
1
What is the Mesoscale?

1.1 Space and time scales
Atmospheric motions occur over a broad continuum of
space and time scales. The mean free path of molecules
(approximately 0.1 μm) and circumference of the earth
(approximately 40 000 km) place lower and upper bounds
on the space scales of motions. The timescales of atmo-
spheric motions range from under a second, in the case
of small-scale turbulent motions, to as long as weeks in
the case of planetary-scale Rossby waves. Meteorological
phenomena having short temporal scales tend to have small
spatial scales, and vice versa; the ratio of horizontal space
to time scales is of roughly the same order of magnitude for
most phenomena (∼10 m s−1) (Figure 1.1).

Before defining the mesoscale it may be easiest first to
define the synoptic scale. Outside of the field of mete-
orology, the adjective synoptic (derived from the Greek
synoptikos) refers to a ‘‘summary or general view of a
whole.’’ The adjective has a more restrictive meaning to
meteorologists, however, in that it refers to large space
scales. The first routinely available weather maps, produced
in the late 19th century, were derived from observations
made in European cities having a relatively coarse character-
istic spacing. These early meteorological analyses, referred
to as synoptic maps, paved the way for the Norwegian
cyclone model, which was developed during and shortly
after World War I. Because only extratropical cyclones and
fronts could be resolved on the early synoptic maps, syn-
optic ultimately became a term that referred to large-scale
atmospheric disturbances.

The debut of weather radars in the 1940s enabled
phenomena to be observed that were much smaller in
scale than the scales of motion represented on synoptic
weather maps. The term mesoscale appears to have been
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introduced by Ligda (1951) in an article reviewing the use
of weather radar, in order to describe phenomena smaller
than the synoptic scale but larger than the microscale, a term
that was widely used at the time (and still is) in reference
to phenomena having a scale of a few kilometers or less.1

The upper limit of the mesoscale can therefore be regarded
as being roughly the limit of resolvability of a disturbance
by an observing network approximately as dense as that
present when the first synoptic charts became available,
that is, of the order of 1000 km.

At least a dozen different length scale limits for the
mesoscale have been broached since Ligda’s article. The
most popular bounds are those proposed by Orlanski
(1975) and Fujita (1981).2 Orlanski defined the mesoscale
as ranging from 2 to 2000 km, with subclassifications of
meso-α, meso-β, and meso-γ scales referring to horizontal
scales of 200–2000 km, 20–200 km, and 2–20 km, respec-
tively (Figure 1.1). Orlanski defined phenomena having
scales smaller than 2 km as microscale phenomena, and
those having scales larger than 2000 km as macroscale phe-
nomena. Fujita (1981) proposed a much narrower range
of length scales in his definition of mesoscale, where the
mesoscale ranged from 4 to 400 km, with subclassifica-
tions of meso-α and meso-β scales referring to horizontal
scales of 40–400 km and 4–40 km, respectively (Figure 1.1).

1 According to Ligda (1951), the first radar-detected precipitation area
was a thunderstorm observed using a 10-cm radar in England on
20 February 1941. Organized atmospheric science research using radars
was delayed until after World War II, however, given the importance
of the relatively new technology to military interests and the secrecy
surrounding radar development.
2 In addition to Orlanski and Fujita, scale classifications and/or subclas-
sifications also have been introduced by Petterssen (1956), Byers (1959),
Tepper (1959), Ogura (1963), and Agee et al. (1976), among others.
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Figure 1.1 Scale definitions and the characteristic time and horizontal length scales of a variety of atmospheric
phenomena. Orlanski’s (1975) and Fujita’s (1981) classification schemes are also indicated.

Fujita’s overall scheme proposed classifications spanning
two orders of magnitude each; in addition to the mesoscale,
Fujita proposed a 4 mm–40 cm musoscale, a 40 cm–40 m
mososcale, a 40 m–4 km misoscale, and a 400–40 000 km
masoscale (the vowels A, E, I, O, and U appear in alpha-
betical order in each scale name, ranging from large scales
to small scales). As was the case for Fujita’s mesoscale,
each of the other scales in his classification scheme was
subdivided into α and β scales spanning one order of
magnitude.

The specification of the upper and lower limits of
the mesoscale does have some dynamical basis, although
perhaps only coincidentally. The mesoscale can be viewed
as an intermediate range of scales on which few, if any,
simplifications to the governing equations can be made, at
least not simplifications that can be applied to all mesoscale
phenomena.3 For example, on the synoptic scale, several

3 This is essentially the same point as made by Doswell (1987).

terms in the governing equations can safely be disregarded
owing to their relative unimportance on that scale, such
as vertical accelerations and advection by the ageostrophic
wind. Likewise, on the microscale, different terms in the
governing equations can often be neglected, such as the
Coriolis force and even the horizontal pressure gradient
force on occasion. On the mesoscale, however, the full com-
plexity of the unsimplified governing equations comes into
play. For example, a long-lived mesoscale convective system
typically contains large pressure gradients and horizontal
and vertical accelerations of air, and regions of substantial
latent heating and cooling and associated positive and
negative buoyancy, with the latent heating and cooling
profiles being sensitive to microphysical processes. Yet even
the Coriolis force and radiative transfer effects have been
shown to influence the structure and evolution of these
systems.

The mesoscale also can be viewed as the scale on which
motions are driven by a variety of mechanisms rather
than by a single dominant instability, as is the case on
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the synoptic scale in midlatitudes.4 Mesoscale phenomena
can be either entirely topographically forced or driven
by any one of or a combination of the wide variety of
instabilities that operate on the mesoscale, such as thermal
instability, symmetric instability, barotropic instability, and
Kelvin-Helmholtz instability, to name a few. The dominant
instability on a given day depends on the local state of
the atmosphere on that day (which may be heavily influ-
enced by synoptic-scale motions). In contrast, midlatitude
synoptic-scale motions are arguably solely driven by baro-
clinic instability; extratropical cyclones are the dominant
weather system of midlatitudes on the synoptic scale. Baro-
clinic instability is most likely to be realized by disturbances
having a horizontal wavelength roughly three times the
Rossby radius of deformation, LR, given by LR = NH/f ,
where N, H, and f are the Brunt-Väisälä frequency, scale
height of the atmosphere, and Coriolis parameter, respec-
tively.5 Typically, LR is in the range of 1000–1500 km. In
effect, the scale of the extratropical cyclone can be seen as
defining what synoptic scale means in midlatitudes.

In contrast to the timescales on which extratropical
cyclones develop, mesoscale phenomena tend to be shorter
lived and also are associated with shorter Lagrangian
timescales (the amount of time required for an air parcel to
pass through the phenomenon). The Lagrangian timescales
of mesoscale phenomena range from the period of a pure
buoyancy oscillation, equal to 2π/N or roughly 10 minutes
on average, to a pendulum day, equal to 2π/f or roughly
17 hours in midlatitudes. The former timescale could be
associated with simple gravity wave motions, whereas the
latter timescale characterizes inertial oscillations, such as
the oscillation of the low-level ageostrophic wind com-
ponent that gives rise to the low-level wind maximum
frequently observed near the top of nocturnal boundary
layers.

The aforementioned continuum of scales of atmospheric
motions and associated pressure, temperature, and mois-
ture variations is evident in analyses of meteorological

4 See, for example, Emanuel (1986).
5 In addition to being related to the wavelength that maximizes the
growth rate of baroclinic instability, LR also is important in the problem
of geostrophic adjustment. Geostrophic adjustment is achieved by rela-
tively fast-moving gravity waves. The horizontal scale of the influence of
the gravity waves is dictated by LR, which physically can be thought of
as the distance a gravity wave can propagate under the influence of the
Coriolis force before the velocity vector is rotated so that it is normal to
the pressure gradient, at which point the Coriolis and pressure gradient
forces balance each other. For phenomena having a horizontal scale
approximately equal to LR, both the velocity and pressure fields adjust
in significant ways to maintain/establish a state of balance between the
momentum and mass fields. On scales much less than (greater than) LR,
the pressure (velocity) field adjusts to the velocity (pressure) field during
the geostrophic adjustment process.

variables. Figure 1.2 presents one of Fujita’s manual anal-
yses (i.e., a hand-drawn, subjective analysis) of sea level
pressure and temperature during an episode of severe
thunderstorms.6 Pressure and temperature anomalies are
evident on a range of scales: for example, a synoptic-scale
low-pressure center is analyzed, as are smaller-scale highs
and lows associated with the convective storms. The magni-
tude of the horizontal pressure and temperature gradients,
implied by the spacing of the isobars and isotherms, respec-
tively, varies by an order of magnitude or more within the
domain shown.

The various scales of motion or scales of atmospheric
variability can be made more readily apparent by way of
filters that preferentially damp select wavelengths while
retaining others. For example, a low-pass filter can be used
to remove relatively small scales from an analysis (low-pass
refers to the fact that low-frequency [large-wavelength]
features are retained in the analysis). A band-pass filter can
be used to suppress scales that fall outside of an intermediate
range. Thus, a low-pass filter can be used to expose synoptic-
scale motions or variability and a band-pass filter can be
used to expose mesoscale motions. (A high-pass filter would
be used to suppress all but the shortest wavelengths present
in a dataset; such filters are rarely used because the smallest
scales are the ones that are most poorly resolved and
contain a large noise component.) The results of such
filtering operations are shown in Figure 1.3, which serves
as an example of how a meteorological field can be viewed
as having components spanning a range of scales. The total
temperature field comprises a synoptic-scale temperature
field having a southward-directed temperature gradient
plus mesoscale temperature perturbations associated with
thunderstorm outflow.

1.2 Dynamical distinctions
between the mesoscale
and synoptic scale

1.2.1 Gradient wind balance

On the synoptic scale, phenomena tend to be characterized
by a near balance of the Coriolis and pressure gradient forces
(i.e., geostrophic balance) for straight flow, so accelerations
of air parcels and ageostrophic motions tend to be very
small. For curved flow, the imbalance between these forces
on the synoptic scale results in a centripetal acceleration
such that the flow remains nearly parallel to the curved

6 Fujita called these mesoscale meteorological analyses mesoanalyses. The
analyses he published over the span of roughly five decades are widely
regarded as masterpieces.
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Figure 1.2 Sea-level pressure (black contours) and temperature (red contours) analysis at 0200 CST 25 June 1953. A squall
line was in progress in northern Kansas, eastern Nebraska, and Iowa. (From Fujita [1992].)

isobars (i.e., gradient wind balance). Gradient wind balance
is often a poor approximation to the air flow on the
mesoscale. On the mesoscale, pressure gradients can be
considerably larger than on the synoptic scale, whereas
the Coriolis acceleration (proportional to wind velocity) is
of similar magnitude to that of the synoptic scale. Thus,
mesoscale systems are often characterized by large wind
accelerations and large ageostrophic motions.

As scales decrease below ∼1000 km the Coriolis accel-
eration becomes decreasingly important compared with
the pressure gradient force, and as scales increase beyond
∼1000 km ageostrophic motions become decreasingly sig-
nificant. Let us consider a scale analysis of the horizontal
momentum equation (the x equation, without loss of
generality):

du

dt
= − 1

ρ

∂p

∂x
+ f v + Fu, (1.1)

where u, v, ρ, p, f , d/dt, and Fu are the zonal wind
speed, meridional wind speed, air density, pressure, Coriolis

parameter, Lagrangian time derivative, and viscous effects
acting on u, respectively. We shall neglect Fu for now, but
we shall find later that effects associated with the Fu term
are often important.

On the synoptic scale and mesoscale, for O(v) ∼
10 m s−1, the Coriolis acceleration f v is of order

O(f v) ∼ (10−4 s−1) (10 m s−1) ∼ 10−3 m s−2.

On the synoptic scale, the pressure gradient force has a scale
of

O

(
− 1

ρ

∂p

∂x

)
∼ 1

1 kg m−3

10 mb

1000 km
∼ 10−3 m s−2;

thus, the Coriolis and pressure gradient forces are of simi-
lar scales and, in the absence of significant flow curvature,
we can infer that accelerations (du/dt) are small. Fur-
thermore, because v = vg + va and vg = 1

ρf
∂p
∂x , where vg

and va are the geostrophic and ageostrophic meridional
winds, respectively, (1.1) can be written as (ignoring Fu)
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Figure 1.3 (a) Manual surface analysis for 2100 UTC 24 April 1975. Isotherms are drawn at 2 ◦F intervals and fronts and
pressure centers are also shown. A thunderstorm outflow boundary is indicated using a blue dashed line with double dots.
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f va = − 1
ρ

∂p
∂x + f v. Therefore, ageostrophic motions are

also small on the synoptic scale (particularly for fairly
straight flow), owing to the approximate balance between
the Coriolis and pressure gradient forces, referred to as
quasigeostrophic balance.

On the mesoscale, the horizontal pressure gradient,
∂p/∂x, can range from 5 mb/500 km (e.g., in quiescent
conditions) to 5 mb/5 km (e.g., beneath a thunderstorm).
At the small end of this range, the Coriolis and pressure
gradient forces may be approximately in balance, but at
the large end of this range, the pressure gradient force is
two orders of magnitude larger than on the synoptic scale
(i.e., 10−1 m s−2 versus 10−3 m s−2). On these occasions,
the pressure gradient force dominates, the Coriolis force is
relatively unimportant, and accelerations and ageostrophic
motions are large.

A dimensionless number, called the Rossby number,
assesses the relative importance of the Coriolis force and air
parcel accelerations (the magnitude of the acceleration is
directly related to the magnitude of the ageostrophic wind).
The Rossby number can be used to distinguish synoptic-
scale weather systems from subsynoptic-scale phenomena
and is defined as

Ro = O(dv/dt)

O(−f k × v)
∼ V/T

fV
∼ V2/L

fV
∼ V

fL
, (1.2)

where k is the unit vector in the positive z direction, T is
a timescale (generally the advective timescale), V is the
magnitude of a characteristic wind velocity, v, and L is a
characteristic horizontal length scale. On the synoptic scale,
where the quasigeostrophic approximation usually can be
made, Ro � 1. For mesoscale systems, Ro � 1.

1.2.2 Hydrostatic balance

In many atmospheric applications (e.g., synoptic meteorol-
ogy, large-scale dynamics) we assume that the atmosphere
is in hydrostatic balance, that is, the vertical pressure
gradient force per unit mass and gravitational accelera-
tion are nearly balanced, resulting in negligible vertical
accelerations. The vertical momentum equation can be
written as

dw

dt
= − 1

ρ

∂p

∂z
+ 2�u cos φ − g + Fw , (1.3)

where w, g, �, φ, and Fw are the vertical velocity, grav-
itational acceleration, angular rotation rate of the earth,
latitude, and viscous effects acting on w, respectively.
The scale of g is 10 m s−2 and the scale of | − 1

ρ

∂p
∂z | is

also ∼(1 kg m−3)−1· 100 mb/1000 m ∼ (1 kg m−3)−1· 104

Pa/103 m ∼ 10 m s−2. We neglect Fw in this simple anal-
ysis, although Fw can be important, particularly near the
edges of clouds and in rising thermals. Moreover, the con-
tribution of the vertical component of the Coriolis force,
2�u cos φ, to vertical accelerations is often neglected as
well (although its scale is not always negligible relative to
the soon-to-be-defined buoyancy and vertical perturbation
pressure gradient forces), which gives us

dw

dt
= − 1

ρ

∂p

∂z
− g. (1.4)

If dw/dt is negligible, then (1.4) becomes the so-called
hydrostatic approximation,

∂p

∂z
= −ρg. (1.5)

In which types of phenomenon can we assume that
dw/dt is negligible compared with | − 1

ρ

∂p
∂z | and g? In other

words, what determines whether a phenomenon is regarded
as a hydrostatic or nonhydrostatic phenomenon?

It turns out we cannot simply scale the individual terms
in (1.4) to determine which phenomena are hydrostatic,
because the two terms on the rhs are practically always
nearly equal in magnitude but opposite in sign, and thus
individually are always much larger than their residual (and
dw/dt). To properly assess under which conditions dw/dt is
negligible, we modify the rhs terms by defining a base state
(e.g., an average over a large horizontal area) density and
a base state pressure, defined to be in hydrostatic balance
with it. We then express the total pressure and density as
the sum of the base state value (p and ρ, respectively) and
a perturbation (p′ and ρ ′, respectively), that is,

p = p (z) + p′ (x, y, z, t
)

(1.6)

ρ = ρ (z) + ρ ′ (x, y, z, t
)

, (1.7)

and we require

0 = −∂p

∂z
− ρg. (1.8)

Multiplying (1.4) by ρ, subtracting (1.8), dividing by ρ,
and incorporating the definitions of p and ρ yields

dw

dt
= − 1

ρ

∂p′

∂z
− ρ ′g

ρ
. (1.9)

The relative importance of dw/dt compared with | − 1
ρ

∂p′
∂z |

(and | ρ′g
ρ

|) is

O

(
dw

dt

)

O

(
− 1

ρ

∂p′

∂z

) . (1.10)
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The scale of w can be obtained from scaling the continuity
equation (the two-dimensional Boussinesq approximation
is used for simplicity; see Chapter 2 for a review),

O

(
∂w

∂z

)
∼ O

(
∂u

∂x

)
; (1.11)

thus,

O(w) ∼ VD

L
, (1.12)

where O(w) is the scale of w, and V , D, and L are the
characteristic horizontal velocity scale, depth scale, and
horizontal length scale of the phenomenon, respectively.
From (1.12) the scale of dw/dt is therefore

O

(
dw

dt

)
∼ VD

LT
, (1.13)

where T is the characteristic timescale for accelerations
within the phenomenon.

The scale of | − 1
ρ

∂p′
∂z | may be written as

O

(
− 1

ρ

∂p′

∂z

)
∼ δp′

ρD
, (1.14)

where δp′ is the characteristic pressure perturbation within
the phenomenon. We want to eliminate δp′ and ρ in favor
of the characteristic scales of the phenomenon (e.g., V , D, L,
and T). We do this by scaling the horizontal momentum
equation as follows:

du

dt
≈ − 1

ρ

∂p′

∂x
(1.15)

O

(
du

dt

)
∼ O

(
− 1

ρ

∂p′

∂x

)
(1.16)

V

T
∼ δp′

ρL
(1.17)

VL

T
∼ δp′

ρ
; (1.18)

therefore, using (1.14),

O

(
− 1

ρ

∂p′

∂z

)
∼ VL

TD
. (1.19)

Using (1.13) and (1.19), (1.10) becomes

O

(
dw

dt

)

O

(
− 1

ρ

∂p′

∂z

) ∼
VD

LT
VL

TD

=
(

D

L

)2

. (1.20)

The quantity D/L is known as the aspect ratio of the
phenomenon—the ratio of the characteristic depth scale

of the phenomenon to the horizontal length scale (or
width) of the phenomenon. When a phenomenon is much
wider than it is deep (D/L � 1), dw/dt is relatively small
compared with the vertical perturbation pressure gradient
force and the phenomenon can be considered a hydro-
static phenomenon; that is, the hydrostatic approximation
is justified. When a phenomenon is approximately as
wide as it is deep (D/L ∼ 1), dw/dt is similar in mag-
nitude to the vertical perturbation pressure gradient force,
and the phenomenon is considered a nonhydrostatic phe-
nomenon; that is, the hydrostatic approximation should
not be made (Figure 1.4). Note that we have assumed
equivalent timescales for the horizontal and vertical accel-
erations [i.e., T is equivalent in (1.13) and (1.17)]. This
assumption is equivalent to (1.11), which dictates that
D/W (the vertical advective timescale) is equal to L/V
(the horizontal advective timescale). There may be cases
in which ∂u/∂x is balanced by ∂v/∂y such that the
scaling in (1.11) is not appropriate. In that case, even
phenomena with a large aspect ratio may be nearly hydro-
static. For convective motions, (1.11) is considered a good
assumption.

On the synoptic scale, D/L ∼ 10 km/1000 km ∼
1/100 � 1. On the mesoscale, D/L can be ∼1 or �1,
depending on the phenomenon. For example, in a
thunderstorm updraft, D/L ∼ 10 km/10 km ∼ 1 (i.e., the
thunderstorm updraft can be considered to be a nonhydro-
static phenomenon). However, for the rain-cooled outflow
that the thunderstorm produces, D/L ∼ 1 km/10 km ∼
1/10 � 1 (i.e., the outflow can be considered to be an
approximately hydrostatic phenomenon).

In a hydrostatic atmosphere, pressure can be viewed
essentially as being proportional to the weight of the
atmosphere above a given point. Pressure changes in a
hydrostatic atmosphere arise from changes in the den-
sity of air vertically integrated over a column extending
from the location in question to z = ∞ (p = 0). This
interpretation of pressure will be useful for some mesoscale
phenomena. For a nonhydrostatic phenomenon, we cannot
relate pressure fluctuations solely to changes in the weight
of the overlying atmosphere. Instead, significant dynamic
effects may contribute to pressure perturbations. Examples
include the low pressure found in the core of a tornado
and above the wing of an airplane in flight, and the high
pressure found beneath an intense downburst and on the
upwind side of an obstacle. The relationship between the
pressure field and wind field is discussed in much greater
depth in Section 2.5.

In the next chapter we review some of the basic equa-
tions and tools that will be relied upon in the rest of the
book. The experienced reader may wish to skip ahead to
Chapter 3.
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Figure 1.4 We can infer that a phenomenon is hydrostatic when its horizontal length scale is significantly larger than its
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as a function of depth versus horizontal length (i.e., width) scale.
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