1

Variation, Variability, Batches
and Bias 1n Microarray
Experiments: An Introduction

Andreas Scherer

Abstract

Microarray-based measurement of gene expression levels is a widely used technology
in biological and medical research. The discussion around the impact of variability on
the reproducibility of microarray data has captured the imagination of researchers ever
since the invention of microarray technology in the mid 1990s. Variability has many
sources of the most diverse kinds, and depending on the experimental performance it
can manifest itself as a random factor or as a systematic factor, termed bias. Knowledge
of the biological/medical as well as the practical background of a planned microarray
experiment helps alleviate the impact of systematic sources of variability, but can hardly
address random effects.

The invention of microarray technology in the mid 1990s allowed the simultaneous
monitoring of the expression levels of thousands of genes (Brown and Botstein 1999;
Lockhart et al. 1996; Schena et al. 1995). Microarray-based high density/high content
gene expression technology is nowadays commonly used in fundamental biological and
medical research to generate testable hypotheses on physiological processes and disease.
It is designed to measure variation of expression due to biological, physiological, genetic
and/or environmental conditions, and it allows us to study differences in gene expres-
sion induced by factors of interest, such as pharmacological and toxicological effects of
compounds, environmental effects, growth and aging, and disease phenotypes. We note
that the term ‘variation’ describes directly measurable differences among individuals or
samples, while the term ‘variability’ refers to the potential to vary.
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As we shall see in more detail in Chapter 2, relative quantification of gene expression
involves many steps including sample handling, messenger RNA (mRNA) extraction,
in-vitro reverse transcription, labeling of complementary RNA (cRNA) with fluorescent
dyes, hybridization of the labeled cDNA (target) to oligonucleotides with complementary
sequences (probes), which are immobilized on solid surfaces, and the measurement of the
intensity of the fluorescent signal which is emitted by the labeled target. The measured
signal intensity per target is a measure of relative abundance of the particular mRNA
species in the original biological sample.

Unfortunately, microarray technology has its caveats, as it is susceptible to variability
like any other measurement process. As we will discuss in Chapters 2 and 3, technical
variation manifests itself in signal intensity variability. This effect is informally called
‘noise’: technical components which are not part of the system under investigation but
which, if they enter the system, lead to variability in the experimental outcomes. Note that
noise is only defined in the context of technology. Since the early years of microarrays,
noise and its impact on the reliability of large-scale genomics data analysis have been a
much discussed topic. The team of Kerr ef al. (2000b) was among the first to recognize
the problem and to propose ANOVA methods to estimate noise in microarray data sets.
Tu et al. (2002) addressed the issue of how to measure the impact of different sources
of noise. Using a set of replicate arrays with varying degrees of preparation differences,
they were able to characterize quantitatively that the hybridization noise is very high
compared to sample preparation or amplification. They also found that the level of noise
is signal intensity dependent, and propose a method for significance testing based on noise
characteristics.

The unresolved issue of measurement variability and measuring variability has ham-
pered the great hopes researchers had with the advent of microarray technology and the
human genome sequence project. Since consensus technological, analytical, and reporting
processes were (and still are) largely missing, it appeared that not only were gene expres-
sion data irreproducible, but also the results were very much dependent on the choice of
analytical methods. A lively discussion on the validity of microarray technology resulted
in publications and comments like ‘Microarrays and molecular research: noise discov-
ery?’ (loannidis 2005), ‘An array of problems’ (Frantz 2005), countered by ‘Arrays of
hope’ (Strauss 2006), and ‘In praise of arrays’ (Ying and Sarwal 2008), and publica-
tions which raise questions about the reproducibility of microarray data (Marshall 2004;
Ein-Dor et al. 2006) or showing increased reproducibility (Dobbin et al. 2005b; Irizarry
et al. 2005; Larkin et al. 2005).

Shi et al. addressed this issue in a systematic manner and in 2006 published a compara-
tive analysis of a large data set which had been generated by MicroArray Quality Control
Consortium (MAQC) with 137 participants from 51 organizations (Shi et al. 2006). The
data set consists of two commercially available RNA samples of high quality — Universal
Human Reference RNA (UHRR) and Human Brain Reference RNA — which were mixed
in four titration pools, and whose mRNA levels were measured on seven microarray plat-
forms in addition to three alternative platforms. Each array platform was deployed at three
test sites, and from each sample five replicates were assayed at each site. This information-
rich data set is an excellent source for the investigation of technological noise, and some
of its data will be used in a number of chapters in this book. The project showed that
quantitative measures across all one-color array platforms had a median coefficient of
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variation (CV) of 5-15%, and a concordance rate for the qualitative calls (‘present’,
‘absent’) of 80-95% between sample replicates. Lists of differentially expressed genes
overlapped by about 89% between the test sites using the same platform, dropping to
74% overlap across platforms. The important conclusion the authors made is that the per-
formance of the microarray technology in their study speaks for its use in basic research
and may lead to its use as clinical diagnostic tool as well. The authors further point
out that standardization of data reporting, analysis tools and controls is important in this
process.

As pointed out earlier, ‘noise’ is used to informally describe measurement variability
due to technical factors. In the context of biological variability, the term ‘noise’ will be
avoided in the course of this book. Here we suggest the use of the more neutral term
‘expression heterogeneity’. The basis of expression heterogeneity lies within the inherent
differences in the nature of the subjects or specimen which are studied. It is dependent
on the subjects’ physiological states, their gender, age, and genetic aspects (Brem et al.
2002; DeRisi et al. 1997; Rodwell et al. 2004). Variability due to biological factors cannot
be avoided or minimized and may sometimes even be useful and important. To minimize
technical and biological variability, animal toxico- and pharmacogenomic studies are per-
formed under standardized conditions until the tissue harvest (and further): housing in
standardized cages, gender- and age-matching, and technical processes which adhere to
standard operating procedures and good laboratory practice. However, one or more ani-
mals may react differently to the treatment than the others, and their expression signature
may indeed provide very valuable information for the investigators. In another example,
measuring gene expression heterogeneity is important in gaining understanding pathogen-
esis in the concept of personalized medicine (Anguiano et al. 2008; Bottinger et al. 2002;
Heidecker and Hare 2007; Lee and Macgregor 2004).

In contrast to the random nature of ‘noise’, the nature of ‘batch effect’ is systematic. The
term ‘batch effect’ refers exclusively to systematic technical differences when samples
are processed and measured in different batches. Lamb et al. were confronted with batch
effects when they tested 164 small molecules in cell culture. Since not all cells could be
grown at the same time due to the large amount of cells they needed, the cells had to be
grown in batches. Hierarchical clustering showed that this batch effect masked the more
subtle effects of small-molecule treatment (Lamb et al. 2006). As we shall see in other
examples and sources of batch effects in the course of this book, batch effects can virtually
be generated at each step of an experiment, from sample manipulation to data acquisition.
They are unrelated to the biological, primary modeled factors. Batch effects introduce
system variability which can be of confounding nature and mask the outcome. Proper
evaluation of sources and potential magnitude of technical noise during the planning,
execution and analytical phase helps in extracting relevant biological information.

A wider term describing not only technical but also other aspects of confounding the
data is ‘bias’. We speak of bias where one or more systematic factors affect one or more
experimental groups but not all. Bias may be defined as unintentional, systematic erro-
neous association of some characteristic with a group in a way that distorts a comparison
with another group (Ransohoff 2005). There are different types of bias, among them the
following: selection bias, when, for instance, the control population has less potential
for exposure than the cases; self-selection bias, when only a certain, not-representative
subpopulation serves as voluntary study population; measurement bias, due to systematic
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differences in the measurement process; and cognitive bias, where the decision is based
on educational history.

Manageable potential sources of batch effects and bias should be accounted for during
the experimental design phase. They should be as consistent as possible throughout the
experiment. Monitoring these sources and reporting of deviations from the standard is
detrimental. In Chapters 3 (by P. Grass) and 4 (by N. Altman) it will be shown that
thoughtful experimental design can alleviate the impact of batch effects. Randomization
and blocking are two concepts which accomplish this. Randomization is a concept in
which experimental units (e.g. samples) are assigned to groups on a strictly random basis.
This means that every sample has the same chance of being selected, and that the sample
is representative of its study group. Blocking is a strategy of grouping samples into
experimental units which are then homogeneous for the factors which are studied. This
is important when samples cannot be processed on a single day. As in the case of Lamb
et al., growing all cells destined to be control cells on one day and growing all treated
cells on another would introduce a confounding time effect. Lamb et al. (2006) carefully
chose a setting where treated cells were grown on the same plate as the corresponding
control cells.

Chapters 5 through 15 deal with descriptive and analytical ways of exploring the nature,
extent, and influence of batch effects, in addition to providing statistical means of adjusting
confounding effects. As the MAQC project has stressed, standardization of data acqui-
sition, analysis and reporting is an important factor in making gene expression studies
transparent and comparable. This is further highlighted by Frueh (2006), who points out
the necessity of a ‘best microarray practices’ strategy to ensure quality of starting material,
data, analysis, and reporting, and interpretation. In this book Shahzad et al. (Chapter 17)
will show the benefit of the application of standard operating procedures in the develop-
ment of a commercial genomics biomarker panel. The book will close with an overview
of the status of various initiatives which are currently developing standardized procedures
for biomedical research (Chapter 18, Rustici et al.).

The purpose of the book is to raise the awareness of sources of variability in microarray
data, especially of batch effects and bias. It should serve as guidance and starting point
for further studies at the same time. Biologists and managers who plan microarray studies
are invited to read the book, as well as laboratory personnel, statisticians, and clinicians
who execute the study and analyse the data.



