeuvres can be defined by reference to a set of axes. These can be fixed
ininertial space or defined relative to a set of axes that are attached to the path
defined by a curve known as the Frenet—Serret (FS) framework, which will
be dealt with later in the book. A set of axes may be defined that comprises
a tangent vector t to the curve, together with a normal to this tangent n.
Together with a binormal vector b, these make up a right-handed triple,
which can be used to define the manoeuvres of the UAV. Two-dimensional
path planning confines the manoeuvre of the UAV to a plane. If the plane is
horizontal, this is equivalent to flying at a constant altitude. The plane need
not be horizontal, but can be inclined at an angle to facilitate a change in
altitude if required. However, in reality, UAVs fly in three-dimensional (3D)
space, and so path planning needs to be able to produce flyable paths in
three dimensions. In 3D, flyable paths need to accommodate both curvature
and torsion in their design. Curvature defines the turn radius of the path in
2D, which is defined as a rotation about an axis normal to the manoeuvre.

b
curvature
K n

torsion
T t

Figure 1.3 Curvature and torsion
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Torsion is defined as a rotation about an axes that coincides with the path
tangent vector. This is shown in Figure 1.3. Note that positive curvature and
positive torsion are defined as being clockwise along the appropriate axis
when looking along the axis from the origin.

For the UAYV, in terms of body axes, curvature is equivalent to a yaw rate
turn and torsion is equivalent to a roll rate turn. However, in practice, the
UAV will perform a turn by first rolling to a fixed bank angle and then using
the elevator to produce a manoeuvre normal to the wings. This is known as
a bank-to-turn manoeuvre.

1.2.3 Generation of Safe Paths for Path Planning

The second important constraint of path planning is safety. The planned path
should be flyable and also safe. Safety is measured by the ability of the UAV
to avoid fixed and moving obstacles and other UAVs. As the UAV follows
the path defined by the path planner, the safety constraint has to be defined
with respect to the properties of the path. The path must maintain collision
avoidance with other friendly UAVs and also must be flexible enough to
avoid obstacles. The safety of the UAV is represented by [ [, and can be
used in equation (1.4). Hence, taking into account the curvature constraint
[ 1, and safety, the equation of path planning is now modified to

]_[sa e’ ]—[K’ rf(q)
Pyi(xsi, Ysi, Osiy Vsi) —or—="0

Pri(xsi, Ysi i, Vrei)- (1.7)
There may be other constraints, such as maintaining communication in a
complex urban environment, as well as time, task completion and resource
management, depending on the mission objectives. The subscript can be
changed for different constraints. For example, imposing a communication
constraint on UAV separation distance would be represented by [ |

comm*

1.3 Cooperative Path Planning and Mission Planning

The previous section defines path planning for individual UAVs. Coopera-
tion involves using the path planning algorithms to produce a coordinated
mission. One such mission is for a group of UAVs to set off from a base and
reach a rendezvous position at the same time. The UAVs will perform tasks
on the way, such as area searches and object detection.

The payload, sensor suite and duration of operation, together with the cost
and size of the UAV, are important in their use and deployment. The limited
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sensor range, period of operation and payload limitations usually result in
the need to use more than one UAV. The mission can be accomplished faster
if a single UAV is replaced with a group of UAVs. Such operations do not
simply involve operating together in an environment. The challenging task is
cooperation among the UAVs, and coordination of their activities. Therefore,
a group of UAVs of the same (homogeneous) or different (heterogeneous)
capabilities can act together as a single entity to achieve the mission. Also, a
system of cooperative UAVs is fault-tolerant, and the performance is better
than that of a single UAV.

For the case of autonomous UAV systems, cooperation between UAVs
means shared utilization of resources, sharing of information, allocation of
tasks, coordination of actions and operations, coping with disturbances and
dealing with conflict resolution. The level of cooperation can be set by a
central decision-maker in a ground control station, for example, or it may
be left to individual UAVs in a distributed manner. Also, it is important to
note that cooperation is a complex problem. Consider collision avoidance
between two cooperating UAVs. Though they mutually manoeuvre to avoid
collision, the resulting modified path plans may lead to collision with other
UAVs in the group. Therefore, cooperation has to be planned with respect
to the other members of the UAV group, as well as obstacles (both fixed
and moving) in the environment and uncertainties. It has been argued
(Ren et al. 2004) that information sharing is central to cooperation and
coordination, where information sharing is represented by a coordination
variable. However, a minimum amount of information for cooperation has
to be defined for the system. This, in turn, affects the cost of communication
and computation. Cooperative behaviour is also studied in robotics research
(Fong et al. 2003; Howard et al. 2006; Uny Cao et al. 1997). Other related
research areas are ‘multi-agent control’, ‘distributed networks’, ‘consensus
algorithms’, ‘cooperative control’, ‘network control” and ‘swarm intelligence’
(Qu 2008; Shamma 2007). All these research areas emphasise that the sharing
of information is the important factor in cooperative system. A variety of
other applications, such as task allocation (Beard et al. 2002), flight formation
(Fowler and D’ Andrea 2003), surveillance, suppression of enemy air defence
(SEAD) and radar jamming, have been studied for the cooperative system in
recent research. An overview of recent research on cooperative systems can
be seen in Murray (2007).

Cooperation can be achieved by central coordination or distributed
decision-making. Can cooperation be achieved simply by solving a set
of equations or by taking decisions based on testing conditions and/or con-
straints? This problem is still an open research area for autonomous systems.
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For example, collision avoidance between two flight paths r1() and r2(q) can
be represented by

ri(q) Nra(g) = 2. (1.8)

This equation captures the condition required to be satisfied for collision
avoidance. A cooperative path planning of multiple UAVs for collision
avoidance can be formulated as producing flight paths {r1(q), 72(q), . . ., r4()}
subject to the following constraints:

]_[/(/ K S KmaX/
]—[ = ]—[r’ T =< Tmax, (19)
]_[safe' ri(q) N rj(Q) =g, i#].

Such problems can be solved by an optimisation algorithm, but this involves
heavy computation. Owing to the complexity of the problem, in many
cases the problem is divided into different phases/stages. The optimal or
suboptimal solution will be a sequential solutions to the subproblems.

As cooperative behaviour arises when two or more UAVs are involved,
a functional architecture is necessary to coordinate the communication and
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Figure 1.4 Hierarchy of mission planning. Reprinted with permission of Elsevier,
and ASME



10 Cooperative Path Planning of Unmanned Aerial Vehicles

control of each UAV. One such architecture is shown in Figure 1.4. The
cooperative behaviour is defined by the central mission planner or can
be in-built into each UAV, depending on the autonomy architecture. As
shown in the figure, the path planning activity is a subsystem of the mission
planner. The figure shows three subsystems or layers. However, the number
of subsystems and their functions may vary for different applications and
mission objectives. The top layer holds and keeps track of the objective(s)
of the mission. Based on these objectives, this layer allocates resources
and tasks to the UAVs and also acts as decision-maker. The intermediate
(second) layer produces trajectories (paths) for the UAVs. In this layer, the
path planning and their associated algorithms such as collision avoidance
to produce feasible trajectories (paths) are located. The lower (third) level
produces guidance and control actions, which ensure that the UAVs fly on
the reference trajectories produced by the second level. This book focuses on
the second layer, where the path planner produces flight trajectories (paths)
to fulfil the mission objectives. The mission objective considered here is the
simultaneous arrival at a specified location by a group of UAVs. Note that
one of the main requirements for successful cooperation and coordination
is that the UAVs have to be in communication most of the time during
the mission. This is dealt with using the communication constraint [ |
mentioned in section 1.2.3.

comm

1.4 Path Planning - An Overview

Path planning is an integral part of an autonomous system, which is respon-
sible for moving from one point to another. An autonomous system may be
operating either on land, in the air, or on/in water. The paths are designed by
various techniques based on whether the system has to traverse an area that
is known, unknown, or partially known. The physical limitations, operat-
ing environment and communication requirements make the path planning
more complex. It is essential to have an on-board processor to design and
execute paths and trajectories. Recent work in cooperative application of
unmanned systems has employed multiple autonomous vehicles to enhance
the effectiveness of operation success. Such applications further increase the
complexity of the path planning.

Research into path planning is widely documented in ground robotics
and manipulator systems. Most of the path planning techniques that are
currently in use are borrowed from the ground robotics field. Originally,
research on ground robotics focused on indoor robots. The lessons learned
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from them were applied to outdoor autonomous vehicles, and to aerial
robotics, with improvements and modification. In all these applications,
path planning plays an integral part and an important role. This is described
in various references, for example, Bender (1991) and Shladover (1991) in
ground robotics, Chan and Foddy (1985), Hebert et al. (2001), Vian and More
(1989) and Zabarankin ef al. (2002) on aerial vehicles, Yuh (1995, 2000), Smith
et al. (2001) and Oliveira ef al. (1998) in underwater vehicles, and Tompkins
etal. (2004) and Gennery (2004) in space. Therefore, it is appropriate to review
the techniques originally developed for ground robotics.

The objectives and approaches of path planning differ depending on the
application domain: surveillance, search and track, rescue missions and
disaster monitoring. Currently, there are a multitude of solution approaches
available in the research literature, and each approach has its own merits.
Moreover, new approaches are required as the complexity of the problem
increases. However, the majority of solution approaches can be represented
by a simplified diagram as shown in Figure 1.5. Using this approach, the
inputs to the path planner are the waypoints, the obstacle positions and size,
and the associated uncertainties. Optimisation techniques are applied to these
data to produce routes. The resulting routes are usually polygonal paths,
which do not have inherent curvature constraints built into the solution. In
most cases the path planner produces routes that are applicable to mobile
robots as they can virtually stop and turn. But in the case of UAVs, these

Path Planner

Threats
Way-points
Uncertainties

Safe Paths
(Optimization)

v v

Polygonal Route
Paths I Kt >

v v

Paths Flyable
Refinement Paths

YVY

Figure 1.5 Existing approach to path planning. Reprinted with permission
of Elsevier
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routes may not be flyable, driveable or manoeuvrable. A flyable path meets
the kinematic constraints and the imposed dynamics of the robot. Therefore,
attention has turned towards the development of paths that can be flyable or
manoeuvrable. Therefore, these routes have to be further refined to produce
flyable paths.

In the literature, a wide variety of approaches are used to produce routes
using a route planner. The route planner produces a series of nodes that are
connected by straight lines, in turn connected to the start and finish points.
This is also called a “global path planner’, and produces one or more routes
for the given map of known locations. The locations may be places to visit
or places to avoid. The route is produced by isolating the obstacles, no-fly
zones and threats. The road map, and optimization methods that produce
routes using straight-line segments are route planners. Though the routes
cannot be followed by the UAVs directly, they are important, as they can be
produced faster than producing a flyable path in an environment containing
fixed obstacles. Hence, it is common for the path planner first to produce a
route and then later to refine the route for a flyable path. However, this is
not the only way to produce the path.

Path planning approaches can be divided into several categories, based
on different criteria. However, the nature of the applications, environment,
medium of operation and path constraints have produced a variety of algo-
rithms and techniques. The predominant methods used in ground robotics
and documented in Latombe (1991) are: (i) the road map method, (ii) the cell
decomposition method, and (iii) the potential field method. These methods
generate routes for a robot to move from a start point to a finish point. Also,
these methods rely on specific definition of the environment. The environ-
ment is defined by a map, which contains known and unknown obstacles.
Finding a path between two points on the map is simplified by (i) discretizing
the map into small areas or cells or (ii) converting the map into a continu-
ous field. Hence, path planning can classified as discrete or continuous. A
suitable search algorithm is then used to find a path connecting the start and
finish points on this simplified map. The road map and cell decomposition
methods transform the environment into a discrete map, while the potential
field method transforms the map into a continuous function. The textbook
by Latombe (1991) is a thorough review of these methods. Here, only a
descriptive version is presented for completeness. These methods, which
produce a path for a given map or environment, are also called global path
planners. These methods transform the given environment into a searchable
database. We consider each in turn.
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1.5 The Road Map Method

A road map itself is not a path planner. It is a two-dimensional network
of straight lines connecting the initial and final points without intersecting
the obstacles defined in the map. In other words, it is a representation of
the 2D environment by a non-directional graph. The road map methods
work in configuration space, where the robot is treated as a point while
the workspace is modified to accommodate the physical size of the vehicle.
For a given start point Ps and finish point P, all possible connecting paths
are generated by avoiding obstacles. A typical metric such as A* search
algorithm (LaValle 2006) is used for generating the shortest route between
destinations. The resulting route consists of a series of waypoints connecting
the start and finish locations.

In general, the algorithms work in the following way (see Figure 1.6).
The map is defined by a space named the total space, Cspace- This is then
split into the free space (obstacle-free space) Cgee and the obstacle space
Cobst- Next, a network of graph connectivity Qgree is generated by selecting a
set of points that can be connected by straight lines such that the resulting
discretization produces a set of polygons that surround each obstacle in
Cspace- The resulting connectivity graph is used to produce a network of all

Cspace

Figure 1.6 The road map method
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possible collision-free routes. Search algorithms such as A* are then used to
find one or more routes based on some metric between the start and finish
poses or locations. Two such methods used in the literature employ the
connectivity graph to produce a route. These are (i) the visibility graph, and
(ii) the Voronoi diagram.

1.5.1 Visibility Graphs

As the name suggests, the visibility graph produces a line-of-sight route
through an environment. This is one of the earliest methods used for path
planning. The route is formed by a connectivity graph network of a non-
directed graph of straight lines. For this method, only polygonal obstacles
are considered. For a graph G = (V,E), the vertices V are the vertices of
the obstacles, while the edges E connect all the vertices with straight lines,
provided the lines do not intersect the obstacles. Hence only vertices that are
visible in the sense that each vertex can be seen from the other are included.
A schematic sketch of a visibility graph is shown in Figure 1.7. A route is then
found using a graph search algorithm, which connects the start and finish
locations, treating them as vertices. Hence only visible vertices are connected
to the start and finish vertices.

1.5.2 Voronoi Diagrams

A Voronoi diagram is a connectivity graph generated by forming polygons
or ‘fences’ around the obstacles. Each edge of the fence polygons is defined
by first constructing a set of lines connecting the centres of the obstacles.

Cspace

Pr Cobst
° Cobst

Cobst

Cobst

Ps

Figure 1.7 Visibility graph
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Figure 1.8 Voronoi diagram: polygonal fences around obstacles

The set of polygonal fences is then constructed by drawing a set of lines
perpendicular to the lines connecting the obstacles. These are then adjusted
to meet at a minimum set of vertices. An example of a Voronoi diagram is
shown in Figure 1.8.

The resulting polygonal fences can be considered as a connected graph. A
search algorithm such as A* can be used to find a route connecting an initial
and final vertex in the graph. The Voronoi diagram is used in Chandler
et al. (2000) to produce a route for a UAV flying in an environment of
static radar sites whose locations are known a priori. The route is refined
by adding fillets at the vertices. Simultaneous arrival of multiple UAVs is
coordinated by a high-level manager based on the sensitivity function (cost
versus time of arrival) broadcast by each UAV. A similar approach is adopted
in Bortoff (2000), where an analogy of a chain connected by sequences of
spring—mass—damper systems to the UAV path is used. The ends of the
chain are located at the initial and final configurations. The obstacles induce
a repulsive force, which causes the masses in the chain to move away
from the obstacles. However, this method involves complexity in solving
ordinary differential equations (ODEs) with curvature constraints. Also, the
accumulation of only a few masses around the obstacle location will lead to
coarse path resolution, which is undesirable. In McLain and Beard (2000), the
above approach is extended by replacing the spring—damper system with
rigid links between masses to eliminate sharp corners. However, this method
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does not guarantee that the resultant path is flyable by a UAV. Later (Judd
and McLain 2001), the Voronoi path is interpolated with a series of cubic
splines, assigning a cost to each obstacle location (Chan and Foddy 1985).

1.6 Probabilistic Methods

Probabilistic methods work by a random selection of neighbourhood points
that meet some metric such as the shortest length resulting in the probabilistic
random road map (PRR) method. This method samples the given space for
probable solutions in the form of a network of graphs. It normally uses
uniform sampling of a given space. The path planning problem is treated as
a search problem in the partitioned cells (Eagle and Yee 1990). Probabilistic
road maps (PRMs) (Kavraki et al. 1996; Pettersson and Doherty 2004) connect
the starting point to the goal point by adding successive trajectories to a
pre-computed route. In another approach called rapidly exploring random
trees (RRTs) (Cheng et al. 2001; LaValle 1998), a tree of trajectory segments is
extended from the start point to the goal point. Every successive trajectory in
the tree is selected randomly by connecting to a closest point in the existing
tree. In Amin et al. (2006), the path planning is achieved by the RRT and
is further enhanced by using the Dijkstra search algorithm, which finds
the route for the UAV flying among known static obstacles represented as
quadtrees. Probabilistic methods are applied to path planning by considering
the positional uncertainty of threat regions in Jun and D’Andrea (2003). The
final path is refined with circular arcs at the points of line joining.

1.7 Potential Field

The potential field method was first proposed by Khatib (1985). In this
method, the environment is represented as an artificial potential field. The
destination point is assigned an attractive potential, while the obstacles are
assigned repulsive potentials. The idea is that a robot moving in the field will
be attracted towards the destination, while being repelled by the obstacles. In
contrast to the road map and cell decomposition methods, the path resulting
from this method follows the line of maximum potential of a continuous field
function. However, this method has some drawbacks, the main one being
that the vehicle may get trapped in a local maximum, for example, when
encountering a C-shaped obstacle (Borenstein and Koren 1991; Koren and
Borenstein 1991). However, improved versions of this method have been
developed to eliminate the local maxima and to reduce the computational
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complexity. A variation of the technique using multiple temporary attraction
points together with genetic algorithms (GAs) are used in Arambula and
Padilla (2004). The potential field algorithm (Eun and Bang 2006) solves the
path planning by generating an attractive field towards the goal point and a
repulsive field at the obstacles. In another approach (Polymenakos et al. 1998;
Tsitsiklis 1995), a Dijkstra-like method (Dijkstra 1959) is suggested for solving
a continuous-space shortest-path problem in a 2D plane by optimization. An
analytical and discrete optimization approach has been used (Zabarankin
et al. 2002) for optimal risk path generation in 2D space with constant radar
cross-section, arbitrary number of sensors and a constraint on path length.

1.8 Cell Decomposition

In the cell decomposition method, the environment is divided into non-
overlapping cells. Possible routes are then generated that pass through
adjacent free cells. Free cells are ones that are not occupied by obstacles.
The obstacles are isolated by finding the connectivity between the free cells.
Thus a discrete version of the environment is produced. A search algorithm
is used to connect adjacent free cells. Figure 1.9 shows the schematic of the
process. The shaded (cross-hatched) cells are eliminated because they are
occupied by obstacles (grey). A connectivity between the start and finish
points is found by connecting the free cells by a series of straight lines.

Figure 1.9 Cell decomposition
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The figure shows a simple division of the environment, which is called the
exact method of cell decomposition. An approximate method is proposed to
reduce the memory consumption in Kambhampari and Davis (1986). This is
also called the quadtree or octree representation. Further improvements of
this method can be found in Jung and Gupta (1996).

1.9 Optimal Control

Optimal control is the most natural way to solve problems involving objec-
tive functions, constraints and boundary conditions. However, the dimension
and complexity of optimal control problems cause a heavy burden on com-
putational time in the solution. Also, the nature of the problem may require
either suboptimal or feasible solutions rather than the optimal solution. It
is quite difficult to solve path planning problems in a cluttered environ-
ment using optimal control theory (Duleba and Sasiadek 2003; Sasiadek and
Duleba 2000). General planar motion is a combination of straight-line and
circular trajectories, which are proved for a mobile robot using Pontryagin’s
maximum principle in Balkcom and Mason (2000). Optimization techniques
such as probabilistic methods, mixed integer linear programming and genetic
programming have been applied to path planning of UAVs. These techniques
produce paths by optimizing certain cost functions. The cost functions differ
based on the applications, such as minimum time of arrival, optimizing fuel
consumption and coordinated motion. They are mostly search algorithms.

1.10 Optimization Techniques

The challenges and complexity of path planning with optimization tech-
niques and uncertainties are discussed in Patcher and Chandler (1998). In
Rabbath et al. (2004) an overview of coordinated control of UAVs and their
complexities is presented. Branch and bound optimization is used for path
planning and is compared with mixed integer linear programming (MILP)
in Eele and Richards (2009).

The use of MILP for path planning applications can be found in Ademoye
et al. (2006), Schouwenaars et al. (2001, 2006), Richards et al. (2001) and
Richards and How (2002). MILP is an application of the operations research
method, called linear programming with integer or binary constraints. These
constraints are used for logical decisions, such as turn left and move up. This
method produces a safe route for UAVs. But the route has to be smoothed
further to make it flyable. Also, the optimization methods are associated with
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long computational time. Accomplishing the mission objectives with the
physical and functional limitations of UAVs further increases the complexity
of the solution to the path planning problem (Mitcheel and Sastry 2003; Yang
and Kapila 2002).

Evolutionary algorithms are used in Mittal and Deb (2007), where the
path length, risk of collision and limits on maximum and minimum heights
are optimized in path planning of a UAV. The discrete points generated by
the planner are connected by B-spline curves for producing flyable paths.
Also the evolutionary optimization principle in path planning can be seen
in Dong and Vagners (2004), Zheng et al. (2005) and Nikolos et al. (2003). A
genetic algorithm is used in Wu et al. (2007) for path planning of autonomous
underwater vehicles for surveying a given area.

1.11 Trajectories for Path Planning

The optimization methods, randomized search approaches and Voronoi
diagram approach use exhaustive search and computational methods
that result in route planning. The route planning does not consider the
kinematic constraints of the path. Also, the reactive behaviour of the UAV
needs a flyable path at any point of its flight. In such a situation, route
planning would be a handicap. For this reason, it appeared reasonable to
attempt to use the curves directly in path planning. In this manner, planar
and spatial Dubins paths (Dubins 1957; Shanmugavel et al. 2006b, 2007c),
Pythagorean hodographs (Shanmugavel et al. 2006a, 2007b) and 2D clothoids
(Shanmugavel et al. 2007a) have been used to solve the problem of
simultaneous arrival on target. Though flyable paths are essential for
manoeuvring, straight-line trajectories are used in other applications, such as
task allocation for multiple robot problems in Zhang et al. (2008) and Shima
et al. (2005). The Dubins path is used for airborne problems (Bicchi and
Pallottino 2000; Massink and Francesco 2001; Robb et al. 2005; Shanmugavel
et al. 2006b). The simultaneous arrival of UAVs using the Dubins path is
studied in Shanmugavel ef al. (2005, 2006b), where the path is produced
using differential geometry. Parametric curves are used for path planning
in Shanmugavel et al. (2006a) and Nikolos et al. (2003).

A comprehensive review of the types of paths used for path planning is
presented in Segovia et al. (1991). Dubins (1957) showed in his work that the
shortest path between two vectors in a plane that meets a minimum bound on
turning radius is a composite path formed by line and circular arc segments.
This paper received widespread attention by the research community and
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is extensively cited in ground robotics works (Bui ef al. 1994; Latombe 1991;
McGee et al. 2005; Shkel and Lumelsky 1996). This work has also motivated
the derivation of the shortest path for a vehicle that can move forwards and
backwards for parking a car. Reeds and Shepp (1990) developed the shortest
path for a vehicle that can move both forwards and backwards. Clothoid arcs
are used for the path planning of car-like vehicles using a composite path
made of circular and clothoid arcs (Laumond 1986; Scheuer and Fraichard
1997). The Cornu spiral or clothoid curve has been used (Dai and Cochran
2009; Shanmugavel et al. 2009) for path planning of multiple UAVs. B-splines
(Komoriya and Tanie 1989), quintic polynomials (Takahashi et al. 1989),
polar splines (Nelson 1989), clothoids (Liscano and Green 1989), cubic spirals
(Kanayama and Hartman 1989) and G2-splines (Piazzi and Bianco 2000) have
all been used for path planning of mobile robots. Robot path planning using
the Voronoi diagram has been studied widely since the mid-1980s (Iyengar
et al. 1986), and in the late 1990s the focus on coordinated path planning of
multiple robots began. Much of the work done on path planning is carried
out in ground robotics, but their approaches cannot be applied directly to
unmanned aerial vehicles. The path of a UAYV is limited by high-G turns and
also by the fact that it has a threshold speed below which it cannot fly.

1.12 Outline of the Book

The book is divided into seven chapters. Chapter 1 introduces the importance
of path planning for an autonomous system. Current research on path
planning approaches is discussed in this chapter. As path planning is
borrowed from the mobile robotics field, some focus on techniques used
in this field are also discussed.

Chapter 2 deals with producing flyable paths in two dimensions. Three
types of paths are considered. The chapter begins with the design of Dubins
path, because this is the shortest path between two poses in 2D and also it
is simple. The Dubins path is produced using the principles of Euclidean
and differential geometries. Besides the equivalence of the results from the
two approaches, it is shown that the differential geometric principles are
advantageous in generalisation of the path. The lack of curvature continuity
of the Dubins path motivates the use of other paths. In this respect, a
single path (Pythagorean hodograph) and a composite path (clothoid and
line segments) are considered. The circular arcs in 2D Dubins paths are



Infroduction 21

approximated with clothoid segments to produce a smooth path. The last
part deals with the Pythagorean hodograph (PH) curve known for its
rational properties. A procedure is established to derive a PH path of
curvature continuity.

Chapter 3 discusses three-dimensional path planning. It extends the prin-
ciples used in Chapter 2. The Dubins path is produced in 3D using the
principles of differential geometry. The clothoid path is not discussed, as the
design is similar to that of the 3D Dubins path. The PH path is developed
in 3D for use in path planning. The composite version of the Dubins path is
generated by finding the common intersecting plane between the initial and
final poses with an initial rotation at the start pose. The spatial PH path is
developed with quaternion form and the curvature and torsion are met by
increasing the tangent vectors at the initial and final poses.

Chapter 4 describes algorithms for detecting and avoiding threats or
obstacles. Detection precedes avoidance. The chapter is divided into two
major parts. The first part discusses obstacle avoidance in a static obstacle
environment, while the second part discusses a strategy for avoiding dynamic
obstacles. Obstacle avoidance in both 2D as well as 3D cases are considered.
Two methods are used to avoid fixed obstacles: (i) decreasing the curvature,
and (ii) generating intermediate waypoints. The methods are simulated for
Dubins, clothoid and PH paths. For 3D path planning, a representative
building area is considered for the simulation. The area is discretized to a
searchable database. The Dijkstra algorithm is used to find the shortest route
through the database. Following this, the waypoints are connected with
flyable paths.

Chapter 5 presents a path-following algorithm for the Dubins path, which
is required by the UAV to follow the feasible path. It develops two forms of
guidance algorithm to follow Dubins and PH paths, using a simple linear
guidance algorithm and a nonlinear guidance algorithm based on nonlinear
dynamic inversion. The chapter then goes on to develop a guidance algorithm
to avoid collision with mobile obstacles, which could be other UAVs or
aircraft and other flying vehicles not under group control.

Chapter 6 discusses the problem undertaken for path planning, assump-
tions, problem formulation and solution description for the simultaneous
arrival on target of a group of UAVs. An algorithm is used for the path plan-
ning. Handling the constraints involved by means of curvature variation is
discussed. The flyable paths are tested for safety conditions. A solution is
achieved by increasing the lengths over that of a reference path.
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